
N95- 23688

Performance Results of Cooperating Expert Systems in a

Distributed Real-time Monitoring System

U. M. Schwuttke, J. R. Veregge, and A. G. Quan

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Drive

Pasadena, CA 91109 U.S.A.

Tel: 818-354-1414 Fax: 818-393-6004

E-mail: ums@ puente.jpl.nasa.gov

KEY WORDS AND PHRASES

Automation, distributed systems, expert

systems, monitoring and diagnosis, real time.

INTRODUCTION

There are numerous definitions for real-time

systems, the most stringent of which involve

guaranteeing correct system response within a
domain-dependent or situationally defined period

of time. For applications such as diagnosis, in

which the time required to produce a solution can

be non-deterministic, this requirement poses a

unique set of challenges in dynamic modification

of solution strategy that conforms with maximum

possible latencies. However, another definition
of real time is relevant in the case of monitoring

systems where failure to supply a response in the

proper (and often infinitesimal) amount of time
allowed does not make the solution less useful

(or, in the extreme example of a monitoring

system responsible for detecting and deflecting
enemy missiles, completely irrelevant). This

more casual definition involves responding to
data at the same rate at which it is produced, and

is more appropriate for monitoring applications
with softer real-time constraints, such as inter-

planetary exploration, which results in massive

quantities of data transmitted at the speed of light
for a number of hours before it even reaches the

monitoring system.

The research described in this paper was carried out by the Jet

Propulsion Laboratory, California Institute of Technology under
acontract with the National Aeronautics and Space

Administration. The authors wish to acknowledge strong support

from JPL's Voyager and Galileo Projects, the Multimission Op-

erations Support Office, and Director's Discretionary Fund.

The latter definition of real time has been ap-

plied to the MARVEL system-[1]-for automated
monitoring and diagnosis of spacecraft telemetry.
An early version of this system has been in

continuous operational use since it was first

deployed in 1989 for the Voyager encounter with

Neptune. This system remained under incremen-
tal development until 1991 and has been under
routine maintenance in operations since then,

while continuing to serve as an artificial intelli-

gence (AI) testbed in the laboratory. A second-

generation Galileo application has been on-line
for only one year and is still under active devel-

opment. The second-generation system builds
on experience gained with the earlier embedded

diagnosis systems to achieve an order of mag-
nitude increase in processing capability.

The system architecture has been designed to

facilitate concurrent and cooperative processing
by multiple diagnostic expert systems in a hierar-

chical organization. The diagnostic modules
adhere to concepts of data-driven reasoning, con-

strained but complete nonoverlapping domains,
metaknowledge of global consequences of anom-
alous data, hierarchical reporting of problems

that extend beyond a single domain, and shared

responsibility for problems that overlap domains.

The system enables efficient diagnosis of com-

plex system failures in real-time environments
with high data volumes and moderate failure
rates, as indicated by extensive performance
measurements.

COOPERATING DIAGNOSIS SYSTEMS
IN A DISTRIBUTED ARCHITECTURE

The need for robust mechanisms of cooper-

ation among real-time diagnostic modules has

79

https://ntrs.nasa.gov/search.jsp?R=19950017268 2020-06-16T08:45:49+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42782006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DISTRIBUTED MARVEL ARCHITECTURE

J
I

+

SUBSYSTEM
PROCESS

SUBSYSTEM

PROCESS

i

i I SUBSYSTEM
i I PROCESS

_F

Knowledge
I ProceII

SUBSYSTEM PROCESS ARCHITECTURE

Figure 1. The distributed architecture on the left can currently be configured to run on one

to four UNIX workstations. The hybrid subsystem processes on the left are composed of

conventional and knowledge processes, as shown in the figure on the right. Knowledge

processes are used only when a reasoning capability is explicitly required.

been an important driver of the system architec-
ture. The notion of joint responsibility-[2]-as an
alternative to the more conventional notion of

agents acting in self-interest-[3], [4]-has been

amended with modular problem decomposition

and data-driven reasoning in order to minimize

the need for communication between agents.
The various modules in the distributed architec-

ture of Figure 1 are allocated among a configura-

tion of UNIX workstations. The data manage-
ment module receives data from a source (in the

case of our current application, the data is space-

craft telemetry received from the Jet Propulsion

Laboratory's (JPL) ground data system) and allo-
cates it to the appropriate subsystem monitor

based on identification of data type. (Our system

is partitioned according to the structure of the

spacecraft, with one subsystem monitor for every

spacecraft subsystem monitored by MARVEL,

including command, flight data, attitude and
articulation control, and telecommunications;

propulsion, thermal, and power have not been
addressed.)

Each of the subsystem monitors provides
algorithmic functions such as validation of

telemetry, detection of anomalies, trend analysis,
and automatic reporting. These functions, while
not in themselves of interest in AI or computer

science research, are vital components of a

real-world diagnostic system. In addition, each

subsystem process can provide diagnosis of
failures based on anomalous data and recommen-
dation of corrective actions. The latter two func-

tions are provided by knowledge-based modules
that are embedded within each of the individual

subsystem monitors. The remaining modules in-

clude the graphical user interface and display
processes for each of the subsystem monitors,

and the system-level diagnostic agent for
handling failures that manifest themselves across

multiple subsystems (and therefore cannot be
completely analyzed by any one subsystem

alone). Detailed reasoning examples that
illustrate cooperation among diagnosis modules

are presented elsewhere-[5].

EXPERT SYSTEM CHARACTERISTICS

Rule-based diagnostic modules are embedded

in efficient algorithmic code. The algorithmic

code performs all functions that do not explicitly
require reasoning capability, so that the use of the

less efficient reasoning modules is limited to
those functions for which it is essential.

Forward-chaining demons are used to repre-

sent domain knowledge. Reasoning is activated
by the appearance of data that requires diagnosis.

The initial determination that diagnosis is re-

quired is made by algorithmic monitoring code,

80

which detects potential anomalies algorithmically

and passes the anomalous data to an appropriate

diagnostician. In the absence of anomalous data
within its domain, a diagnostic system is idle.

Each diagnostic system is responsible for a

small, clearly partitionable domain of expertise.
Partitioning is governed by the natural decomposi-

tion of the system being diagnosed. This helps
overcome disadvantages associated with rule-

based systems for which, typically, implementa-
tion can be intractable, execution is nondetermi-

nistic and relatively slow, and verification can be
difficult. Small, modular knowledge bases enable

developers to handle more easily definable sub-

problems. Smaller knowledge bases execute
more efficiently, because less time is spent in
search. Finally, smaller knowledge bases are eas-

ier to verify.

Each diagnostician has sufficient knowledge

to be fully accountable for diagnoses within its
area and has no knowledge of other domains.

This requires that accountability for locally
detectable failures must be local. However, the

participation of more than one diagnostic system
is required when symptoms manifest themselves
in more than one domain. Each diagnostic system

has the necessary metaknowledge to identify

symptoms of failures that could possibly extend
beyond its domain. Metaknowledge is contained

in a set of rules in each knowledge base, and is
associated with the occurrence of events whose

analysis may require the cooperation of other

agents.

An expert forwards all known information

pertaining to failures beyond its domain to anoth-
er agent at the next higher level in the hierarchy.
The underlying approach on forwarded messages

is conservative; it is up to the agent receiving the
information to determine whether a fault requiring

a diagnostic message and an alarm has occurred,
or whether the anomalous data has some other

explanation. When necessary, metaknowledge is
used to direct messages to the relevant agent(s) in

order to complete the final analysis of the anoma-
lous data and provide diagnosis of any associated
failures.

EXPERIMENTAL RESULTS

The distributed architecture described in this

paper has been applied to two generations of real-
time monitoring systems. The Galileo system,

currently under development, does not yet include

on-line modules for diagnosis. The Voyager

system, completed in 1991, contains four

diagnostic expert systems (developed using a
commercial shell) in a two-level hierarchy.

Conventional monitoring modules for four

of the spacecraft subsystems were completed:

the flight data subsystem, the computer
command subsystem, the attitude and articula-

tion control subsystem, and the telecom sub-
system. Three of the expert systems are embed-
ded in conventional modules that provide data

access/manipulation and monitoring in addition

to providing graphical user interfaces and other

subsystem-specific automation. The system-
level diagnostician is not embedded within
another module.

The computer command subsystem (CCS)

expert contains on the order of 150 rules, focuses
on a relatively broad domain analysis, and is

invoked very frequently (for almost every para-
meter). The attitude and articulation control

subsystem (AACS) expert contains approxi-

mately 100 rules, and focuses on a more narrow
domain of analysis. It is invoked infrequently.
The telecom expert system contains'on the order

of twenty-five rules and is invoked continuously

(for every parameter). The flight data subsystem
(FDS) module does not contain an expert

system.

Experimental evaluation on a network of
workstations (Sun Microsystem Sparc LXs

running Solaris 2.2) involved a series of tests to
determine the maximum number of data parame-

ters that could be processed per module per
second (a subsystem module includes both the

conventional and knowledge-based components,
as shown in Figure 1). The primary purpose of
this evaluation was to learn about the perfor-

mance of the expert systems and apply our

insights to future development on the Galileo
application. This evaluation was not motivated

by a need to improve the performance of the
Voyager system, as current data rates are consid-

erably slower than during the planetary
encounters and are easily handled by the existing

software configuration.

The results are shown in Figure 2. The base-

line performance was below expectation, with
FDS, CCS, AACS, and Telecom processing 26,

3, 24, and 428 parameters per second respective-

ly, or 481 total parameters per second processed
by the entire system. Performance profiling

revealed that file input/output (I/O) and the
graphical user interfaces (GUIs) rather than the

81

t/)

a_

O

700

650

6O0

550

500

450

40O

350

300

250

200

150

100

50

0
Baseline Better Simpler No GUI

File I/O GUI
No KBS

Spacecraft Subsystems

Telecom

AACS

CCS

FDS

Figure 2. Performance results for each of the subsystem modules.

diagnostic modules were primary performance
bottlenecks.

With regard to these bottlenecks, the four

modules can be categorized as follows: FDS and
CDS have moderately complex GUIs, and
perform significant file I/O. AACS has the most

complex GUI and performs very little file I/O,

because the input files read by this subsystem are
sufficiently small that they are read entirely into
memory upon system initialization. Telecom has

a simple GUI and performs no file I/O.

Optimizing file I/O where possible improved

performance to 53, 16, 81, and 428 parameters

per second. (This is the only improvement
discussed in this section that was carried forward

to the operational system.) Simplifying the

graphical user interface by eliminating real-time

scrolling windows (known to be computationally
inefficient in MOTIF user interfaces; considered

desirable by end-users and thus included in the

FDS, CCS, and AACS modules of the opera-

tional system) further improved performance to

53, 35, 172, and 428 parameters per second.

Eliminating the graphical user interface entirely

resulted in further performance increases to 67,

35,646, and 570 parameters per second. Finally,

eliminating the expert systems yielded per-

formance of 67, 273,668, and 570 parameters

per second.

These results made it possible to gain a num-

ber of new insights with regard to our system.

The biggest surprise was the high performance of
the telecom module. The combination of the

small knowledge base and the simple user inter-

face enables processing of 428 parameters per
second. Elimination of both the GUI and the ex-

pert system only results in a further performance

improvement on the order of 25 percent, indica-

ting that no substantial penalty is associated with

the significant enhancement to functionality pro-

vided by these two components of the module.

The next generation of the system will benefit

from this result, in that frequently performed

analysis that requires the use of an expert system
will be implemented with a number of small,

cooperating modules rather than one larger

module. This in itself is not unexpected; it is the

magnitude of the benefit that was surprising.

Further performance improvement could likely

be gained with a more efficient expert system

shell. This will be investigated, although we do

not currently expect more than an additional

order of magnitude improvement.

82

The AACS expert system is larger by a factor

of four, and slower, in the worst case, by over

two orders of magnitude. This can be explained

by a significantly larger search space and greater

depth in each search. Performance could likely
be improved with a faster reasoning shell and by
modularization of the knowledge base. However,

the diagnostic component of this module is
invoked sufficiently rarely (often less than once

per hour) that this is not an important bottleneck.

In the case of this type of module, it is preferable

to simplify the GUI, which continues to impose
considerable resource overhead.

The CCS expert system is large and is

invoked regularly as part of ongoing trend analy-
sis in that subsystem module. Elimination of the

expert system results in an additional order of

magnitude increase in performance, providing
further indication that a large knowledge base is

inappropriate for frequently invoked real-time
diagnosis. The CCS knowledge base is charac-

terized by breadth rather than depth. As a result,
it would be both beneficial (and straight-forward)
to reduce it to three or more component modules

without imposing significant overhead from

resulting interprocess communication. (If this
were implemented, the CCS module would still
be I/O bound, as it reads from a number of very

large files.)

As a result of these insights, the Galileo

implementation takes a more efficient approach
to file I/O. It also tends to be more efficient in its

graphical user interface, in that it does not include
some of the higher overhead user interface

widgets. Such changes impact functionality,
requiring a certain amount of negotiation with

end users (who are typically willing to compro-
mise in favor of performance). In addition, the

Galileo system makes greater use of the distribut-
ed architecture with more than one module per

subsystem, and more than one diagnostic compo-

nent per module.

CONCLUSION

The MARVEL distributed architecture

demonstrates the successful implementation of

multiple cooperating agents in a complex real-

time diagnostic system. We have designed an
architecture that facilitates concurrent and coop-

erative processing by multiple agents in a hier-

archical organization. These agents adhere to the

concepts of data-driven embedded diagnosis,

constrained but complete nonoverlapping

domains, metaknowledge of global consequences

of anomalous data, hierarchical reporting of

problems that extend beyond an agent's domain,

and shared responsibility for problems that

overlap domains.

The MARVEL architecture is simple and
well suited for real-time telemetry analysis.

Conventional processing is used wherever possi-

ble in order to facilitate performance. The

knowledge-based agents are embedded within

the algorithmic code, and are invoked only when
necessary for diagnostic reasoning. Distribution
of telemetry monitoring and diagnostic processes

across workstations provides significant

improvement in performance. These qualities
allow for efficient real-time diagnosis of

anomalies occurring in a complex application.

Maximum modularization of frequently

invoked reasoning modules will enable signifi-

cant performance improvements in the next

generation system.

REFERENCES

[1] Schwuttke, U. M.; Quan, A. G.; Angelino,

R.; Childs, C. L.; Veregge, J. R.; Yeung, R.; and
Rivera, M. B., 1992. MARVEL: A Distributed

Real-time Monitoring and Analysis Application.

In Innovative Applications of Artificial Intelli-

gence 4, MIT Press.

[2] Jennings, N. R.; and Mamdani, E. H.,

1992. Using Joint Responsibility to Coordinate
Collaborative Problem Solving in Dynamic

Environments. In Proceedings of the Tenth

National Conference on Artificial Intelligence,
269-275. San Jose, California.

[3] Durfee, E. H., 1988. Cooperation through
Communication in a Distributed Problem Solving

Network. In Distributed Artificial Intelligence,

Vol. 2. Pitman Publishing.

[4] Cohen, P. R.; Hart, D. M.; and Howe, A.
E., 1990. Addressing Real-time Constraints in

the Design of Autonomous Agents. COINS

Technical Report 90-06. University of Massa-
chusetts at Amherst.

[5] Schwuttke, U. M.; and Quan, A. G., 1993.

Enhancing Performance of Cooperating Agents

in Real-time Diagnostic Systems. In Proceedings

of the Thirteenth International Joint Conference
on Artificial Intelligence, 332-337, Chambery,
France.

83

SESSION RM

Rovers and Robot Motion Planning

RM.1 Path Planning for Planetary Rover Using Extended Elevation Map
I. Nakatani, T. Kubota, and T. Yoshimitsu, Institute of Space and Astronautical Science,

Sagamihara, Japan

RM.2 Subsumption-Based Architecture for Autonomous Movement

Planning for Planetary Rovers
S. Nakasuka and S. Shirasaka, University of Tokyo, Tokyo, Japan

RM.3 Terrain Modelling and Motion Planning for an Autonomous

Exploration Rover

87

F. Richard and M. Hayard, Alcatel Espace, Toulouse, France; S. Benoliel, Alcatel Alsthom

Recherche, Marcoussis, France; O. Faugeras, INRIA, Sophia Antipohs, France; P. Grandjean,

CNES, Toulouse, France; T. Simeon, LAAS, Toulouse, France

91

95

RM.4 Very Fast Motion Planning for Highly Dexterous Articulated
Robots 99

D.J. Challou, M. Gini, and V. Kumar, University of Minnesota, Minneapolis, Minnesota, USA

RM.5 Control Technique for Planetary Rover 103

I. Nakatani and T. Kubota, Institute of Space and Astronautical Science, Sagamihara, Japan;

T. Adachi, H. Saitou, and S. Okamoto, Nissan Motor Co., Ltd., Kawagoe, Japan

RM.6 Autonomous Navigation System for the Marsokhod Rover Project 107

C. Proy, M. Larnboley, and L. Rastel, CNES, Toulouse, France

RM.7 A Unified Control Architecture for Planetary Rovers 111

A. M. Alvarez, W. De Peuter, and P. Putz, ESA, Noordwijk, The Netherlands

RM.8 Lunar Rover Technology Demonstrations with Dante and Ratler 113

E. Krotkov, J. Bares, L. Katragadda, R. Simmons, and R. Whittaker, Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA

PREC' ; .,. . 'g NOT F!II_._ 85

