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1. SUMMARY

The objectives of the “Development of Sensors for Ceramic Components in Advanced
Propulsion Systems” program were to analyze, evaluate and recommend sensor concepts for the
measurement of surface temperature, strain and heat flux on ceramic components for advanced
propulsion systems and to conduct laboratory development of sensor systems for the measurement
of surface temperatures. Such sensor systems require unique properties and exceptional durability
due to both the need for compatibility with the non-metallic materials expected to be used in
hypersonic propulsion systems and the need to operate in an extremely hostile environment with
regard to temperature, pressure and cycling.

The “Development of Sensors for Ceramic Components in Advanced Propulsion Systems”
program was separated into two phases. The objective of Phase I was to provide a survey and analysis
of sensor system concepts for measuring surface temperature, strain and heat flux on ceramic
components in advanced propulsion systems. Possible designs, components, and promising concepts
for development were identified. An analysis was performed to determine which of the promising
concepts are the most appropriate for ceramic components in advanced propulsion systems. The
results of this effort were previously published in NASA CR 182111.

As aresult of Phase I, three approaches for measuring surface temperature were recommended
for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objectives
of Phase II were to fabricate and conduct laboratory demonstration tests of these three systems. A
summary report of the Phase II effort, including conclusions and recommendations for each of the
categories evaluated, has been submitted to NASA and is awaiting publication.

As an add-on task, emittance tests were performed on six materials furnished by NASA-Lewis
Research Center. Measurements were made of various surfaces at high temperature using a
Thermogage emissometer. This report describes the emittance test program and presents a summary
of the results.



2. INTRODUCTION

In Phase I of this program, a survey of measurement techniques for temperature, strain and heat
flux applicable for use on ceramic materials at very high temperatures was conducted. An evaluation
of the identified techniques was then performed to select the three most promising approaches in each
category. The evaluation considered a number of factors, but the useable temperature range and
compatibility with the ceramic or composite materials were the major constraints. The desire to go
to 2260K makes non-contact optical techniques very appealing. On this basis, pyrometry and
thermographic phosphors were selected. A surface mounted contact sensor would be required if
optical access was not feasible. Thin-film thermocouples are amenable to the ceramic and composite
materials. Even though the thin-film thermocouples are temperature limited, they were selected as
a sensor concept feasible for moderate temperature applications. A discussion of the survey results
and evaluation procedure is given in Reference 1 and the results are summarized below.

Pyrometry is a non-contact technique and, hence, is not temperature limited. In fact, the higher
the temperature, the more energy the pyrometer has with which to work. There are drawbacks that
complicate the implementation of pyrometry. Accurate measurement of temperatures by pyrometry
requires a knowledge of the emittance of the surface. For ceramic materials the emittances vary
widely, and in some instances are a strong function of both wavelength and temperature. The
transparency or translucency of the materials give rise to problems in interpreting the results.
Pyrometry is also sensitive to the presence of reflected radiation which can produce a significant bias
in the results. '

During the initial contract effort, the emittance of materials was measured both at Pratt &
Whitney and United Technologies Research Center (UTRC). A commercial emissometer was used
at Pratt & Whitney to measure the emittance of ceramic materials at different wavelengths and
temperatures. The results obtained with this device indicated that most of the ceramic materials of
interest have emittances that are high and independent of temperature at the long wavelengths (from
8u to 14p). This prompted the consideration of long wavelength pyrometry in this program as
appropriate for the ceramic and composite materials.

Thermographic phosphors offer a novel approach to the temperature measurement problem.
The measurement technique is optical, similar to pyrometry, and the phosphor materials are high
temperature ceramics such as yttria. Hence, the technique appears to be temperature limited by the
melting point of the ceramic as long as a phosphor is identified with an appropriate fluorescent quench
time. The technique has been shown to work well in the presence of both reflected radiation and
flame. Recently, there have been very significant advances in this technique (Reference 2). A concern
for this technique is the durability of the phosphors at temperatures above 1475K. Various bonding
techniques are being investigated by the Department of Energy (DoE) under an Air Force contract.
In order to use the same materials as in the Air Force work and to make use of the existing coating
technology, DoE was chosen to apply the phosphors for the contract. The two phosphors applied by
DoE to our samples were yttrium oxide doped with europium (Y,03:Eu) and YAG doped with
terbium (YAG:TD).

Thin-film sensors were being considered for use on the ceramic materials as a method not
requiring optical access. Conventional wire thermocouple installation methods, such as tack welding
and embedding wires into trenches, are not applicable to the ceramic materials for reasons of both
mechanical disturbance, point defects due to machining, cracks due to mismatch in thermal expansion
and thermal disturbances (mismatch in thermal conductivity and specific heat). The thin-film sensors
fabricated with metallic elements are limited in their maximum temperature capabilities, but will be
very useful for a significant portion of the laboratory test requirements.



Thin-film sensors offer other advantages in their size, installation and performance. The sensors
are very thin and introduce a negligible amount of mechanical, thermal, or aerodynamic perturbation
and, therefore, provide a true measure of the surface temperature. They add a relatively small mass
to the test piece and do not change the physical or mechanical properties. This becomes more
significant when thin structures or small test pieces are involved. Thin-film sensors are installed with
no structural modification to the test piece and can be located anywhere on the test piece. These
factors make the thin-film sensors very attractive despite their temperature limitations.

The materials considered under the contract varied widely in physical and mechanical
properties. A thin-film thermocouple program to develop application techniques for each of these
materials was beyond the scope of this effort. Therefore, the scope was limited to two electrically
non-conducting materials, and to three different application techniques: R.F. sputtering, ion beam
etch deposition, and ion implantation and evaporation. The intent was to evaluate the current
technology in each of these techniques in applying films to silicon nitride and Compglas® substrates
rather than develop application techniques. The thin-film work was performed both at Pratt &
Whitney Florida and United Technologies Research Center.

One of the major concerns with thin-film sensors is the ability to provide electrical insulation
from substrates which are electrical conductors at high temperatures. The oxide insulators used tend
to become semiconductors at the elevated temperatures. For this reason, a two-part approach to the
thin-film sensors was used. For low to moderate temperatures, noble metal temperature sensors were
applied to the ceramic materials. In the higher temperature area, the changes in the properties of
ceramic insulators were investigated as a mechanism to determine the temperatures.

The materials considered under the contract were selected by mutual agreement with NASA and
Pratt & Whitney. Six materials were investigated. These were considered as engineering materials,
and were intended to be commercial samples rather than very high purity laboratory samples. Silicon
nitride (Si3N4) was purchased from Kyocera. Silicon carbide was obtained from Carborundum.
Mullite was obtained from Coors. General Plasma supplied zirconia. Pratt & Whitney supplied
Compglas® and a silicon nitride/silicon carbide composite material.

As previously mentioned, the results of this initial program were submitted to NASA in the
Phase I report. At the conclusion of the initial contract effort, NASA requested Pratt & Whitney to
conduct additional emittance tests on six samples supplied by NASA. This report contains the results
of those additional emittance tests.



3. EMITTANCE TEST PROGRAM

At Pratt & Whitney, emittance measurements of various surfaces at high temperature were
made using a Thermogage emissometer. Figure 1 shows a schematic of that device, while the device
itself is shown in Figure 2. For emittance measurements, the test specimen was mounted on a graphite
rod connected to a pneumatic actuator. This allowed the specimen to be translated rapidly from the
center of the black body furnace where it was surrounded by hot walls, to the end of the furnace where
the sample surroundings were cool. A radiometer was positioned to view the test specimen at both
locations. Depending on the purpose of the test, a broad spectrum radiometer may be used to obtain
“total normal” emittance, or a narrow spectral band radiometer may be used to obtain data in
particular spectral bands. The output from the radiometer was connected to a digital oscilloscope to
record the data taken during the emittance testing.

At the start of emittance testing, the sample was brought up to the test temperature of interest,
and allowed to reach equilibrium, within the black body. The radiometer was positioned to obtaindata
from the specimen. A trace on the oscilloscope was triggered. The radiometer was then shuttered for
a brief period of time to obtain a zero energy baseline. The radiometer was then unshuttered and the
black body energy was measured; then the specimen was propelled out to the end of the black body
tube and the energy from the specimen was measured. The movement to the end of the black body
tube was fast enough that the change in specimen temperature was negligible. Once at the end of the
tube, the specimen began to cool radiatively. This produced an oscilloscope trace similar to Figure 3.
The emissivity of the specimen was calculated from the ratio of the energy emitted at the end of the
black body tube before cooling to the energy emitted by the specimen inside the black body. During
a typical test series, data were acquired in all desired spectral ranges at the lowest test temperature
of interest. Testing then proceeded to successively higher temperatures.

Emittance tests were performed on six materials furnished by NASA-Lewis Research Center.
Data were acquired at several temperatures and on detectors in seven different wavelength bands, as
shown below.

Unit Detector Spectral Response Plot Data
2000 Silicon 0.4p — 1.1p 0.95
“G” Germanium 1.56p — 1.72n 1.6u
6000 Lead Sulfide 2.0p — 2.6u 2.3u
7000 Indium Antinomide 4.8u — S3u Su
8000 Pyroelectric 7.77u — 8.07u 8u
4000 Pyroelectric 8u — 14 10pn
Thermopile Thermopile 0.5n — 14u ) -

For plotting purposes, the wavelength of maximum sensitivity was chosen. For the 8u to 14u
pyroelectric sensor, with a bandpass filter, the spectral response is relatively flat over the range. For
this case, we have chosen the nominal wavelength that corresponds to the average black body radiant
energy over the 8u to 14y band, and this was calculated at approximately 10u. Repeat values were
recorded and averaged to determine the reported emittance values. The number of repeat points was
determined by the differences in the individual readings. As the scatter increased, the number of
repeats was increased. At a particular temperature, the emittance tests took approximately one hour.
Over that time period, the temperature control of the emissometer allowed some temperature
variations. The indicated set temperature, therefore, actually represents a range of temperatures. All
testing was done in an argon atmosphere to prevent oxidation of the graphite heater structure.



Previous testing had used a nitrogen atmosphere, but this was found to cause a reduction reaction on
some of the samples tested. The shift to an argon purge minimized the reduction reactions during
these tests, and no reactions were observed.

The sample tests were as follows:

Sample #1A —

Sample #1B
Sample #2

Sample #3
Sample #4

Sample #5

Sample #6

SiC/Ti-15-3 Composite [+30°]. 15Va-3Cr-3Al-3Ta (stay below 600C).
Ti-15-3 Matrix. 15Va-3Cr-3Al-3Ta (stay below 600C).

SiC/Ti-24Al-11Nb (at. %) Composite. (Stay below 800C.) Piece has been
polished on 180 grit SiC paper to remove the Mo cladding reaction on
surface. Sample No. is TO. 88-96#4.

-9 vol. % Tungsten Fiber/Copper Composite. Max temp. 560C in argon.

Reaction Bonded Silicon Nitride (RBSN) Reinforced in 2-D array
(cross-ply £45°) with SCS-6 SiC Fibers (~140 um diameter)
(~ 30 vol. % loading).

Reaction Bonded Silicon Nitride (RBSN) Monolithic,
No Fiber Reinforcement.

Reaction Formed SiC, SiC + Si
No Fiber Reinforcement. 111991.



4. EMITTANCE TEST RESULTS

4.1 Sample #1 - SiC/Ti-15-3 Composite

There were two parts of this sample: one was the composite material, and the other was the
matrix only. The intent of running both was to determine if the presence of SiC fibers affected the
emittance of the surface.

Sample 1A, the composite material, was tested in an argon atmosphere at two temperatures:
640K (642K to 678K), and 810K (803K to 844K). After testing, the sample (Figure 4) had a slight bluish
cast. The emittance data, as a function of wavelength, are shown in Figure 5, and the reduced data are
shown in Table 1. Figure 6 shows the thermopile output covering the range from 0.5u to 14p as a
function of temperature. This output should be indicative of the total normal emittance of the
material.

Sample 1B, the Ti-15-3 matrix material, was tested in an argon atmosphere at two temperatures:
590K (581K to 583K), and nominally 810K. After the S90K run, the sample had turned a copper color
and had areas of blue, as shown in Figure 7. After the 810K run, the copper color and blue areas were
gone (Figure 8). The emittance data, as a function of wavelength, are shown in Figurc 9, and the
reduced data are provided in Table 2. Figure 10 shows the thermopile output covering the range from
0.5u to 14y as a function of temperature.

4.2 Sample #2 — SiC/Ti-24-11 Composite

This sample was tested in an argon atmosphere at three temperature levels: S90K (583K to
633K), 810K (791K to 833K), and 1030K (1005K to 1050K). After the 810K run, the sample had a
bluish cast and appeared to be spotted. This is shown in Figure 11. At the start of the 1030K point, the
emittance value increased with time, indicating that a change was occurring on the surface. The
sample was removed for inspection and then reinstalled. The temperature was slowly brought back
to 1030K and allowed to stabilize for 15 minutes before acquiring data. The sample appearance after
stabilization is shown in Figure 12. The sample had a copper color cast after the stabilization. The
emittance data, as a function of wavelength, are shown in Figure 13, and the reduced data are provided
in Table 3. Figure 14 shows the thermopile output covering the range from 0.5u to 14 as a function
of temperature.

4.3 Sample #3 — Tungsten/Copper Composite

This sample was tested in an argon atmosphere at two temperatures: S90K (580K to 586K), 810K
(800K to 822K). Figure 15 shows the appearance of the sample after the 810K run. The emittance data,
as a function of wavelength, are shown in Figure 16, and the reduced data are provided in Table 4.
Figure 17 shows the thermopile output covering the range from 0.5p to 14y as a function of
temperature.

4.4 Sample #4 — Reaction Bonded Silicon Nitride (RBSN) Reinforced with SiC Fiber

This sample was tested in an argon atmosphere at six temperature levels: 560K (550K to 573K),
1120K (1089K to 1144K), nominally 1310K, 1500K (1478K to 1544K), 1750K (1741K to 1772K), and
1920K (1894K to 1928K). After the 1750K run, the surface had changed around the outside edge,
where it was close to the graphite holder. It had the appearance of mud caking or alligator skin. This
is shown in Figures 18 through 20. After the 1920K run, the surface had changed significantly. The
color had changed from dark grey to light grey and the surface had eroded, exposing the reinforcing
material. This is shown in Figures 21 through 23. The emittance data, as a function of wavelength, are



shown in Figure 24, and the reduced data are provided in Table 5. Figure 25 shows the thermopile
output covering the range from 0.5p to 14 as a function of temperature.

4.5 Sample #5 — Reaction Bonded Silicon Nitride (RBSN) Monolithic, No Fiber Reinforcement

Sample #5 was a monolithic Reaction Bonded Silicon Nitride (RBSN) with no fiber
reinforcement. The sample was tested in an argon atmosphere at five temperature levels: nominally
980K, 1250K (1244K to 1278K), 1480K (1450K to 1489K), 1640K (1630K to 1661K), and 1750K
(1750K to 1755K). After the 1640K run, the surface had a light gray coating. After the 1750K run, the
surface had eroded (Figure 26) and had a hairline crack extending across the sample. The crack was
too fine to be evident in the photograph of Figure 26. The white areas in the pre-test photograph are
actually surface features which appear to be left from machining, and appear white from the reflection
of the light used in'illuminating the sample under the microscope. The emittance data, as a function
of wavelength, are shown in Figure 27, and the reduced data are given in Table 6. Figure 28 shows the
thermopile output covering the range from 0.5u to 14u as a function of temperature.

4.6 Sample #6 — Reaction Formed SiC, SiC + Si, No Fiber Reinforcement

This sample (Figure 29) was tested in an argon atmosphere at four temperature levels: 870K
(853K to 880K), 1140K (1130K to 1172K), 1420K (1439K to 1478K), and 1750K (1700K to 1761K).
The emittance data, as a function of wavelength, are shown in Figure 30, and the reduced data are
provided in Table 7. Figure 31 shows the thermopile output covering the range from 0.5y to 14p asa
function of temperature.



S. DATA ANALYSIS

In general, the emittance values reported are believed to be accurate within =0.1. The
measurements were made over a wavelength interval with some variations in temperature with time.
Each of these factors adds to the uncertainty of the reported value. At low temperatures, there was
very little energy available to the detectors, and the signal-to-noise ratio was very poor. Some samples
showed good repeatability, while others showed considerable variability in the repeat points. The lack
of repeatability may be a result of measurement problems, or it may indicate that the surface is not
stable. In general, the total normal emittance values measured by the thermopile were somewhat
higher than would be expected from the spectral data. The most probable cause of the high thermopile
data would be a slight misalignment of the sensor that would allow radiation from the furnace wall
to reach the detector.
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Figure 7 Sample 1B, Ti-15-3 Matrix: After 616K—644K Point ]

Figure 8 Sample 1B, Ti-15-3 Matrix: After 810K Point
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Figure 15 Sample 3, W/Cu Composite After 810K Point: (a) 6X Magnification, and (b) 3X ,
Magnification
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Figure 18

Figure 19

Sample 4, Reaction Bonded Silicon Nitride (RBSN) Reinforced with SiC Fiber: After
1750K Point

Sample 4, Reaction Bonded Silicon Nitride (RBSN) Reinforced with SiC Fiber: After
1750K Point
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Figure 20

Figure 21

Sample 4, Reaction Bonded Silicon Nitride (RBSN) Reinforced with SiC Fiber: After
1750K Point

Sample 4, Reaction Bonded Silicon Nitride (RBSN) Reinforced with SiC Fiber: After
1920K Point
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Figure 22 Sample 4, Reaction Bonded Silicon Nitride (RBSN) Reinforced with SiC Fiber: After
1920K Point

Figure 23 Sample 4, Reaction Bonded Silicon Nitride (RBSN) Reinforced with SiC Fiber: After
1920K Point
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Figure 26 Sampie 5, Reaction Bonded Silicon Nitride (RBSN) Monolithic, No Fiber Reinforcement:
(a) Pre-Test, and (b) After 1750K Point
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Figure 29

Sample 6, Reaction Formed SiC, SiC + Si, No Fiber Reinforcement: (a) Pre-Test, (b) After
1420K Point, and (c) After 1750K Point
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