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1. INTRODUCTION

I.I. Spectral Mixture Analysis and Its Current Limitation

Spectral mixture analysis, or unmixing, has proven to be a useful tool in the
semi-quantitative interpretation of AVIRIS data (Boardman and Goetz, 1991 and
references therein). Using a linear mixing model and a set of hypothesized endmember

spectra, unmixing seeks to estimate the fractional abundance patterns of the various
materials occurring within the imaged area. However, the validity and accuracy of the
unmixing rest heavily on the "user-supplied" set of endmember spectra. Current methods
for endmember determination are the weak link in the unmixing chain.

1.2. Goals of Automated Unmixing and Its Promise

Automated unmixing seeks m estimate the number of endmembers, their

spectral signatures and abundance patterns, using only the mixed data and a physical
model. It should be an objective and repeatable process that uses no ground-based
information. Such a method promises to take full advantage of the wealth of information

currently "locked-up" in AVIRIS data sets. The method outlined here seeks m keep this
promise by using spectral mixing inherent in AVIRIS data to its advantage. These ideas
are an extension and follow-on m those first proposed by Craig (1990).

2. A GEOMETRIC VIEW OF SPECTRAL MIXING AND UNMIXING

2.1. Spectra are Points in an n-Dimensional Scatterplot

Spectra can be thought of as points in an n-dimensional scatterplot, where n is
the number of bands. The coordinates of the points in n-space consist of n-mples of

values that are simply the spectral radiance or reflectance values in each band for a given

pixel. An understanding of this concept of "spectral space" is crucial for the following
discussion. The distribution of these points in n-space can be used to estimate the number

of spectral endmemhers and their pm'e spectral signatures. Although collected in 220
bands, the inherent dimensionality of AVIRIS data is typically much lower, in the range

of 3 to 10. This degeneracy is illustrated by the high correlation among bands.

2.2 Convex Geomelry : Facets; Faces; Vertices; Hulls; and Simplices in n-D

Convex geometry deals with the geometry of convex sets (Valentine, 1964) and,
despite it richness and depth, is within the grasp of anyone with a vivid imagination and
geometric intuition. Many useful applications have been developed (Lay, 1982). A
convex set in n-dimensions is def'med as a set of points that are linear combinations of

some set of points, where the weights are all positive and sum to unity. This is also the
exact definition of the linear spectral mixture model.

Some of the terminology used in convex geometry is illustrated in a 2-d case in

Figure 1. All the points are interior to the triangle, since they are positive, unit-sum,
linear combinations of the three comers. A body made up ofn+l points is the simplest
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possible, that has some interior, and is called a simplex. In this 2-d case it is a triangle.
Sub-elements of a convex body axe its faces. The (n-1)-d faces of a simplex are called
facets. The 0-d faces are vertices. The exterior surface of a set of points, made up of
adjacent facets, is its convex huH. It consists of the facets that would get "painted"if you
"rolled" the point set on a (n-1)-d "ink pad". In 3-d the simplex is a tetrahec_n and it has
four vertices and four triangle facets. These concepts and definitions generalize to n
dimensions, despite being harder to visualize. In n-d the simplex has n+l vetfic,es and
n+l facets of dimension n-1.

2.3. Unmi_ng as a Convex Geometry Problem

Automated spectral unmixing is a convex geometry problem. We are given the
seatterplot of points. Determining its inherent dimensionality tells us the number of
mixing endmembers. There are n+l endmembers if the data is inherently n-dimensional,
assuming the endmembers are spectrally distinct in terms of the observing insU'umenL
Estimating the spectral signatures of the mixing endmembers is done by finding the _gst-
fitting" simplex that contains the scatterploL The vertices of this simplex represent the
n+l mixing endmembers. Estimation oftbe abundances of each endmember, at each
pixel, corresponds to a simple transformation of the data to barycentric coordinates.
Since the simplex contains all the data points, the derived fractions will be positive and
sum to unity, as desired.

3. PRACTICAL METHODS FOR APPLICATION

Applying this endmember derivation approach to AVIRIS data is done in several
steps. First the observed radiance data is reduced to apparent reflectance using an
almospberic and solar model, ATREM (Gao and Goetz, 1993). The next step is to
determine the data dimeusionality and to separate signal from noise. A modified version
of the MNF-transform (Green et al., 1988) is used, in place of standard PC analysis, to
address the noise properties of AVIRIS data. This involves: estimation of the noise
covariance mau'ix; a rotation and scalingof the data to make the noise isotropic with unit
variance in all bands; and a subsequent eigen-analysis of this transformed data. In this
MNF-space the number of valid dimensions can be determined by joint inspection of the
images and the final eigenvalues. Usually a small number of dimensions explain almost
all the signal, with the complementary bands associated with salt-and-pepper noise
images and unit eigenvalues. A basis for the signal subs'pace is calculated and the data
are projected onto it, fixing its dimension. The output of this process is apparent
reflectance data, projected onto a spanning subspace of minimum dimension, with most
of the noise removed.

The estimates of the spectral endmembers are determined by finding the "best-
fitting" simplex that contains the projected data. Craig (1990) proposes the "smallest"
simplex containing the data as a proxy for the "best" simplex. Numerically, he seeks to
maximize a determinant subject to inequality constraints. Geometrically, this shrinks the
simplex but keeps all the data inside. Other methodsfor "best" simplex determination are
the subject of current research. Orientations and positions of the n+l facets of the "best"
simplex may also be determined through analysis of the facets of the convex hull of the
projected data. Sets of pixels that are void in one or more endmembers actually map the
faces of the desired simplex. Recognizing these "flats" is one way to determine the
"best" simplex'. Once the best simplex is determined, the endmember estimates are
given by its vertices. These endmembers must give positive fractions for abundances that
sum to unity for every pixel, since the simplex contains the data. Finally, the data are
unmixed by converting to barycentric coordinates and the endmember spectra are
projected back to the original band-space m derive their full-resolution spectra.

The validity of the process can be assessed by its outputs. Automated unmixing
delivers estimates of the endmembers and estimates of the spatial patterns of fractional
abundance of these endmember materials. The endmember spectra should be reasonable
and be identified with real Earth materials and "shade'. The corresponding spatial
abundance images, interpreted together with the spectra, provide another performance
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check. The spatial information in the abundance images is useful in interpreting and

naming the derived endmember spectra, capitali_ng on the unique dual spectral/spatial
nature of AVIRIS data. Ideally, each endmemher spectrum and corresponding abundance

image will be reconciled with a named material, perhaps through the use of a specwal
library and expert system. The derived spectra have used all bands of all pixels and thus
have a much higher signal-to-rioise ratio than individual spectra. Furthermcce, there are
quite few of them by comparison to the raw spectra. Time-intensive procedures can be
used to analyze this small set of low-noise, derived spectra, with the unmixing results

allowing interpretation of the full set of observed spectra.

4. EXAMPLE APPLICATION TO AVIRIS DATA

Convex geometry unmixing has been applied to many AVIRIS scenes, yielding

promising results in both vegetation and geological study areas. Two examples will be
shown at the workshop, Jasper Ridge and North Grapevine Mountains.

4.1. Jasper Ridge Example

In this example, 172 bands of 1992 AVIRIS data yielded a 4-d convex data set.
The five endmember spectra and their corresponding abundance images are shown in
Slide 2. In this case the interpretation of the endmembers is clear. The five derived
endmembers are : shade; water;, soil; green vegetation; and dry vegetation. The shapes of

the spectra are reasonable and seem to represent "pure" materials, even in cases like shade
where no image pixel was nearly pure. This illustrates the ability of the method to project
beyond the observed mixed data to estimate endmembers. Pure pixels are not required.

4.2. North Grapevine Mountains Example

In this example, 45 bands of the SWIR portion of 1989 AVIRIS data were used.
These data were reduced to approximate apparent reflectance by the empirical line

method (Kruse et al., 1993). Using this restricted set of bands, four endmembers were
identified. The best-fit simplex and the data are shown in Figure 2, along with plots of
two of the endmembers. The four endmember identified are : shade; featureless
materials; carbonate; and sericite. The maps of sericite and carbonate abundance agree

well with previous studies (Kruse et al., 1993) and the derived spectra are easily
identified.

5. DISCUSSION, CONCLUSIONS AND CAVEATS

Convex geometry can be used successfully to address the most important
questions in spectral unmixing, the estimation of the number of the endmembers and their
spectra. The method outlined here builds on the work of Craig (1990), treating shade as
another unknown, obviating the need for a "dark-point" bias correction. Combining
AVIRIS data, ATREM and the convex geometry method, one can derive the number of
endmembers, estimates of their pure spectra and maps of their apparent abundance, using

absolutely no ground data.

The method presented here has limitations and pitfalls. Some are inherent, some
can be solved and removed with further research. It assumes a wide range of fractional

abundances, so it cannot unmix a single pixel, or a homogeneous scene. The current
computer programs are limited to scenes with no more than 8 or so endmembers, because
of the "curse of dimensionality" (Craig, 1990). Any material that occurs in a fixed

proportion in every pixel is essentially "invisible" to the method. This can cause the other
derived endmembers to actually be spectra of mixtures, not pure materials.
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Figure 1. Two hundred points, interior
to a triangle illustrate the concepts of
convex geometry. The points are all
positive, unit-sum combinations of the
triangle vertices. Twelve of the points,
marked with asterisks, are the vertices
of the convex hull. The convex hull has

facets that are line segments. All the

data are surrounded by the triangle, a 2-
d simplex, that has 3 1-d facets and 3 0-
d vertices.
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Figure 2. a) Best-fitting simplex surrounds the vertices of the convex hull of the data.
Third axis is perpendicular to the paper, b) Two of the derived endmembers, identified as
"sericite" and "carbonate". Sericite is the "top" vertex in 2a, carbonate is the "bottom"
vertex, shade is to the "right".
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