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INTRODUCTION

The computer age has finally advanced to a stage where multi-discipline optimization

can be entertained in the aerospace arena. The various disciplines to be optimized together

within the aerospace field include not only the technical design areas such as aerodynamics '

structures, propulsion, and controls, but also the whole engineering process itself. As

various disciplines are interdependent, the assumption is that the optimized result of a

single discipline must not dictate inputs for another discipline in a sequential fashion

leading to the design of the final product. Instead, the disciplines must be optimized in

parallel, and optimization iterations must be carried out across disciplines until satisfactory

design is obtained. Engineering processes such as manufacturing are to be included for

optimization with the objective of minimizing the costs and reducing the time associated

with the production of the end item. This work is focused on aerodynamic optimization,

however, the selected approach is viable for multi-discipline optimization as well.

In the field of aerodynamic optimization, there are three distinct technical areas. The

first area concerns formulation of geometry functions. These functions either sit atop

the existing design or represent the design itself. Perturbations of these functions allow

new designs. Wagner functions, polynomials, sine bumps, B-splines are some examples of

geometry parameterization. It is critical to select a class of functions which will allow the

formulation of as complete a design space as possible. This area of optimization is not
addressed in this work.

After suitable functions have been chosen to represent and optimize the geometry,

we need to determine the direction in which the design variables should be changed to

obtain the optimum design. For example, if the designer is trying to minimize an objective

function such as Drag, the optimization process requires determination of sensitivity of

drag to the change in design variable, viz. the sensitivity gradient. The present work is

targeted to efficient evaluation of these sensitivity gradients.

Finally, the third area of optimization deals with the determination of the size of

perturbation applied to the design variable so that one reaches the optimum design via.

the path of steepest descent. A number of well developed tools are already available to

accomplish this task.

Traditionally, optimization has been carried out to improve the design of a single

discipline using

• Direct methods,

• Indirect methods,



• and Inversemethods.
In direct optimization techniques,one beginswith the objective function, i.e. the quantity
to be optimized, on a baseline configuration. Sequentially, one design parameter at a
time is changedwhile others arekept fixed to determine the direction in which the design
parameter should be varied to maximize the objective function. Constraints satisfying
the final design requirements can be applied during the optimization process. This type
of approach allows control over final designconfiguration and will be suitable for multi-
discipline optimization problems.

In the inversemethod approach,a target result, e.g. pressuredistribution, is specified
and the geometry is modified till the target value is attained. This approach,and indirect
methods, however, do not allow complete control over the final configuration, and as a
result have lost popularity in the recentpast.

In this researcheffort, a "direct" optimization method is implemented on the Cray
C-90 to improve aerodynamicdesign. It is coupledwith an existing implicit Navier-Stokes
solver, OVERFLOW 1, to compute flow solutions. The optimization method is chosen
such that it can accommodatemulti-discipline optimization in future computations. In
this work, however,only singlediscipline aerodynamic optimization will be included.

APPROACH

The approachto carrying out multi-discipline aerospacedesignstudies in the future,
especially in massively parallel computing environments, comprisesof choosing 1) suit-
able solversto compute solutions to equations characterizing a discipline, and 2) efficient
optimization methods. In addition, for aerodynamic optimization problems, 3) smart
methodologiesmust be selectedto modify the surfaceshape.
Solver:

An implicit code to solve the Navier-Stokes equations, OVERFLOW, is chosen as it has

already been mapped to a number of parallel environments such as the TMC CM-52, the

Intel iPSC-860 a, the Intel Paragon, and a network of workstations 4, thus offering a number

of possibilities for mapping the optimization component. A number of options, such as

Pulliam and Chaussee's diagonalized scheme 5, Block Beam-Warming scheme 6, and Steger's

partially flux split algorithm 7 are coded in OVERFLOW. The first two options are from

the ARC3D code. In the OVERFLOW code, the ARC3D options are written for an overset

grid framework thus allowing the possibility of design optimization of configurations that

do not lend themselves easily to single grid topologies. Additionally, a number of related

disciplines such as dynamics s'9, controls 1°, and propulsion 11 have already been coupled

with this code, permitting multi-discipline optimization studies in the future.

Optimization Method:

As outlined in the introduction, the "direct" optimization technique is selected to im-

prove the design. The crux of the problem in this method is to determine the sign of the

sensitivity of the objective function to the variation of a design variable. The conventional

"brute-force" approach can be extremely expensive for design problems with a large num-

ber of design parameters requiring as many or more complete solutions at each optimization

step as the number of design variables. Recently, however, substantial progress has been

made in determination of sensitivity of the objective function to the design variables using



both the continuum and discrete approaches. 12-1T In these new approaches, the direction

of design variable change is determined from analytical/quasi-analytical expressions as

opposed to the complete solutions of governing equations. Solution of an algebraic set of

equations to determine the complete set of sensitivity derivatives is required for a given op-

timization step. Consequently, for problems where the number of design variables is large,

as in realistic wing aerodynamic optimization problems, and multi-discipline optimization

problems, this will prove to be an efficient approach. In the present research effort, the

discrete quasi-analytical approach to computing the gradient of objective function with

respect to variations in design variables, is being coupled with the flow equations.

Only the Euler subset of the complete flow equations in 2-D is being considered at

this time. The Euler equations in generalized curvilinear coordinates are given by:

c%Q + O¢E + O,1F = O (1).

In Eq. (1), v is time, ( and r] are the curvilinear coordinates, Q is the vector of conservative

variables, and E and F, are the inviscid flux vectors.
In vector form

--1 --1

pU 1
puU + (xp J

pvU + [
(e + p)U - J

More details of these terms can be found elsewhere. 5 To obtain an implicit solution to Eq.
OE and(1), E and F are linearized in time resulting in 4 x 4 flux jacobian matrices A = _Q

B = oQOFand the following equation:

In ARC3D's 5 approach to solving the above equation, E(, F,1, A(, and B_ are central

differenced. A combination of 2nd and/or 4th order smoothing is added to both sides of the

equation to make the numerical scheme stable. The left hand side is approximated by either

1) factorization into two directionally independent matrices with 2nd order smoothing

added to each direction yielding block tri-diagonal matrix systems, or, 2) diagonalization

of the factorized matrices with combination 2nd/4th order smoothing yielding scalar penta-

diagonal matrix systems. At steady state, AQ vanishes, and we are left with:

04Q 04Q

R = O_E + O,IF- k--_ - k-_ 4 -0

in the interior, and

(3a)

R= Qb - f(Qo,X,_) = o (3b)

at the boundaries, where k is constant and _ is a vector of design variables. Qb and

Qo are values of Q at the boundaries and the interior respectively. X is the vector of

physical co-ordinates of the grid. Compared to the ARC3D implementation, here, 2nd

3



order smoothing and spectral radius scaling have been neglected thus resulting in only the

fourth order smoothing terms in Eq. (3a).

For the optimization problem, in general, the real goal is to find the sensitivity of

the objective function to the variation of design variables. The objective function may be

the value of vector Q, or a function there of, at a certain location in the flow field, or a

quantity that is obtained by integration of Q on a boundary, e.g. CL. To determine the

sensitivity of the Euler equations to the variation in design variables, R in general may be

expressed as:

R(Q(X,3), X(3), 3)=0

Similarly, the jth objective function Cj can expressed as:

(4)

Cj=Cj(Q(3), x(3), 3) (5)

The goal, however, is to find sensitivity of the jth objective function Cj to the design

variables 3k. Differentiating the above eq. yields:

(6)

Eq. (6) comprises of five terms. Evaluation of the first and third terms, viz. the single

[0c,1
row matrices [0QJ[°--@-c] and / 0x j depends upon the selection of the objective function Cj.

For example, let the objective function be expressed as

Cj = E _xP

Then, p, the pressure can be easily represented in terms of components of vector Q which

can then easily be differentiated w.r.t. Q to determine [0_._.c.] Similarly, {, can be expressed
[OQJ"

in terms of spatial coordinates so that Cj can be differentiated w.r.t. X to determine

0__CAC {0x} is the grid sensitivity term. For problems, where designox J" The fourth term, _ ,

parameters are either not geometric, or are such that an existing grid simply needs to be

translated/rotated, the grid sensitivity term is easy to compute. However, for problems,

where the design parameters are such that new surfaces have to be defined, this term is

evaluated by a brute finite-difference approach. Assumption is made that selected objective

functions will not have an explicit dependence on 3k thus negating the need to evaluate

the 5th term i.e. { 0cj0/_ j"

O__Q__ in eq.(6), eq.(4) is differentiated with respect toTo evaluate the fourth term, 03,

3k, the kth design variable, following the procedure outlined in Refs. 14-16, to yield:

o--a7+ a-y a-a; + b-a; =o (7)
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The assumption that chosendesignvariablesfik aresuch that R does not depend upon fik

leads to the following system of equations that needs to be solved to determine 0_k :

(8)

OR] of and Frechet derivatives of termsIn the interior, comprises A¢, B_ smoothing

OR] is evaluated Frechet derivatives. Forwith respect to Q. At the boundaries using

example, Frechet derivative of a fixed inflow boundary would result in contribution of

identity matrices to the main diagonal for rows corresponding to the boundary. Similarly,

an extrapolation boundary condition would result in contribution of identity matrices to

the main diagonal for rows corresponding to the boundary. In addition the same rows

would also get contribution of negative identity matrices at locations where solution is

extrapolated from. The second order two-point central differenced stencil of the flux ja-

cobians and the five-point central differenced stencil of the smoothing term result in a

(4 x jmax x kmax) x (4 x jrnax x kmax) matrix system of nine diagonals.

Evaluation of [0P-_] is made simple by writing the flux jacobians E and F in the

transformed curvilinear co-ordinates in terms of the flux jacobians in the original physical

co-ordinates and then using Frechet derivatives. The resulting matrix for [0_] is (4 x

jmax x kmax) x (2 x jmax x kmax) with four diagonals where each diagonal entity is a
block 4 x 2 matrix.

In 2-D, there are advantages to solving eq. (8) directly, however, in 3-D, only iterative

approaches will be promising. Delta formulation of this equation, where approximations

similar to those made for the flow solver 5 can be used, is being looked into. Till date, in

the current work, eq. (8) is solved using Cray library routines SSGETRF and SSGETRS,

where the first routine factorizes the matrix and the second routine solves it using pivoted

Guassian elimination technique. Only non-zero entries are stored to solve the above system.

It should be pointed out that the system may be solved explicitly as well such that an

inverse does not need to be computed leading to substantially less storage requirements.

{ _0_ } thus found is substituted back in eq. (6)to yield the sensitivity gradient.

The sensitivity gradient can also be found by formulating the adjoint equation. Here,

we add ,_R to eq. (6), where )_ is the Lagrange multiplier. Then )_ is to be determined
such that

 0R]{00}OQ + _j -_ -_k =0

expres o thus negating the need to determine oZk

T-_ XJ=- OQJ

(9)

(10)
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is the adjoint equation and hasto besolvedfor A. Components required to be evaluated for

this equation are same as for the direct method before. Selection of which method should

be used to solve a particular problem depends upon the number of constraints versus the

number of design variables. Once )_ is known, the sensitivity derivative is evaluated by

computing:

dZk - [ OX + OXJ = 0 (11)

RESULTS AND STATUS

The derivation of the adjoint and sensitivity equations, and implementation in OVER-

FLOW is complete. The approach to testing this optimization implementation is based

on the fact that the direct "brute-force" optimization method works for practical design

problems but is limited because of the expense incurred when the number of design vari-

ables is large. 19 If a faster method of determining sensitivity of the objective function to

the design variables can be implemented, then the existing optimization procedures can be

followed by simply replacing the evaluation of the sensitivity derivative with the current

approach.

In an effort to test the sensitivity approach, a simplified problem of design of a quasi-1-

d convergent-divergent wind-tunnel for a given throat velocity was devised. For the Euler

equations, in the absence of any vorticity generation, this reduces to the solution of a very

simple equation, viz. VA = constant, where V is velocity and A is cross-section area.

NPSOL is, a nonlinear optimizer, based on a sequential quadratic programming algorithm,

was used to drive the optimization procedure. With velocity as the objective function and

area as the design variable, NPSOL could be used to compute sensitivity of velocity to

area change by evaluating VA = constant, viz. the "brute-force" method. Also, one could

supply the sensitivity to NPSOL by differentiating VA = constant. Both approaches were

tried in this rather simplistic example to yield the same solution and to show the benefit

of supplying the analytical expression for the gradient.

In the next step, a shock-free 2-d convergent-divergent wind-tunnel example is chosen

to test the accuracy and efficiency of the current approach. Thrust at exit is chosen as the

objective function. Consequently, corresponding to Eq. (3b), _

for inflow, outflow, symmetry, and tangency boundaries using Frechet derivatives. A two-

dimensional rectangular grid was generated and flow was computed with the assumption

of symmetry on the top surface as only the bottom half of the wind-tunnel is being solved.

The lower boundary of the grid was allowed to move by placing a sine-bump 2° at the throat

to perturb the baseline rectangular design. Sensitivity gradients computed using the direct

and the adjoint approaches match identically, however, vary slightly when compared with

the "brute-force" method. To resolve the differences, the left- and right-hand sides of eq.(8)

were computed both numerically and analytically. The numerical evaluation of the right-

hand side of eq. (8), viz. the vector obtained by carrying out matrix vector multiplication

of I-_xllOX_ is done as follows. Compute R1 to convergence on a grid corresponding
L j'% _"

to 81. Compute R2 by carrying out a restart solution on a new grid corresponding to

¢72 (perturbed value of design variable _1) for one step. (R2 - R1)/(/32 - _1) then is the

6



numerical valueof the right-hand sideof eq. (8). Similarly, the numerical evaluation of the
left-hand sideof eq. (8) proceedsby computing Q1 to convergence on a grid corresponding

to 31 and Q2 to convergence on a grid corresponding to 32. Ri is determined as before.

However, R2 is now determined by supplying Q2 as the restart and running the solution

for one time step. (R2 - R1)/(32 -- 31) then is the numerical value of the left-hand side of

eq. (8). Figures 1 and 2 show the excellent comparisons obtained between the numerical

and analytical evaluations of left- and right-hand sides of eq. (8). In addition notice that

solution of Fig. 2 is indeed negative of solution of Fig. 1.

Once, the accuracy of the sensitivity gradients is ascertained, the existing frame-work

used by the "brute-force" practitioners can be used as before to carry out the design pro-

cess. Now, however, when a program such as NPSOL requires evaluation of sensitivity

gradient to determine the optimum design, rather than computing flow solution to con-

vergence to determine sensitivity gradient, one calls the new routine to determine the

same.

The work carried out so far in this project indicates that this approach is much

more efficient compared to the "brute-force" method for 2-D problems. Based on the

flowsolver experience, it seems probable that iterative techniques similar to those used in

the flowsolver can be used in 3-D for the optimization problem as well. However, work
needs to be carried out in that area.

Compared to the Analytical representation of the adjoint equation as opposed to the

discrete representation as used here, following points are noted:

1) Analytical representation may be more accurate by definition.

2) Implementation of boundary conditions, especially where discontinuous conditions

exist, may be extremely hard for the analytical approach. Discrete representation on the

other hand allows for evaluation of _ at boundaries using Frechet derivatives of discrete

boundary conditions in a straight-forward manner.

3) Either the analytical or the discrete approach can be carried out using implicit or

explicit techniques. In the aerodynamic optimization literature, analytical approach used

by Jameson et. al. (13) has been carried out by using explicit techniques where as the

discrete approach used by others has always been carried out using implicit techniques.

With in the discrete area, advantages of the explicit approach need to be explored. Note

that when an implicit flowsolver has been used in conjunction with the adjoint problem,

one has the advantage of having already computed some of the _ terms as required by

the time linearizations of the governing equations.

A number of other issues need to be explored to understand the pros and cons of the

new approaches. For example, is accurate evaluation of sensitivity gradient necessary at

each optimization iteration step? Or, could one reach the final design by carrying out semi-

converged solutions of optimization iterations? Is the final design path dependent in that

case? For the discrete implementation of the adjoint method, does the adjoint equation

need to be based exactly on the governing equation, or could some assumptions be made

to simplify, for example, the smoothing terms? It is hoped that other researchers in the

near future will explore these issues and provide answers so that a concrete assessment can

be made of the viability and pros and cons of the various approaches. Finally, feasibility of

using ADIFOR (21) should be checked for computing derivative of the complete smoothing

7



terms with respect to Q.
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Abstract

Analysis of modern aerospace vehicles requires the

computation of viscous flowfields about complex 3-D

geometries composed of regions with varying spatial
resolution requirements. Overset grid methods allow

the use of proven structured grid flow solvers to ad-

dress the twin issues of geometrical complexity and

the spatial resolution variation by decomposing the

complex physical domain into a collection of overlap-
ping subdomains. This flexibility is accompanied by

tile need for irregular intergrid boundary data com-

munication among the overlapping component grids.

This study investigates one of the strategies for imple-

menting such a static overset grid implicit flow solver

on distributed memory, MIMD computers; i.e., the

160 node IBM SP2 and the 208 node Intel Paragon.
Performance data for two composite grid configura-

tions characteristic of those encountered in present

day aerodynamic analysis are also presented.

Introduction

The comple:dty of Computational Fluid Dynam-

ics (CFD) simulations attempted at present is very

closely related to the sustained CPU performance of

the readily available computer resources. Simplified,

2-D flow analysis simulations can be carried out using

*Research Scientist, Member AIAA.

*Research Scientist, Member AIAA.

°Copyright @1992 by the American Institute of Aeronautics

and Astronautics, Inc. No copyright is asserted in the United

States under Title 17, U.S. Code. The U.S. Government has
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conventional high performance workstations on a reg-
ular basis. However, 3-D unsteady, viscous flow analy-

sis still requires the very best of computing hardware.

l_lost of the current generation of vector supercom-

puters such as the Cray C-90 and the NEC SX-3 are

fully capable of providing the compute resources re-

quired for such simulations. However the high cost of

such machines and their consequent limited availabil-

ity have spurred efforts aimed at seeking more cost ef-

fective approaches to high performance, numerically-
intensive computing. Most of the ongoing efforts in
this area are carried out under the umbrella of the

national High Performance Computing and Commu-

nications Program (HPCCP). One such approach is

based on the exploitation of the relatively high degree

of concurrency and the spatial data locality inherent

in numerical algorithms used for aerodynamic simu-
lations. Under these conditions, distributed memory,

multiple instruction, multiple data (DM-MIMD) com-

puters offer excellent long-term prospects for greatly

increased computational speed and memory at a cost

that may render the 3-D flow analysis around com-

plex geometries on a routine basis more affordable.

Among the recent advances in computer hardware

technologies that lend credence to such expectations

are the advent of mass-produced high-performance

Reduced Instruction Set Computing (RISC) micro-

processor chips, high density Dynamic Random Ac-

cess Memory (DRAM) chips and high-speed intercon-

nect networks that are easily scalable to the level of

hundreds of nodes. The essential remaining ingredi-

ent required for the success of this mode of comput-

ing is the development and implementation of under-

lying numerical algorithms in a manner that is con-

ducive to retaining high parallel efficiencies when the
number of processors used range at least in the low

hundreds. This often requires a complete top down

analysis of the entire numerical scheme in search of



exploitableconcurrencyassociatedwith variousal-
gorithmicphasesand a completeunderstandingof
theessentialdatadependencies.Thisis followedby
thedesignof aparallelimplementationstrategythat
is capableof achievinga nearoptimalloaddistri-
butionamongM1participatingcomputationalnodes
andsimultaneouslyattemptsto minimizetheinter-
processorcommunicationcosts.Suchconsiderations
usuallyrequirechangesin oneor moreof thefollow-
ing:a) theschedulingofvarioustasksassociatedwith
theunderlyingnumericalscheme,b) the mannerin
whichtheassociateddataisorganizedandc)thealgo-
rithmsusedto performcertainsubtasks.Thissome-
timesleadsto radicalre-engineeringof theexisting
scrimimplementations.A furthercomplicatingfactor
in thisendeavoristhelackofadvancedsoftwaredevel-
opmenttoolsforthecurrentgenerationofDM-MIMD
computers comparable to those found on vector super-
computers to aid in the program development effort.

An inescapable fact when computing fiowfields
around modern aerospace vehicles is the associated

geometrical complexity. This is furttler compounded

by the presence of regions with widely varying resolu-

tion requirements surrounding such vehicles. A vigor-
ous research effort is currently underway in the CFD

community to develop solution adaptive, unstructured

grid flow solvers to deal with such geometrical and

physical complications. However, their suitability for

high Reynolds number flow simulations over compli-

cated geometries is yet to be firmly established. On
the other hand, the use of well proven structured grid

flow solvers in combination with the overset grid ap-

proach1' 2 has proven to be a viable alternative to

the fully unstructured grid approach for simulating

high Reynolds number flows around complex configu-
rations.

In the overset grid approach 3, the complex air-

craft configuration is first decomposed into a set of

components, each with a relatively simple geometry.

This is followed by the independent meshing of each

such component using logically structured curvilinear

meshes. To ensure adequate spatial resolution of the

flow field, additional overset grids can be used in crit-

ical regions based on a-priori knowledge of the flow

field. Finally, these component grids are overlaid to

yield a larger composite grid that can be used to com-

pute flow fields around complex configurations. Such

an approach gives rise to a locally structured but glob-

ally unstructured flow solver.

Overlaying of grids in this manner results in em-

bedding of outer boundaries as well as the solid body

regions of one grid within the computational domains

of the other grids. As a result, the grid points belong-

ing to the latter grids that lie within an embedded

solid body region along with some prescribed neigh-
borhood around it are 'blanked-out', i.e., excluded

from the computation. Such points are commonly re-

ferred to as hole points and the grid points that lle

in the fringes of these blanked-out regions form arti-

ficial interior boundaries. They are used to impose

the influence of the embedded solid body upon the

surrounding component grid. The union of the outer

boundaries of the embedded minor grids and the artifi-

cial interior boundaries delineated by the blanked-out

regions form the inter-grid boundaries of the compos-

ite grid system. The values of flow field variables at

grid points lying on these inter-grid boundaries need
to be obtained through interpolation from the solu-

tions of the other component grids in which they are
embedded in.

The interpolation process required to compute val-

ues of flow field variables at grid points lying on the

inter-grid boundaries serves to communicate the in-

fluence of the solution on one grid to those on the

other grids. In practice, this intergrid boundary point

(IGBP) data interpolation process is carried out at
the beginning of each time step of the time march-

ing scheme adapted for the flow soh'ers used within
each component grid and is referred to as the inter-

grid communication. The intergrid communication
scheme seeks the necessary interpolation data from

the hexahedral computational cell of the donor grid

that contains the IGBP in question and such cells are
referred to as the donor cells. Therefore the overset

grid approach requires the identification of the fol-

lowing entities in all the component grids: a) hole

points, b) IGBP's, c) donor grids and donor cells and

d) tri-linear interpolation coefficients. For the test
cases considered in this study, we used DCF3D 4 soft-

ware running on a workstation to accomplish this task
as a preprocessingstep. It should be noted that this

intergrid comnlunication process can have a highly ir-

regular struc:ure depending upon the relative posi-
tioning of the component grids. The distribution of

the IGBP's within the computational space of each

component grid is generally very non-uniform. In ad-

dition the corresponding set of donor cells may be dis-

tributed among multiple donor grids. Conversely each

donor grid may be contributing data to IGBPs belong-

ing to many other component grids. Finally, just as
in the case of the IGBP's, the donor ceils within a

component grid can have a highly non-homogeneous
distribution with respect to its computational space.

The primary objectives of this study are three fold:

a) design of a scalable parallel implementation strat-

egy for the overset grid, implicit flow solvers on DM-

MIMD computers when the number of processors

range in the hundreds, b) development of intergrid
communication data structures and inter-processor

communication strategies for its implementation on

the DM-MIMD computers and c) validation of the

parallel implementation strategy and the assessment
of its scalability as well as the overall performance

potential through the use of realistic composite grid



configurations.TwoDM-MIMDcomputertestbeds
werechosenforthisvalidationandevaluationprocess,
viz. the 160-nodeIBM SP2andthe 208 node Intel

Paragon. Two test problems are selected here for the

performance evaluation of the overset grid flow solver•

These problems require the solution of the Navier-

Stokes equations and the use of multiple overset grid
topology. The first test problem is the 4-grid simu-

lation of viscous flow past a delta wing with thrust

reverser jets, flying in ground effect (the Powered-Lift

configuration). The second test problem is the sim-
ulation of viscous flow past the FLAC (Fighter Lift

and Control) wing with deflected leading and trailing

edge flaps (the High-Lift configuration)• This 20-grid
setup offers an opportunity to evaluate load balancing

issues and the grid partitioning strategies for realisti-

cally complex geometries.
In the following sections, the concurrent algorithms

for overset grid problems and their parallel implemen-

tation strategy is summarized. This is followed by de-

scriptions of the computational test beds and the ge-

ometry/boundary conditions of the selected test prob-

lems. Then we present the results of our experiments

along with some analysis.

Solution of Overset Grid Problems

As a prelude to the development of a parallel im-

plementation strategy, a brief conceptual overview of

the generic mathematical algorithms underlying the

overset grid flow solvers is presented in this section.

It is assumed that within each component grid, the

Navier-Stokes equations along with the relevant physi-

cal/numerical boundary conditions are discretized us-

ing the appropriate spatial and temporal discretiza-

tion procedures. This in conjunction with the impo-

sition of the intergrid interpolation conditions at the

IGBPs results in a system of nonlinear algebraic equa-

tions for each component grid that can be represented

by the following generalized vector functions:

= 0, (i = 1,2,... ,i,..• ,M). (1)

where Q_+I is the vector of discrete flow field vari-

ables belonging to the i-th component grid at the

time level (t + At) and 5_ is the total number of

component grids involved. It should be noted that

Fi may not be a function of all Qi,(i = 1, 2,... ,M).

Tile exact functional dependence is determined by tile

relative positions of the overlapping component grids.

There are a variety of iterative approaches avail-

able for the solution of the system of equations given

by Eq. (1). The implicit flow solvers used in this

stud3' use a non-iterative time marching scheme for

its solution. In this approach, the system of equa-

tions is linearized about the already known solutions

Q_, (i = 1,2,..., M). Then the resulting global sys-
tem of linear algebraic equations are given by:

(A _ A" A n ( A "

1,1 1,2 "'" 1,M Q1

2,1 2,2 "'" A2,M AQ2 =

• , ... • •

AM,1 A_t,2 .. A n A' n" • M,M QM

F n n ", \- l(Q1,Q2,.- Q_)
F

- 2(Q_, QL-..,. QY_) (2))
-FM(Q_,Q_,...,Q_)

where A.". = (0FI/0Q]+I)(Q_,Q_',... Q_x) and1,3

= /% nQ_+a Q," + Qi,(i = 1,2,...,M). The off-

diagonal block matrix elements Ai,j,(i # j) of the

global Jacobian matrix represent the intergrid cou-

pling effects between component grids i and j through

the interpolated values at IGBPs. These block matrix

elements are themseh'es sparse matrices with highly

irregular structure. Due to the use of tri-linear in-

terpolation for intergrid comnmnication, they gener-

ally have a maximum of eight non-zero elements per

row. Again, some of these off-diagonal block matrix

elements may be null matrices, depending on the rel-

ative locations of the component grids. The diagonal

block matrix entries Ain, i represent the implicit cou-
pling of variables within a component grid, similar to
those found in well known uni-grid flow solvers. The

A _Ax _ ,A "correction vector ( Q1, Q2 .... QM) needed to

update the flow variables in all component grids is

given by the solution to this large, sparse system of

linear equations. There are many approaches avail-
able for the solution of this system of linear equations

and the method selected should be capable of provid-

ing a sufficiently accurate solution with a high degree

of reliability in addition to being amenable to efficient

implementation on DM-MLMD architectures. In the

following paragraphs, we conceptualize some of the

available algorithm alternatives for the solution of Eq.

(2), and discuss the advantages and disadvantages as-
sociated with each such alternative.

The obvious first choice is the fully-coupled ap-

proach, where the system of equations (2) is di-

rectly inverted. While such a direct inversion scheme
would lead to an unconditionally stable time march-

ing scheme for the overset grid problem, it would be

prohibitively expensive in terms of computer resource

requirements (CPU time and memory), for solving

problems of practical interest to the computational
aeroscience community. In addition, due to the highly

irregular sparsity structure of the coefficient matrix,

the direct inversion of Eq. (2) would not lend itself

to an efficient implementation on DM-MIMD comput-
ers. An alternative avenue within the context of the



fully-coupledapproachis to seekasolutiontoEq. (2)
througha matrix-freeiterativescheme,whichis de-
signed,if feasible,tobesignificantlymoreeconomical
bothin termsofmemoryandCPUtimerequirements
andat thesametimebemoreamenableto efficient
implementationon DM-MII_:Dmachines.Wedefer
theconsiderationofsuchasolutionschemeto future
efforts.It shouldbenotedthattheuseofageometric
multigridapproachto solveEq.(2)hasalreadybeen
reportedin theliteratures.

Thealternativeto tile fully-coupledapproachto
solvingofEq. (2) is thepartitionedanalysis.In this
approach,someof the off-diagonalblockmatrixen-
tries,whichareresponsiblefor theintergridcoupling
effectsaremovedtotherighthandsideofEq.(2).This
iseffectedbyevaluatingtheircontributionsbasedon
the temporallyextrapolatedapproximationsto the
relevantelementsin vectorsQ'i'+:,(i = 1,2,... ,M).
Thesepredictedvaluesareusuallyobtainedasasuit-
ablelinearcombinationoftheirvaluesat theprevious
timelevels,n, (n- 1) etc. The primary motivation for

this approximation is the resulting decoupling across

the inter-grid boundaries, of the solution of tile large

system of equations represented by Eq. (2). Conse-

quently, the solution of Eq. (2) is accomplislled by

solving a series of smaller sub-systems of linear equa-

tions represented by it's diagonal block matrix entries.

There are two commonly used variants to the par-

rationed analysis approach. If the effect of all tile

off-diagonal block matrix entries in Eq. (2) are to

be approximately represented on its right hand side,

based entirely on the extrapolated values to tile dis-

crete field variables required during intergrid commu-

nication, then tt:e system will be solved through an

approach similar to a block-Jacobi scheme with un-

equal block sizes. If on the other hand, the matrix

in Eqn. (2) or some permuted form of it is reduced
to a block lower or upper triangular matrix by ap-

proximately representing the effects of only some of

its off-diagonal block matrix entries on the right hand

side through extrapolation in time, then the underly-

ing system is solved by an approach akin to the classi-

cal block-Gauss-Siedel(GS) method. In this staggered

approach, the effect of some of tile off-diagonal block

matrix entries are represented on the right hand side

using the most recently computed discrete field values,

instead through temporal extrapolation. A majority

of the currently available uni-processor and shared-

memory multiprocessor implementations of the over-

set grid flow solvers falls into this category. A third

approach, which is a hybrid of the above two ap-

proaches is also feasible. In this multilevel method,

clusters or groups of component grids are formed first.
This is followed by the application of block GS like

algorithm within the groups and block-Jacobi like al-

gorithm across the groups.

A direct consequence of this partitioned analysis ap-

proach to solving the system of equations (2) is it's

conditional stability with respect to the time step size

At. In order to avoid numerically unstable compu-

tations, time step size At has to be bounded by a

value determined by the highest temporal frequency

component present in the solution of the overset grid

problem. In addition, the severity of the stability re-

strictions is also likely to depend on the fraction of the

IGBPs relative to the total number of grid points and
the characteristics of the flow field in regions wherb

the intergrid boundaries are located. For some over-

set grid problems, these restrictions are likely to prove

to be too severe, giving rise to solution schemes that

are unconditionally unstable for all practical purposes.
Therefore it is assumed that for the class of overset

grid problems of interest to this study; a) the tran-

sient response is primarily dominated by the relatively

low frequency components and b) the component grids

are designed such that the placement of intergrid

boundaries in critical flow regions are avoided. Con-

sequently, the partitioned analysis approach is likely

to prove to be a cost-effective alternative for solving

the system of equations (2). As in the case of block-

Jacobi vs. block-GS schemes, the restriction placed

on the value of At due to numerical stability con-

siderations is likely to be more severe in the case of

the first variant of the partitioned analysis approach.

Such restrictions placed on At may be alleviated to

some extent through the use of sub-iterations within

a time step.

In spite of the above mentioned drawbacks, the par-

titioned analysis approach can provide several signif-

icant computational and software engineering advan-

tages over the fully-coupled approach. Among these

are; 1) ability to use proven and independently devel-

oped discretization/solution algorithms within each

component grid involved, 2) preservation of high de-

gree of software modularity and 3) excellent prospects

for realizing scalable parallel implementations on DM-

MIMD computers. Furthermore, within the context

of the partitioned analysis approach, incorporation of

additional coupled disciplines such as controls, ther-

mal analysis etc. can be accommodated relatively eas-

ily.

In this paragraph we examine the algorithmic de-

tails of the block Jacobi-variant of the partitioned

analysis approach for overset grid problems. This

variant is represented by the following system involv-

ing a block diagonal coefficient matrix:



/A I0 ... 0 Q1

A2, 2 0 Q_ =

•
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where the right hand side vectors are defined by:

n n _ n

R_ =-FI(Q1,Q_,--.,Qi,...,QM)
M n P

- _j=l,(j#i) Ai,jAQj

= -F_(Q_,Q2P,...,Q_,...,Q_) (4)

and AQ_ = q_- Q_, (j = 1,2,...,M). The tempor-
lly extrapolated values of the discrete flow variables

required for the intergrid data interpolation process

are given by formulae of the type:

(,--1)

QJP Z a r_-k= 'k'_,j ,

k=O

and a k are appropriately chosen constants. Following

algorithmic facts are evident from the above analy-

sis: a) all intergrid data dependencies appear only in

the right hand side vectors, b) all intergrid data in-
terpolation and communication requirements can be

accomplished concurrently and c) all component grid

sub-problems can be solved concurrently.
The solution of component grid sub-problems in-

volves the inversion of block matrices An. (i =
Z,2'

1, 2 ..... M). Since the component grids are logically
structured, these matrices are regular sparse, banded

matrices 6, with a relatively high bandwidth. Again,

the direct inversion is an option but not viable due

to reasons cited before. However, there exist several

well-proven approximate inversion schemes that have

been developed over last two decades within the con-

text of uni-grid computations. Most of these time

marching schemes are generally characterized by: a)

low memory requirements and b) amenable to effi-

cient implementation on DM-MIh{D architectures. It
should be noted that the scheme chosen need not be

the same for all component grids. The partitioned

analysis approach offers the possibility of using dif-
ferent schemes on different grids, if needed. In this

study we have chosen to use the diagonalized form of

the block Beam-Warming scheme _, T on all component

grids.

Parallel Implementation Strategy

In this section, we provide a brief overview of some
of the DM-MIMD architectural features that influ-

enced our parallel implementation strategy followed

by an abbreviated discussion of some salient features
of the implementation. The DM-MIMD implementa-

tion of an overset grid flow solver based on explicit

update of the intergrid boundary values presents sev-

eral options. This is primarily due to the MIMD
characteristics of the architecture. Here, we provide

a discussion of the options available and the factors

influencing the choices. For the remainder of this dis-
cussion, we assume a DM-MIMD computer with a

fixed but moderate to large number of processors and

an overset grid problem involving a fixed number of

grids. The system software on the current generation
of DM-MIMD computers does not allow dynamic pro-

cessor allocation/de-allocation, once a job is initiated
on a fixed subset of it's processors on a space shared

basis. Furthermore, in this stud3', we preclude the

possibility of further subdivision of any of the com-

ponent grids through the introduction of additional

inter-grid boundaries. Although such subdivision may
facilitate computationally more efficient and a scal-

able implementation on DM-MIMD architectures, it's

impact on the solution integrity, numerical stability

and the overall convergence rate is currently not well

understood. However, it should be noted that such

implementations for both multi-block and overset grid

problems already ex_ist s' 9, 10. Also, this approach is a

subset of the implementation adapted is this study.

The computational load associated with each grid,

largely a function of the number of grid points, is
also assumed to be fixed during the entire simulation.

However, we allow for the possibility that differences

may exist across component grids in the following: a)

time marching scheme used for the advancement of

the solution and b) the physical effects included in
the simulation.

The time marching schemes used within each com-

ponent grid possess a certain degree of concurrency
that can be exploited througtl data parallelism. In the

block-GS like variant of the overset grid flow solver,

each component grid is processed in a predetermined

sequence. Consequently, the degree of exploitable con-

currency at any given instant is limited to the data

parallelism available within the component grid being

processed at that instant. This results in a situation

where the degree of exploitable concurrency may vary

as a function of the elapsed time. Such an implemen-

tation of an overset grid, implicit flow solver on the

Connection Machine CM-2 has already appeared in
the literature 11

In contrast, the use of the block-Jacobi like variant

allows more than one component grid to be processed



concurrently.Thispermitstheexploitationof anad-
ditionaldegreeof concurrency,availableacrossall or
somefixedsubsetof the componentgridsinvolved.
Thisextralevelof parallelismis generallyexploited
throughconcurrentprocessingofmultiplecomponent
gridson distinctclustersof processorsandis com-
monlyreferredto astaskparallelism.Suchan im-
plementationallowstile simultaneousexploitationof
thetaskparallelismavailableacrossthe component

grids and the data parallelism available within each

component grid. However, in order to ensure that a

sufficiently good static load balance exist across all

the clusters participating in the solution of the over-

set grid problem, the following condition need to be
satisfied. The fraction of the total number of proces-

sors assigned to each duster should be be directly pro-

portional to the fraction of total computational load

associated with the component grids being processed
on that cluster.

In tile following discussion, we summarize some

of the advantages and disadvantages associated with

each of the approaches. A more detailed description
can be found in Ref. 12. The two factors that have

a dominant influence over this issue are: a) the vari-

ation of the degree of exploitable concurrency and b)

the variation of computational load, across the set of

component grids. Both of these factors are primarily

influenced by: a) the type of mathematical model, b)

the nature of the computational Mgorithms, and c)

the number of grid points, used within each compo-

nent grid. The secondary factors are: a) the nature of

the physical/numerical boundary conditions applied,

and b) the number of IGBP's and donor cells asso-

ciated with each grid. In most realistic overset grid

problems, there is a significant variation of both the

computational load and the available degree of con-

currency among the participating component grids.

In some cases, this variation could be as much as an

order of magnitude or more.

When a fixed number of processors are used to

solve an overset grid problem with such a heteroge-

neous character by processing each component grid in

a prescribed sequence, two adverse implications arise.
First, in the case of component grids possessing only

a reduced degree of concurrency or smaller compu-
tational loads, it may not be possible to gainfully

utilize all the allocated processors for performing the

underlying computational tasks. This would lead to

idling of some of the assigned processors. Even when

the computational attributes of the component grid

are such that all processors can be gainfully utilized,

grids with smaller computational loads would incur

higher parallel implementation overheads due to re-

duced task granularity. This would invariably lead

to lower parallel efficiency. In addition, one may also

be compelled to search for alternative algorithms with

higher degree of extractable concurrency that have the

potential for being accompanied by higher memory

and/or arithmetic overhead as well.

On the contrary, the concurrent computation of ei-

ther all or a subset of the participating grids on dis-

tinct clusters of processors, where the number of pro-

cessors assigned to each component grid from the fixed

pool of processors is decided on the basis of their com-

putational loads and the inherent degree of exploitable

parallelism, would likely result in an implementation
with minimal idling of processors and higher overall

parallel efficiency. This is due to the fact that each
individual grid would now be computed using only a

fraction of the total available processors, which would

invariably lead to higher parallel efficiency compared

with the case of processing the same grid on all of

the available processors. Also, given the smaller num-

ber of processors assigned to individual grids, this ap-

proach requires algorithms possessing only a moderate

degree of exploitable parallelism.

The secondary factors influencing this choice are;

1) memory requirements for each component grid vs.
that available on a fixed number of processors, 2)

I/O performance to and from secondary storage de-
vices relative to the sustained computational perfor-

mance and 3) availability of system software to per-

form processor-to-processor communication between

two processors who are members of two different

groups of processors.
A careful consideration of all these factors resulted

in our decision to implement the variant of the overset

grid approach given by Eqn. (3), at this time. This

non-iterative time integration scheme was adopted

due to the concurrency it affords across all the par-

ticipating component grids. In this context, the pro-

cess of achieving a good load balance across all the

processors in the pool assigned to the task is some-

what complicated. Among tile factors that hinder our

ability are: a) upper bound on the memory available

per processor, b) limitations imposed by system soft-

ware on the number of active processes per processor

(currently limited to one), c) each cluster should con-

sist of an integer number of processors, d) additional

constraints on the allowable number of processors per

cluster that may be imposed by the system architec-

ture and e) restrictions imposed by the mesh parti-

tioning scheme used within a component grid to main-

tain an acceptable level of parallel efficiency within

that component grid. Consequently, the expectation

to achieve near-optimal load distribution across the

entire pool of processors is unrealistic.

Within the constraints cited above, we adapt the

following approach. The pool of processors is assumed

to be partitioned into M clusters, where M is the to-

tal number of component grids involved. Each such

cluster has Pi,(i = 1,2,...,M) processors and one

component grid assigned to it. As a result, we re-

quire a minimum of M processors be assigned to the



problem.Theactualnumberrequiredmaybehigher,
dueto thelimitationsonmemoryavailableperpro-
cessor.Thetotal memoryavailablewithina cluster
shouldbeeitherequaltoorgreaterthanthatrequired
by it's componentgridsolverandtheintergridcom-
municationdatastructures.If thetotal numberof
processorsin thepool,sayP, is sufficiently large, the

solution to the following critical path problem can be

used to determine the distribution of processors across
the M clusters;

minimize [max Ti: 1 < i < M] subject to

M

_Pi=P:PiEI
i=-i

_._ < p_P_

where

N_
= = 1,2,... ,M)

Here we have assumed that tile cost of inter-

grid communication is negligible. Also, lVi,(i =

1,2,...,M) is the number of grid points in the i-th

component grid; ai,(i = 1,2 ..... 34) is the normal-

ized work load per grid point per step in the i-th com-

ponent grid; r/j, (i = 1,2,... ,M) is the parallel effi-

ciency of the i-th component grid; ill, (i = 1, 2,..., M)

is the memory required in words per grid point for the
flow solver used in i-th component grid and Pi, (i =

1, 2 .... , M) is the memory in words available per pro-

cessor in the i-th cluster. In general, ai is a function of
the mathematical model and the numerical algorithms

used. For a given type of flow soh'er, 7]i is generally
a implementation dependent non-monotonic function

of Pi for fixed Ni.In addition, it may also depend on

the type of boundary conditions used and the ratio of

grid dimensions. The critical path problem is some-

what more complicated when more than one process

can be assigned to a processor.

It is also possible to use a multi-level approach to

load balancing. First, groups of component grids are

formed such that the total computational load with-

ing each group is appro.'dmately equal. Titan pro-

cessor clusters are assigned to eaci_ group along the

approach described above. This is followed by forma-

tion of sub-clusters within each cluster of processors,

again following the same approach.

In this study, we have not attempted to solve the

above critical path problem, but instead have sought

only to obtain a leading order approximation through

the following:

M

Pi = a'iNi(P/ZaiNi);i = 1,2,...,M - 1.
i----I

M - 1

PM = P- Z Pi
i=l

Note that this involves assuming r/i = 1,(i =

1,2,...,M). Once the cluster sizes are known for a

given P, it is possible to use a greedy algorithm to ad-

just the values of Pi, (i = 1, 2,..., M) as P changes.

At the beginning of each new time step, the time

marching process starts by simultaneously interpolat-

ing and exchanging the temporally extrapolated field
data necessary for updating the values at the IGBPs

of all component grids. During this data exchange,

a subset of processors within each of the M group of

processors are participating in inter-processor commu-
nications. This is then followed by the simultaneous

and independent computation of the updated values

of the flow fields in all the participating component

grids.

The data parallel, Single Program Multiple Data

(SPMD) implementations of the component grid flow

solvers can be carried out independently of one an-

other. This is a direct consequence of the software
modularity afforded by the overset grid approach.

Due to the MIMD nature of the architecture, each

cluster is capable of executing the same SPMD imple-

mentation of the solver for different component grids.

The diagonalized form of the Beam-Warming algo-
rithm found in OVERFLOW 13 formed the basis for

the data parallel implementation of the flow solver

used in this study. The details of this DM-MIMD im-

plementation can be found in Ref. (14). The version

used in this study is based on uni-partitioning of the

grid and uses grouped, two-way pipelined Gausssian

elimination for the solution of non-periodic pentadiag-

onal systems. The periodic pentadiagonal systems are

solved using fully balanced, one-way pipelined Gaus-
sian elimination algorithm is.

The only task that requires close interaction and co-

ordination among different clusters of processors from

the software implementation point of view is that as-

sociated with the tri-linear interpolation and exchange
of the flow field data at the IGBPs. This data inter-

polation and exchange has to be carried out in the

context of grid partitioning dictated by the indepen-

dent, data parallel implementations of the component

grid flow solvers within the clusters assigned to them.

In addition, this phase of the computation should ex-

ploit as much concurrency as possible with minimum

of synchronization barriers to maintain the overall ef-

ficiency of the parallel implementation. This was ac-

complished through the use of a distributed, concur-

rent implementation of the interpolation algorithms

and a loosely synchronous approach to interprocessor

data communication invoh, ing a highly irregular com-

munication pattern. This intergrid boundary data

exchange process required the design of a new dis-

tributed data structure for the processing of IGBPs

and their associated donor cells. Also a procedure for

initializing the highly irregular interprocessor commu-

nication pattern among processors belonging to differ-



entgroupswasrequired.Furtherdetailswith regard
to thedistributeddatastructaresusedandthepro-
cedurefollowedfor establishingtheinter-groupcom-
municationpatternwill beavailablein a futurepub-
lication.

The Test bed Architectures

Here we provide a brief description of the two DM-
MIMD test bed architectures used in this study: the

160 node IBM SP2 and the 208 node Intel Paragon.

The SP2 is essentially a set of IBM RS6000/590 work-

stations connected by a high performance switch with

a topology of an omega network (a hierarchy of cross

bar switches). The RS6000/590 workstation is based
on 66.7 MHz. POWER2 multi-chip RISC processor,

with a theoretical peak performance of approximately

250 Mflops on 64-bit data. Each node has a 128 Kbyte
data cache and a minimum of 128 Mbytes of main

memory and 2 Gbytes of disk space. ;From the appli-

cation software perspective, the interconnection net-

work is capable of moving data between SP2 nodes
with a latency of approximately 45 microseconds and

a bandwidth of about 34 Mbytes/sec.

The Intel Paragon is composed of 208 compute

nodes, each consisting of two 50 MHz. i860/XP RISC

microprocessor chips connected by a two-dimensional
mesh interconnection network. The theoretical peak

performance of the i860/XP is 75 Mflops on 64-bit
data, with a 16 Kbyte instruction and data caches.

Each compute node has 32 Mbytes of memory with

appro:dmately 22 Mbytes available to user applica-

tion programs. One of the i860/XP chips on each
node is used solely for inter-processor communication.
The interconnection network moves data with a la-

tency of 120 microseconds and a bandwidth of about

35 Mbytes/sec.

Both test beds currently support message passing

programming paradigm. The implementation in this

study was layered on the message passing libraries

based on the Message-Passing Interface (MPI) stan-

dardl_. The MPI provides a common interface for

development of portable message passing applications

on distributed memory concurrent computers and net-
works of workstations. The MPI functionality in-

cludes point-to-point and collective communication

routines as well as support-for process groups and
communication contexts. The latter two features are

essential for the development of modular applications

which incorporate simultaneous use of data and task

parallelism.

The Test Problems

In order to evaluate the computational performance

of the DM-MIMD implementation of the overset grid
flow solver, two realistic test problems that typify the

aerodynamic analysis computations carried out using

the overset grid approach were used. The first prob-

lem, referred to as the Powered-Lift configuration sim-

ulates the viscous flow past a delta wing with two jet's

in ground effect. The simulation of viscous flow over a

Fighter Lift and Control (FLAC) wing with deflected

leading and trailing edge flaps was used as the second
problem. This is referred to as the High-Lift configu-

ration in the subsequent discussion. In order to assess

the impact of the block Jacobi like variant of the par-

titioned analysis approach on the unsteady flow com-

putations, two test problems were considered. The

first one is the viscous flow past a circular cylinder

while the Powered-Lift configuration was used as the
other.

The Powered-Lift Configuration

The computational setup of this configuration17

consists of a 60 ° delta planform in a free stream of

Mach number 0.064, at 6.4 ° angle of attack (a), with

two choked jets located at the inboard trailing edge.

The jet flow is at a nozzle pressure ratio (NPR) of 1.S

and is exhausted at an angle of 45 ° to the chord of the

delta planform. The delta wing is located at a height h

above the ground plane, such that h/b = 0.25, where

b is the wing span. The flow field symmetry about

the y = 0 plane passing through the center line of the

delta wing is assumed. This geometry is discretized

by generating 1) a C-H grid around the delta wing, 2)

a cylindrical grid around the jet pipe, 3) a jet trajec-

tory conforming grid, and embedding the three grids

in 4) a Cartesian ground plane grid (Figs. 1, 2, 3).

This results in a composite grid of nearly 1 million

grid points. The interconnectivity among the four

grids and the hole points created as a result of over-

laying is determined using DCF3D software 4. The

composite grid was found to contain a total of approx-

imately 40,000 IGBP's distributed among it's compo-

nents. On the delta wing and pipe surface, no slip

condition is used along with extrapolation of density

and pressure values from those at one grid point above

the solid walls. On the ground surface, a moving wall

condition is used to reflect the experimental condi-

tions. The free stream conditions are applied on the

inflow boundary and the three side surfaces of the

background grid, while extrapolation is used at the

outflow boundary. At the jet exit plane, the velocity

and pressure ratio are set to those corresponding to

the experimental conditions.



Fig. 1: The ground-plane grid.

The High-Lift Configuration

The High-Lift configuration is represented by a
computational model to simulate the flow over the

FLAC wing with defected leading and trailing edge

flaps at a Mach number of 0.18 and a Reynolds num-

ber of 2.5 million. The gridding strategy was designed

to facilitate the computation of flow field at different

flap deflection angles, with a minimum amount of re-

gridding. This component grid strategy is depicted in

Fig. 4. Grids terminate at boundaries between fixed

and moving parts, viz. flaps. The flaps are gridded as

separate components, so that the flap rotation about

a hinge line on the lower surface of the wing can be

accomplished by rotating the flap grid. As the flaps
rotate, they slide down the upper surface of the wing.

The flap tips and the internal wing tips that get ex-

posed when the flaps deflect need to be discretized in
a manner that can resolve viscous effects (Fig. 5). Due

to the presence of airfoil sections with extremely sharp

leading and trailing edges, these tips and the wing tip

(Fig. 6) can not be discretized using standard wrap-
around grids. However, they lend themselves easily

to the use of polar grids placed on the tips, with the

singularity located at the leading or the trailing edge

itself (Fig. 7). Volume grids are then grown fl'om these

polar grids to cover the air gaps. The extremely thin

and sharp wing tip is discretized using three grids;

two polar grids for the leading and trailing edge ar-
eas and one cartesian grid for the region not covered

by the polar grids (Fig. 6). The entire wing-flap sys-

tem is gridded using 18 grids. These 18 conlponent

Fig. 2: The delta wing grid.

.__.__._.1 i . _ I Delta wing

I ', Chimera hole-

; ' I i

Fig. 3: The pipe and the jet grids.

Fig. 4: The FLAC wing grids.

grids are embedded in a fine global grid coveriug the
entire set to facilitate good inter-grid information ex-

change. The fine global grid is in turn embedded iu
a coarse grid spanning large extent of the physica]

space around the wing, resulting in a composite of 20

overset grids with a total of appro×imately 1.5 million

grid points. Again the interconnectivity among the
18 FLAC grids and the 2 global grids as well as the

location of their respective hole points are determined

using DCF3D. The composite grid was found to con-

tain 140,000 IGBPs. On all the FLAC wing surfaces,

a no-slip condition similar to one used in Powered-



Lift configurationisapplied.A no-slipwallcondition
is usedon theyz-planeat thewingroot to simulate
the wind-tunnelwall foundin the experimentalset
up.Thefreestreamconditionsareappliedat thein-
flowboundaryandon theremainingsidesurfaceof
theglobalcoarsegrid,whileextrapolationis usedat
it's outflowboundary.

Wing tip

Fig. 5: The FLAC wing tip.

Results and Discussion

In this section, we describe some computational per-

formance data and unsteady flow computation re-

sults obtained using the static overset grid flow solver

implemented on DM-MIMD computers. All perfor-

mance data reported are for 64-bit arithmetic and im-

plementations based entirely on FORTRAN. In imple-

menting a general purpose code such as the one used
here, issues such as software modularity, extensibility

and maintainability cannot be entirely overlooked in

favor of computational performance. The code exten-

sibility and maintainability issues precludes the de-

velopers from using excessive amount of "creative"

programming procedures and instead rely mostly on

optimizing compilers for achieving good performance

on modern RISC architectures. The general purpose
nature of the code and the attendant software modu-

larity requirements are often in conflict with program-

ming techniques that enhance temporal and spatial

locality of data. The locality of data is of utmost im-

portance to achieving high performance on hierarchi-

cal memory architectures such as those found in mod-

ern RISC processors. We have employed a balanced

approach, whereby the essential software modularity

was retained while attempting to maximize data local-

ity within that context. Another issue confronting the

application software developers on RISC architectures

Fig. 7: The polar tip grids.
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is therelativelyhighcostoffloatingpointdivideop-
erationsandintrinsicfunctionssuchasSQRT,when
comparedwith thecostofsimilaroperationsontra-
ditionalvectorsupercomputers.Whenimplementing
analgorithmsuchasARC3D_,it isalwayspossibleto
reducethetotalfloatingpointoperationcountingen-
eralandthenumberoffloatingpointdivideandSQRT
operationsinparticular,byresortingto thestorageof
intermediatedataarrays.Veryoften,thisis accom-
paniedbyincreasedmemoryrequirements,measured
in termsof64-bitwordspergridpoint.Thisin turn
reducesthesizeoftheproblemthatcanbecomputed
onafixednumberof processors.Thereforejudicious
compromisesarenecessarywhenemployingmemory
vs.timeoptimizations.Thedegreeto whichallofthe
abovetradeoffsareexercisedhaveaprofoundimpact
ontheobservedperformanceof theimplementation.

Fig. 8 showsthe performanceof the singlegrid,
implicit Navier-Stokessoh,eron the IBM SP2,for
5 differentproblemsizesandprocessorcountsvary-
ingfrom 1to 128.Theproblemsizesvarybetween
approximately1/4 millionto 4 milliongrid points.
Tlle performanceis measuredin termsof timeper
step.Thecorrespondingfigurefora singleprocessor
ofCrayC-90isapproximately7microsec/pt/step.Al-
thoughfor a fixedgridsize,thetime/stepcontinues
to decreaseasthenumberof processorsis increased,
theparallelefficiencyalsodecreases.Forthesmall-
estproblemsizeused,theefficiencyisonly40%when
128processorsaredeployed.This is primarilydue
to theinevitableincreasein parallelimplementation
overheadsasa fractionof thetotal time,whenthe
numberofprocessorsis increasedfor afixedproblem
size.A discussionof varioustypesof parallelimple-
mentationoverheadsandtheirimpactonperformance
canbefoundin Ref.(18).
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Fig. 8: Single zone performance on the SP2.

Tables (1) and (2) show the total number of pro-

cessors used and the sizes of the processor clusters as-

signed to each component grid for a series of runs on

the IBM SP2, for the Powered-Lift and the High-Lift

configurations respectively. The tables also show the

sizes of each component grid and the mesh partition-

ing used for the data parallel implementation of the

implicit flow solver within each component grid. This
mesh partitioning was chosen to provide best possible

performance of the flow solver, given the size of the
processor cluster assigned to a particular component

grid. For the implicit flow solver implementation used

in this study, it was found that for a fixed number of

processors, the best performance was generally real-

ized when following guidelines were adhered to during

the mesh partitioning process: a) each coordinate di-

rection is partitioned into two segments before any

direction is assigned more than two partitions, b) ra-
tio of partitions in each coordinate direction matches

as closely as possible to the ratio of grid points in each

coordinate direction. For a given number of proces-

sors, it is not always possible to follow both guidelines

exactly, but the first guideline Mways takes precedence

over the second whenever possible.

As a result of this mesh partitioning strategy, no

attempt was made to equi-distribute the IGBPs or

donor cells among all participating processors. Ta-

bles (3-6) show the distribution of IGBPs and donor

cells among processors assigned to different grids of

the Powered-Lift configuration, where the number of

processors used is 28. As can be seen from the tables.

the distribution of IGBPs and donor cells among pro-

cessors is highly non-uniform. It is quite evident from

the tables that a given processor can act in one of the

following four modes during intergrid communication

process: a) only as a recepient of donor cell data from

other processors, b) only as a provider of donor cell

data to other processors, c) a combination of (a) and

(b), d) none of the above. As a result, the processor

load during intergrid communication process can be

highly unbalanced.

Consider the case when processors are acting in

mode (a). The number of grids and processors supply-

ing donor cell data can vary widely among the active
set of processors. In addition, the number of donor

cells supplied by each donor processor can also have a

large variation. Now consider the case when proces-

sors are acting in mode (b). Again the number of grids

and associated processors receiving donor cell data
from a donor processor can vary widely across the ac-

tive set of processors. Also, the number of donor cells

supplied to each of the recepient processors can also

be very different. As a consequence, during the inter-

grid communication phase, the number and length of

messages received as well as the messages sent by a

processor can have a large variation across the active

set. In addition, the sources of the incoming mes-

sages and the destinations of the outgoing messages is

widely dispersed across the entire active processor set.

This results in a highly irregular interprocessor com-
munication pattern with a wide variation in processor

11



load.

As can be seen from Table (1), Powered-Lift con-

figuration is an example of an overset grid problem
with: a) a relatively small number of component grids

and b) tile sizes of the largest and smallest grids dif-

fer only by a factor of two. As a result, it is pos-

sible to realize reasonably good static load balance

among component grid flow solvers, even with only
a moderately sized pool of processors. On the oth-

erhand, the High-Lift configuration is an example of

an overset grid problem with: a) a moderate num-
ber of component grids and b) the sizes of the largest

and the smallest grids differ by a factor as much as

15. Consequently, it is quite difficult to realize good

static load balance among the component grid flow

solvers without a relatively large pool of processors.

Not all entries in Tabies (1) and (2) represent cases

where thecomponent grid solver loads are in balance

across clusters of processors. The first entry in both

tables represent the smallest pool of processors that

can be used to solve the problems. It is 6 and 22 for

the Powered-Lift and High-Lift configurations respec-

tively. Due to tile wide disparity in the grid sizes, the

High-Lift configuration needs a minimum of 105 pro-

cessors to achieve a good static load equi-distribution

across all component grids. Some of the other en-

tries in the tables represent assignment of processors

to the clusters based on a greedy algorithm, i.e., the
cluster with the heaviest load at a given time getting

tile most number of additional processors as the size

of the pool assigned to the problem is increased. Al-

though this approach does not guarantee a good load
balance across the entire pool of processors, it ensures

that tile additional processors are put to best possible

use.

Fig. 9 shows tile performance of the overset grid flow
solver oll the IBM SP2 for Powered-Lift and High-Lift

configurations, as the size of the pool of processors as-

signed to the problems is increased. Similar data for
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Performance on the SP2 for Powered- and

High-Lift configurations.

the Intel Paragon is shown in Fig. I0. Although most

of the cases depicted in these figures are not anywhere
near a balanced load state, the data indicates contin-

ued reduction in time required to complete the task

as the number of processors assigned to the task is

increased. However, this does not imply that all the

processors are optimally utilized. In all cases, the time

per step is determined by the slowest component grid.

Load imbalances result in idling of processors belm}g-
ing to other component grids to varying degrees.
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Fig. 10: Performance on the Paragon for Powered- and

High-Lift configurations.

Table (7) shows the time per step required for

the intergrid data communication process for the

Powered-Lift configuration. The size and distribution
of the pool of processors used is same as those in Ta-

ble (1). This time was measured by introducing a

synchronizing barrier across the entire pool of proces-

sors before the intergrid communication process was
initiated to eliminate any processor idle time being in-

cluded under the intergrid communication costs. The

data indicates that the cost of intergrid communica-
tion itself is always less than 4% of the total time

per step, irrespective of the size of the processor pool.
Similar results are obtained for the High-Lift config-

uration, even though the number of component grids

is 20. This validates our assumption that the cost of

intergrid communication is negligible in spite of the

highly non-uniform load distribution encountered dur-

ing this phase of the computation. It also attests to

the efficacy of the approach used for accomplishing the

intergrid communications. Table (7) also indicates the

maximum idle time for any processor in the pool of

processors assigned to the problem. This provides an
indication of the worst possible load imbalance that

exists across the entire set of active processors.

In this section, we discuss the results of the prelim-

inary experiments carried out to investigate the effect

of block-aacobi like variant of partitioned analysis ap-

proach implemented in this study, on the computation

of unsteady flow fields. Fig. ll shows the time trace

12



of the lift force acting on a circular cylinder obtained

using the DM-MIMD version of the overset grid solver

and the Cray C-90 implementation of a similar solver

la Three overset grids were used for this computa-

tion. The amplitude and frequency of the lift his-

tories show good agreement, indicating that: a) the

non-dimensional time step size of 0.125 used for this

computation and b) locations of the component grid

overlap regions, are such that the use of block-Jacobi

variant does not lead to any deleterious effects on the

solution. It should be noted that this is a problem

with only one dominant, relatively low frequency com-

ponent in the solution and therefore does not pose se-

rious challenges to the partitioned analysis approach.

0.4-
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0.2- '-= _ ' i'

L, 0.0-

4).2"

4).4 : 5000 10000 15000 20000 °,25000'

Iteration

Fig. 11: Lift history for the circular cylinder.

Next, Fig. 12 compares the lift histories of the

delta wing in the Powered-Lift configuration, obtained

through use of above two implementations. Initially

they show good agreement, but as the flow fields

develop, some discrepancies between the two traces

begin to emerge. Our speculation is that once the

jet impinges the ground plane, it is likely that pres-

sure waves are generated that bounce back and forth

between the underside of the delta wing and the

ground plane, resulting in highly non-linear interac-

tions. Such interactions appear to produce compo-

nents with frequencies high enough to produce differ-

ences in the solutions obtained through the two ap-

proaches. In order to examine what effect the time

step size would have on the solution, we repeated the

experiment twice, each time reducing the time step

size by a factor of two. The lift histories obtained are

shown in Figs. 13, 14. Both approaches show some

differences and they do not follow similar trends. Al-

though no firm conclusions can be drawn from this

preliminary investigation, it indicates that the use of

block-Jacobi approach can lead to discrepancies at

least in some unsteady flow computations.
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Conclusions References

We have successfully implemented an implicit overset

grid flow solver on DM-MIMD architectures based on

partitioned analysis approach. The implementation

facilitates the simultaneous exploitation of data paral-

lelism available within each component grid and task

parallelism available across the composite of overset

grids. This has the potential to enhance the scala-
bility of the implementation, especially for problems

with widely disparate component grid sizes. As a

result of using the MPI standard, the implementa-

tion was shown to be completely portable across two

DM-MIMD architectures, the IBM SP2 and the In-

tel Paragon. The software architecture adapted for

the implementation allows complete modularity and

the possibility of deploying different flow solvers on

different component grids, if necessary.

Current restrictions hnposed by the system software

prevents tile asMgnment of more than one process to

a processor for time shared execution. This is seen

as a major hindrance to accomplishing the following:

a) a good static load balance across the component

grids and b) solution of overset grid problems with a

large number of disparately sized component grids on
a moderate number of processors. In spite of this diffi-

culty, we have been able to demonstrate reductions in

total time per time step on two realistic overset grid

Navier-Stokes computations with the increasing size

of the pool of processors assigned to the problems.

The cost of intergrid communications appears to be

negligible for the two test configurations used. The

failure to realize good static load balance with certain
processor counts leads to significant idling of some of

the processors assigned to the task. This along with

parallel efficiency losses within each component grid

flow solver are the major factors limiting the parallel

efficiency of the overset grid flow solver.

For simulations involving unsteady flow computa-

tions, further studies are needed to gain a better un-

derstanding of the impact of using block-Jacobi like

variant of the partitioned analysis approach. Future

efforts may also be warranted in developing static load

balancing software to determine the optimum number

and sizes of processor clusters and the assignment of

component grids to the clusters, given the size of the

pool of processors available to the task. The oppor-

tunity also exists, when only a steady state solution

of the overset grid problem is required, to explore the

possibility of allowing component grid solvers to, pro-

ceed through the time marching process in a com-

pletely asynchronous manner. Although this may al-

leviate some load balancing problems, potential exist

for the appearance of numerical stability problems.
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Procs. # Grid 1 (70,56,70) Grid 2 (83,81,47) Grid 3 (60,71,52) Grid 4 (69,71,35]

6
7

12

26

28

5,2

i00

108

122

t2,1,1) = 2
(:,1,2) = 2
(2,1,2) = 4

(2,2,2) = 8

(2,2,2) = s
(2,2,4) = 16

(2,2,7) = 28
(3,2,5) = 30
(4,2,4) : 32

(2,1,I) = 2
(1,2,1) = 2
(2,2,1) = 4
(2,2,2) = S
(2,2,2) = S
(2,4,2)= 16
(4,4,2)= 32
(4,3,3)= 36
(5,4,2) = 40

(i,I,i) = I
(1,2,1)= I
(1,2,1)= 2
(2,3,1)= 6
(2,2,2)= 8
(2,3,2) = 12
(3,4,2) = 24
(3,4,2) ----24
(3,5,2) = 30

(I,I,I) = 1

(1,1,1) = 1

(i,2,i) = 2

(2,2,i) = 4
(2,2,1) = 4
(2,2,2) = 8

(2,4,2) = 16
(3,3,2) = 18
(2,,5,2)= 20

Table I: Grid partitioning for the Powered-Lik configuration on the SP2.

Grid v-" ] Grid size Case 1 Case .9 Case 3 Case ,t Case 5 Case 6

L (62,62,62) (1,1,2)= (2,2,2)=8 (2,2,4) = 16 (2,2,4)=16 (2,2,4)=16

2 (62,62,62) (1,1,2) = (2,2,2) -- 3 (2,2,4) = 16 (2,2,4) =16 (2,2,2) = 8

3 (99,38,30) (1,1,1) = (2,1,2) = 4 (2,2,2) = 8 (2,2,2) = 8 (2,2,2) = 8

4 (49,75,30) (1,1,1) = (2,3,1) = 6 (2,2,2) = 8 (2,2,2) = 8 (22,2) = 8

5 (99,38,30) (I,i,I) = (2,2,1) = 4 (2,2,2) = 8 (2,2,2) = 8 (2,22) = 8

6 (49,57,31) (1,1,1) = (2,2,1) = 4 (2,2,1) = 4 (2,3,1) = 6 (2,2,2) = 8

7 (79,49,33) (1,1,1) = (3,2,1) = 6 (2,2,2) = 8 (2,2,2) = 8 (4,2,2) = 16
8

10

11

12

13

14

15

16

17

18

(36,68,40)

(36,57,30)

(36,68,30)

(26,57,30)

(10,32,50)

(14,32,50)

(11,32,50)

(24,55,20)

(24,55,20)

(24,55,20)

(24,55,20)

(24,55,20)

(1,1,1) =

(i,i,i) =

(1,1,1) =

(i,i,I)=

(I,i,i) =

(1,1,1) =

(i,i,i) =

(1,1,1) =
(1,1,1) =

(i,i,i) =

(I,i,i)=

(1.i,i) :

(1,2,1) = 2

2 (1,2,2) = 4

2 (1,2,2) = 4
i I (1,1,2)= 2

I (1,1,2) = 2

I (1,1,2) = 2

i (i,i,2)= 2

I (1,2,2) = 4

1 (1,1,2) = 2

i (I,i,I)= i

I (1,2,1) = 2

1 (1,1,1) = 1

I (1,I,I) = I

1 (1,1,1) = i

1 (1,1,1) = 1

i (i,i,i)= i

i (i,i,i)= i

i (l,i,i) = i

i (i,i,i)= 1

i (i,i,l)= 1

i (i,i,i)= i
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(1,3,1) = 3

(1,2,1) = 2

(1,1,1) = 1

(i,I,i)= i

(i,I,I)= I

(i,i,i)= i

(1,1,1) = 1

(i,I,I) = i

(i,I,i)= I

(1,1,1) = 1

(1,1,1) = I

(2,2,2)= 8
(1,2,1) = 2

(2,2,1) = 4

(1,2,1) = I

(i,i,I)= I

(l,l,i)= i

(1,1,1) = 1

(l,l,i) = I

(1,1,1) = 1

(i,i,I) = 1

(1,1,1) = 1

(1,1,1) = I

(1,2,3) = 6

(1,2,2) = 4

(1,3,2) = 6

(1,2,2) = 4

(1,1,1) = 1

(1,1,1) = 1

(i,i,I) = 1

(1,2,1) = 2

(1,2,1) = 2

(1,2,1) = 2

(1,2,1) = 2

(1,2,1) = 2

(2,2,2) = 8

(2,2,1) = 4

(2,2,2)= 8
(1,2,2) = 4

(1,1,2) = 2

(1,1,2) = 2

(1,1,2) = 2

(1,2,1) = 2

(1,2,1) = 2

(1,2.1) = 2

(1,2,1) = 2

(1,2,1) = 219

20 (24,55,20) (1,1.1) = (1,t,1) = 1 (i,l,1) = 1 (1,2,1) = 2 (1,2,1) = 2
Total 22 62 93 105 122

Table 2: Grid partitioning for the high-lift configuration on the Paragon.
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I- ZONE i

Proc. ID. 1 2 3 4 5 6 7 8

IGBP 271 360 Ii 91 405 379 21 98

Donor Zones 1 3 I 1 1 2 1 1

Donor Procs 1 10 1 2 3 8 2 5

Max D.C./D.P. 271 286 11 88 330 259 14 78

Min D.C./D.P. 271 1 11 3 2 1 7 1

Avg D.C./D.P. 271 36 I1 46 135 48 11 20
IGBP served 1592 8632 267 2031 4730 1524 725 869

Zones served 2 3 1 1 1 2 1 1

Procs served 4 12 2 4 4 4 4 1

Max.IGBP/Proc 1377 1286. 233 965 2088 1211 487 869
Min IGBP/Proc 2 2 34 226 746 25 5 869

Avg IGBP/Proc 398 720 ] 134 508 1183 381 182 869

Table 3: Powered-Lift Zone 1 grid-communication details (D.C. = Donor Cells, D.P. Donor Processors).

ZONE 2

Proc. ID.

IGBP

Donor Zones

Donor Procs

Max D.C./D.P.

Min D.C./D.P.

Avg D.C./D.P.
IGBP served

Zones served

Procs served

Max IGBP/Proc

Min IGBP/Proc

Avg IGBP/Proc

i)2 3 4
960 1272 936 1274

1 2 1 2

1 6 1 4

960 491 936 528

960 24 936 164
960 212' 936 319

2 778 0 1223

1 3 0 '3

I 8 0 9

248 i 0 348
2 3 0 3

2 98 0 136

5

2600

1

3

2088

25

867

394

l

4

330

6

99

6

28i8
2

9

1211

30

314

2596

3

8

680
78

325

7 8

2559 2837

1 3

4 ii

1377 1286

203 2

640 258

424 4853

2 3

9 11

271 868

1 6

48 442

Table 4: Powered-Lift Zone 2 grid-communication details.

ZONE 3

Proc. ID.

IGBP

Donor Zones

Donor Procs

Max D.C./D."P.

Min D.C./D.P.

Avg D.C./D.P.
IGBP" served

Zones'served

"Procs served

Max IGBP/Proc

Min !GBp/Proc

Avg IGBP/Proc

935 288

1 1

1 1

935 288

935 288

935 288

2 720

1 1
' "1 1

2 720 1

2 720 1

2 720 I

Table 5: Powered-Lift Zone

909

1

1

909

909

909

1

1

1

1

1

272

272

272

680

1

1

680

680

680

4 5

272 1377

2

4

970

15

345

2

2

44

9

27

6 7

2225 1246

3 2

6 4

903 872
6 16

371 312

!027 74

2 2

2 2

913 65

114 9

15t4 37

3 grid-communication details.

2100

3

6

868

2

35092G
2

2
820

106

463
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ZONE 4

Proc. ID. 1 1 2
IGBP 3448 2448

Donor Zones 2 2

Donor Procs 6 6

Max D.C./D.P. 913 1286

Min D.C./D.P. 225 28

Avg D.C./D.P. 575 408
IGBP served 1667 164

Zones served 3 2

Procs served 7 4

Max IGBP/Proc 903 104

Min IGBP/Proc 2 11

Avg IGBP/Proc 239 41

3 4

3219 2330

2 2

6 6

820 1188

248 32

537 389

1533 202

3 2

7 4

813 143

1 9

219 51

Table 6: Powered-Lift Zone 4 grid-communication details.

Proc. No.

Total time/

step
Min. solver

petime/step
Max. I.G.C.

time/step
Max. Idle

time/step

6 7 12 26 52 100 108 122

8.899 6.690 5.198 2.358 1.201 0.800 0.761 0.563

5.480 5.340 2.770 1.592 1.185 0.738 0.715 0.595

0.058 0.055 0.053 0.026 0.027 0.014 0.013 0.020

3.600 1.353 2.626 0.766 0.015 0.062 0.046 0.071

Table 7: Intergrid communication (I.G.C.) and idle time for the Powered-Lift configuration for various no. of processors
on the SP2.
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