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Abstract

The erection and deployment of large flexible structures having thousands of degrees
of freedom require controllers based on new techniques of eigenvalue assignment that
are computationally stable and more efficient. Scientists at NASA Langley Research
Center have developed a novel and efficient algorithm for the eigenvalue assignment
of large, time-invariant systems using full-state and output feedback. The objectives of
this research were to improve upon the output feedback version of this algorithm, to
produce a toolbox of MATLAB functions based on the efficient eigenvalue assignment
algorithm, and to experimentally verify the algorithm and software by implementing
controllers designed using the MATLAB toolbox on the Phase 2 configuration of NASA
Langley’s Controls-Structures Interaction Evolutionary Model, a laboratory model used to
study space structures. Results from laboratory tests and computer simulations show that
effective controllers can be designed using software based on the efficient eigenvalue

assignment algorithm.
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1. INTRODUCTION

1.1. Literature Survey

One of the widely used methods of modifying the dynamic response of a linear
time-invariant system is the placement of the closed-loop eigenvalues at prescribed
locations in the complex plane via linear state or output feedback. Since Wonham [1]
established the relationship between the controllability of linear multivariable systems
and the assignability of the eigenvalues by full-state feedback, this problem has received
considerable attention. The problem was expanded to the simultaneous assignment of
eigenvalues and eigenvectors after Moore [2] showed the nonuniqueness of control gains
(or eigenvectors) for the placing of eigenvalues, and characterized the class of all closed-
loop eigenvector sets attainable for a given set of closed-loop eigenvalues. The area
of research has also been extended to consider the output feedback problem, because in
most practical situations the full states are not directly available. The limitations imposed
by output feedback were established by Davison and Wang [3], Srinathkumar [4], and
others. This section will review and compare some of the existing literature in the field

of eigenvalue and eigenvector assignment by state and output feedback.

Linear, time-invariant, multi-input/multi-output (MIMO) systems can be represented

by equations of the form:

X(t) = Ax(t) + Bu(t) (1.1)

y(t) = Cx(1) (1.2)

where A is an nxn state matrix, B is an nxm control input influence matrix, C is a pxn
output influence matrix, x(t) is an nx 1 state vector, y(t) is a px1 output measurement

vector, and u(?) is an mx 1 control input vector. In all cases the system is assumed to be



completely controllable, and in the case of output feedback, completely controllable and
observable. Controllability measures the particular actuator input configuration’s ability
to control all system states, whereas observability measures the particular sensor output
configuration’s ability to obtain the information needed to estimate all system states. The
following are the formal definitions of these concepts for linear systems defined by Egs.
(1.1) and (1.2).

A linear system is said to be completely controllable if for any initial time #,, there
exists a set of unconstrained controls u(t), that will transfer each initial state x(¢,) to
any final state x(¢,) in some finite time ¢, > t,. A linear system is said to be completely
observable if at any initial time {,, the initial state x(¢,) can be determined from the
knowledge of the output y(t) and the input u(t) for times ¢, < ¢t < t;, where ¢, is
some finite time [5].

The eigenvalue assignment problem for full-state feedback entails finding an mxn

constant state feedback matrix G, used in the control law
u(t) = —Gx(t)

such that the resulting closed-loop state matrix,
A=A-BG

has all eigenvalues at desired locations in the complex plane. The associated problem

for output feedback has a controller of the form
u(t) = ~Gy(t)

and G must be chosen to produce the desired eigenvalues of the resulting closed-loop

state matrix

A=A- BGC



The existing state and output feedback control methods can be classified into two
categories: strict eigenvalue assignment and eigenstructure assignment. The strict
eigenvalue assignment approach deals with modifying a system’s behavior strictly
though the placement of the closed-loop eigenvalues. The nonunique solutions for
multi-input systems, as detailed by Moore [2], are addressed by these approaches either
by presenting the set of solutions that can be obtained, or by constraining the solution
to maximize a performance measure, i.e., a measure of closed-loop system robustness
or some norm of the gain matrix. Robustness is a measure of the insensitivity of
the closed-loop eigenvalues to system perturbations. Eigenstructure assignment is the
simultaneous assignment of the eigenvalues and eigenvectors. The assigned eigenvalues
affect the speed of response of the closed-loop system, whereas the eigenvectors
affect the relative shape of the transient response. Some of these approaches also
seek to minimize certain measures of the closed-loop system. It should be noted
that for the sake of completeness, both eigenvalue assignment and eigenstructure
assignment techniques are reviewed in this paper. Although this paper reviews both

eigen-assignment techniques, it focuses primarily on eigenvalue assignment techniques.

1.1.1 Strict Eigenvalue Assignment

In the past decade many algorithms for strict eigenvalue assignment have utilized
some triangular form of the closed-loop system matrix. One such form is the real Schur
form [6], which is generated by an orthogonal similarity transformation that yields a
quasi-upper triangular matrix, having only 1x1 or 2x2 blocks on the diagonal corre-
sponding to real or to complex conjugate eigenvalues, respectively. Varga [7] proposed
a state feedback, pole-shifting procedure that modifies only the unstable eigenvalues of
the system. This partial eigenvalue assignment method is based on the Schur form of the

state matrix and on the use of QR decomposition [6]. The poles that are chosen to be



assigned are moved down the main diagonal of the state matrix using QR decomposition
and are assigned sequentially. Meanwhile, the resulting gains in the feedback matrix are
minimized. Later this procedure was the basis for the method of Maghami and Juang
[8] which uses the complex Schur form along with unitary coordinate transformations,
or Givens rotations [6], instead of QR decomposition to move the eigenvalues down
the main diagonal. A similar procedure for eigenvalue assignment was also developed
in [8] using output feedback. Petkov, et al. [9], [10] presented an algorithm which also
makes use of the Schur form and provides numerical stability, which makes it applicable
to ill-conditioned and high-order problems. This method is professed to perform equally
well with real and complex, distinct, and multiple desired poles. However, the procedure
does not seek to enhance the robustness nor minimize the resulting gains.

Patel and Misra [11], [12] proposed algorithms for eigenvalue assignment which
deal with the systems in upper Hessenberg form (UHF) [6]. A matrix H is said to be in
upper Hessenberg form if the elements A;; = 0, ¢ > j +1. UHF can be achieved through
a series of Householder transformations [6]. Patel and Misra’s first group of algorithms
[11] use state feedback to solve the assignment problem for multi-input systems. The
multi-input systems are reduced to one or more single-input systems where the single-
input systems are in UHF. A type of QR algorithm is then used to solve the eigenvalue
assignment problem for the individual single-input systems. A similar procedure is
described in [12] for output feedback. In both papers the procedures assign all of the
system’s eigenvalues, and no consideration is given to the robustness of the system.

Datta [13] also proposed an algorithm for state feedback eigenvalue assignment
using the UHF of the system equations. However, this algorithm only solves the
assignment problem for single-input systems. Later Arnold and Datta [14] extended

this approach to multi-input systems. Their algorithm does not make use of a QR type



method, but instead uses a simple linear recursion. Although this algorithm is not a
robust pole placement algorithm, the authors claim that it gives comparable results in
“well-conditioned” problems with fewer computations.

In the literature there are several iterative approaches that directly exploit the freedom
offered by the multi-input multi-output eigenvalue assignment problem to improve the
performance of the closed-loop system or to minimize the required control effort. One
such algorithm was presented by Kautsky et al [15]. Kautsky’s algorithm iteratively
maximizes a robustness measure of the closed-loop system in terms of the conditioning
of the closed-loop modal matrix through an orthogonal projection approach. This method
requires the assignment of all the eigenvalues of the system and works only for full-state
feedback.

It is also to be noted that there exist methods in which the eigenvalue placement
constraints are in the form of Sylvester’s equation [16], [17]. The assignment is done via

state feedback, where the feedback gain, G, is calculated by solving the matrix equations
AT —TA = —BP (1.3)

GT = P (1.4)

for a fixed closed-loop matrix, A, subject to a parameter matrix chosen such that (A, P)
is observable. Equation. (1.3) is referred to as Sylvester’s equation. For this method A
is chosen to have all the desired closed-loop eigenvalues. Then P is picked arbitrarily,
based on the criteria described above, and Eq. (1.3) is solved for a nonsingular matrix 7.
Finally, Eq. (1.4) is solved for G, i.e. G = PT~'. These methods based on Sylvester’s

equation work only for full assignment of distinct eigenvalues.



1.1.2 Eigenstructure Assignment

Moore [2] identified the flexibility beyond strict eigenvalue assignment for multi-input
systems by characterizing the attainable eigenvector space for a set of desired closed-loop
eigenvalues. It was shown that in addition to specifying the closed-loop eigenvalues,
one has a freedom to choose one set of closed-loop eigenvectors from this attainable
space. This result opened the door for research into eigenstructure assignment. Fahmy
and O’Reilly [18], [19] parameterized the set of associated eigenvectors and generalized
eigenvectors and presented a state feedback eigenstructure assignment algorithm. Tsui
[20] provided a method that deals with the system in upper Hessenberg form. This state
feedback approach supplies a way to reduce the condition number of the final modal
matrix resulting in better transient response and robustness. This method can assign both
distinct and multiple eigenvalues. Kwon and Youn {21] lifted some of the restrictions on
previous eigenstructure assignment techniques in an algorithm that uses output feedback.
Their method allows for closed-loop eigenvalues that need not be distinct or different
from the eigenvalues of the open-loop system.

In the area of robust eigenstructure assignment, Juang et al. [22] developed a method
in which the closed-loop eigenvectors are chosen to maximize the projection on the
open-loop eigenvectors or the columns of the closest unitary matrix to the open-loop
eigenvector matrix, in order to obtain a robust closed-loop design. This approach was
later extended to provide robust eigenstructure assignment for second order dynamic
systems [23], and then for state estimators using second order models [24].

Other methods of eigenstructure assignment have also been proposed. Maghami
et al. [25] uses a subspace intersection technique to assign closed-loop eigenvalues via
output feedback. It represents an extension of [22] by allowing the assignment of the

maximum possible number of closed-loop eigenvalues. Lu et al. [26] developed partial
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eigenstructure assignment, where the shape of the transient response corresponding to
the unchanged eigenvalues is controlled by prespecifying the closed-loop eigenvectors
associated with the unchanged eigenvalues before assigning the modified eigenvalues
along with the eigenvectors. This algorithm was shown to be effective for large scale
system applications. Eigenstructure assignment employing output feedback was also

shown to be possible using Sylvester’s equation, as was illustrated in [27].

1.2. Research Objective

Traditionally, eigenvalue assignment algorithms have been used as control design
tools for linear time-invariant systems. Conventional eigenvalue assignment methods
require that all eigenvalues be assigned to specified locations. Controller design for
large order systems using conventional assignment methods proves to be computationally
excessive because of the large number of eigenvalues that must be assigned. Eigenvalue
assignment algorithms which utilize partial assignment of eigenvalues, i.e., only a small
subset of all eigenvlaues are placed, provides the computational efficiency needed for
large order systems. Future space missions that will utilize large flexible structures can

directly benefit from control design tools developed from these principles.
The objectives of this research are to:

1. Program controller design software based on the Efficient Eigenvalue Assignment
(EEA) algorithms for full-state and output feedback of Maghami and Juang [8].

2. Develop and program a new output feedback EEA algorithm to obtain a stable closed-
loop system.

3. Experimentally verify the controller design software as well as the methods them-
selves by implementing several EEA controllers on Phase 2 of NASA Langley Re-

search Center’s Controls-Structures Interaction (CSI) Evolutionary Model.



The EEA algorithms will be programmed in MATLAB [28] language and expressed
in M-files. This collection of files will be named the MATLAB EEA Toolbox. The
new output feedback EEA algorithm will be an extension to the original output feedback
algorithm and will use optimization to produce an output feedback gain matrix that will

provide eigenvalue assignment while guaranteeing closed-loop stability.

1.3. Outline

The paper is divided into three main parts. First, Chapter 2 will present the theory
behind the EEA algorithm of Maghami and Juang [8]. It will detail the full-state feedback
method of eigenvalue assignment and illustrate the use of the method in a sample problem.
The output feedback method will also be discussed in Chapter 2, and a new method of
optimized output feedback to guarantee closed-loop stability will be proposed.

Chapter 3 will deal with the implementation of controllers designed using the state
feedback EEA algorithm on the Phase 2 configuration of the CSI Evolutionary Model,
a simulated space structure laboratory testbed. A discussion will be given on the
controller design software and the test procedures used. Closed-loop modal parameters
and time response data from the tests will be presented to experimentally verify the

controller design software and the EEA algorithm.

Chapter 4 will describe the controller design software produced from the new
optimized output feedback EEA algorithm. Computer simulations of closed-loop
systems consisting of a Phase 2 mathematical model and controllers designed using
optimized output feedback will be presented. Simulated closed-loop modal parameters
and time response data will be supplied for verification of the algorithm and software.

Finally, Chapter 5 will provide a brief summary of the material presented in this

work. Also, a suggestion for future research is provided.



2. EFFICIENT EIGENVALUE ASSIGNMENT

The control method implemented in this study was the EEA algorithm as described
by Maghami and Juang [8]. Eigenvalue assignment, via state or output feedback, is a
commonly used method of modifying the dynamic response of a linear time-invariant
system. While most algorithms of this nature attempt to assign all the eigenvalues of
the system, Maghami and Juang’s algorithm attains efficiency by sequentially assigning
one eigenvalue at a time without shifting the remaining eigenvalues. This approach is
especially efficient when the number of assigned eigenvalues is less than the order of
the system. This is particularly true for the control of large space structures which have

thousands of degrees of freedom.

2.1. Full-State Feedback

2.1.1 Theory

The full-state feedback approach for this algorithm basically consists of three steps.
First, a Schur decomposition is applied to triangularize the state matrix. Second, a series
of coordinate rotations (Givens rotations) are used to move the eigenvalue to be assigned
to the end of the diagonal of the Schur form. Third, the eigenvalue is assigned to a desired
location by full-state feedback without affecting the remaining eigenvalues. The second
and third steps are be repeated until all the requested eigenvalues are moved to the desired
locations. Given the freedom of multiple inputs, the feedback gain matrix is calculated
to minimize an objective function composed of the Frobenius norm of the gain matrix.

The Frobenius norm of a matrix is the root sum squared of the elements of the matrix.

Once again considering the linear system defined by Eq. (1.1) and (1.2) which is

assumed to be completely controllable. Full-state feedback is used to design a constant



feedback controller with a gain matrix GG, of dimension m x n, such that u(t) = G;x(t).
The gain matrix G, is to be chosen in such a way that either a real eigenvalue or a
complex conjugate pair of eigenvalues of the open-loop state matrix A are assigned to
desired values without shifting the remaining eigenvalues.

The eigenvalue assignment method for full-state feedback starts with applying the

Schur transformation to Eq. (1.1), i.e.,
x=Vx, (2.1)
and premultiplying the resulting equation by V¥ to yield
x; = VP AV, + V¥ BG,Vx, (2.2)

where V is an nxn unitary Schur matrix and ( )" denotes the complex conjugate
transpose. The state matrix in the transformed coordinates, namely, V¥ AV is an upper

triangular matrix with the eigenvalues of A on the diagonal, i.e.,

A1 Xl? e Xln
VHAV — 0 A.2 T k'.Zn

where X;; denotes the matrix elements above the diagonal. Observe from Eq. (2.2) that
it is possible to derive a gain matrix G,V (in the transformed coordinates) such that
the feedback portion of the closed-loop state matrix, namely, V¥ BG,V, is an upper
triangular matrix with all diagonal elements zero except the last. Hence, with such a
gain matrix, the last eigenvalue of matrix A (the last element on the diagonal of V¥ AV)
can be assigned to a desired value without shifting the remaining eigenvalues of A. In
order to extend this technique to assign any arbitrary eigenvalue ); (the ith value on
the diagonal of V¥ AV'), a series of appropriate coordinate transformations (coordinate

system rotations) must be used to move A; to the last position on the diagonal. This

10



is accomplished with a unitary Givens rotation, R, applied such that x; = R;xg,. The

form of the Givens rotation matrix is

0 .- cee 07
0 1 0 :
R, = a8 (2.3)
-8 ¢ :
: . 0
0 - e 0 1]

where ¢; and s; are, respectively, real and complex scalar parameters defined such that
et + 88 =1 (2.4)

and the superscript * denotes the complex conjugate. The required parameters ¢; and s;

of Eq. (2.3) are determined from

bb*
= - 2.5
b+ (A — i) (A — ) (2.5
A~ e
s = (A b:+1)ct (2.6)

where b is the (7,7 + 1) element of the matrix VHAV. Note that if b = 0, then ¢; and
s; are, respectively, set to O and 1 in Eq. (2.3).
The result of the coordinate transformation is to switch the positions of A; and A4,

on the diagonal. The state matrix in the transformed coordinates thus becomes

-/\1 Xl:’ /Ylnl
0 T A,Qn
RIVHAVR, = Aitt \ : 2.7)
0 0 . e A

This transformation is repeated n—i times in order to move ); to the last position on
the diagonal. The dynamics of the system in the final transformed coordinates may be

written as
)-(2 - LHALXQ + LHBGlLXQ (28)

11



or
)'(2 = AXQ + BC_;1XQ (29)
where L is the composite unitary transformation that moves A; to the end of the diagonal

and is given as follows:
L = VR,'R,’+1R,‘_,' (210)

and

A=L"AL, B=1L"B;, G,=G,L (2.11)

To ensure the assignment of the desired value for );, without affecting the remaining
eigenvalues, the matrix G, is chosen in such a way that BG, is an upper triangular
matrix with diagonal elements zero except for the last element. Such a gain matrix may

be of the form
G, =(0]g) (2.12)

where g, is an mx 1 vector. Obviously, with such a choice, BG, would be a null matrix

except for the last column. The local gain matrix G, is related to the vector §, from

Eq. (2.11)
G, =gL! (2.13)

where L, represents the last column of the transformation matrix L.

Assuming that y; is the desired closed-loop value for A;, then g, is determined such

that

b = pi ~ A (2.14)

in which b, represents the last row of the current matrix B. Any given solution of g,

that satisfies Eq. (2.14) will then produce a local gain matrix G, from Eq. (2.13) that will

12



move the eigenvalue A; to the desired eigenvalue p;. Now, depending on the number
of control inputs, an optimum solution for g, corresponding to a minimum gain design

may be formulated.

The vector g, is chosen to minimize a cost function that includes the current global
gain matrix, which is obtained by adding all the local gain matrices that assign all the
eigenvalues A;, j = 1,...,7—1 to the desired eigenvalues x;, j = 1....,1— 1, and keep
the remaining eigenvalues unchanged. This cost function along with the constraint of
Eq. (2.14) represents an optimization problem. The optimal solution yields a gain matrix
that would assign the ith eigenvalue ); to a desired value s, keep the other eigenvalues
of the current state matrix unchanged, and minimize the Frobenius norm of the global
gain matrix. The Frobenius norm for the global gain matrix, G, is calculated by taking
the square root of the sum of the diagonal components of (G” GG). The choice of the cost
function to minimize the norm of the gain matrix is particularly practical for applications
where available control power is limited.

Using Lagrangian multipliers [29], the optimization problem can be reduced to the
solution of a system of simultaneous equations. Once the solution for the local gain
matrix is obtained, it is added to the global gain matrix to produce the new global gain

matrix, i.e. G = G + G,. The state matrix A is similarly updated

A

A+ BG, (2.15)

Obviously, any practical solution for the local gain matrix must be real, but the
solution of the optimization problem is, in general, complex. This problem is overcome
by adding an additional constraint to the optimization problem to ensure that the global
gain matrix is real when the complex conjugate of the eigenvalue A;, namely A}, is

being assigned. First a series of Givens rotations are employed to move A} to the end

13



of the diagonal. Then the required gain matrix is determined from the solution to the
second optimization problem. Afterwards, the global gain matrix and the state matrix
are once again updated. This solution provides a second local gain matrix that assigns
the eigenvalue A; to the desired value ;. In the case where the eigenvalue to be
assigned is real, this second optimization is not necessary. This entire procedure of
Givens rotations and optimized assignment by full-state feedback is repeated until all the
requested eigenvalues are assigned to the desired locations. Figure 1 shows the details

of the entire eigenvalue assignment algorithm.
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A and B respectively

Figure 1. Flowchart of State Feedback EEA Algorithm




2.1.2 Sample Problem with Full-State Feedback

The eigenvalue assignment technique for full-state feedback can be clearly demon-
strated with a sample problem. Let us consider the two degree of freedom, spring-mass-

damper system illustrated in Figure 2.

|—ou1 |—>u2
k1 k2
m

_IVVW_._

0 " M
Z, Zy

Figure 2. Spring-Mass-Damper System

AT

The system has two force inputs, u, and u,, and two displacement outputs, y,=z, and

y2=2,. The two second order equations of motion that describe this system are as follows:
my 2, + (Cl + €)1 — €25 + (ky + k3)zy — kozy = uy

MaZy — Ca21 + a2y — kyzy + ky2e = Uy

This system of equations can be converted to a first order state space form,

(] = Alz] + B[]
[v] = Clz]
where, _
0 1 0 0
(katka)  (eatea)  kp Lz
A: 0! 01 "’61 nil
ks L2 —k o
(0 0
1
= 0
B = 0 0
0 L
[1 0 0 ©
“=lo 0 1 0
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and the state variables are defined as,

$1 Zl

N

I, 1

T3 2

dr.e W

Ty 2

Next we will assign numerical values to the physical constants. Let m,=1 kg, m,=2
kg, k;=1 N/m, k,=1 N/m, ¢,=6 kgfs, and ¢,=5 kg/s. Substituting these values into the

state space equation, yields

" 0.00 1.00  0.00  0.00
4 | 200 —11.00 100 500
| 0.00 0.00 0.00  1.00
L 0.50 250 —0.50 —2.50
[ 0.00 0.00
1.00 0.0
B=1000 0.00
| 0.00 0.50
o [100 000 0.00 0.00
"~ 10.00 0.00 1.00 0.00

The eigenvalues of A are -0.18, -0.23, -1.00, -12.09. Using the full-state feedback
technique described earlier, we will assign the first two eigenvalues to a desired location
of -2.00. In other words, we will determine a state feedback gain matrix so that the
resulting closed-loop system will have the eigenvalues: -2.00, -2.00, -1.00, -12.09.
First the A matrix is transformed into Schur form, putting the eigenvalues along the
main diagonal. A will be used to denote A in transformed coordinates, and similarly for

all other matrices in transformed coordinates.

[ —12.09 -—-2.14 2.26 2.74
0.00 —-0.18 —0.06 1.01
0.00 0.00 -0.23 0.72
0.00 0.00 0.00 —1.00

i
I

The same transformation is applied to B, yielding

097 -0.12
— 0.02 —-0.07
B= —-0.11  -0.09
0.24 0.47

L
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Now the first eigenvalue to be assigned must be isolated at the end of the main
diagonal of A. This is done through a series of Givens rotations. In this case we first
wish to move -0.18 to the end of the diagonal of A. The first Givens rotation switches

the second and third elements on the main diagonal.

—12.09 -2.14 2.26 2.74
0.00 -0.23 -0.06 1.01
0.00 0.00 -0.18 0.72
0.00 0.00 0.00 -1.00

N
]

Another rotation switches the third and forth elements, placing -0.18 at the end of the

diagonal.
—-12.09 -2.14 2.26 2.74

0.00 -0.23 -0.06 1.01
0.00 0.00 -1.00 0.72
0.00 0.00 0.00 -0.18

At the same time each of these Givens rotations was applied to B, yielding

A=

097 -0.12
= -0.05 —0.11
B= 0.22 0.47
0.12 0.08

At this point a local gain matrix, G, is calculated to assign -0.18 to —2.00 without
affecting the remaining eigenvalues. As described earlier, there is some flexibility in
choosing a local gain matrix for this assignment. Therefore the gain matrix is also
chosen to minimize the norm of the global gain matrix, which is the sum of all the
previous local gain matrices. At this point there are no previous local gain matrices, so
G, is calculated to be the local gain matrix with the minimum norm. The current A
matrix is then updated by A = A + BG), yielding

-12.09 -2.14 2.26 2.74
0.00 -0.23 —0.06 1.01
0.00 0.00 -1.00 0.72
0.00 0.00 0.00 -2.00

N
fl

G, is then transformed back to the original coordinate system, and this gain matrix,

denoted (;, will be used in the calculation of the global gain matrix. G, for the first
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eigenvalue assignment is

-10.07 -1.31 2.74 -1.64

Gi=1 _630 —08 1.72 —1.03

This is also equal to the current global gain matrix, G.

Now a new series of Givens rotations are used to move -0.23 to the end of the main

diagonal of A. The result of which is

—12.09 -2.14 2.26 2.74
0.00 -1.00 -0.06 1.01
0.00 0.00 —-2.00 0.72
0.00 0.00 0.00 -0.23

A=

The Givens rotations are also applied to B. An optimum local gain matrix is calculated

to assign -0.23 to -2.00. A is updated with the new G,

—-12.09 -2.14 2.26 2.74
0.00 -1.00 -0.06 1.01
0.00 0.00 —2.00 0.72
0.00 0.00 0.00 -2.00

A=

The new G, is transformed back to the original coordinate system, yielding

-221  —0. X )
G1=[ | 0.12 1.40 036]

20.34 .11 -12.91 -3.29
This is added to the previous (i, to produce the final global gain matrix

G- -12.28 —-1.43 414 -1.28
B 14.04 0.29 —-11.19 —4.32

With all the desired eigenvalues placed, this G is the final feedback gain matrix. The

closed-loop state matrix formed with this G is Ac;, = A + BG and

0.00 1.00 0.00 0.00
—14.28 —12.43 5.14 3.72
0.00 0.00 0.00 1.00
7.52 265 —6.10 —4.66

The eigenvalues of Ac, are -1.00, -2.00, -2.00, -12.09.

ACL =

This numerical example illustrates the sequential eigenvalue assignment employed

by EEA using full-state feedback. Desired eigenvalues are assigned without shifting the
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remaining ones. One can see how this technique is especially efficient when the number
of assigned eigenvalues is smaller than the order of the system. In the next section the

EEA algorithm using output feedback will be discussed.

2.2. Output Feedback

Since full-state feedback may not be available for implementation in many real
applications, an EEA procedure using output feedback was also developed by Maghami
and Juang in [8]. In this section the theory behind output feedback eigenvalue assignment
will be discussed, as described by Maghami and Juang. Also a new enhancement to
this algorithm is described, which attempts to overcome the major shortcoming that the
stability of the resulting closed-loop system is not guaranteed for all output feedback

eigenvalue assignment techniques, including Maghami and Juang’s.

2.2.1 Theory

Maghami and Juang point out that for (almost all) fully controllable and observable
systems, with m inputs and p outputs, min(m + p — 1, n) eigenvalues of the system may
be arbitrarily assigned with real gains. The closed-loop dynamics of the system with

output feedback is given as
x(t) = [A + BGCx(t) (2.16)
where G is an mXxp output feedback gain matrix, and A, B, C, and x(¢) have been

previously defined.

Maghami and Juang’s output feedback algorithm works in two steps to assign the
maximum allowable number of eigenvalues. First, /n pairs of eigenvalues may be
assigned, where 2m < m — 1, via any of the output feedback methods outlined in

the literature [3], [4], [22]. For this discussion we shall be considering the case where
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all the system eigenvalues are complex. These initially assigned eigenvalues are kept
unchanged during the next step, where the remaining p eigenvalues are placed to the
desired values. The output feedback gain matrix for the entire assignment is then the
sum of the gain matrices obtained from each step. One of the major shortcomings of
output feedback eigenvalue assignment techniques, including this one, is that the stability
of the resulting closed-loop system is not guaranteed (an attempt to resolve this problem
will be discussed in Section 2.2.2).

If we assume that the A matrix in Eq. (2.16) is the closed-loop state matrix after
the initial assignment of eigenvalues, then we can begin with a detailed description
of the second part of the output feedback algorithm. As with the state feedback
algorithm, a Schur transformation is applied to the system placing the eigenvalues along
the main diagonal of A. Next, the previously assigned eigenvalues, or the open-ioop
eigenvalues selected to be kept unchanged, are moved to the end of the diagonal via

Givens transformations. The resulting closed-loop system becomes

x(t) = [A+ BGC]%(t) (2.17)

where %(t) = Lx(t), A = L¥AL, B = L"B, C = CL, and L is the cumulative
transformation matrix defined as L = VR, --- R,.

Let B, denote the last 2m rows of B. Then, it is obvious that if the columns of
G are chosen to lie in the right null space of B, the feedback return matrix BGC will

not affect the m pairs of eigenvalues at the end of the diagonal of A. Defining ¥ as an

orthonormal basis spanning the right null space of matrix By, ie.,

B,V =0 (2.18)
the gain matrix G can be expanded in terms of ¥

G =VYq (2.19)
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in which g is an rxp coefficient matrix, and r denotes the dimension of the null basis.
The eigenvalue assignment problem is now reduced to finding a set of coefficients g that

assigns the remaining p eigenvalues of the following subsystem
%.(t) = [A, + B, ¥qC,]%.(t) (2.20)

where A,, B,, and C, are submatrices composed of the first (n — 272) rows and
columns of A, the first (n — 2m) rows of B, and the first (n — 2/m) columns of C,
respectively. Here X, denotes the first (n — 2/m) elements of X. Since all the variables
in Eq. (2.20) are complex, the task of assigning the desired eigenvalues may be quite
cumbersome. However, due to the unique nature of the Schur vectors a more amenable

and computationally efficient companion system may be considered instead as follows:
2(t) = [A. + BYqC]z(t) (2.21)

where A, is an nxn matrix defined as

A0

Ach[o 0

o

and z(t) is a companion state vector. The eigenvalues of A, are the same as eigenvalues
of A, except for 7 pairs of additional zero eigenvalues, which will similarly not be
affected by the feedback return of BUqC. All the variables in Eq. (2.21) are real except
U and g. Since only real-valued gain matrices are meaningful, the gain matrix in Eq.

(2.21) is replaced by the real part, such that
z(t) = [A. + B(Vrgr — ¥,q,)C)z(1) (2.22)

Now every variable in Eq. (2.22) is real. The eigenvalue problem for Eq. (2.22)
is given by
[Ac + B(Vrgr — V1q:)Clne = mefis (2.23)
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where 7, and ji;, respectively, denote the kth eigenvector and desired eigenvalue.
Expanding Eq. (2.23) in terms of real and imaginary parts of 7, and p: and rearranging

the results in matrix form yields

Mer
Ner
r, |9Cmer | Zpg =0 (2.24)
QICTIJ:R
QRCTIH
L 41Cmer

where

I, = Ac - p'kR]n ukl-[n Bli’ OA
kT _I‘LkIIn Ac - lLkRIn 0 B\If

and ¥ = [, —V,]. Equation (2.24) is satisfied for each pair of complex conjugate
eigenvalues. Let v, denote an orthonormal basis for the solution of Eq. (2.24) that spans

the null space of [';. If s pairs of eigenvalues are to be assigned, then the solution of the

homogeneous equation of Eq. (2.24) may be written for the kth pair (A =1, ... ,5) as

[ der | [ vkr |

Gr1 Vs
_ Prrr _ VkRR .
Fk¢k = Fk = Fk Cy = 0 (225)

Srr1 UkRI
Prir VkIR

L ¢ku i L VkIr |

where the null basis v, has been partitioned into six components according to Eq. (2.24),
and ¢, are the appropriate coefficients for the basis v,. Comparison of Eq. (2.24) and

(2.25) yields that the matrices gr and g, must satisfy

qrCkrs Gr1] = [Prrrs Prir); k=1,...,s (2.26)

qIC[¢kR’ ¢u] = [¢les ¢k11]§ k=1,...,s (2.27)

It is observed from Eq. (2.25) that any freedom provided by the multi-inputs and
multi-outputs is imbedded in the coefficients ¢,. This freedom can be exploited to

achieve better closed-loop criterion such as minimizing a weighted norm of the gain
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matrix or, as will be discussed in the next section, achieving guaranteed closed-loop
stability. However, as long as the coefficients c; are chosen to generate a set of linearly
independent eigenvectors, a solution for the gain matrix can be obtained.

Equations (2.26) and (2.27) can be written in a general matrix form

A

gn® =9 (2.28)

a® =90 (2.29)
in which
® = Clbirs b11, - - - Bors a1
® = [b1rrs i1y - - - s DerRs> Bor]
® = [Birrs Buirs- - - Borrs Bori]
The solution for gr and ¢, is then given as
o = (0] 230

q = 0[] (2.31)

where [ ]' is the pseudoinverse. Note that the solutions given in Eq. (2.30) and (2.31)
are unique or minimum norm depending on the number of pairs assigned. With g and

q; determined, the output feedback gain matrix G is computed as
G = Vrqr — V;q; (2.32)

It can be shown that the columns of the gain matrix G satisfy the orthogonality condition
of Eq. (2.18) provided that m pairs of eigenvalues assigned previously are either real or
complex conjugates. The procedure discussed here can assign up to min(m + p — 1,n)

eigenvalues with output feedback.



2.2.2 Optimized Output Feedback

The output feedback EEA algorithm developed by Maghami and Juang [8] is a
computationally reliable control design tool. However, when it is applied to real systems,
such as the control of large space structures, the drawback of unguaranteed stability can
make it unviable in some cases. This is also true for most output feedback eigenvalue
assignment algorithms. The EEA technique can only enhance the possibility of achieving
a stable solution by imposing constraints on some of the most sensitive open-loop
eigenvalues. Nevertheless, the method does quantify the freedom in the calculation of the
final feedback gain matrix. It is proposed to exploit this freedom through optimization

to produce a stable closed-loop system.

The previous section detailed how the eigenvector coefficients ¢; in Eq. (2.25)
contained the freedom to provide different feedback gain solutions. The solution to
the eigenvalue assignment problem is nonunique, and arbitrary choices of ¢, produce
different gain matrices, each of which will assign the min(m + p — 1,n) eigenvalues of
the system. However for the case where m + p — 1 < n, each choice of ¢; will effect the
closed-loop values of the remaining n — (m + p — 1) eigenvalues. It is these remaining
eigenvalues that can cause the nominal closed-loop system to be unstable. Therefore,
one would like to find the values of ¢, that would produce a stable closed-loop system
and, since the flexibility exists, minimize the norm of the gain matrix. This can be
accomplished by delegating the choice of ¢, to a constrained nonlinear optimization that
minimizes the norm of the resulting gain matrix subject to the constraints that the real
parts of all the remaining n — (m + p — 1) eigenvalues are less than zero or less than

some specified limit.
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The constrained nonlinear optimization problem can be posed mathematically as

T fle) = 16l
k (2.33)

constraint : real(A,) < 0
where |G|, denotes the Frobenius norm of the feedback gain matrix and )., denotes the
eigenvalues of the closed-loop system (A + BGC'). Figure 3 shows how this proposed

optimization is incorporated into the output feedback algorithm.
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3. IMPLEMENTATION OF STATE FEEDBACK EFFICIENT EIGENVALUE
ASSIGNMENT CONTROLLER ON PHASE 2 CEM

A series of controllers based on the state feedback EEA algorithm were designed and
tested on the Phase 2 configuration of the CSI Evolutionary Model (CEM). The Phase 2
CEM is one in a sequence of laboratory models, developed at NASA Langley Research
Center, to explore improved ways to model, control, and design space structures [30].
The purpose of these experiments was to experimentally verify controller design software

based on the EEA methods described in [8] as well as to verify the methods themselves.

3.1. Phase 2 CEM Description

The Phase 2 CEM, shown in Figure 4, consists of an aluminum truss structure 620
inches long and 110 inches wide, constructed from 10 inch cubical bays. The structure
has a 62 bay long main truss, four 10 bay horizontal suspension trusses, an 11 bay
vertical laser tower, and a four bay vertical reflector tower. There are three two axis
gimbals mounted on the main truss, a 17 inch diameter reflector mounted on top of the
tower at the aft end of the structure, and a laser source mounted on top of the other
tower. The structure is suspended from the ceiling (about 840 inches above the main
truss) by four cables as shown. Each of these cables are in turn connected to pneumatic-
magnetic suspension devices which are used to simulate a near zero gravity condition.
Eight proportional bi-directional air thrusters, with a maximum output force of 4.4 lbs
each, provide the input actuation, while collocated servo accelerometers provide output
measurements. Because the controllers designed for the structure used velocity feedback,
the acceleration measurements were passed through an integrator to produce velocity
measurements. For the following series of tests to be described, the laser source and

reflector, used to provide information on the global line-of-sight pointing accuracy, and
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the three gimbals, used to simulate the interaction of science instruments and the control

systems with the spacecraft, were not used.

Gimbal C

Accelerometers (1-8)

Thrusters (1-8) @ /

Figure 4. CSI Evolutionary Model - Phase 2

3.2. Modeling of Phase 2 CEM

It was necessary to generate a mathematical model of the Phase 2 CEM for design and
simulation. The equations of motion for the structure can be written in a second-order

form as
Mz+ Dz + Kz = Fu (3.1

where M, D, and K are the mass, damping, and stiffness matrices, respectively; z is the
displacement vector; u denotes the control input; and F' is the input influence matrix

characterizing the locations and types of input.

Now let us assume that there is no damping in the system. This leaves us with

Mz+ Kz = Fu

29



In order to solve the homogeneous equation
Mz+ Kz=0 (3.2)
a solution is assumed to be of the form
{z(t)} = {Z}e"

Substituting this assumed solution into Eq (3.2) yields

(K —w’M){Z} = {0} (3.3)
or for a particular mode

(K —wiM)®; = {0} (3.4)

where w; and ®; represent the natural frequency and the structural normal mode shape,

respectively, for mode j. From Eq. (3.4) we can obtain the following properties,

®TMO =1 (3.5)

—w? 0
TK® = , (3.6)

0 —w?
and with the assumption of modal damping, we have
—2¢w, 0
-2
"D = o (3.7)
0 —2(w,

where (; represents the damping ratio of mode j, and g represents the number of modes

used to construct the model.

Now we wish to express Eq. (3.1) in a first-order form by defining the vector x as
z
X = [z] (3.8)
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resulting in the compact reformulation

x = Ax + Bu (3.9
where
0 1
A= [—M“K —M“D} (3.10)
and
B = 0 (3.11)
T |M-'F ’

The model of the Phase 2 CEM assumes that velocity is the measured output of the

system. Therefore, the first-order output equation for the structure can then be written as

y =Cx (3.12)

Because the sensors and thrusters are collocated, the output influence matrix, C = BT,
Finally, combining Egs. (3.5) through (3.7) with Egs. (3.10) and (3.11) the state

matrix can be expressed as

[ T

A= (3.13)
_w? 0 —2C1w1 0
Wy — 2wy

L 0 —w? 0 ~2(,w,

and matrix B can be expressed as

0
B= [@T] (3.14)

The numerical values for the mode shapes and the modal frequencies were obtained
from an eigensolution of a MSC/NASTRAN finite element model of the Phase 2 CEM.

The solution provided information on the first 95 modes of vibration, however in order
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to reduce the number of computations required, the resulting model was constructed
with only 20 modes. Because damping for a complex structure is difficult to model, a
modal damping ratio of 0.1% was assumed for all modes. The Phase 2 CEM state space
model was constructed using Egs. (3.13), (3.14), and the modal parameters described

above. This 20 mode model was used to design the following controllers.

3.3. Controller Design and Phase 2 CEM Implementation

The EEA algorithms were programmed in MATLAB M-files. Both full-state
feedback and output feedback versions were programmed; however, during the time
allotted for testing on Phase 2, only an output feedback version without optimization
was completed. This output feedback version did not provide stabilizing controllers
for the Phase 2 CEM. Therefore, only controllers designed using state feedback were
implemented on the structure.

The state feedback eigenvalue assignment program requires the user to supply the
state and input matrices and to specify which open-loop eigenvalues are to be assigned
and the desired locations of these eigenvalues. The program then computes the full-state
feedback gain matrix required to place only the specified open-loop eigenvalues to the
desired locations without effecting the remaining eigenvalues.

Since full-state feedback is not available for the Phase 2 structure, a Kalman filter
was used in series with the controller to provide estimates of the full state from the
velocity signals integrated from all eight accelerometers. The Kalman filter was designed
using the linear quadratic estimator function supplied in the MATLAB Control System
Toolbox [31]. The weighting matrices were chosen to produce an estimator with poles
at least twice as fast as the closed-loop system poles. In general, the designed estimator

had a majority of the poles about six times as fast as the closed-loop system poles.
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Using the EEA program, a series of controllers were designed for Phase 2 CEM. The
goal of each controller was to increase the damping of the first two flexible body modes
of vibration in the Phase 2 structure without effecting the open-loop frequencies. As
shown in Table 1 the first two flexible body modes of Phase 2 are the seventh and eighth
modes of vibration. Having decided that the controller would place the two pairs of
eigenvalues associated with modes seven and eight, the desired closed-loop eigenvalues

reflecting a new level of damping had to be calculated. This was done as follows:

A complex conjugate pair of eigenvalues can be represented as

A= —Cwn, £ jwn /1 — C2

where ( is the damping ratio, and w,, is the undamped natural frequency. The objective is
to produce a new eigenvalue pair with the same undamped natural frequency and a new

damping ratio, which we will call (. The new eigenvalue pair would then have the form

u:—gwnijwn 1=

where w, is either calculated from the real and imaginary parts of A or taken directly from
the finite element model data. Thus the complex conjugate pairs of y are the desired

closed-loop eigenvalues.
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Table 1. Phase 2 CEM - Measured Open-Loop Modal Information

Mode| Frequency (Hz) Damping (%) Description

1 0.132 5.503 Yaw
2 0.135 4576 X Pendulum

Rigid Body 3 0.136 3.658 Y Pendulum

Modes 4 0.180 5.807 Bounce (node near laser tower)
5 0.192 5.885 Bounce (node near reflector tower)
6 0344 2420 Roll
7 1.767 0.238 1st Torsion
8 2432 0.178 1st X-Z Bending
9 3.049 0.291 1st X-Y Bending
10 5.689 0.183 2nd X-Z Bending
11 6.137 0.175 Reflector Appendage Rocking
12 6451 0.575 Reflector Appendage Rocking
Flexible 13 6.577 0.202 Reflector Appendage Rocking

Body Modes 14 6.734 0.366 Reflector Appendage Rocking
15 7.218 0.195 Cable
16 7.777 0236 Laser Tower X-Z Bending
17 8719 0.250 2nd X-Y Bending
18 9.146 0.177 2nd X-Z Bending
19 10212 0.206 Laser Tower Y-Z Bending
20 13.087 0.057 3rd X-Y Bending

The EEA program is ideally suited to produce controllers to increase the damping on
certain modes of the Phase 2 structure as this controller design makes use of the efficiency
of the algorithm because the number of eigenvalues to be assigned is much less than the
order of the system. The assignment algorithm also assures that the open-loop modal

parameters of the other modes remain unchanged.
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3.4. Test Procedure and Results

After the closed-loop systems were simulated and verified in MATLAB, the EEA
controllers were tested on the Phase 2 structure. Each controller was designed to produce
a different level of modal damping. Table 2 lists these tests. The procedure for each 40
second test consisted of 10 seconds of open-loop sinusoidal excitation of the structure
using the air thrusters, followed by one second of free decay, then during the remaining
29 seconds the controller command loops were closed. In the case of the open-loop tests
(Tests 1 and 12), the final 30 seconds were all free decay. Through inspection of the input
matrix, it was determined which thruster should be used to excite a given mode to provide
the optimum excitation in that mode. This was done by identifying the largest positive
number in the row of the input matrix that pertains to the mode to be excited. The number
of the column that contains this number is the number of the thruster that should be used
to provide the most efficient excitation. In tests 1 through 11, sinusoidal command inputs
were given to thrusters 8 and 4 at frequencies of 1.7074 Hz and 2.3782 Hz respectively.
This predominantly excited only the first torsional mode and the first X-Z bending mode
at the natural frequencies. In tests 12 and 13, in addition to thrusters 8 and 4, thrusters 1
and 5 were fired at frequencies of 0.1302 Hz and 0.1321 Hz respectively to also excite
the first two rigid body modes. Test 13 was done to evaluate that the controller does not
become unstable when modes other than those being controlled are also excited. In all

the tests the amplitude of the sinusoidal thruster inputs were 2.0 volts or 0.81 Ibf of thrust.

In order to check the performance of each controller, the desired damping for a
given mode must be compared with the closed-loop damping obtained for that mode. An
eigensystem realization algorithm using data correlation (ERA/DC) [32] was employed
on the time response data from all eight accelerometers for each test to determine the

modal parameters for each closed-loop system. The results of this analysis are also shown
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in Table 2. The ERA/DC analysis was able to identify the modal parameters of the modes
with substantial excitation. However, the accuracy of the ERA/DC analysis for modes
with less excitation was poor, particularly in reference to the modal damping. This loss
of accuracy prevents an evaluation of the non-controlled modes to determine whether
they were affected by the state feedback controller. Nevertheless, since modes seven
and eight were substantially excited, there is a high level of confidence in the modal

parameters obtained for these modes by ERA/DC.

Table 2. Phase 2 CEM - Performance of EEA Controller

Desired Damping of | Measured Damping | Measured Frequency
Test Description Mode (%) of Mode (%) * of Mode (Hz) *
7 8 7 8 7 8
1 | Excitation of modes 7.8 i i 0238 | 0178 | 1767 | 2432
Open-loop response

2 1.000 1.000 1.258 1.022 1.778 2.449
3 1.500 1.500 1.813 1.506 1.782 2.458
4 2.000 2.000 2.369 1.986 1.789 2.464
5 3.000 3.000 3.356 2941 1.796 2477
6 | Excitation of modes 7.8 4.000 4.000 4.405 3.685 1.806 2.491
7 | Eigenvalue placement of modes 7.8 6.000 6.000 5911 5.295 1.827 2.521
8 8.000 8.000 7.358 6.585 1.849 2.551
9 10.000 | 10.000 8.628 7.651 1.867 2.582
10 12000 | 12,000 | 10873 7.865 1912 2.626
11 15000 { 15000 | 11.703 8280 1.942 2676
12 | Greition of modes 1278 : : 0241 | 0203| 1778 | 2433
13 g‘;‘r‘;“m";ﬁ:‘;ﬁ:ﬂ: '(2,%7;3 odes7g| 10000 | 10000 | 8933 | 7975 | 1902 | 2593

* Measured using ERA/DC analysis of time response data
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During each test the data from all eight accelerometers and thrusters was recorded.
Figures 5-10 show the closed-loop time responses compared to the open-loop time re-
sponses for selected tests. For clarity and brevity only the data for the accelerome-
ter/thruster pairs 8 and 4 are shown in Figures 5-8. These time response graphs best
reflect the movement of the structure. For Test 13, shown in Figures 9 and 10 in which
four modes are excited, the data for the accelerometer/thruster pairs 1, 5, 8 and 4 are
shown.

One can see in all the plots of accelerometer data the shorter settling time of the
closed-loop stem compared to the open-loop system. Figures 7 and 8, which show data
from Tests 9 and 11, respectively, best illustrate the reduced settling time. Both of
these closed-loop tests produce a settling time under five seconds, compared to over 30
seconds for the open-loop system.

The plots of thruster data shown in Figures 5 to 10 reveal the relatively low command
power that was necessary to change the damping of the structure. This was due to the
small norm of the feedback gain matrices calculated by the EEA algorithm. The thrusters
can supply a maximum force of 4.4 Ibs, which is achieved with a thruster command signal
of 10.9 volts. In all the tests conducted the thrusters were never commanded to fire over

1.62 1bs of force or 4.0 volts.
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3.5. Discussion of Results

In general the EEA controllers adequately performed their function. All the resulting
closed-loop systems remained stable even in Test 13 where additional modes were excited.
However in comparing the desired damping for a given mode with the measured damping
shown in Table 2, one can see a noticeable difference. The difference ranges from 0.4%
to 44.8% for both modes. A small part of this error can be attributed to sensor noise,
measurement error, unmodeled actuator dynamics, and nonlinear dynamics of the Phase
2 structure. It was determined by the ERA/DC analysis that a majority of the error in
the produced closed-loop damping was due to errors in the state space model of the

Phase 2 CEM.

The state space model was created with the assumption that all modes of vibration had
a damping of 0.1%. As described at the end of Section 3.3, the vibrational frequencies
were derived from an eigensolution of a MSC/NASTRAN model of the Phase 2 structure.
ERA/DC analysis of the open-loop test (Test 1) on the structure provided the actual
values for these modal parameters. Table 3 shows that there were inaccuracies in both
the assumed damping and the vibrational frequencies. Because Test 1 only substantially
excited modes seven and eight, only these modes can be confidently compared with the
state space model. The lack of confidence in the ERA/DC analysis of the other modes

is due to high signal-to-noise ratios present in the data obtained for the other modes.

Table 3. Phase 2 CEM - Measured and Modeled Open-Loop Modes of Vibration

Source Mode | Frequency (Hz) Damping (%)
7 1.767 0.238
Actual Measured Modes
8 2432 0.178
MSC/NASTRAN State 7 1.707 0.100
Space Model 8 2.378 0.100




There is a difference of 3.4% and 2.2% in the actual and modeled frequency values of
modes seven and eight, respectively, and a difference of 58% and 44% in the actual and
modeled damping values of modes seven and eight, respectively. The incorrect modal
parameters translate into a state space model with incorrect eigenvalues for modes seven
and eight. This in turn affected the eigenvalue assignment program. The eigenvalue
assignment program, using the incorrect state space model, calculated the state feedback
gain matrix that would move the eigenvalues of modes seven and eight to new locations
that would change the damping in those modes to a desired value. Since the model’s
eigenvalues were not the correct eigenvalues of the structure, when this state feedback
gain matrix was applied to the actual structure the eigenvalues were moved to different
locations producing damping values different from those desired. The state feedback gain
matrix was calculated for the model but applied to the structure. Therefore, since the
open-loop eigenvalues of the model were different from the eigenvalues of the structure,
the resulting closed-loop eigenvalue for the model and the structure would be different
using the same calculated feedback gain matrix. The closed-loop eigenvalues of the
model produce the desired damping, but the closed-loop eigenvalues of the structure

provided some other damping values.

We can determine what effect a feedback gain matrix designed for an erroneous
model will have on the eigenvalues of the structure by applying that gain matrix to a
corrected model. Using the results from Test 1 in Table 2, a corrected state space model
of the Phase 2 structure was constructed using the measured modal parameters for modes
seven and eight. The gain matrices designed for the erroneous model were applied to the
corrected model, and the closed-loop eigenvalues were calculated. The damping ratios
were determined from these eigenvalues, and Table 4 shows the effect of the modeling

errors, detailed in Table 3, on the desired damping.
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Table 4. Phase 2 CEM - Effect of Modeling
Errors on Desired Damping using State Feedback

Luy|  Desived Damping of Mode (%) Dmpi“ﬁg;";?&ﬁ:‘( ;‘)’"‘m’d
7 8 7 8
2 1.000 1.000 1.110 1.060
3 1,500 1,500 1,590 1,550
4 2.000 2.000 2.080 2.040
5 3.000 3.000 3.040 3.020
6 4.000 4.000 2010 3.990
7 6.000 6.000 5.940 5.950
8 8.000 8.000 7.870 7910
9 10.000 10.000 9310 9.860
10 12,000 12,000 11.740 11.820
11 15.000 15.000 14.640 14.750

In addition to the modeling errors causing discrepancies in the eigenvalue assignment
routine, they also caused errors in the Phase 2 CEM test procedure. In Section 3.4 it was
described that during the first 10 seconds of a test, the structure was given an open-loop
sinusoidal excitation. This was accomplished by commanding air thrusters 8 and 4 to
fire at frequencies of 1.7074 Hz and 2.3782 Hz, respectively. The hope was to excite
the structure at the seventh and eighth natural frequencies. The thruster frequencies were
chosen to match the seventh and eighth natural frequencies of the structure according to
the state space model. As was pointed out earlier, the modal frequencies of the state
space model for these modes were found to be incorrect. The actual natural frequencies
of the Phase 2 structure were 1.767 Hz for mode seven and 2.432 Hz for mode eight.

The slightly out of phase excitation of the structure during the controller tests
produced a “beating” effect. This can be seen in the time response graphs of Figures

5-10 as a rounding off of the amplitude during the first 10 seconds. To present the effect



more clearly, Figure 11 shows a MATLAB simulation of what an open-loop excitation
lasting 40 seconds would look like under the same conditions. Had the structure been
properly excited at the natural frequencies, a standard open-loop time response would

have looked like the MATLAB simulation depicted in Figure 12.
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The previous paragraphs have described how errors in the state space model of Phase
2 CEM affected the performance of the eigenvalue assignment controllers. In order to
show that the interaction between the structure and the controllers is now well understood,
the complete test procedure was simulated in MATLAB. The simulation incorporated the
actual discrete time controllers used on the structure along with a corrected state space
model of the Phase 2 structure that contained the measured modal parameters for modes
seven and eight. Also in the simulation, the excitation was conducted with the incorrect
frequencies of modes seven and eight. Figures 13 and 14 present comparisons of the
MATLAB simulation with Phase 2 CEM test data for tests 1 and 11, respectively. These
figures are representative of the extremely close correlation between the time histories of

the simulations and those of the actual tests on the structure.
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4. SIMULATION OF OPTIMIZED OUTPUT FEEDBACK EFFICIENT
EIGENVALUE ASSIGNMENT CONTROLLER ON PHASE 2 CEM

A series of controllers based on the optimized output feedback EEA algorithm
were designed for the Phase 2 CEM. Disassembly of the Phase 2 CEM prevented
these controllers from being tested on the structure. In order to verify the controller
design software based on the optimized output feedback algorithm, these controllers

were simulated on the state space model of Phase 2 using MATLAB.

4.1. Controller Design

As described earlier the output feedback EEA algorithm based directly on Maghami
and Juang [8] was programmed in MATLAB. This version did not supply stabilizing
controllers for the Phase 2 CEM. Therefore, the optimized output feedback algorithm
was programmed in MATLAB for use as a viable controller design tool. This program
makes use of the constrained nonlinear optimizer function called CONSTR supplied in

the MATLAB Optimization Toolbox [33].

The optimized output feedback program requires the user to supply the system
state, input, and output matrices, to specify which open-loop eigenvalues are to be
kept unchanged during feedback, and to supply the desired closed-loop eigenvalues.
The program then computes the output feedback gain matrix such that the resulting
closed-loop system has the desired eigenvalues without affecting the prescribed open-loop
eigenvalues. Using the MATLAB optimizer, the program seeks to minimize the Frobenius

norm of the resulting gain matrix while attempting to stabilize the closed-loop system.

The limitations of output feedback restrict the number of eigenvalues that can be
assigned. Phase 2 has eight input thrusters and eight output accelerometers. Therefore,

the maximum number of eigenvalues that can be assigned is (rn + p — 1) or 15 or seven
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pairs of eigenvalues. This number includes the number of eigenvalues held to the open-
loop positions. The number of eigenvalues that can be held fixed must be less than or
equal to (m — 1) or 7 or three pairs. This means that up to four pairs of eigenvalues can
be assigned new closed-loop values. However, just as with the controllers designed using
the state feedback program, the output feedback controllers were designed to increase the
damping of modes seven and eight in the Phase 2 structure. So the program was supplied
with only two pairs of desired closed-loop eigenvalues. The program was also prompted
to hold the eigenvalues pertaining to modes three, four, and five fixed. These particular
eigenvalues were chosen through trial and error to produce the best closed-loop system

performance.

4.2. Simulation Results

Three different controllers were designed and simulated. The first increased the
damping of modes seven and eight to 1%, the second increased the damping to 4%, and
the third increased the damping to 10%. The controllers were designed using a corrected
20 mode model of the Phase 2 structure that contained the measured modal parameters
for modes seven and eight obtained from Test 1 in Table 2. The simulation conducted
with these three controllers incorporated the complete test procedure carried out on the
actual Phase 2 structure (see Section 3.4). This is the same simulated test procedure
described at the end of Section 3.5. The controllers were simulated on a corrected 95

mode model of the Phase 2 structure.

The results of the simulations are shown in Table 5 and Figures 15-17. Table 5
compares the first ten open-loop eigenvalues of Phases 2 with the closed-loop eigenvalues
of each output feedback controlled system. Note that the eigenvalues for modes three,

four, and five remain at the open-loop values. The closed-loop eigenvalues for modes
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seven and eight reflect an increase in damping without a change in the natural frequencies.

Any deviation from this specific assignment was due to a roll-off filter that was placed

in series with the controller. The roll-off filter prevents the controller from affecting the

higher modes of the structure. The type of roll-off filter used in these simulations was

a first-order Butterworth analog lowpass filter, created using the BUTTAP function in

the MATLAB Signal Processing Toolbox [34], with a filter cut-off frequency set at 6.3

Hz. The remaining eigenvalues were free to be repositioned based on the constraints

of the optimization.

Table 5. Optimized Output Feedback: Open-Loop and Closed-Loop Eigenvalues

Closed-Loop Eigenvalues
Mode Qpen-Loop Assigned 1% Damping | Assigned 4% Damping | Assigned 10% Damping

Eigenvalues on Modes 7 and 8 on Modes 7 and 8 on Modes 7 and 8
1 -0.0008 + 0.8180: -0.0486 + 0.8155¢ -0.0007 + 0.8224i -0.1562 + 0.7996i
2 -0.0008 + 0.8301: -0.0024 + 0.8297i -0.0048 + 0.8348: -0.0181 + 0.8266i
3 -0.0009 + 0.8565: -0.0009 + 0.8565i -0.0009 + 0.8565i -0.0009 + 0.8565i
4 -0.0011 £ 1.1308: -0.0011 + 1.1308i -0.0011 £ 1.1308i -0.0011 + 1.1308i
5 -0.0011 + 1.1401: -0.0011 + 1.140Li -0.0011 + 1.1401: -0.0011 £+ 1.1401:
6 -0.0019 £ 1.9100¢ -0.0004 + 1.9162i -0.0028 + 1.8899i -0.6275 + 1.8604:
7 -0.0266 + 11.1024i -0.1053 + 11.1239i -0.4210 + 11.2065: -1.1014 + 11.2964i
8 -0.0275 + 15.2807i -0.1374 + 15.3223i -0.5473 + 15.4740i -1.4648 + 15.6857:
9 -0.0187 + 18.6919i -0.1669 + 18.7581i -0.0131 + 18.6878i -04167 + 18.7954:
10 -0.0341 + 34.0618i -0.0281 + 34.0567: -0.0141 + 34.0455i -0.0078 + 34.0481:

Figures 15-17 show the simulated time responses for each closed-loop system

compared to an open-loop system undergoing the same initial excitations. The two

plots in each figure show the simulated acceleration at sensor/thruster locations 8 and

4. The acceleration responses can be easily compared with the data from state feedback

tests. As with the state feedback time response plots, only data for two sensor/thruster

locations are show for clarity and brevity.
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One can see in the acceleration time response plots, that low frequency oscillations are
present in the closed-loop system. These oscillations are in the 0.130 to 0.140 Hz range,
which identifies them as being related to the first three rigid body modes of vibration. The
high frequency oscillations in these plots are damped out, verifying that the controller is
functioning as designed. The continued low frequency oscillations are due to a coupling
between the controlled modes (modes seven and eight) and the rigid body modes that was
not present in the open-loop system. Although the response of accelerometer #8 in Figure
16 may not appear to damp out during the first 30 seconds of the closed-loop simulation,
the closed-loop eigenvalues for the three rigid body modes were stable. It should be
noted that a controller with these characteristics may not be viable for a real spacecraft
application, but it was sufficient for the purpose of demonstrating the optimized output

feedback algorithm.
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MATLAB Simulation: Accelerometer #4
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It must be noted that the optimized output feedback program is very sensitive to the
initial condition chosen for the coefficients ¢, (see Eq. (2.25)). Different initial ¢, vectors
produce different feedback gain matrices after optimization is complete. Although the
optimization continues until the closed-loop stability constraints are met, the optimization
does not necessarily return the feedback gain matrix with the overall minimum Frobenius
norm. Instead the optimization finds the local minima. This is a typical optimization
result when using gradient-based optimization algorithms on non-convex problems. An
alternate optimization algorithm, one that does not require gradients of the objective and
constraint functions, may have provided better results, but was beyond the scope of this
work. As for choosing the initial ¢, vector, a routine was developed to calculate c; from

the state feedback gain matrix that assigns the same eigenvalues.
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5. CONCLUSIONS

Three computer programs based on the EEA algorithms of Maghami and Juang
[8] have been developed in this paper. One program is the application of the full-
state feedback algorithm, a second is the application of the output feedback algorithm
presented in [8], and the third is an enhancement of the second program that includes
an optimization routine which chooses the feedback gain matrix such that the resulting
closed-loop system is stable. All three of these programs were written in MATLAB script

language and comprise the MATLAB EEA Toolbox.

Each of these three programs was used to design a series of controllers for the
Phase 2 CEM. In all cases the controllers were designed to increase the damping
in the seventh and eighth modes of vibration of the structure. However due to time
constraints, only the state feedback controllers were tested on the actual Phase 2 CEM.
The controllers based on Maghami and Juang’s EEA algorithm for output feedback
did not provide stabilizing controllers in simulation and, therefore, were not tested on
the structure. The optimized output feedback program did provide stabilizing controllers
but was not tested on the Phase 2 CEM because the structure was disassembled prior

to completion of the optimized output feedback program.

Experimental validation of the state feedback assignment algorithm and program
has been presented in the paper. The state feedback controllers performed as designed
and placed the desired eigenvalues to new locations without affecting the remaining
eigenvalues. Discrepancies between the achieved structural damping and the desired
structural damping were explained and linked to modeling errors. Furthermore, as a
consequence of testing the state feedback controllers on the Phase 2 structure, there was

also an experimental validation of the Kalman filter as a state estimator.
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The optimized output feedback program has been verified through the use of computer
simulations. A series of optimized output feedback controllers were simulated in closed-
loop with a computer model of the Phase 2 CEM. In each design case an output feedback
gain matrix was calculated by the program to assign the desired eigenvalues while
minimizing the Frobenius norm of the gain matrix and, most importantly, producing
a stable closed-loop system. The simulations confirmed that the controllers did properly
increase the damping of modes seven and eight. However, the closed-loop time response
for each case did contain some continued low frequency oscillations after the higher
frequencies were damped out. Because output feedback in general limits the number
of modes that can be controlled, controllers could not be designed using the optimized
output feedback eigenvalue assignment method to provide better damping for those low
frequency modes.

It has been shown that the EEA algorithms using full-state feedback and optimized
output feedback can be used as viable control design tools. Furthermore, the MATLAB
programs of the EEA Toolbox can be easily used as numerically reliable control design

software.
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