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ABSTRACT

Parameter estimation algorithms are developed in the frequency domain for systems modeled

by input/output ordinary differential equations. The approach is based on Shinbrot's method

of moment functionals utilizing Fourier based modulating functions. Assuming white meas-

urement noises for linear multivariable system models, an adaptive weighted least squares

algorithm is developed which approximates a maximum likelihood estimate and cannot be

biased by unknown initial or boundary conditions in the data owing to a special property

attending Shinbrot-type modulating functions. Application is made to perturbation equation

modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-

test data. Comparative studies are included which demonstrate potential advantages of the

algorithm relative to some well established techniques for parameter identification. Deter-

ministic least squares extensions of the approach are made to the frequency transfer function

identification problem for linear systems and to the parameter identification problem for a

class of nonlinear time-varying differential system models.
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1. Introduction

Estimating aircraft parameters from flight or wind-tunnel data has been an important

modeling activity for aerodynamicists over several decades. Various kinds of parametrized

models exist to encompass the steady and unsteady flight conditions (Klein, 1989). Here the

focus is placed on estimating the parameters of ordinary differential equation input/output
models for which a number of methods exist. These include: approximations like the 5

operator, block pulse and orthogonal function expansion methods; moment functional tech-

niques; filtering techniques like the maximum likelihood]extended Kalman filter, and the
conversion of an identified discrete-time model (obtained by a variety of methods) into a

continuous-time model using, for example, the bilinear transformation. The books by

Unbehauen and Rao (1987)and Johansson (1993) are good introductions to the identification

of continuous-time models, and Sinha and Rao (1991) contain chapters by researchers report-

hag recent results on some of these methods.

The method of moment functionals, also known as the modulating function technique, is

characterized by the use of integration-by-parts on an equation error model of the system to

transfer the continuous-time derivatives on the input/output variables to derivatives on a set of

smooth user-chosen 'modulating' functions. The result of this process is a set of algebraic

equation errors which is characterized by functionals on the data that have to be computed

before initiating the parameter estimation. If the modulating functions are of the Shinbrot

type (Shinbrot, 1954,1957), then the chosen functions must satisfy certain end point conditions

for the time interval over which data is given and, as a consequence, the resulting equation

error vector will be devoid of unknown initial or boundary conditions on the data. Herein lies

one advantage of Shinbrot's method in that it effectively decouples the state and parameter

estimation problems for data collected under transient conditions. Utilizing Fourier based

modulating functions, another advantage is that the system identification problem can be

equivalently posed entirely in the frequency domain, and the functionals can be calculated by

efficient DFT/FFT techniques. It is Shinbrot's method that is promulgated in this report.

Following a discussion in Section 2 of the aircraft models used to motivate the formula-

tion and the main assumptions concerning the data, Shinbrot's method is developed in Section

3 for single input single output (SISO) linear differential systems based upon a chosen set of

Fourier modulating functions. Using a second order example, a comparison is made via simu-

lation with a commercially available prediction error algorithm which illustrates the improved

accuracy accrued for the modulating function technique over a range of signal to noise ratios.
The formulation of Section 3 for SISO models is extended in Section 4 to the multivariable

(MIMO) aircraft models introduced in Section 2, and results are presented for a high perfor-

mance aircraft based upon actual flight data. Using the same data sets, a comparison is made

with the modeling results obtained via a seasoned time domain based maximum likelihood

identifier. This comparison indicates good corraboration when both yield useful models, but it

also supports the efficacy of the modulating function technique for data sets in which the time
domain based identifier failed. The final section discusses various extensions. /ncluded here

is showing how Shinbrot's method can be developed for a frequency transfer function

identification problem, and an extension of the theory to a class of nonlinear input/output

models.



2. Aircraft Perturbation Models

A model for longitudinal motion can be represented by the pair of linear differential

operator equations:

A I(P )¢x(t) = B I(P )u (t) (1)

A I(P )q (t) = B2( p )u (t) (2)

where (Al(P),Bl(P),B2(P)) are polynomials in the differential operator p-----_/dt whose

coefficients represent parameters to be estimated given sampled versions of the input signal

u(t) and the two output signals (cx(t), q(t)) over some time interval [0,T]. Here (cx(t), q(t))

denote respectively the angle of attack and the pitch rate. In one application u (t) will be the

horizontal tail deflection, denoted by 8h (t), while in another u (t) will be the longitudinal stick

deflection denoted by rlh (t): The aircraft is operating in a closed loop as indicated in Fig. 1.

8h _ [ Aircraft

rib .-- [

I Feedback _Controller

r (X

r q

Fig. 1. Longitudinal dynamics block diagram

A model for lateral motion, presumed to be independent of the longitudinal motion, can

be represented by the three differential operator equations:

A 2(/9 )15(t ) = B ll(P )Sa (t) + B 12(P )_r (t) (3)

A 2(P )P (t) = B 21(P )_a (t) -I- B 22(P )_r (t) (4)

A2(P)r(t ) = B31(P)Sa(t ) + B32(P)Sr(t ). (5)

Here the problem is to estimate parameters comprised of the coefficients in the polynomials

(A 2(P ), Bij(p )), i=1,2,3 and j=l,2, given sampled versions of the two input signals

(5 a (t), _r (t)), which are respectively the aileron and rudder deflections, and the three output

signals (15(t), p (t), r (t)), which are respectively the sideslip angle, roiling velocity and yaw-

ing velocity, over a time interval [0,T].

Underlying each set of models (1)-(2) and (3)-(5) is a state vector differential equation of

the generic form:

fc (t) = Fx (t) + Gu (t), y (t) = Hx (t). (6)

In terms of Iransfer functions, the following model relation holds:

1.---_-B(s ) = H (sl-F )-IG (7)
A (s)

-2-



whereA (s)=det(sl-F ) is designated by A l(S) for the longitudinal model (1)-(2), A 2(s ) for

the lateral dynamics model (3)-(5), and the B (s) matrix is comprised of the polynomials B i (s)

or Bij (s) as appropriate to each set. The reason for working with the above particular model

forms, i.e., the various outputs within each set are operated on by the same scalar-valued

A Q9) operator, is a result of the ease with which the modulating function technique developed

in Pearson et al. (1993b,c) for single input single output (SISO) systems can be extended to

this form. In each set of models, the polynomial A (p) is chosen monic with order fixed on

the basis of physical considerations: Specifically for the perturbation equations relative to

steady flight, the orders of (A l(S ), A 2(s )) are chosen to be (2, 4) respectively, and the polyno-

mials comprising B (s) are chosen of order one less than the corresponding A (s) polynomial.

This means that the model (1)-(2) possesses a total of 6 coefficient parameters, while the

model (3)-(5) possesses 28 total coefficient parameters. In some applications, the lateral

dynamics has included a fourth output variable - the Euler roll angle ¢(t) - in which case the

lateral dynamics possesses 36 total coefficient parameters. In addition, there are unknown

weighting parameters that arise in the estimation procedure as will be indicated below.

2.1. Data Assumptions and Bandwidth Considerations

The major assumptions concerning the input/output data [u (t),y (t)], O_t<T, are:

(i) oversampling is employed in terms of the Nyquist sampling theorem, i.e., the sampled

data [u (kT/N),y(kT/N)], k=O,1 ." N, is collected in sufficient quantity and rate that the fol-

lowing inequality prevails:

N

2Fe < < F s =7 (7)

where F B is the bandwidth of the system,

(ii) the various input signals are observed with negligible measurement noise and with

sufficient frequency content to avoid degeneracy in the least squares estimates, and

(iii) noises corrupting the output signals are modeled as additive zero-mean independent
white Gaussian noises with unknown variances. In addition, all stochastic calculus operations

are presumed to be carried out in the mean square sense. This validates the various modula-

tion processes on the differential equation models, provided all the pertinent signals are mean

square differentiable of order equivalent to the model order.

The first two assumptions are quite reasonable for the aircraft modeling considered here,

viz., the data is collected at a 50 Hz sampling rate, the system bandwidths are expected to be

on the order of a few Hertz, and the input signals are relatively free of measurement noise

while possessing sufficient frequency content for the estimation problem. The third assump-

tion facilitates specifying a weighted-least-squares cost function in the frequency domain, via

Fourier modulating functions of the Shinbrot type, whose minimization approximates a max-

imum likelihood estimate. This formulation for SISO systems is summarized in the following

section. The basic calculation needed to set up the estimation problem is computing a finite

number (specifically M+n where the integers (M,n) are explained below) of Fourier series

coefficients for each data variable. If f(t), O_t<T, is any such data variable and

fk=f(kT/N), k---O,1 .. N, its sampled version, then the following staircase approximation to

the Fourier integral is presumed to be carried out in obtaining the needed coefficients F (m):

-3-



1iF (m) = (t)e -ira _ dt = -_ fk (8)

where i='fZ'i ", co0=2rc/T, m=0, 1, • • M+n and W N = e -i2nIN.

In the above, coOis the 'resolving' frequency which is a user-chosen parameter if the data

length T is selectable, n is the order of the polynomial A (p) specified for the model; M is

an integer that can be chosen on the basis of the number of unknown parameters or on the

basis of bandwidth considerations if T=2r_/co 0 is fixed. Thus, if n o denotes the number of

unknown parameters (no=6 for the model (1)-(2) and n0=28 for the model (3)-(5)), M can be

chosen by the guideline:

M =2n0 ~ 4n0 (9a)

which will provide about 2n 0 to 4n 0 algebraic equations in the discrete-frequency domain

upon which to base the least squares estimate. If the data interval [0,T] is select.able, then the

guideline:

(M+n)coo = cob _ T = 2rt/co 0 = 2rt(M+n )/cob (9b)

where coB =2nF B is the system bandwidth. Hence, these two guidelines, which were upheld

for the aircraft modeling carried out here, will uniquely determine the pair (M ,coo). 2 Note that

if the number of required harmonics, M+n, is artificially extended to equal the number of

available samples, N, then the right hand side of (8) is the discrete Fourier transform of the

data sequence fl, on the sampled interval, thus facilitating a DFT/FI_ algorithm. Calculating

the DFT's of the input/output data is a negligible computation in all the applications encoun-

tered thus far.

In terms of Hertz, the left hand side of (9b) means (M+n)F 0 .z FB, FO=I/T , which

together with the sampling assumption (7) implies the inequality:

M+n
< < 1. (9c)

N/2

This inequality implies that only the lowest few percent of the available DFT harmonics will

be utilized in the least squares algorithm. In particular, fewer than 10% were utilized in the

aircraft modeling applications. Hence, high frequency noise rejection is inherent in the

Fourier based modulating function technique if the guideline (9b) is upheld. It can be noted

that this inequality is also consistent with a basic property of discrete Fourier transforms relat-

ing to the first and last halves of the Db-'I" being complex conjugates of one another which, in

turn, leads to the requirement that (M+n)< N/2 in order to preserve uniqueness for the

Fourier coefficients. Furthermore, inequality (9c) is consistent with a fundamental tenet of

identification in that the number N of available samples will ordinarily greatly exceed the

2 It is advantageous in the case of high order systems to normalize the [0,T] interval to [0,27r] so

that <.o0=1, or some value close to unity. The reason is that derivatives in the time domain model are
replaced by powers of o 0 in the frequency domain model. Calculating powers like co_, will lead to

numerically better conditioned regression equations in the frequency domain when co0_l. This will be
clear from the formulation in Section 3.
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numbern o of unknown parameters which from (9a) translates into the inequality N > >M +n.

3. Shinbrot's Method Via Fourier Modulating Functions

The basic idea of Shinbrot's method will be illustrated with respect to the problem of

estimating the parameters for a second order single degree of freedom mechanical system.

Given the force and displacement signals, represented respectively as input/output data

[u (t ),y (t )] on a time interval [0,T], find parameters (al,a2,bl) that best fit (in some sense)
the model:

y(t) + a13;(/) + a2Y(t ) = blU(t), O'__t<T.

Multiplying the equation error for this model by a smooth function t_(t) and integrating over
the given data interval:

T

Iip(t) [j(t) + aly(t) + a2y(t) - blU(t)]dt = E

where e represents the accumulated equation error over [0,T]. Using integration-by-parts on

the derivative portions of the above integral, the 'modulated' equation error e is equivalent to

T T T T

E= _(t )y (t )dt - a l_$(t)y (t )dt + a2iiP(t )y (t )dt - b l_t_(t)u (t ,dt + BC

where BC stands for 'boundary conditions'; specifically,

T

BC = {qb(t)3_(t) - $(t)y(t) + alt_(t)y(t)} _.

As introduced by Shinbrot within the context of this second-order case, _(t) is a modulating

function, herein to be called Shinbrot-type in order to distinguish from other types, if it

satisfies the four end-point conditions:

0(0) = _(r) = $(0) = $(T) = O.

Then BC=O, i.e., presuming [u (t),y(t),y (t)] are bounded on [O,T], and hence these conditions

imply that the modulated equation error reduces to

T T T T

_= f_(t)y (t)dt -a lf$(t )y (t)dt + a2 fd_(t )y (t)dt - b lfdP(t )u (t)dt
6 6 6 6

= _'0 - al)'l - a2T2 - bl)'3

which involves the linear functionals )'i, i---0,1,2,3, defined on the input/output data, but not

derivatives of the data. Repeating this process with a sequence of linearly independent

smooth functions _m (t), each satisfying the same four end-point conditions, will lead to a set

of algebraic equation errors e(m ), m=l,.- M, characterized by linear functionals Yi(m ) on

the data, which can be used as a basis for estimating the coefficients (al,a2,bl). This esti-

mate cannot be biased by unknown initial or boundary conditions in the data owing to the

special end-point conditions of the Shinbrot modulating functions. Other moment functional

techniques, such as the Poisson functionals (Saha et al. 1991), do not share this property.

-5-



Although Shinbrot'smethodwas developed in an aeronautical setting (Shinbrot, 1954), it

has remained relatively obscure in relation to the maximum likelihood and extended Kalman

filtering techniques that have evolved for modern aerospace applications (Klein, 1993). There

may be several reasons for this but in the main they all stem from a lack of clear guidance as

to a good choice of Shinbrot-type modulating functions. Consider in this regard the following

order-n Fourier modulating function of the Shinbrot-type which is defined and represented

equivalently by 3

1
(t) = 7e-ima_°t(e-i°_t-1) n , 0 <t< T = 2re/co 0

1 ="n -/(m+t)°_¢ _]= _2_.,cke , ck = (-1) n-k
T k=O

1 m +n -ik

='7 E Ck-me
k,,ra

is the resolving frequency, and mwhere i='fzi-, O3o=2r_/T

(lOa)

(lOb)

(10c)

is any integer which shall be

referred to as the 'modulating frequency index'. The family of functions defined by (10) for

any specified index set m e {m 1,'" mM } possesses several properties, four of which are as

follows:

Propertyl. Fork =0, 1,..n-l: pkd_m_(t)=O att =0andt =T

where p denotes the differential operator, i.e., p=d/dt, p2=d2/dt2, etc.

(11)

Property 2. For a sufficiently smooth function z (t) defined on [0,T] and a differential opera-

tor P (p) of order n, the integration of _m .n (t)P (p)z (t) over [0,T ] satisfies:

T
m.+n

_m .n ( t )P (p )z ( t )dt - _ Q-m P (ik _o)Z (k ) (12a)

= Anp (im o30)Z (m) (12b)

where Z(m) is the mth harmonic Fourier series coefficient of the function z(t) on [0,T], and

A n is the n th order finite difference operator, i.e., with Q (m)=P (im O3o)Z (m),

AnQ(m)- _,(-1) Q(n+m-k)- _ Ck_mQ(k).
k .,O k ,,m

Property 3. For a zero mean continuous-time Gaussian white noise process v (t) with covari-

ante Ev (t 1)v (t2)=_25(t2-t 1) and a differential operator P (p) of order n, the complex-valued

stochastic sequence e(m), m =0,1 • •, defined by

5, 1
3

Equation (10b) follows from (10a) by use of the binomial expansion where _J denotes the bi-

nomial coefficient, and (10c) follows from (10b) by a change in the summation index.

-6-



T

£(m ) = Id_m,n (t)P (p)v (t)dt = eR (m) + i _I (m)

is also Gaussian with the covariance relations among its real and imaginary parts given by:

EeR(m)ER(m+l) = _ P(O))2go[m]go[l] + g,,[ll _ ck_ct-m-i IP(ikmo)l 2
k -m +l

:[ 1E_1(m)_(m+l) - "-_ (P(O))2go[m]go[ l] + gn[l] _ Ck-mCk_-t IP(ikmo)l 2
k -m +l

EaR (m)el (m +l ) = 0

where the notation I.tn [l] is defined by the swing of unit pulses: l.tn [l] = 1 forO_l_<n0 otherwise

Thus, lz0[m ] and I.to[l ] are unit pulses at the origin which corresponds to the zero frequency.

Property 4. For sufficiently smooth functions z(t) and w(t) defined on [0,T] and a

differential operator P(p) of order n, the integration of _m,n(t)w(t)P(p)z(t) over [0,T]
satisfies

T

d_m,n ( t )w ( t )P (p )z (t )dt = W (m )_ An P (im Coo)Z (m ) (13)

where ® stands for linear convolution in the discrete frequency domain of Fourier series

coefficients, i.e., with 0 (m)=A nP (im Coo)Z (m),

W(m)_O.(m)= __, W(l)O_(m-l).

Remarks on Verification. (i) Property 1 follows directly from the representation (10a)

since (e-i°'_°t-1) n is the n th power of a unit vector centered at -1 in the complex plane which

starts at the origin and makes one complete revolution as t ranges over [0,T]. It is this pro-

perty which qualifies Om ,n (t) as a Shinbrot-type modulating function of order n.

(ii) The second property follows using the representation (10b) or (10c) while employing

integration-by-parts on the left side of (12) and taking into account (11); during the process of

transferring the derivatives on z (t) to derivatives on the modulating function Om.n (t), all

boundary point evaluations are zeroed such that

T T

_¢_m:1(t )P (p )z (t )dt = iz (t )P (-p )_ra .n (t )dt.

In view of the representations (10b,c), coupled with the fact that P(-p)e-Xt=P (20e -xt, the

right side of (12) is obtained which verifies Property 2. This property facilitates trading time

derivatives on data-related functions with finite differences in the frequency domain unencum-

bered by unspecified initial/boundary conditions on the data.

(iii) The third property hinges on the presumption that all signals of interest in the

-7-



identification problem aremean squaredifferentiableof order n, the order of the underlying

model. This property is proven in Pearson and Shen (1993c) drawing upon mean square

results from the stochastic calculus.

(iv) Property 4 follows using the Fourier series representation for w (t) in the left hand side of

(13), interchanging the summation and integration order, then applying Property 2 to each

term in the sum. Property 4 is consistent with the Fourier analysis property involving the

multiplication of two functions in the time domain and its corresponding relation to convolu-

tion in the frequency domain.

3.1. Parameter Estimation for SlSO Models

Consider the single input single output system configuration in Fig. 2 where the transfer
B(s)

function H (s) is represented by a ratio of polynomials A (s----'_"

v(t)

u(t) _ _ _k_ _----y(t)

Fig. 2. System with disturbance v (t)

The system is modeled on [0,T] by the differential operator equation:

/1 tl

pny(t) + _.ajpn-jy(t) = _.,bjpn-Ju(t) + e(t) (14)
j=l j-1

where e (t) represents the equation error. For consistency between Fig. 2 and the model, e (t)

is defined via the relation:

n

e(t) =A(p)v(t)= _.ajpn-Jv(t), a 0 = 1. (15)
j-O

The problem is to estimate the (aj,bj) parameters, j=l,2 • • n, which are coefficients in the

polynomials (A (s),B (s)), given the data [u (t),y (t)] on [0,T] and assuming the output y (t) is

corrupted by a zero mean white Gaussian process v (t).

Modulating (14) with the Fourier modulating function d_m_ (t) and integrating over [0,T],

the differential equation is seen to be equivalent to the foUowing n th order difference equation

upon utilizing Eq. (12) of Property 2 :

tl n

An(imoo)nY(m) + _.,ajAn(imoao)n-JY(rn) = __,bjAn(imo)o)n-JU(m) + en(m). (16)
j,*l j,,1

In this process, the equation error e (t) is transformed into the discrete frequency sequence:

/1 n '+¢tl

_-n(m ) = A n A (im O)o)V (m ) = _., aj __, (ik t.OO)n-J ck_m V (k )
j -O k -m

where V(k) is the k th harmonic Fourier series coefficient of the white noise process v (t).

-8-



Interchanging the orders of summation, the preceding equation can be written as

n.4.m

En (m) = _., a(k ,m ,0 a )V(k) (17)
k-m

• " a n) and a(k,m,Oa) is a frequency-dependent function of the parameterswhere 0a=(a 1,

defined by

/l

a(k,m,O a) = Ck_m __,aj(iko._O) n-j, a 0 = 1. (18)
j=O

As can be inferred from Property 3, the stochastic sequence En (m) is Gaussian with a corre-

lation function that possesses finite support. The implication of this is that the covariance

matrix for the residuals is a banded smacture, specifically it is banded by the order n of the

differential operator model-, which significantly simplifies the search for the appropriate

weighting matrix in a weighted least squares estimation.

Defining a 2n-column parameter vector 0 as

0 = (-a 1, " " -an, b 1, " " bn)" = (-Oa', Oh' )'

where prime denotes transpose, (16) can be rearranged into the following linear regression:

"r_(m)=T(m)0+e n(m), m =0,1,..M. (19)

The 2n-row vector of regressors T(m ) is defined by:

y(m ) = ( y{(m),. • yY(m ), y_(m ),- • TnU(m) ) (20)

and the pairs ('yjU(m), _,jY(m) ) comprising T(m), j=0,1 • • n, are defined by:

[Yy(m), Ty(m)]=An(imtoo)n-J [U(m),Y(m)]. (21)

Taking into account the fact that (19) is complex-valued, a cost function for a weighted least

squares minimization is defined by:

J (0) : (Yc - rc O)'W-I(Yc - rc 0) (22)

where the following notation applies:

Re Vd (0)

Re v (M)
re=

ha V (0)

Im y_(M)

I-' C __.

Re _0)

Re y(M)

ha

Im _M).

(23)

with "Re" and "Im" meaning real and imaginary part, respectively. Assuming linearly

independent regressors, minimizing (22) leads to the least squares estimate:

0 = (Fc'W-1Fc)-iF c'W-1Yc . (24)

This estimate cannot be biased by unknown initial or boundary conditions in the data owing
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to the properties inherent in the modulating functions of Shinbrot type. It remains to specify

the weighting malaSx W -1 which will be done iteratively in a 'relaxation' algorithm that takes

into account the parameter dependent form evident in (17) along with the white Gaussian

assumption on the measurement noise v (t). However, the algorithm in its simplest (deter-

mirtistic) least squares format:

Ors = (Fc'Fc)-lrc'Yc

i.e., the estimate (24) with W=I, will first be compared with a well-known prediction error

algorithm in order to illustrate its performance in the most elemental terms.

3.2. A Comparison Based on Simulation

Consider the second order system over a fixed 10s time interval:

_);(t) + 3_(t) + 8y(t) = 5u(t), O_t<T = 10s

which possesses the transfer function: H(s)= 5/(s2+3s+8). Shown in Fig. 3 for point of

reference is: (a) the time domain step response of the system, (b) the frequency domain mag-

nitude plot, and (c) the effect of sampling rate on the parameter estimation errors under ideal

zero-noise conditions. The latter is discussed below. Since there are only 3 unknown param-

eters and n =2, M was chosen as M=6. This means that (M +n )F 0----0.8 Hz is the highest fre-

quency that will be extracted from the data, which is roughly the bandwidth of the system as

seen in Fig. 3(b). This also assures adherence to the guidelines (9a) and (9b).

0.8 ! , ! , 0.8

y(t) :

.... "T.....................................

:.

0.6

0.4

0.2

0.0 J I i 1 0.0
0 2 4 6 8 10 0

TIME (s)

(a)STEP RESPONSE

1 2 3

FREQUENCY (Hz)

4

(b)MAGNITUDE PLOT

-T-'--

i _= 10s i

0

i i , •

0 Mrr! i !

8 16 24 32 40 48

SAMPLING FREQ (Hz)

(c)NORMALIZED ERROR(Z)

Fig. 3. Aspects of the simulated system
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The output y (t) was corrupted by additive white Gaussian measurement noise. Two

hundred Monte Carlo runs were made for each of several noise-to-signal ratios (HSR) under

two separate conditions: (i) the initial conditions fixed at (0,0), and (i.i) the initial conditions

randomized for each run, i.e., a total of 400 Monte Carlo runs at each NSR. The input was

u(t)_int2/5 over the T=lOs time interval for each run. All calculations were carried out in

MATLAB. The sampling rate was fixed at 25.6 Hz, thus facilitating a standard 256 point
DFT for the 10s time interval.

The results are shown in Fig. 4 where "LS/MP'T" means the unweighted least squares

estimate based on the modulating function technique with the weighting matrix W chosen

simply as the identity matrix. Also shown is the estimate based on the prediction error

method (PEM) from the Identification Toolbox in MATLAB (Ljung, 1991).

15 15

10

0

25

2O

15

I0

5

0

i L , i i i

FIXED Xo= (0,0)'

o PEM Z

I I I 1 I

i0 20 30 40 50 60

o PEM

• LS/MFT

RANDOMIZED Xo

10

5

'o%
o PEM J /_ --_

o Ls/Mrr/ / I

/ .o/

t l I I I

I0 20 30 40 50 60

I i i I i l

/ :
RANDOMIZED Xo

0
0

5O

401

3O

zo I

10

0

00 10 20 30 40 ,50 60 10 20 30 40 50 60

(a) NORMALIZED BIAS (%) (b) NORMALIZED STD (%)

VERSES NSR (%) VERSES NSR (%)

Fig. 4. Output measurement noise effects for the LS/MFT and PEM.

In the ease of nonrandom (fixed) initial conditions shown in the top halves of Fig. 4, the PEM

shows a fairly constant 6=7% normalized bias error 4 as the NSR increases from 0% to 60%,

4 Defined as I-L1 _[_ [.'J_-"e-J* ]2 ] IA•

mates for the true A_,0.j-1 [ 0j *

1130% where 0j is the ensemble average of the MPT esti-
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whereas the bias for the MB'I' gradually increases from 0% to =12% over the same range of

NSR values. Meanwhile, the normalized standard deviations are nearly the same for this case.

However, in the case of randomized initial conditions, see the lower halves of Fig. 4, both the

bias and the standard deviation for the PEM show a several-fold increase and, moreover, each

exhibits rather unpredictable behavior that is difficult to reproduce even with additional Monte

Carlo runs. By contrast, the bias and standard deviation are very repeatable for the MErI" and

both have decreased at each NSR indicating that nonzero initial conditions have no deleterious
effect on the Mb_.

The above comparative results have been verified on other examples as well (Fullerton,

1991). One reason for the superior performance of the MFT is that the Mb_ does not have to

estimate unknown initial conditions; another is related to the fact that the MFT is a direct

identification technique for continuous-time models, while the PEM first estimates the parame-

ters of a discrete-time model then converts this to a continuous-time model. Also, the low

frequency Fourier series coefficients needed by the MFT can be computed with sufficient

accuracy using modest sampling rates. Additional insight in this regard is gained by referring

to Fig. 3(c) which shows the influence of sampling rate on the percent normalized error under

zero measurement noise conditions. Apparently the PEM needs a much higher sampling rate

for the given 10s of data, or a much longer T time interval for the given 25.6 Hz sampling

rate, in order to achieve a small estimation error. The influence of sampling rate on the esti-

mation error for the MFT is much more consistent with the Nyquist sampling theorem in view

of the frequency magnitude plot in Fig. 3(b). Finally, it is interesting to note that the MFT

requires substantially less computer time for each set of Monte Carlo runs (about a ten to five

fold decrease depending on whether or not the PEM has to estimate the initial conditions).

4. Cost Functions for Aircraft Models

4.1. Longitudinal Dynamics

A joint cost function that reflects the equation errors for each model in (1)-(2) is

specified as follows:

J1(01,02) = (Y1 - F101)'W-I(YI - F101) + v(Y2 - F202)'W-I(Y2 - 1"202) (25)

where v is a scaling parameter introduced to accommodate the unknown variances in the two

output measurement noises. The subscripts 1 and 2 are used to distinguish the parameters and

data associated with the two equations (1) and (2) for this model. Specifically,

(26)

ofwhere (0 a,0bl,0b2) are the parameter vectors comprising the coefficients

(A l(s ), B i(s ), B 2(s)) respectively. Likewise, the regressand vectors (Y l, Y2) and regression

matrices (F 1, F 2) are defined akin to (23) in a way that makes the vector-matrix multiplica-

tions conformable with the defined parameter vectors. Since the parameter vector 0 a associ-

ated with A I(P) is coupled into each equation error, the regression matrices are partitioned

according to
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rl = Jr'a: r'b,], F2 = IF,,2, Fb2]

such that (25) can be rewritten as

Jl(0a,0b:0b2) = (Y1 + Fa,Oa - FO,0b,)'W-I(Y1 + Fa,Oa - 1-'b,0b,)

+ v(Y 2 + Fa20 a - Fb2Ob2)'w-l(Y2 + I"a20 a - I-'b2Ob:).

(27)

(28)

4.2. Lateral Dynamics

A joint cost function that reflects a weighted composite of the equation errors for (3)-(5)
is

3

J2(01,02,03) -Zvi_l(Yi - Fioi)/w-l(Y i - Fioi), v 0 = 1 (29)
i=l

where the (vl,v 2) are scaling parameters to accommodate the unknown output measurement

noise variances and permit adjustments to the minimal values of the individual equation error

residuals. The parameter vectors are defined analogous to (26):

= i - 1,2,3 (30)
0i 0hi '

where (Oa,Ob,), i=1,2,3, are the parameters comprising the coefficients in the polynomials

A2(P) and (Bil(P),Bi2(P)) , i=1,2,3, respectively. With a partitioning of the regressor

matrices F i akin to (27), the joint cost function (29) can be rewritten as

3

J2(Oa,Ob?Ob2,0ba) = EVi-l(Yi + FaiOa - FbiObi)/w-l(Yi + FaiOa -- FbiObl). (31)
i=1

4.3. The AWLS/MFT Algorithm

Equating to zero the partial derivatives of the cost functions (28) and (31) with respect to

their arguments is a necessary condition for a weighted least squares estimate of the parame-

ters for each model set. In the case of (28), this procedure leads to the following coupled set

of equations for (0 a ,0b:0b:):

(Fal'W-1Fal + VFa2'W-1Fa2)O a = - Fa/W-1Yl - VFa2"W-1Y2

+ I-'a'W-lI"bOb_ + vI-'a'W-1I-'b2Ob2

= I-'bi/W-1Y1 + I"b:W-1I-'aOa

= I-'b_W-iY2 + I-'b'W-1I-'aOa.

(32)

(33)

(34)

Here it is important to note that each equation has been arranged such that the left hand side

contains the symmetric normal-type coefficient matrix, premultiplying the subparameter 0a,

0b_ or 062, which would be used to obtain the least squares estimate of that particular
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subpararnetergiven the other subparametervalues on the right hand side and given the
weightingmatrix W -1.

A basic question considered in Pearson and Shen (1993c) for n th order SISO systems is:

How to choose the weighting matrix W? Focusing on the partitions:

WIR WRI"W= Wt

where {WR}man+ 1 =E[ER(m)'ER(m+I)], etc., and the subscripts R and I denote real and

imaginary parts, it is shown therein that WRI=O, WIR=O, and the submatriees (WR,WI) are

nearly identical, differing only in the entries corresponding to the zero (DC) frequency, cf.

Property 3. Moreover, (WR,WI) are banded Toeplitz structures (the width of the band being

n ) that depend in a known parametric way on the 0 a parameters via the frequency dependent

function ot(k,m,Oa) defined in (18). Denoting this functional dependence by W=g(0), the

exact expression of which is given in Pearson and Shen (1993c) but can be gleaned from Pro-

perty 3, the SISO "adaptive weighted least squares" algorithm iteratively seeks a solution for

the pair (OAWlA ,W) from the equations, of. (24):

OAWt.S = (I"c'W-1Fc )-IFc'W-1Yc (35a)

W = g (OAwI..S). (35b)

The initial guess for starting the iterations is either W=I, or the weighting matrix that arises

in the ideal situation in which the equation error e (t) is just a Gaussian white noise process,

i.e., not dependent on the 0 parameter. The resulting solution to (35a) is inserted into (35b)

thereby obtaining a new estimate of W which is reinserted into (35a), etc. This "relaxation"

type algorithm has been used by many researchers as a tool to achieving a weighted least

squares estimate that is close to a maximum likelihood estimate under certain conditions. It

almost always converges though there is no known proof of this factorage.

The following point should be emphasized in comparing the various estimates available

under the MFT framework: experience shows that the AWLS estimate is far less sensitive to

the chosen bandwidth F B than the ordinary (unweighted) least squares estimate. As evidence

of this statement, a fourth order SISO model was used to relate the longitudinal pilot stick

command to the body axis pitch rate q (t), the transfer function of which had a bandwidth

around 0.5Hz. During the modeling process, a set of modulating function bandwidths ranging

from 0.3I-lz = 1.0Hz (M ranging from 12 to 40) was chosen for the LS/MFT and AVCI.,S/MY'r

algorithms. An in-between type algorithm WI.,S/MI:rr was also used for comparison; this is

the algorithm obtained by fixing the weighting matrix W to that which corresponds to the

ideal white-noise residuals case mentioned above. In this case, the weighting can be obtained

in closed-form fashion from Property 3 by substituting P (s)=1 and utilizing the identity:

m+n (_1)1 (2n)!
___ Ck-mCk-m-I --

k,.m+l (n-l)!(n +l)!

The results are summarized in Table 1 where the goodness-of-fit ratio, s/e, is defined in (36)

below. The 'constrained' and 'unconstrained' columns under AWLS/MFT refer to use of this

algorithm in a mode whereby the estimated model is forced to have stable poles (constrained),

or not (unconstrained). This constrained option for AWLS is invoked by checking the poles
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of the estimated model during the iterative process and shifting any fight half plane poles to

the left half plane, via reflection about the imaginary axis, before continuing the iterations in

case that event occurs. This can occur for aircraft modeling since the systems are frequently

lightly damped. Concerning the results in Table 1, it is seen that the models for the LS/MFT

and WLS/MFT are either stable with poor s/e ratios, or unstable with unacceptable s/e's. By

contrast, the estimated systems for both constrained and unconstrained AWLS/MET

algorithms yield much more consistent time domain performance with no drastic variations

like the LS/MFT and WLS/MFT algorithms, regardless whether the estimated models are

stable or not. Hence, these results help establish the claim that the AWLS/MFT algorithm

not only performs better, hut is less sensitive to the pre-chosen modulating bandwidth FB.

algorithm

FB(Hz)/M

0.3/12

0.4/16

0.5/20

0.6/24

0.7/28

0.8/32

0.9/36

1.0/40

AWLS

constrained

stable

s/e = 5.84dB

stable

s/e = 6.83dB

stable

s/e = 7.13dB

stable

s/e = 6.91dB

stable

s/e = 6.51dB

stable

s/e = 6.41dB

stable

s/e = 6.56dB

stable

s/e = 6.47dB

AWLS

uncon_rained

stable

s/e = 5.84dB

stable.

s/e = 6.83dB

stable

s/e =7.13dB

unstable

s/e = 7.56dB

unstable

s/e = 8.07dB

unstable

s/e = 8.10dB

unstable

s/e = 7.94dB

unstable

s/e = 8.00dB

WLS

unstable

s/e = - 4.78dB

unstable

s/e = 2.09dB

stable

s/e = 1.86dB

stable

s/e = 3.08dB

stable

s/e = 3.32dB

unstable

s/e = - 27.63dB

unstable

s/e = - 33.98dB

unstable

s/e = - 61.97dB

LS

stable

s/e = - 6.79dB

unstable

s/e = - 3.39dB

unstable

ste = 1.53dB

unstable

s/e = - 7.41dB

unstable

s/e = - 53.22dB

unstable

s/e = - 41.04dB

unstable

s/e = - 27.60dB

unstable

s/e = - 121. ldB

Using physical flight data to build a fourth order model linking the longitudinal pilot

stick movement (input) and the body pitch rate (output).

Table 1. Sensitivity of MFT algorithms to the chosen modulating bandwith
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The following relaxation type algorithm is an extension of the algorithm just described

for solving (35) but aimed at solving the set of equations (32) - (34), together with the equa-

tion for W that corresponds to (35b) in this case, over the parameter set (Oa,Ob_,Ob:,W):

The AWLS/MFT Algorithm for the Longitudinal Dynamics Model (1)-(2)

1. Pick a scaling parameter value for v, v>0, and estimate an initial value for the pair

(0 a , W) through the model:

A l(P )[a(t ) + q(t)] = [B l(p) + B 2(P )]U(t )

using the SISO AWLS/MP'T algorithm relative to (35).

2. Substitute the values for (0a, W) from step 1 into (33) and (34), then solve for the pair

(0b _, 0b_).

3. Estimate a new 0 a from (32) using the values for (0b,, 0b:, W) from the previous step.

4. Check if the parameter value for the new 0 a has changed or not, based on a user-chosen

percent change in norm. If yes, compute a new value for W from (35b) and go back to

step 2, otherwise stop.

5. Check the system output-signal-to-output error ratios S/E, defined below in (36), for each

of the two models (1) and (2) to see if they are in rough agreement with each other. If

not, try a new value for v and repeat steps 1 ~ 5.

The algorithm for the lateral dynamics is similar to the above, i.e., the partial derivatives

of (31) with respect to its arguments are equated to zero and arranged in a manner analogous

to (32) - (34). Further details are available in Shen (1993), including a computationally

efficient algorithm for inverting W (total flops of order M 3) that exploits its banded structure

at each step and is very robust for large (M ,n ).

4.4. Modeling Results

The results of applying the algorithm to flight data for a high performance aircraft will

be discussed in this section and, whenever possible, comparison will be made with the model-

ing results from an established maximum likelihood/output error algorithm which is based in

the time domain. (See description of the latter algorithm in Klein (1993).) The figure of merit

used to assess the quality of the resulting model in relation to the given data is the output-

signal-to-output-error ratio, S/E, (in decibels) as defined by

RMS(,y) e(t)=y(t)- y(t), OKt<T (36)
S/E = 20 lOgl0 RMS(e) '

where R_MS(y) means the root-mean-square value of the output signal y(t) over the [0,T]

time interval, and _ (t) is the estimated output using the model. 5 Subscripts on S/E are used to

distinguish a particular output among the multivariable channels.

5 When require, an observable state equation model is employed and the unknown initial condi-

tion for generating y (t) is estimated from a Luenberger observer running backwards in time driven by

the given input/output data over the [0,T] time interval.
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The data for the longitudinal case and the corresponding modeling results are given in

Fig. 5 and Table 2, respectively.

10 6 _ measured

deg deg - 6

-10 I I i -12 I I

2

f_h' 0 ,,.
deg/sec

-2 I i J -10 i t
0 5 10

t, sec

I
15

Fig. 5. Input/output data for the longitudinal dynamics, and

superimposed model output responses.

The parameter symbols in Table 2 are defined by the transfer function relations:

ot(s.._.._)= A as + B a q(s) = Aq s + Bq

u(s) s 2 + KlS + KO u(s) s 2 + K1 s + KO

where u can be either 5 h or rib depending on whether it is the transfer function obtained by

using as input the signal "inside" the loop, referred to as 'Open Loop' in Table 2, or "out-

side" the loop, referred to as 'Closed Loop' in Table 2. (See Fig. 1.)

Parameter

K0

K1

Acx

Bet

Aq

Bq

(S/E)(x (dB)

(S/E)q (dB)

ML

Open Loop

0.695

0.360

0.002

-1.558

-1.479

-0.328

19.98

18.15

AWI.,S/MFT
0.698

0.324

-0.065

-1.523

-1.488

-0.273

19.30

17.73

Closed Loop

AWI.,S/MFT
0.494

0.995

-0.013

0.162

0.143

0.043

18.49

12.75

Table 2. Modeling results for the longitudinal dynamics.
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The symbol ML in Table 2 refers to the maximum likelihood/output error identifier described

in Klein (1993). Clearly, the S/E ratios for the Open Loop case are nearly the same for each

method in each of the respective output channels. The same is true for the Closed Loop case,

although only the AWLS/MFF values are listed for the sake of brevity. Moreover, the meas-

ured and predicted model responses are quite close to one another, as evidenced by the right

hand sides of Fig. 5.

The scaling parameter value used for the AWLS/MFF rcsnlts in Table 2 was v=0. The

results of using other v values for the Closed Loop case are depicted in Fig. 6 showing the

tradeoffs that can be obtained by weighting the two output channels differently. The 'itera-

tions' referred to in Fig. 6 count the number of loops passing through the AWLS/MFT algo-

rithm listed in the previous section. Ordinarily one should expect the curves of the type

shown in Fig. 6 to be monotonic, leveling off to some asymptotic values for each channel.

This has been the case for other studies (Shen, 1993), but here it possibly indicates a straining

of the modeling assumptions, e.g., linearity.

S/E

(dB)

2O

18

16

14

12

10

/-

f

/

/

co(t) -- -- q(t)

I

i ] i

_ _% v=lO.__

I

0 5 10 15 20
Iteration Step

Fig. 6. Effect of different v values on S/E ratios for the longitudinal dynamics.

The data and resulting transfer functions for the lateral dynamics study are shown in Fig.

? and Table 3, respectively. Only the AWLS/MFT technique was succ, essful in yielding a

useful result in this case, i.e., the ML technique failed. The scaling parameters were both

chosen as unity for the AWI.,S/MFT, i.e., vl--'v2=l. As seen at the bottom of Table 3, reason-

able parity was achieved in the S/E ratios for each of the three output channels; hence, there

is no compelling need to change the v values from unity in this case. Again, the measured

and predicted model transient responses are in good agreement with each other as shown by

the three plots on the right hand side of Fig. 7.
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Fig. 7. Input/output data for the lateral dynamics, and superimposed model output responses.

Table 3. Modeling results for the lateral dynamics.

,8 = 1.8131s2+.3099s+.2001 _._ = .O082s3+.3701s2+.O819s+.0543

_a S4 +.3108S3 + 3.2640S2 +.2059s+.2536 8r A

p= 3.0633s 3-2.2515s 2 -1.2644s-.0049 p_=.1909s3-.5163s 2 -1.2768s+.1098

r -.1627s3-.1845s 2 -1.3654s-.0148 r -.2031s3-.1630s2-.7912s-.0962

aa A ar

(S/E)p = 9.12 (dB) (S/E)p = 12.31 (dB) (S/E), = 9.96 (dB)

-19-



5. MFT Extensions

5.1. Frequency Transfer Function Analysis

Methods for determining the transfer function in the frequency domain for a stable linear

system from input/output data include classical correlation and spectral analyses, as well as

the direct ratio of Fourier transforms and steady state sinusoidal measurements. Each of these

"nonparametric" identification techniques require either a statistical stationarity assumption

on the data, or a periodic steady state condition to be established, before initiating calculations

of the transfer function at pertinent frequencies (Ljung, 1987). Notwithstanding noise con-

siderations, long data lengths may be required in order to achieve good accuracy due to the

stationarity or steady state assumption, or to eliminate end point effects in case a direct ratio

of Fourier Iransforms is used on time-limited data. By way of contrast, the modulating func-

tions (10) will be used in this Section to extract the frequency content in short data lengths in

order to set up a least squares estimation of the transfer function at selected frequencies.

Since short data lengths are used there is no assumption of steady state operation or stationar-

ity of the data, though there must be present sufficient energy content in the data at the

specified frequencies in order to avoid degeneracy in the least squares estimate.

Consider a stable linear system with two inputs (u (t),v (t)) and a single output y (t)

modeled by the equation:

A (p)y(t) = B(p)u(t) + C(p)v(t) + e(t) (37)

where (A (p ),B (p ),C (p )) are polynomials in the differential operator p=d/dt of degree less

than or equal to an a priori integer n, and e (t) again represents the effect of modeling errors.

Given the input-output data [u (t ),v (t ),y (t )] over a finite set of time intervals

{[tr,tr+T], r=l,'' N}, the problem considered here is to estimate the transfer functions

G (i o3)=B (i o3)/A (i o3) and H (i o3)=C (i o3)/A (i ¢o) at a finite set of frequencies

{ko30, k=0,1 • • M+n },6 where o30 is the user selected 'resolving' frequency and M a chosen

nonnegative integer. The time intervals are each chosen of length T=2rt/¢o 0 and need not

necessarily be disjoint.

As in the previous formulations, the model (37) is rearranged into the equation error for-

mat and modulated with d_m,n (t). Thus, with respect to the time interval [tr,tr+T]:
T T

I¢_m.n (t ) [A (t9 )y (t +tr ) - B Q9)u (t +tr ) - C (p )v (t +tr ) ]dt = Id_ra_n(t )e (t +tr )dt.

Invoking Property 2, Eq. (12a):

_., ct..,n (ik o30)Yt [r ] - B (ik o30)Uk [r ] - C (ik o30)Vk [r ] = _ ct._,n E [r ] (38)
k -m k -m

where the following notation applies to the Fourier series coefficients in the above (Z can be

U, V, Y orE):

6 Thus, assuming the system bandwidth coB is known, the choice in (M,o30) such that

(M +n )o30=o3B covers the bandwidth at the knots k ¢00, k =0,1 • • M +n.
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T T
1

Zk [r ] = l lz (t +tr )cosk oaotdt - i'-f lz (t +tr )sink tootdt

= Z[[r] - i (39)

Define parameters (iRkR,iRkt,15kR,t_kt,TkR,Tht) for the real and imaginary parts of the polyno-

mials (A (ik O3o)_ (ik tOo),C (ik COo)), each multiplied by ck_ m , e.g.,

ck_mA (ik¢o O) = IRkR + ictk I .

Values of the transfer functions G (i co) and H (i co) are related to these parameters:

Bk R + i _tc I 71cR + i yk1

G (ik COo)= H (ik COo)= I "
IRkR + i IRkl ' IRkR + i IRk

The DC value can be handled by normalizing A (0)=1 so G (0)=B (0) and H(0)=C (0). With

this normalization and the notation of (39), the real and imaginary parts of (38) can be rear-

ranged into the following standard linear least squares equation format represented by stages

according to the values assigned to m.

Initial Stage (m=0):

n

170[r] = _k[r]0h + e0[r], r=l,2 • • N (40)
k-0

where the data-related quantities are defined by the vector-matrix equations:

[Y_r]] JUnior] V_[r]]lVo[r] = ' _go[r] = 0

Yfc[r] Y_[r] Urn[r] Ufc[r] Vfc[r] V_[r]]

vhtr] = -Y[c[r] Yfc[r] -U[c[r] U_:tr]-V[[r] V_[r]] / (k>l)

and the 0 h parameters are defined by

G(o) ]
0°= [H(0)J' 0h = col (-IRff,--a l, 15if, _l, Tff, TI ) (k21).

Stage m (m=1,2 • • M):

Again, a 2 dimensional vector equation is derived from the real and imaginary parts of

(38) for the case m>l with the same notation as above:

]vm [r] = Wn+m [r]On+m + ern[r], r=l,2 • • N (41)

where _'m [r ] is defined in terms of the parameters and the data of the preceding stages by

n+m-1

]7"re[r]=- E Xgh[r]0h"
him
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The residualsfor all stagesare given by

Remarks. (i) Comparing (40) and (41), it is seen that the m=0 (initial) stage carries the

major computational burden since there are many more parameters to be determined at this

stage, i.e., (2+6n) for (40) verses just 6 for each succeeding stage in (41). Notice that the

same data can be used for each stage and that N must satisfy: 2N>(2+6n ) in order to have

more equations than unknowns. (ii) In a general multivariable situation, the transfer function

representation for each output yj, j=1,2 • • my:

m. m. Bjk(S)
yj(s) = ___,Hjk(S)Uk(S)=Z

k-1 k=l Ajk (S )

facilitates the following model for each j"

mu

Aj(p)yj(t) = ___.Bjk(p)ut(t) + e(t)
k=l

mu

where Aj (s )=I'IAjk (s ) and Bjk (s ) is defined as the polynomial:
k=l

 jk(s)-
Ajt(s Aj (s)"

(42)

Therefore, the multi-input single output formulation developed above can be applied to each

output equation (42). The fact that the pairs (Aj (s), Bjk (s)), k =1, • • m u , are not generally

coprime seems not to be a problem under low measurement noise conditions since it is the

ratios Bjk (i co)/Aj (i 03) = Bjk (i 03)[Ajk (i 03) that are sought at the specified frequencies. This
avoids a difficult issue of sufficient parametrization and _ality for a state space model

which is a separate issue.

5.1.1. A MIMO Example

As an example, consider the system with the transfer function relations

H2(s) is high-pass):

yl(s) = G l(s )u (s ) + G 2(s )v (s )

12s 2+487s +582 0.7s 2+ 157.5s +504
= u(s) + v(s)

s 3+65s 2+456s + 1978 s 3+9s 2+455s +881

(notice that

y 2(s ) = H l(S )u (s) + H2(s )v (s)

2s +160 s 2+50s +54
= u(s) + v(s).

s 2+20s +160 s2+40s +500

The system was simulated over a 30s time interval using as inputs:

u (t) = a random binary signal
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v(t) = sin(25t+0.9434) + sin(6t) + sin(20t 2) + sin(5t3).

Order n =6 modulating functions were u_ed to accommodate the degrees of the poly-

nomials (A1(s ),A 2(s )) in (42) for the above transfer functions. Choosing the desired

bandwidth to be covered and at what resolving frequency led to the goal of estimating the

four frequency functions at the knots {kco 0, k--0,1 • -15} where o_0=2rc/4=1.57 rad/sec, i.e.,

coB=23.55 rad/sec and T time intervals of 4s duration. Taking into account the number of

unknowns for the initial stage, i.e., (2+6n)=38, twenty-seven [tr,tr+4] time intervals were

chosen with ls overlaps, i.e., [tr,tr+T ] = [r,r+4], r=O,1 '' 26, which facilitates about 50%

more algebraic equations as unknowns upon which to base the least squares estimate for the

initial m--0 stage. The sampling frequency was 200 Hz in utilizing the DFT to calculate the

Fourier series coefficients of the data on each 4s subinterval. In the absence of noise, the

estimates of the frequency functions G)(io3) and Hj(io3), j=l,2, are essentially perfect at the

knots {k_ 0, k=0,1 • • 15}, co0=2rt/4=l.57rad/sec, as expected. In order to test the sensitivity

to noise, 50 Monte Carlo runs were made at each of several noise levels with white Gaussian

additive noise at the two outputs. The ensemble mean magnitude and phase plots are shown

in Fig. 8 for Gl(ico) and G2(io3), and in Fig. 9 for Hl(ico) and H2(ico), with magnitude on

the top half and phase on the bottom half for each transfer function. Also shown for each

transfer function is: (i) a low noise condition (SNR = 35 db) shown on the left hand side of

each figure, and (ii) a higher noise condition (SNR = 5 db) shown on the right hand side of

each figure. Generally, the estimates are better at the low frequency end of the spectrum as

might be expected for white measurement noises.

5.2. Linear Time Varying Differential System Models

Consider the linear time-varying differential operator model

n n_

pny(t) + __,aj(t)pn-Jy(t) = _.,bj(t)pn"-Ju(t) + e(t) (43)
j,.1 j=l

where the variable coefficients are parametrized by linear combinations of smooth functions.

To facilitate generality, it is convenient to adopt the row and column vector notations, "<"

and ">", such that each coefficient is represented by an inner product:

an_j(t) = <f j(t) aj>, bn _j(t) = <gj(t) 13j> (44)

where <fj(t) and <gy(t) are given row vector-valued smooth functions, and (aj>, [3j>) are
column vector-valued parameters. Stacking the latter columns into a pair of column vector-

valued parameters (ct>, 13>), viz.

a> = col (cq)>, al> • • an_l>), 13> = col (130>, 131> • • [3n _1>)

and utilizing the Leibrtiz formula in order to achieve a differential operator model amenable to

Property 2, it is found that (43) together with (44) is equivalent to the model:

pny(t) + pk<yt(t) a> = pk<_:(t) 13> + e(t) (45)

I.t-0

where <_: (t) and <Yk (t) are row vector functions related to time-modulated versions of the

input/output data, modulated in the time domain by derivatives of the given functions <fj (t)
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and <gj (t), in accordance with the following definitions:

<ilk (t) = row(<v 0t (t),<v lk (t ) • • <Vn _lat (t ))

<Yk (t) = row(<z 0/_(t),<z lk (t) • • <z n_l at (t))

and

with Pjk (P) defined as the differential

<vjk (t) = u (t)Pjk (19)<gj (t), <zjk (t) = y (t)Pjk (P)<f j (t)

o _erator:

ejk(p) =
0 for j < k

(-1)J-t_lpJ-/: for j> k

Applying Property 2, Eq. (12), to (45) leads directly to the regression equation (19) where

T(m )O = An [_ (im °_O)k <Yk (m )'_=O_" (im °30)k <lJk(m ) _J> "

5.2.1. A Variable Damping Example

The following second order system with a parabolically varying damping term and 5

unknown parameters was simulated under a variety of conditions:

y'(t) + (_ +Clt+C2t2)y(t) + ay(t) = bu(t), OEt<T=lOs.

Via the Leibniz formula, this model is equivalent to

p2y(t) + _py(t) + c 1 _(ty(/))-y(t)]+c 2 [p(t2y(t)) - 2ty(t)] + ay(t) = bu(t)

which is an illustration of (45). The input was u (t)_int213 for each run, and the parameters

(a,b,cl,c 2) were fixed at the values: (8, 5, -1, 0.1), respectively. Two cases were studied for

the _ parameter: _=3 in which the "frozen poles" of the system are stable for each tE[0,10s],

and _=2 in which the "frozen poles" are unstable for approximately 50% of the 10s time

interval. (The parabolas for these two cases are shown in the top halves of Figs. l l(a) and

(b) respectively.) Each _ case included: (i) 300 Monte Carlo runs at each of several noise-to-

signal ratios with white additive measurement noise on the output signal y (t), and (ii) struc-

tural errors in the modeling of the damping term by estimating first a linearly time-varying

damping term, and then a constant damping term. The data was noise-free for this aspect of

the study.

The noise effect results are summarized in Fig. 10 where the left side shows the normal-

ized bias errors and the right side the standard deviations. The results are more or less the

same for the two _ cases and demonstrate that the estimation technique has similarly good

noise-immunity properties as exists for time-invariant systems.

The effect of structural errors is shown in Fig. 11 where the left and right hand sides

pertain to the _=3 and _=2 cases, respectively. In the absence of noise, the parameter esti-

mates are essentially perfect, as expected, and yield the parabolas for the two cases as shown
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in the top halves of Fig. 11. With sWuctural modeling errors, the estimates of the damping

terms are as indicated in the top halves where it is noted that modeling the damping as a con-

stant resulted in an unstable system for the _=2 case. Using a different input signal :

u (t)_inta/4, i.e., different from that which was used to estimate the parameters, the resulting

outputs of the estimated models are compared with one another in the bottom halves of Fig.

11. As expected, the more severe the error in structural modeling, the greater the error in the

ability of the model to predict the response, though the differences are perhaps not as large as

might be anticipated.

i i i
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Fig. 10. Measurement noise effects. Fig. 11. Structural error effects.

5.3. A Class of Nonlinear Input/Output Models

Parametrized state vector equations of the normal form:

= f (x,u ,0)

y = h (x ,u ,0) (46)

constitute the most common starting point for methods aimed towards the parameter

identification of deterministic continuous-time nonlinear differential systems. Given the

input/output data [u (t),y (t)] on some tLme interval, OKt<T, together with the parametrized

functions f (x,u,O) and h (x,u,O), the known methods include: quasilinearization, invariant

embedding, state variable filters, and a variety of nonlinear filtering methods such as stochas-

tic approximation and extended Kalman filtering. These methods are invariably implicit in

terms of the cost function dependence on the parameter vector 0. By conu'ast, if an

equivalent parametrized input/output differential operator equation exists in the following

equation-erTor format (p--d/dt):
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nl ii2

E Egj(O)F:(u,y)P:(p)Ek(u,y) = o, go = 1 (47)
]-o k,.1

then it will be shown below that  ven the inputloutput data over [O,T] it is possible to

specify an explicit cost function of the form

J (0) = _., _, rj_ gj (O)g k (0) (48)
j-O k-O

possessing the properties: (i) J(O)k>O, with J(O)=O for any value of 0 that satisfies the model

(47), and (ii) the rjk can be computed via integral operations on transient data over the obser-

vation time interval [0,T] without the need to estimate unknown initial conditions. Hence,

minimizing J (0) in order to ameliorate modeling errors leads to a one-shot least squares esti-

mate of the system parameters, which may or may not be unique depending on the adherence

of appropriate nondegeneracy conditions on the data.

The formulation leading to (48) is a continuation of earlier developments in Pearson

(1988, 1989) relating to the least squares parameter estimation for input/output models like

(47) based on Shinbrot's classical method of moment functionals. The formulation in this

Section is taken from Pearson (1992) and exploits the Property 4 delineated earlier.

5.3.1. Modeling Considerations

As a first step it is assumed that the system model can be arranged into the form (47)

where the gj (0) are given functions of the parameters 0, the Pit (P) are fixed polynomials of

degree n in the differential operator p--d/dt, and the (Et (u ,y ),F # (u ,y )) are specified func-

tions of the pair (u ,y).7 Starting from a state equation model (46), it is certainly not the case

that all such models admit to an "external" differential representation (Nijmeijer and Van der

Schaft, 1990) much less the special form (47). A simple example illustrating this model is the

differential equation for a unit mass particle subject to a given force u (t) and with drag pro-

portional to the velocity squared:

:_" +01_) 2 -02u = 0 (49a)

where y(t) is the displacement of the particle. Utilizing the differential identity:

p2(y2)=2yp2y+2(py)2, (49a) is equivalent to the following differential operator equation

which is of the form (47):

p2y +Ol(½p2y2 _yp2y ) _02 u = O.

Higher order identities can be employed if a power series like

N

_-' 0j (y)J, N>2,
jR1

(49b)

is used to

model the dissipation term in (49a).

In some cases we can obtain a model where all the F#'s in (47) are constants, i.e., the
more restricted form:

7 Sufficient smoothness and stability properties are tacitly assumed to assure the existence and

uniqueness of bounded solutions y (t) satisfying (47) given any admissible 0, initial conditions and

bounded inputs u (t) on [0,T].
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/11 n 2

E gj (0)Pj (p)E (u ,y) = 0, g 0 = 1. (50)
j-0 k=l

In such cases the model is said to be exact, a term which is suggested by the notion of an

"exact" or "total" differential in the calculus because the equation error for such models can

be integrated exactly given the data on [0,T]. An example of this class is the following two

compartment chemical kinetics model from Walter (1982):

-_ 1 - -01x i -02(1-'03x2)x 1 +u

-x2 = 02(1 -03x2)x 1 "-04x2

y = x 1. (51a)

Assuming the output y (t)>0 for all t, the nonmeasured state x 2 can be eliminated from the

above model thereby arriving at the following equivalent input/output representation:

p2(lny ) _p(U) +010203Y + 0203(/93 , -u) +04(P(hly ) - //) +(01 +02)04 = 0. (51b)
Y Y

As an important modeling consideration, which applies independently of the method used

for identification, it was shown in Pearson (1989) that a necessary condition for a well-posed

problem involving (47) is that the vector function (go(O),g 1(0) • • gnu(0)) be an injective, i.e.,

single-valued, function of the parameters else the parameter identification problem will be

plagued by nonuniqueness. Presuming this condition is upheld and g 0 is normalized to unity,

it is, therefore, assumed that the function g (0) defined by: g (0)=(g 1(0), • .gnu(O)) is injective.

5.3.2. The Cost Functions for Least Squares Minimization

Consider first the class of exact differential models (50). Modulating (50) with _m ,n (t),

integrating over [0,T] and applying Property 2 , we obtain the modulated equation error

function e (0,m) defined by

nl

e (O,m) = _.,gj(O)Tj(m ) (52)
j-0

where the "yj(m) play the role of regressors and are defined by

/12

vj(m ) = An _.,Pjt(im ¢oo)Vk(m ) (53)
k,=l

and the V k (m) are defined by

T

Vk(m ) = l iEk(u(t ),y(t ))e-ima_°t dt.
(54)

Forming the norm of e (0,m) over the frequency range [0,M], the cost function for a one-shot
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least squares minimization is defined by (* denoting complex conjugate): 8

nl nl M

J(0)= _ __.gj(O)gk(O)rjk, rjk = ___Tj(m)Tk*(m).
j_O k=O m=O

(55)

Consider next the more general class of inexact input/output models represented by (47).

Modulating (47) with Om,n (t), integrating over [0,T] and employing Property 4 , we obtain

the following expression for the equation error relative to this class of inexact differential

operator models:

nl

_' CO,m) = _._gj(O)TjCm) (56)
j=O

where

/12

yj(m) = __.Wjk(m)@yjt(m ) (57)
k=l

Tjlc(m ) = An Pjk(im O3o)Vk (m ) (58)

and the (Vt (m),Wjk (m)) are Fourier series coefficients of data-related functions defined by
T

Via(m) = "_ fEt(u(t),y(t ))e-imo'_t dt (59)
"1

T
1

Wjk (m ) = --f IF jk (u (t ),y (t ) )e-im cootdt. (60)

The least squares cost function for a one-shot estimate in this case is defined by, c.f. (55),

n_ n_ M

J(0)= _[_ __.gj(O)gk(O)_jt, _jk = __.Tj(m)Tlk*(m) • (61)
j-0 k_0 m-0

To illuslrate the above notation for the inexact model (49b), the equation error for this

linear regression problem is given by

(0,m) = T0(m ) + 01_/l(m ) + 0_9(m )

where the regressand sequence :r0(m ) is defined by

7/0(rn ) = A2(im COo)2Y(m) (62)

and the two regressor sequences (Tl(m),72(m )) by

-Tl(m) = ½A2(imo30)2Y2(m) - Y(m)@A2(imo30)2Y(m), _/2(m) =- A2U(m) (63)

where Y2(m ) is defined by

s Noting that M in (55) actually corresponds to the frequency M 030 suggests that in choosing the

pair (M ,COo), their product should correspond roughly to the system bandwidth.
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T

Y2(m) = ,2(t)e-Un°_Otdt.

5.3.3. Implementation and Examples

The flow of calculations involved in setting up a least squares estimate for implementing

the above equations is shown in Fig. 12. Assuming an accurate computation of the data-

related functions E/c (u (t),y (t)) and Fjk (u (t),y (t)), the Fourier series eoeff'zcients in (59) and
(60) can be carried out efficiently using DFT/FFT techniques as discussed in Section 2.1.

Notice that for a finite M, only a finite number of such coefficients need be computed in the

case of exact differential operator models, but a larger number is needed for inexact models in

order to implement the linear convolutions in (57), the actual number of which depends on the

degree of smoothness in the functions (E k (u (t),y (t)), Fjk (u (t),y (t))) on [0,T].

u(t) SYSTEM

Fjk(u,Y), Ek(u,Y)

Flow Chart of Calculations

Inexact Models

wig(t)

DFT/FFT

W,.(m)

v_(t)

I
mooo)

Exact Models

_ STANDARD _.
,/t_Ql LS

ESTIMATE

=

I I
¥ik(m)

Wi,(m)®.ti,(m) ) = LS
- ESTIMATE

Fig. 12. An explicit least squares estimation for nonlinear systems
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Example 1. A simulation study was carried out for the inexact model (49) using data gen-

erated by the input signal u (t )=sint 2/5 over a T=10s time interval with zero initial conditions.

Thus, the resolving frequency was 1/T=0.1 Hz. The sampling rate was 25.6 Hz, and

Simpson's rule (together with a 256 point DFT) was used to calculate the Fourier series

coefficients of the data-related functions: (u(t),y(t),y2(t)), 0_t<10. Zero mean white Gaus-

sian noise of varying degrees of intensity was added to the output signal with 50 Monte Carlo

runs made at each noise level. Since the parameters enter into the model linearly, the least

squares problem is a linear regression once the regressand and regressor sequences are calcu-

lated from (62)-(63). With only 2 unknown parameters and noting that these sequences yield

2 values for each m, i.e., the real and imaginary parts, the sequences in (62)-(63) were com-

puted for m =0,1,2 yielding 6 real equations upon which to base the least squares estimate

corresponding to each input/output data pair. The mean and standard deviations of the param-

eter estimates for the 50 Monte Carlo runs at each of 5 noise levels are plotted in Fig. 13.

These results demonstrate that the estimator gave values quite close to the true parameters

on-average, but the variance for the dissipative coefficient 01 was significantly larger than that

of the 02 parameter.

Figures 14 and 15 contain some additional information relating to the simulations of

Example 1. Figure 14 shows output data for one run at the 12.8% noise level together with

the simulated model output using the mean values of the (0b02) parameters estimated at this

noise level for the 50 Monte Carlo runs. This shows that on-average the bias in the output

signal is quite small in relation to the system output signal, which is to be expected in view of

Fig. 13. Figure 15 is meant to indicate the ability of the model to predict the system output

under ideal no-noise conditions, using the parameters estimated from the noisy data at the

various noise levels. The figure-of-merit used to illustrate this is the same as defined in (36).

Example 2. A second simulation study was carried out for the exact model (51). Some con-

ditions were the same as for Example 1, i.e., u(t)=sint2/5, O_t<lOs, but the initial conditions

were taken as y(0)=3)(0)=2, which resulted in output data well above the unity value

corresponding to which difficulties with the functions lny (t) and u (t)/y (t) could be expected

in view of the model (51b). Although the parameters enter nonlinearly into this model, there

is basically a one-to-one map between the 0 and g (0)=-C) parameters so that this problem is

also a linear regression in the _ parameters. As in Example 1, zero mean white Gaussian

noise of varying degrees of intensity was added to the output signal with 50 Monte Carlo runs
made at each noise level. The mean and standard deviations of the estimated values are tabu-

lated in Tables 4 and 5 for the _ and 0 parameters, respectively. The nonlinear mapping from

_) back into the 0 parameters accounts for the greater variability in estimating the model

parameters. In spite of this greater variability, the average of the noise-free model responses

using thee parameter estimates exhibit reasonably good performance as shown in Fig. 16.

Thus, ff 0(i ), i =1,2 • • 50, represent the estimated 0 parameter vectors obtained from the 50

Monte Carlo runs at a particular noise level, and y(t,O) the noise-free model output

corresponding to any particular 0, then a time response in this figure was obtained from the
50

ensemble average: 1/50_y (t,O(i)). A measure of the variance in these time responses is
i,_l

summarized in Fig. 17 which gives the standard deviations at each instant of time of the

model responses y (t,O(i)) over the ensemble for i=1,2 • • 50.
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Example l Simulations
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Example 2 Simulations

sUi

mean

std

me_rl

std

mea,rl

std

0:0:03 e,e2 e, e,(e,+e_

0.246

0.247

0.0776

0,227

0.3734

0.193

0.6291

0,369

0.8526

1.170

1.164

0.1100

1.115

0.5309

0.918

0.8667

0.8831

1.2365

2.000

1.974

0.2477

1.941

1.1869

1.509

2.0131

43.033

2.5224

3.02

2.988

0.1951

2.925

0.9314

2.335

!.6039

0.695

1.9130

noise level

IIc[l/llylh=
0.16%

Ilelt/t_Ah=
3.21%

s/E (_)
46.97

9,100

29.29

11.076

19.36

10.164

13.03

5.725

Table 4. Parameter estimates for

flue values

llle_n

¢,d

m_n

me_l

std

m _,l'l

01

0.21

0.207

0.0506

-0,058

1.7710

43.041

2.0996

1.349

3.3518

02 e3 0,

0.901.30

1.319

0.0488

2.195

2.8753

1.159

2.6653

-0,076

4.2351

0.881

0.0575

0.538

0.3944

43.020

3.6776

-14.424

38.3601

2.00

1.974

0.2477

1.789

1.1045

1.509

2.0131

-0.033

2.5224

noise levd

Itell/llylh=
0.16'.4

lleUlllyll,"
3.21%

46.97

9.100

29.29

I 1.076

19.36

10.164

13.03

5.725

Table 5. Parameter estimates for 0
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6. Concluding Remarks

The adaptive weighted least squares algorithm AWLS/MF'T has been developed to esti-

mate the parameters of multivariable linear differential equation models. In addition to es-

timating the parameters in a least squares setting, it is aimed at finding the best weighting ma-

trix assuming white measurement noises. As such, it can be regarded as an approximation to

a maximum likelihood or Gauss-Markov estimate. However, unlike other time-domain based

approaches, it is frequency-domain based - utilizing only the lowest harmonics in the discrete

Fourier transform of the data and thereby automatically eliminating high frequency noise if

the resolving frequency is sufficiently small, i.e., the data interval [0,T] sufficiently long.

Based upon the comparisons made thus far in simulations and in utilizing real data, the algo-

rithm appears to compare favorably against some well established time-domain based

identification techniques like the prediction-error method and an output-error/maximum likeli-

hood method used for lateral and longitudinal dynamic modeling in aircraft. Applications to

aircraft modeling with real data has not yet been attempted for the frequency transfer function

estimation problem, nor for time-varying and nonlinear input/output models, but the exten-

sions discussed in Section 5 suggest that the potential exists for such applications.
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