
NASA-CR-197762

NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-94-007

WVU-SRL-94-007

WVU-SCS-TR-95-7

CERC-TR-RN-94-014

//_, -,;;I -_-.i(L_-

The Reliable Multicast Protocol Application Programming
Interface

by Todd Montgomery and Brian Whetten

(NASA-CR-I97762) THE RELIABLE

MULTICAST PROTCCOL APPLICATION

PROGRAMMING INTERFACE (West

Virginia Univ.) 20 p

N95-26388

Unclas

G3/61 00_8510

National Aeronautics and Space Administration

West Virginia University

https://ntrs.nasa.gov/search.jsp?R=19950019968 2020-06-16T07:14:40+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42781427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

"(_¢or_[Z/J"_abollsh Date Johh--R. Callahan Date

Mana_:'_, Software Engineering WVU Principal Investigator



Reliable Muiticast Protocol Application Programming Interface

The Reliable Multicast Protocol Application Programming Interface
Todd Montgomery and Brian Whetten

tmont@cerc.wvu.edu, whetten@ cs.berkeley.edu

Introduction

document describes .the Application Programming Interface for the BerkeleyAVVU
anpiementaUon of the Reliable Multicast Protocol. This transport layer protocol is implemented as
a user library that applications and software buses link against. This document assumes a basic

familiarity of the RMP usage model and guarantees. For further details about RMP please see the

associated documents [REFERENCES]. Programs using the Reliable Multicast Protocol (RMP)

for communication interface with it either through the use of a set of C++ classes or through a C
wrapper for the C++ interface. This document only explains the C++ interface. For further

information on the exact C++ syntax and the C version of this syntax, please see the API header
files.

The C++ interface for RMP primarily involves objects of four classes: RMP, RMPGroup,
RMPEvent, and RMPMessage. The RMP object is the control structure for all of the RMP

communication. Only one RMP object can exist per UNIX process. RMP objects contain zero or

more RMPGroup objects, each of which correspond to a single group that the application using
RMP is a member of. Please note that in some other documents, groups are called Token Rings.

The RMP object returns a set of RMPEvents to the application, which corresponds to a data packet
(sent to a RMPGroup) or to an application notification. Application notifications notify the

application of group membership changes and errors. In order to save the overhead of having to
copy the application's message from the application's buffer to a RMP buffer, RMP allows

applications to request RMPMessage objects, which correspond to a single RMP data packet.

This API is structured in terms of data packets (also referred to as messages). In the current

version, a data packet can usually be up to a little less than 8K long. This is necessary in order to
support unreliable and unordered QoS levels, as well as handlers for messages. For most

applications, which at least want messages to be ordered with respect to their source, it is a simple
matter to provide a stream oriented interface on top of this, ff desired.

The only restriction that RMP places on an application using it is that the application must use RMP

to set alarms on its behalf instead of calling alarm() and ualarm0 itself. An application can register
as many alarm types with RMP as it wishes to, each with its own constant identifier, a callback

function, and a time when the alarm will expire.

RMP must periodically get control from the application that is using it. This control can be granted
either explicitly or implicitly. Explicit control is granted to RMP by applications that use an event

driven paradigm. In these applications, the program is driven by an event loop. When input arrives
on a file descriptor, a file descriptor becomes ready for output, or a RMP message arrives, the
program is notified of these events. It then processes these events and returns control to the event

loop. When an event driven application uses RMP, it must allow RMP to control, or "own" the

actual event loop. Each time the application is finished processing an event, it passes control to
RMP along with a list of the input and output file descriptors it is interested in. When an event

occurs on one of these fLle descriptors or when a message comes in from a group the application is
a member of, RMP will return this event to the application. Alarms that have been registered with

RMP will automatically call the associated callback function in the application when they go off.

Page I



Reliable Multicast Protocol Application Programming Interface

Event driven applications are the most efficient way to use RMP. However, traditional monolithic

programs can also be used with RMP by granting implicit rather than explicit control to RMP. This

is done by having RMP set periodic alarms that wake it up and allow it to process the events it is

concerned with. This type of program can either periodically poll RMP to see if any RMPEvents
have arrived, or it can set a callback function up that asynchronously calls a handler function in the

application when an event arrives. At most one callback function can be called at a time by RMP,

so a correctly programmed application does not have to worry about reentrancy.

RMP Class

£mlamlrzpx

RMP(
int operatingFlag) //Event driven or monolithic programming model

Description: This creates an RMP object, allocates space for communication, opens up a UDP/IP

port to send and receive unicast packets on, and starts a periodic callback alarm if

IMPLICIT_CONTROL is specified.

Arguments: The operatingFlag must be set to either EVENT_DRIVEN or

IMPLICIT_CONTROL. The EVENT_DRIVEN flag notifies RMP that the application

instantiating it intends to use an event driven paradigm and regularly grant it explicit control. The
IMPLICIT_CONTROL flag notifies RMP that it will not get explicit control, and so must use

alarms to regularly grab control from the application.

Events Generated: None.

Returns: Nothing.

Example: Below is the framework for a sample event driven application.
RMP communicator(EVENT_DRiVEN);
RMPEvent *event;

for C;) {
event = communicator.RMPLooPO
Handle event
}

Dl:str.u¢1 

"RMP0;

Description: This destroys the RMP object, along with any RMPGroup and RMPEvent objects

that it contains. This should not be called until after a leaveAll0 has successfully completed, or

else the other members of the groups this application was a member of may see it as a failed site.

Arguments: None.

Events Generated: Nothing.

Pa_ 2



Reliable Multicast Protocol Application Programming Interface

Returns: Nothing.

.loininu a Groun

RMPGroup *join(
char *groupName) //Name of group to join

RMPGroup *join(
char *groupName,
unsigned short int MinSizeReq)

RMPGroup *join(
char *groupName,
unsigned short int MinSizeReq,

Source IPMAddress,
unsigned short int IPMPort,
unsigned char "I-I'L)

//Name of group to join
//Minimum number of sites that can be in a

// partition alter a failure

//Name of group to join
//Minimum number of sites that can be in a
// partition after a failure
//IP Multicast address of group
//IP Multicast port of group
//IP Multicast I-I'L of group

RMPGroup *join(
char *groupName,
unsigned short int MinSizeReq,

Source IPAddress,
unsigned short int IPPod)

//Name of group to join
//Minimum number of sites that can be in a
// partition after a failure
//IP address of a member of the group
//UDP/IP port of a member of the group

Description: The Join() operation creates a RMPGroup object and starts the join operation to add

this process to a group. If the application is already a member of a group with this name, the pointer

to this group is returned. The Join() operation is asynchronous. When a Join() operation completes

an event will be generated that notifies the application of this.

Arguments: The application must specify the name of the group, which resembles the textual

representation of an Internet IP address. It contains up to six fields each containing an arbitrary
number of alphanumeric characters. No white space or control characters are allowed. The fu'st

four fields are delimited by three periods with the fourth field ending in a colon, the next field is

separated by a colon and the last field must be nuU terminated. The first four fields resemble an
Intemet IP Address, but it must have all four fields. These fields represent the IP Multicast Address

of the group. The fa'st colon separated field is the IP Multicast Port representation. And the last
field is the T'I"L of the group from this site.

An example group name: <oodb.cs.wvu.edu:port0:region>. The < and > mark the string beginning
and end. In the Alpha version of the implementation, this transformation is done by the use of a
hash function to hash each field. This will soon be replaced by something much more dynamic and
cleaner to use. For a list of the supported fields see the header files.

Optionally, the application can specify the minimum number of sites that must be in a partition

after a failure in order for that partition to continue functioning. This is only needed by applications
that are making use of the fault tolerance features of RMP. The legal values for the MinSizeReq
field are:

Page 3



Reliable Multicast Protocol Application Programming Interface

Value Minimum Partition Size

1-253 Equal to value

254 The majority of sites. Exactly half is not sufficient.

255 All sites. Disables fault tolerance.

The default value for the MinSizeReq field is 1.

Finally, the application may specify either a UDP/IP Multicast { address, port, "IlL ) tuple that
should be used for the group's communication, or it can specify a UDP/IP {address, port} tuple

naming a RMP process that is already a member of this group. If no address tuple is specified in

a join operation, RMP uses a default mechanism to map the group name into a IP Multicast

{address, port, "ILL} tuple and multicasts its join request on the part of the MBone specified by

this tuple.

Events Generated: Either a FORMED_OWN_GROUP or a JOINED_GROUP notification. The

JOINEDGROUP notification will occur if the application was able to join an existing group.
Otherwise, a FORMED_OWN_GROUP notification will occur, indicating that the application

formed a group with just itself in it.

Returns: A pointer to the RMPGroup object that was created. This pointer will be used when

sending messages to this group, unless the message to be sent is a MultiRPC message.

Leavinu a Group

void leave(
RMPGroup *group) //The RMPGroup to leave

void leaveAIlO

Description: The leave() method removes this application from a group and destroys the

RMPGroup object corresponding to it. The leaveAll0 method performs a leave() operation for

each RMPGroup object that is in existence for this RMP object. Like join(), leave() and leaveAll0

are asynchronous operations that do not happen immediately.

Arguments: The leave() operation must pass in a pointer to the RMPGroup object corresponding

to the group to be left.

Events Generated: A LEFT_GROUP notification will be generated when each leave() operation

completes. If the group left was the last group the application was a member of, a
LEFT_ALL_GROUPS event will also be generated. After the LEFT_ALL_GROUPS

notification, it is safe to destroy the RMP object.

Returns: Nothing.

Lookinu UD a Groun Obiect

Page 4



Reliable Multicast Protocol Application Programming Interface

RMPGroup *getTokenRing(
char *groupName) //Name of group to get

Description: This looks up a group object for a group name.

Arguments: The nuU-terminated group name to look up.

Events Generated: None.

Returns: A group object, or NULL if the group object for this name could not be found.

Grantin2 RMP Exulicit Control

RMPEvent *RMPLoop0

RMPEvent *RMPLoop(
int width,
fd_set *inreadfds,
fd_set *inwritefds,
M_set *inexceptfds,
struct timeval *tJmeout)

Description: If RMP is started with the EVENT_DRIVEN flag, control must be returned to RMP

regularly by calling the RMPLoop0 method.

Arguments: The fu'st version of RMPLoop requires no arguments, and blocks until an RMPEvent
occurs. The second version contains the arguments normally used in a select() call. When used in

this way, the RMPLoop functions in the same way as a select() function, except that it may also
return a RMPEvent. On return from the select version of RMPLoop, the fd_set su'uctures are set

to the list of file descriptors that the application requested access to, and that are now ready for I/O.

Events Generated: None.

Returns: A RMPEvent, if one occurred within the timeout period.

Example: The following example allows the application to monitor a set of input file descriptors

with the blocking RMPLoop call.
fd set userreadfds;
inl-userFD = STANDARD_IN;
RMPEvent *event;

for (;;) {
FD_ZERO(&userreadfds);
FD_SET(userFD, &userreadfds);
event=RMPLoop(FD_SETSIZE, &userreadfds, NULL, NULL, NULL);
if (event != NULL) {

handle RMPEvent

}
if (FD_ISSET(userFD) {

handle application interface messages
}

}

Page5



Reliable Multicast Protocol Application Programming Interface

pollinu for RMP Events

RMPEvent *poll()

Description: Applications that do not use an event driven paradigm will usually poll for

RMPEvents. This is done with the poll() method, which returns a RMPEvent if one has occurred.

RMPEvents are queued until retrieval by the poll() method.

Arguments: None.

Events Generated: None.

Returns: An RMPEvent, if one occurred, or NULL if not.

Re_isterin_ Callback Functions

setEventHandler(
RMPEventType type,
void (*func)(RMPEvent *))

//Type of Event to handle
//callback function to call when event occurs

Description: If the application would like to trap RMP events (such as membership changes,

handler requests, and message deliveries) and process those events asynchronously with the rest of

the application control flow, then it may register callback functions to be executed when events

occur. When a registered event occurs, RMP calls the function and passes it a pointer to the
RMPEvent. It is the callback function's responsibility to release the RMPEvent eventually,

preferably as soon as possible. Only one callback function can be in progress at a time, so the event
handler routines do not have to be reentrant.

Arguments: The event type to trap, and the function to call when the event occurs. EventType

may also be assigned to CALLBACK_ALL. In this case, this function is designated as the handler
Events. The func argument may be assigned the value CALLBACK_IGNORE, which can be used

to tell RMP to ignore all ocurrences of this event type. When this is done, RMP discards these
events as soon as they are received. Any events that do not have an associated callback funtion and

which are not set to be ignored are enqued for retrieval by the poll() method.

Events Generated: None.

Returns: Nothing.

Settin_ an Alarm

void setTimer(
unsigned long int time,
unsigned short int number,
void *obj,
void (*func)(void *))

void setPeriodicAlarm(
unsigned long int time,
unsigned short int number,
void *obj,

Pa_ 6



Reliable Multicast Protocol Application Programming Interface

void (*func)(void"))

Description: If the application wants to set an alarm it must do so through RMP with one of these

functions. The setTimerO method schedules a one shot timer to go off in time milliseconds. When

the alarm goes off, it will execute the func parameter, passing obl to it. The setPeriodicAlarm0

method is exactly the same except that it schedules a periodic alarm to occur every time

milliseconds instead of just once.

Arguments: The time period, a constant identifier for it, the callback function, and a single 32-bit

argument to be passed to the function.

Events Generated: None.

Returns: Nothing.

Clearin_ an Alarm

int cancelAlarm(
unsigned short int number,
void *obj,
void (*func)(void *))

Description: This cancels all of the pending alarms with the given constant callback function and

argument.

Arguments: The callback function and the argument to the callback function.

Events Generated: None

Returns: The number of alarms that were cancelled.

Ouervin_, an Alarm

int queryAlarm(
void *obj,
void (*func)(void *))

Description: This checks to see how many pending alarms exist with the given callback function

and argument.

Arguments: The callback function and the argument to the callback function.

Events Generated: None

Returns: The number of pending alarms that exist that match the passed in arguments.

Getting, a Buffer

RMPMessage *returnBuffer(
RMPMessageType messageType, H Type of Message
BOOL zero) //whether the buffer should be zeroed

Pase 7



Reliable Muiticast Protocol Application Programming Interface

Description: This call returns a preaUocated Data Packet from a pool of packets. The application
can fill in and then send the buffer.

Arguments: Whether the buffer should be zeroed before being returned to application, and the

type of message, either DATA_PACKET (for normal communication between Group Members)
or NON_MEMBER_DATA_PACKET (for MultiRPC communication).

Events Generated: None

Returns: An RMPMessage which can be fdled in and sent.

Beleasina a Buffer

void releaseBuffer(
RMPMessage *msg) //RMPMessage to return to preallocated pool

Description: This call returns a preallocated RMPMessage to the pool of packets.

Arguments: RMPMessage object to return to pool.

Events Generated: None

Returns: None

_ending a Packet From a Non Member of a Groun

SendStatus sendMultiRPC(
Source IPMAddress,
unsigned short int IPMPort,
unsigned char TTL,
char *groupName,
char *msg,
unsigned short int size,
QOS qos,
Handler handler)

//IP Multicast address of group
//IP Multicast port of group
//IP Multicast TTL of group
//The group name
//The data to send
//The size of the data to send
//The QoS with which to deliver the data
//The handler number for this message

SendStatus sendMultiRPC(
Source IPAddress,
unsigned short int IPPort,
char *groupName,
char *msg,
unsigned short int size,
QOS qos,
Handler handler)

//IP address of a member of the group
//UDP/IP port of a member of the group
//The group name
//The data to send
//The size of the data to send
//The QoS with which to deliver the data
//The handler number for this message

SendStatus sendMultiRPC(
char *groupName,
char *msg,
unsigned short int size,
QOS qos,
Handler handler)

//Name of group to send to
//The data to send
//The size of the data to send
//The QoS with which to deliver the data
//The handler number for this message

Page8



Reliable Multicast Protocol Application Programming Interface

SendStatus sendMultiRPC(
RMPMessage "msg) //RMPMessage to send

Description: This sends a packet from a non-member of a group to the group. It will be delivered

to the members of the group with the given QoS, and may receive a reply from a handler, if so

requested. All packets that are sent with a QoS of at least UNORDERED receive a positive

acknowledgment from the group they are being sent to. In addition, packets which request a

handler may be responded to by a member of the group.

Arguments: Each version of the call requires the message, the length of the message, the QoS

level to deliver it with, and the handler number for the message. In addition, the group itself must

be specified in one of three ways. If the group name is given, RMP will map this into a {IP

Multicast address, UDP port, TIC } tuple to send the packet to. Alternatively, the tuple can be

specified explicitly. Finally, the {IP address, UDP port } tuple for a known member of the group

can be specified. See send() for more details on these parameters. The version of the call which
takes a RMPMessage also takes these parameters, but in that case the parameters must be filled in

to the RMPMessage before being sent.

Events Generated: An optional reply may be sent in response to a multi-RPC packet. Also, a

packet may occasionally fail to get an acknowledgment after a number of tries. In this case, a

SEND_FAILURE notification is generated. By default, loop back is always performed on

MultiRPC messages.

Returns: The status of the send operation. See the RMPGroup send() method for more details.

Pa_ 9



Reliable Muiticast Protocol Application Programming Interface

Reouestinu a Handler Lock

void requestHandler(
Handler handler)

Description: This requests a handler lock.

RMPGroup Class

//The lock number to attempt to get

Each group contains six handler locks, numbered 1

through 6. When a handler lock is requested, RMP will attempt to obtain this lock for the

application.Handler locks aremutually exclusive,so one willonly be grantedifno other

applicationisholdingit.Requesting a handlerlock isan asynchronous operation.Once the

successor failureof thisoperationhas been determined,an appropriateevent willbc returnedto

the application.

Arguments: The number of therequestedhandlerlock.

Events Generated: A HANDLER_RECEIVED notificationwillbe generatedifthe application

receivedthehandlerlock.A HANDLER_DENIED notificationwillbe generatedifthe application

did not receivethe handlerlock.

Returns: Nothing

Querying, a Handler Lock

BOOL holdingHandler(
Handler handler) //The handler number to check

Description: This method checks to see whether or not this application is holding a given handler

for this group.

Arguments: The handler number for the handler to check.

Events Generated: None.

Returns: TRUE if this application holds the handler, FALSE otherwise.

R¢l¢_ine a Handler Lock

void releaseHandler(
Handler handler) //The lock number to release

Description: This attempts to release a handler lock for a given group. If the specified lock is held

by this application, it is released. Once released, an event notifying the application of this is

generated. The application is typically expected to handle requests until after this notification is
received.

Arguments: The number of the handler lock being released.

PageI0



Reliable Muiticast Protocol Application Programming Imerface

Events Generated: A HANDLER_RELEASED notification is generated if the handler lock is

released. A MEMBERSHIP_CHANGE notification is generated if the handler lock is not released.

Returns: Nothing.

Sendinu a Message From a Member of a Groun

SendStatus send(
char *msg,
unsigned short int size,
QOS (:lOS,
Handler handler,
BOOL IoopBack)

//The data to send
//The size of the data to send
//The QoS with which to deliver the data
//The handler number for this message
//Should this be delivered to ourself

SendStatus send(
RMPMessage *msg,
BOOL IoopBack)

//RMPMessage to send
//Should this be delivered to ourself

Description: This method sends a given data packet to a group that the sender is a member of.

The data can be of arbitrary length. If a send() operation is attempted to a group that the sender is
not a member of, an error will occur. If a send() operation is attempted to a group that the sender

is in the process of joining, the packet will be enqued for transmission once the join operation is

complete. If too much data is sent at once, RMP may block the transmission of further data until
the current data has been sent. Each call to send() should check the return value to see if the

operation was successful.

Arguments: Each send() operation must include the data to be sent and the size of the data. In

addition to these parameters, the following parameters can also be specified.

The qos field specifies which guarantees the packet will be delivered with. The valid types are

given below. Please see the RMP description documents for a further description of what

guarantees each QoS level provides. Except for the QOS levels of MAJORITY RESILIENT and
TOTALLY RESILIENT, the defined QOS levels are strictly hierarchical, with each level including

all guarantees of smaller QOS levels. The maximum K RESILIENT level for any given ring is

equal to the number of members of the ring. ff a packet is specified with a higher QOS than this,
it will be delivered as if its QOS was equal to TOTALLY RESILIENT. The valid values for the

quality of service are:

Val

1

2

3

4

5

6-29

QoS name Description

UNRELIABLE Unreliable, completely unordered delivery

UNORDERED Reliable, completely unordered delivery

SOURCE ORDERED Reliable, ordered with respect to each source

Reliable, causally ordered (Not implemented)CAUSALLY ORDERED

TOTALLY ORDERED Reliable, totally ordered

K RESILIENT Reliable, totally ordered, and K-resilient fault tolerant

Page 11



Reliable Multicast Protocol Application Programming Interface

30

31

MAJORITY RESILIENT Reliable, totally ordered, majority-resilient fault tolerant

TOTALLY RESILIENT Reliable, totally ordered, completely fault tolerant

The handier field selects the handier, if any, for a data packet. There are six mutually exclusive
locks included with each group. Based on the value of the handier field, the process that holds one

of these locks may be responsible for providing a response to it. Requesting that a packet be

handled guarantees that at most one process will handle it. The valid values for handier are:

Value Required Handler

0 None

1-6 The process, if any, that holds the handier lock with the same number

7 The process, if any, which holds the highest priority handier lock, where 1 is the

highest priority and 6 is the lowest.

The loopBack field specifies whether or not the packet should also be delivered to the application
that sent it. Consistent shared applications can be developed by sending packets with a QoS of at

least TOTALLY_ORDERED and with loopBack set to TRUE. If application events that occur are

sent out as totally ordered messages and only acted upon when the associated message is returned

to the application, a consistent series of events will be observed and operated upon at all members

of the group.

These last three arguments have default values. The default for qos is TOTALLY ORDERED.
The default for handier is 0, for no handler. The default for loopBack is FALSE (0), for no loop

back.

Events Generated: None

Returns: The send() method returns the status of the operation. RMP provides a transmission
window for each sender which limits the amount of data that each sender can have in transit to each

group at a given time. This is necessary in order to avoid overrunning the destinations and to avoid
network congestion. RMP will provide limited buffering of data on behalf of the application.
However, if the sender overruns both the transmission window and the buffering area, the send()

operation will be rejected. To help applications make intelligent decisions about their transmission
patterns, RMP provides flow control feedback from a send() operation. The possible return values
are:

Val

-2

-1

Statusname Description

DATA_BUFFERED The transmissionwindow isnow full,so themessage was
bufferedfor laterretransmission.

FLOW_CONTROL_WARNING The transmissionwindow isfuU and the bufferingspace is
almost exhausted.

Page 12



Rdiable Multicast Protocol Application Programming Interface

0

3

4

FLOW_CONTROL_OK The data was accepted without overflowing the
transmission window

FLOW_CONTROL_FULL The data could not be sent because the buffering area is full

BAD_TOKEN_RING_ERROR The data could not be sent because there was an error with

the group object passed in. The sender may no longer be a

member of the given group.

ARGUMENT_ERROR Some other argument was in error.

SYSTEM_ERROR An error occurred with RMP. Should not occur.

CheckinR the Flow Control Status of a Group

FlowControlStatus queryFIowControl(
unsigned short int packetToSend) //The size of the packet to test for

Description: This acts as a way of querying the Flow Control of a RMPGroup to see if a given

packet size would be acceptable to send. In addition, by setting the packetToSend size to zero, the
current flow control status of the group can be determined.

Arguments: The size of the data to test for. If this argument is non equal to zero, it will be
increased to account for the header size.

Events Generated: None.

Returns: A subset of the values usually returned by the send() method. The values are

DATA_BUFFERED, FLOW_CONTROL_WARNING, FLOW_CONTROL_FULL, and

FLOW_CONTROL_OK.

Page 13



Reliable Multicast Protocol Application Programming Interface

RMPEvent Class

Renivine to Just the Sender of a Message

SendStatus replyToSender(
char *reply, //The data to reply with
unsigned long int size) //The size of the data to send

Description: A reply can be generated in response to any message. It is most typically used by a

group member named as the handler for a particular message. If the reply is to a member of a

group, the reply is sent to the entire group. Otherwise it is sent to just the non-member that sent

the message.

Arguments: The data for the reply and the size of that data.

Events Generated: None.

Returns: The same values as the RMPGroup send() method.

Note: Not yet supported.

R¢lc.i_simz a RMPEvent Object

void release()

Description: When the application is done with an RMPEvent, it should use the release() method
to return it to RMP. It can not free it up directly.

Arguments: None.

Events Generated: None.

Returns: Nothing.

]_MPEvent Access Methods

RMPGroup *returnRMPGroupForEvent0

Description: Returns a pointer to the RMPGroup of the event.

RMPEventType returnRMPEventType0

Description: Returns the type of RMPEvent object. An RMPEvent is one of the below types.

Event Type Name Description

MF.,SSAGE A message from another RMP process.

Page 14



Reliable Multicast Protocol Application Programming Interface

MEMBERSHIP_CHANGE

(Group List)
Notification of a membership change in a group. This can be

either that a different process has joined the ring, that a different

process has left the ring, that a handler lock has been granted, or
that a handler lock has been released.

HANDLER_RECEIVED This application received a Handler Lock.

(Group List)

HANDLER_REJECTED A request for a Handler Lock was rejected.

(Group List)

HANDLER_RELEASED This application released a Handler Lock

(Group List)

FAILURE_RECOVERY A Failure has occurred and been recovered from.

(Group List)

FORMED_OWN_GROUP In attempting to join a group, no other members of the group

(Group List) existed, so we created our own.

JOINED_GROUP This application has just joined the group

(Group List)

LEFT_GROUP This application has finished leaving the group

(Group List)

LEFT_ALL_GROUPS This application is not longer a member of any group.

SEND_FAILURE

ATOM/CITY_VIOLATED

A packet that was being sent to a group may not have gotten

through with the desired QoS. This occurs for multi-RPC

packets that do not get an acknowledgment after a set number of
relries.

Due to one or more failures, one or there packets sent to the group

may have had their atomicity and ordering guarantees violated.

Note: The (Group List) denoted on some of the Events above signify that a group list is returned
in the RMPEvent class. See below for details on accessing a group list.

RMPEvent Access Methods - MESSAGE type

These access methods apply to RMPEvents of type MESSAGE.

unsigned short int returnMessageLengthO

Description: Returns the size of the data of the message in bytes.

Handler returnMossageHandlor0

Description: Returns the Handler of the message.

BOOL returnWeShouldHandleO

Page 15



Reliable Multicast Protocol Application Programming Interface

Description: Returns TRUE if this application currently holds the handler lock that corresponds

to the handler requested by this packet. If TRUE, this application is typically expected to respond

to the packet.
(NOTE: Added)

QOS returnMessageQOS0

Description: Returns the QoS of the message.

Source returnMossagoSourcol P0

Description: Returns the IP Address of the message source.

unsigned short int returnMessagoSourcePort0

Description: Returns the Port of the message souroe.

char "returnData0

Description: Returns a pointer to the data of the message.

RMPEvent Access Methods - Annlication Notifications

Application notifications that return a group list can be accessed with the following methods.

unsigned short int returnNumMemberslnList0

Description: Returns the number of members in the group.

BOOL multicastCapablo(int entry)

Description: Returns a flag denoting if the specified member of the group list is multicast capable.
Arguments: The index of the group member to be queried. This can be between zero and the
number of members minus one.

HandlerBits returnHandlers(int entry)
HANDLER_C, HECK(HandlerBits handlers, int bitNumber)

Description: Returns a value containing a series of set or cleared bits denoting the held Handlers

of a group member. A specific handler in the HandlerBits entry can be checked for by using the

HANDLER_CHECK macro. BitNumber must be a value between 1 and 6.

Arguments: The index of the group member to be queried. This can be between zero and the
number of members minus one.

Source roturnJPAddross(int entry)

Description: Returns the IP Address of a group member.
Arguments: The index of the group member to be queried. This can be between zero and the
number of members minus one.

unsigned short int returnlPPort(int entry)

Page 16



Reliable Multicast Protocol Application Programming Interface

Description: Returns the UDP port of a group member

Arguments: The index of the group member to be queried. This can be between zero and the
number of members minus one.

unsigned short int returnMinSizeReq(int entry)

Description: Returns the minimum size allowed for the group after a failure or partition occurs.

Arguments: The index of the group member to be queried. This can be between zero and the
number of members minus one.

RMPMessage Class

The RMPMessage classprovides an interfacetoa setof preallocatcdbuffersthatcan be used to

send datapacketsfrom eitheramember ora non member. A RMPMessagc objectisreturnedfrom

the RMP reRLrnBuffcr0method. The objectcan then be filledin with the accessmethods below.

Once filledin,theobjectcan be passed as a parameter to theRMPGroup send()method or tothe

RMP sendMultiRPC0 method. Ifthemembers below are not filledout,thedefaultvalueswillbe

used.For more details,see the RMPGroup send0 method.

RMPMessa_,e Access Methods

The followingaccessmethods are applicabletoallRMPMcssagc objects.

unsigned short int roturnMossageLength0
void setMessageLength(unsigned short int length)

Description: Setsand returnsthevalue of themessage's length.This may not exceed the current

maximum datasize,asreturnedby the rcturnMaximumDataSize0 method below.

unsigned short int returnMaximumDataSize0

Description: Returns the maximum amount of data that can be put in a RMPMessage buffer.

(NOTE: Added this)

QOS returnMessageQOS0
void sotMessageQOS(QOS qos)

Description: Setsand returnsthe value of themessage's QoS.

Handler roturnMessagoHandler0
void setMossageHandlor(Handler hndlr)

Description: Sets and returns the value of the message's Handier.

char *retumDataBufferO

Description: Returns a pointer to the message's data buffer, which can be filled in by the
application.

RMPMessaoe Ace.s Methods - From a Non Member

Page 17



Reliable Multicast Protocol Application Programming Interface

The below accessmethods are tobe used onlyfor packetsthatare sentto a group from aprocess

thatisnot a member of thatgroup. In additionto thefieldsused by normal datapacket,a packet

sentfrom a non member must alsospecifythedestinationof thepacket. This involves specifying

the name of the group,and optionallyspecifyingan address forthegroup. The addresscan bc

eithera UDP/IP Multicast{address,port,TTL }tuplc,ora UDP/IP {address,port}tuple.Ifneither

isspecified,RMP willuse a defaultpolicytomap the group name intoa UDP/IP Multicastmple.

In the currentversion,thisisa provided through ahash function.

Source returnlPMAddress0
void setlPMAddress(Source ipm)

Description: Sets and returns the IP Multicast address for the packet.

unsigned short int returnlPMPort0
void setlPMPort(unsigned short int port)

Description: Sets and returns the IP Multicast port for the packet.

unsigned char returnTTL0
void set'H'L(unsigned char ttl)

Description: Sets and returns the IP Multicast TIT, (time-to-live) for the packet.

Source returnlPAddress0
void setlPAddress(Source ip)

Description: Sets and returns the IP Address of the unicast destination for the packet. This is used

as an option to using the above IP Multicast access methods.

unsigned short int returnlPPort0
void setlPPort(unsigned short int port)

Description: Sets and returns the port of the unicast destination for the packet.

char *returnGroupName0
void setGroupName(char *groupName)

Description: Sets and returns the group name for the message.

Page 18




