

SSMEMPS Initiator Equivalent Flight Occurences Evaluation												
SMEST	Critical Structural Fallure of SSME Component											
Record Type	Record "	Dale	System Element	NCA Normenclature	NCA Part	Failure Description from Record	Analyst Comments	Typa	Conliguration Applanily	$\begin{array}{\|c\|} \hline \text { Event } \\ \text { Potentialiy } \\ \text { Factor } \\ \hline \end{array}$	$\begin{array}{\|l\|} \text { Waidetion } \\ \text { of Fector } \end{array}$	
Cause ID		Initietor/Cau	use Description									
ANMCPSFPRPMLPOTP		STRUCTUAAL FAILURE OF LPOTP										0.06
MSFC PRACA	A13505	1-D00-86	TURBOMCHNEAY	LPOTP UN 4306	RS007801-101	DOTP UN A308 मMOH GREAK AWAY N VIOLATION OF OMRSD; ENGNE 12012	LPOTP HOH SHAFT TORONE BEARNG DAMGED	Fiold	1	0.02	0.02	
MSFC PPACA	A14010	1-Aug-87	TURBOMCHNERY	LPOTP UN 2028	PS007801-191	LPOTP UN 202s, MOH OREAK AWAY TOROUE		Field	1	0.02	0.02	
MSFC PRACA	A14303	23-Nov-87	TURBOMCHNEAY	LPOTP WN 2030	AS007801-101	LPOTP UN 2030 SHAFT SEIZED		Fiok	1	0.02	0.02	
ANMPSEFPAPTMPFPIF		PPPFP MPELLEMOWFYUER FAMLURE										0.08
MSFC PAACA	108730	17-004-80	TUABOMCHWEAY	func. LOW PR OPIFICE	RS007550-000	DXCESAME WEAR, CRMCXMG, A AUSED MITL	COOLANT UNEA PAESEUNE DHOPPED AT CNO 44 SEC. NFFTP BPEED ROEE AT CNO KDAMACE TO NFTP, EXCEISNE EHAFT TRAVG, EXCESENE WEAR DUE TO LMALMCE	Fiold	1	0.02	0.02	
MSFC PRACA	A00145	11-Apr-60	TUABOMCHNERY	MPELLEA	AS007556-013-25	mperien cruck	HPFIP MPRLEA CMACK - MOEFPEGT	Fiold	1	0.02	0.02	
MSFC PRACA	A10076	27-May-62	TURBOMCHWERY	DIFFUSER	RS007532-091	TMPACT DAMACE ON VANES	HPFTP MPACT OMMAE ON PINP BIOE UWONOWN CONTAMMATION - BEEMED TO HAVE NO EFFECT OUT BOUNDED SEMOUS	Finde	1	0.02	0.02	
MSFC PPACA	A10203	10-4ut-82	TURBOMCTNERY	DIFFUSEA	RS007527-061	DWFPUEEANO. Q VME DCNTED	PTPFIT DEFFUEER NO O VNE DENTED QY CONTMMMION - NO APPARENT EPFECT	Fiold	1	0.02	0.02	
ANMTESFPAPLMHPFTB		IPFFTP TUAOME BLADE FMLURE										0.1
MSFC PRACA	A14130	1.Aug-87	TUPBONCAMEAY	$\begin{gathered} \text { HPFT IST STO } \\ \text { BLDS } \end{gathered}$	R0010921-035			Fiold	1	0.02	0.02	
MSFC PAACA	A00076	27-Mar-00	TURBOMCTWEAY	DISC IST STAGE AOTOR	AS007517-025	AU MATE MESANa; CRMCKS N FARTPGE ACOTS	CAMCKB N FATREES ROOTS. HPFTP DUCN FIRST BTACE ROTON	Fiold	1	0.02	0.02	
MSFC PRACA	A09265	26-Jun-81	TURBOMCHNERY	blade 18T STAGE	A0010821-013	CRMCK WN FA TREE LOEEB, $18 T$ STMAE PIADE HPFTP, DBALSY MgF, CANOCA	CRUCX NT FRAT STACE MLNDES - SOKE NFO ON CMCSE FHOM TO-WS	Field	1	0.02	0.02	
MSFC PRACA	A00461	21-Aup-01	TURBOMCHNERY	BLADE IST STAGE	R0010021-025	COUCK N FTM THEE LOESB, IST ETHOE QLAOE. HPFTP, DBABBY MSP, CANOCA	CRUCK W FABT BTARE PLADES - SOME WFO ON CMACMS FhOM 70 -WS	Finald	1	0.02	0.02	
MSFC PAACA	A02060	4-Mar 71	TUABOMCHMEEYY	HPFTP	AS007501-261			Field	1	0.02	0.02	
ANMHOCOPAPMNTPOCD		HPOTP FALL UAE DUE TO CAVITATION DAMAGE										0.08
MSFC PRACA	A1006	1-Mey-82	TUPBOMCTNERY	nelet vane	AS007743-037	CAVTATON DMMAE, MLETVAE	CAVIATION OF HPOTP - MOREDLIEE HOHER THW MOMLK HEATLOES	Fiold	1	0.02	0.02	
MSFC PRACA	A10069	26-Myy-E2	TURBOMCHNEAY	SEAL8	R3007773-013	CAVTATION DMMACE	CAVTATION OF HPOTP - MOAGDLIE HCHER TUN MORMML KEATLOES	Fiold	1	0.02	0.08	
MSFC PPACA	A10073	29-May- 82	TURBOMCHWEAY	mpalen	Rs007718-043	CAVTATION D_MMOE	CAVIATON OF HFOTT - NO NEDLIE HONES THWN MOMML HEATLOES	Fiold	1	0.02	0.02	
MSFC PPACA	A12023	10-Jan-05	TUPBOMCHNEAY	VANE, A.H.	RS007741-037	CAVTATCON DAMMOE ON R.M. VAEE HPOTP		Finald	1	0.02	0.02	
ANMOTSFPPAPM HPOTE		APOTP TUAEMNE BLADE FALUAIE										0.05
MSFC PPAACA	A00630	19-Sce-81	TUPBOMCHWERY	HPOTP UN 2016R3	RS $0007701-301$	METM P MECE LOOOED N IST STAOE MOZZSE	BHEET WETM SPOT WELD FARUNE wepacio in	Fiok	1	0.08	0.02	
MSFC PAACA	A003035	12-co-or	Thoonmaner					Finta	1	0.02	0.02	
MSFC PRACA	A12108	14-Apr-85	TUPBSOMCHNERY	TIP SEAL RETANER	PS007913	TUMONE RLADE TT REAL ON EXCESDE SPEC, YROTP UNAICSAI		Fiold	dren	0.02	0.02	
ANIOTLCPAPTWOTI		LOEs OF COOLANT TO HPOTP DEARWSS										0.04
MSFC PRACA	A06751	22.Jun-79	TURBOMCTWERY	STRNT TURB DISCHAFGE	RS007770-021	LET PARTUL Y O OPTMUCTED	HPFTP CONTANEMTION \&OES OF COOLANT, JT PANTMLI Y OESTMUCTED MO EFFECT	Find	d 1	0.02	0.02	
MSFC PRACA	A12733	14.Feb-06	TURBOMCAWERY	ECCENTFIC FING	RS007970-006	13	ifpotp eccertrac nama found coumed. POBT STE-22 ROM OF He COCLANT TO Tumaks forsile	Fiold	d	0.02	0.02	
AMMBESFPAPM ${ }^{\text {a }}$ M FTB		HPFTP IMAUST BALL FAMLURE										0.02
MSFC PRACA	A13028	3-Apr-4	TUABOMCHNEAY	PIMG, ASSY Of	P0019213-001	CMACKED POST RT.	$\begin{aligned} & \text { WFTP THNET OML CMCKED PGET ST8 } \\ & \text { 37-NO EPECT } \end{aligned}$	Finlo	1 d 1	0.02	0.02	
ANMEVEAFPAPMHPONZ		HPOTP MOZTI E STRUCTUANL FALLUAE										0.02
MSFC PRACA	A11642	20-Jul-64	TURBOMCHNERY	$\begin{aligned} & \text { NOZZLE, 2ND } \\ & \text { STAGE } \end{aligned}$	A0016027.21	2ND STACE NOZZ E CRMCKS N TUANWG VAWES, APOTP UN Enopfa		Fiold	d	0.02	0.02	
ANMRRSFPRPM		MPOTP RETAMER RINO FALUAE DUE TOLOSS OF EOLT PRELOAD										0.05
MSFC PRACA	A10074	29-Mor-82	TUPBOMCHNEAY	WASHER	RS007873-003	$\begin{aligned} & \text { CORACKED COUWABHERE. HPOTP. } \\ & \text { DIEASSOWAY } \end{aligned}$	HPOTP CPACKED CUPWASHENB, RECUPRING PMOALEM AS PEA REPORT DNT CONEEQUENCES LROOKWM	Find	d	0.01	0.01	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{SSMEMPS Initiator Equivalent Flight Occurences Evaluation} \& \& \& \& \& \& \& \& \\
\hline SMEST \& \multicolumn{4}{|l|}{Critical Stuctural Fallure of SSME Component} \& \& \& \& \& \& \& \& \\
\hline Record Type \& Fiecord (1) \& Date \& Systom Elemant \& NCA Nomencialure \& NCA Part * \& Failure Description from Record \& Analyat Comments \& Type \& Consgration Applioniny \& \[
\begin{array}{|c|}
\hline \text { Event } \\
\text { Poberitiny } \\
\text { Fectan } \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \text { Wordinn } \\
\& \text { efector }
\end{aligned}
\] \& \\
\hline cauee 10 \& \& \multicolumn{2}{|l|}{Initiatortauee Deacription} \& \& \& \& \& \& \& \& \& \\
\hline MSFC PRACA \& A10157 \& 2-Jut-82 \& TUPBOMCHNERY \& CUPWASHER \& RS007704-003 \& \& HPOTP CRACKED CUPWABHERS. DEDARS PENS TLE SUAFACE OF THE MUN MPELER OUTEA SHOOVD, AETANERS RINO AND SLVER SEN AI THE PRESSURE SENGAVO ORIFCE AREA \& Fiold \& 1 \& 0.01 \& 0.04 \& \\
\hline MSFC PRACA \& A10157 \& 2.Juh82 \& TURBOMCANERY \& CUPWASHER \& RSC07704-003 \& \& HPGTP DFFUBEA MATEMOL MESBNO AT MIDNE RLIET AREA - MO APPARENT EFFECT \& Fiold \& 1 \& 0.01 \& 0.01 \& \\
\hline MSFC PRACA \& A12106 \& 10-Apr-85 \& TURBOMCHNERY \& CUPWASHERS \& F032220-3 \& \& O ROTATED CUPWASHERS NHPOTP \& Fiold \& 1 \& 0.01 \& 0.01 \& \\
\hline MSFC PRACA \& A12107 \& 10-Apr-85 \& TUPBOMCANERY \& CUPWASHERS \& R032220-3 \& \& 2 ROTATED CUPWAEHERS \& Find \& 1 \& 0.01 \& 0.01 \& \\
\hline \multicolumn{2}{|l|}{ANMOASPPRPMHPOEA} \& \multicolumn{4}{|l|}{MPOTP EEARWO FALUAE DUE TO SPALLIMQ, PITTMG, WEAR OR COAA} \& \& \& \& \& \& \& 0.18 \\
\hline MSFC PPAACA \& Al1025 \& 17-Deo-4 \& TUPBOMCTHERY \& TUFBEINE ENO W
BANG \& RS007055-301 \& NO. 3 DCARMMO NNEA MCCE CRMCK. HPOTP UN 9100 AI \& \& Fiold \& 1 \& 0.02 \& 0.02 \& \\
\hline MSFC PRACA \& A06502 \& 28-Amp-78 \& TURBOMCTMEAY \& HPOTP UN 0007R2 \& RS007701-271 \& \begin{tabular}{l}
SPMLED ENLI AND BUAFACE \\

\end{tabular} \& \& Fiond \& 1 \& 0.02 \& 0.08 \& \\
\hline MSFC PRACA \& A06602

A060, \& 28-Auc-78 \& TURBOMCT WEAY \& HPOTP UN 0007R2 \& RS007701-271 \& spalleo mul no miaface OASTREREACES \& SPNLED MULEA AMPFACE DETMESB OF ances (cAliecd sue shw vie - mariee structum \& Finte \& 1 \& 0.02 \& 0.02 \& \\
\hline MSFC PRACA \& A06503 \& 26-Aur 78 \& TURBOMCH WEAY \& Hpotp un cootra \& AS007701-271 \& SUAFACE DIETRESS ON MUCES \& \& Find \& 1 \& 0.02 \& 0.02 \& \\
\hline MSFC PRACA \& 206344 \& 3-Apt-79 \& TURBOMCHWEAY \& HPOTP UN 2404 \& $33088007701 \cdot 171$ \& SPALLEDEUS MD CNOE DENMMATHON \& \& Fiote \& 1 \& 0.02 \& 0.02 \& \\
\hline MSFC PRACA \& A11025 \& 17-Deo-4 \& TURBOMCHWERY \& TURBINE ENO WO
BRNG \& RS007055-304 \& NO. 3 DEARWO NEER DACE CAMCX, MPOTP UN B100RI \& HPOTP EA.4 EEARMO (TUNONE ENG) NWEA FACE FALLUAE - PUNP OPEAATED W/ HIOW BYCHAONOLK VOMATION DURENG ETE-27 ECP 1040 REDESNON \& Find \& 1 \& 0.02 \& 0.02 \& \\

\hline MSFC PRACA \& A11800 \& 20-Jen-05 \& TUREOMCHNERY \& reareo om \& RS0070S5-301 \& crucxa w or Tumace coo meanno mice. HFOTP UN DIOEAT \& | FACE FALLUNE - MUN OPEHATEO WI HICA SBMCHACNOLIE VEMTION DURNO ETE-27 |
| :--- |
| | \& Find \& 1 \& 0.02 \& 0.02 \& \\

\hline MSFC PRACA \& A14166 \& 1-Aug-87 \& TURBOMCHNERY \& HeOTP UN 40006s \& RS007701-531 \& \& \& Fiold \& 1 \& 0.08 \& 0.02 \& \\
\hline MSFC PRACA \& A14702 \& 23-Mar-88 \& TURBONCHNERY \& HPOTP UN 4005R2 \& RS007701-531 \& \& \& Fiold \& 1 \& 0.02 \& 0.02 \& \\
\hline \multicolumn{2}{|l|}{ANMWHOEVPAPLHPOEV} \& \multicolumn{2}{|l|}{HPOTP EXCEESSE VIBATION} \& \& \& \& \& \& \& \& \& 0.02 \\
\hline MSFC PRACA \& A15189 \& 12.Jen-60 \& TURBOMCHNERY \& Heorp \& RS007701-501 \& \& \& Fiond \& 1 \& 0.02 \& 0.02 \& \\
\hline ANMLPSFPAPMM \& \multicolumn{3}{|l|}{M LOX POST STRUCTUPAL FALUAE} \& \& \& \& \& \& \& \& \& 0.08 \\
\hline MSFC PRACA \& A05016 \& 16-De0-78 \& COMBUSTION \& HNO RLECTOA \& AS000122-301 \& SLIAMT LCX POST EROBSOM \& \& Fiold \& 1 \& 0.02 \& 0.02 \& \\
\hline MSFC PRACA \& A0.760 \& 22-Od-60 \& COMBUSTION \& aETANEA \& AS000133-011 \& \& \& Finld \& 1 \& 0.02 \& 0.02 \& \\
\hline MSFC PPACA \& A00173 \& 3-Mer 81 \& COMBUSTION \& Hav ricctor \& RS009122-701 \& WHE RETANEA DNMMGE \& \& Fiold \& 1 \& 0.02 \& 0.02 \& \\
\hline \multicolumn{2}{|l|}{ANMSESFPAPM E} \& \multicolumn{4}{|l|}{CSFFLE ELEMENT INWEA COPPER JACIET BURNTHPOUOH} \& \& \& \& \& \& \& 0.02 \\
\hline MSFC PAACA \& 06707/10076 \& 7-0.1-80 \& COMBUSTION \& PFPLEELSMONT \& R0010527-001 \& NNEA COPPEA MCKCT CUFN THOVAM \& \& Fiold \& 1 \& 0.08 \& 0.02 \& \\
\hline \multicolumn{2}{|l|}{AMMFAERPAPMPPACM} \& \multicolumn{3}{|l|}{EXTERMAL RUPTURE OF FPB ASILOXLWE} \& \& \& \& \& \& \& \& 0.08 \\
\hline MSFC PRACA \& A0714 \& 29-Aus-70 \& 1 ENCINE \& CNOVE SVETEM \& AS007001-061 \& APPAEALOXLNE PUPTUAEED \& \& Fiold \& 1 \& 0.02 \& 0.02 \& \\
\hline \multicolumn{2}{|l|}{ANMFPPSFPAPNFFPTP} \& \multicolumn{3}{|l|}{FPPI FACEPLATE FANLURE DUE TO EROSION} \& \& \& \& \& \& \& \& 0.06 \\
\hline MSFC PPACA \& A04677 \& 18-Apr 78 \& COMEUSTION \& FFPBECCTOR \& AS000020-601 \& NVECTOA FACE EROUTON \& \& Fiold \& - 1 \& 0.02 \& 0.02 \& \\
\hline MSFC PRACA \& A00046 \& 25-Nov-81 \& COMBUSTION \& APB NVECTOR \& A\$000020-821 \& EAOSTON ON NUECTO PACEPLATE \& \& Finid \& d 1 \& 0.02 \& 0.08 \& \\
\hline MSFC PPACA \& A00017 \& 20-Jan-82 \& COMAUSTION \& FPE MUECTOA \& RS000020-771 \& EHOBION AND \&LAC OW NUECTOR FACEPLATE \& \& Fiold \& 41 \& 0.02 \& 0.02 \& \\
\hline
\end{tabular}

		Total Exposure Time		621481	sec		
SSME/MPS Initiator Frequency Summary		Nominal Operation Time		520	Sec		
Initiator 10	Initiator Description	Equivalent Flight Occurnencee for Totel Exposure Tinno	One Engine Intiator Frea (per mins sion)	Clumter Initistor Frea (per misoion)	mann 10 Missiona Between Occurrencen	Percent of Nonnominel Intiamort	Dovelopment
SMEFO	Loss of MCC Preasure	4.00	3.35E-03	1.00E-02	100	25.87\%	Evert Tree 1
SMEFH	Loss of Gross H 2 Flow	0.50	4.18E-04	1.25E-03	797	3.24\%	Event Tree 2
SMEMO	High Mbature Reatio in Ondidizer Probumer	0.25	2.09E-04	6.27E-04	1594	1.62\%	Event Tree 3
SMEMF	High Mixture Ratio in Fuel Preburner	0.25	2.09E-04	6.27E-04	1594	1.62\%	Event Tree 4
SMEPB	Loss of Fuel to Both Preburners	6.25	5.23E-03	1.56E-02	64	40.34\%	Evant Tree 5
SMEVP	Falure to Mainain Proper SSME Propellant Valve Postion	0.25	2.09E-04	6.27E-04	1594	1.62\%	Evern Tree 6
SMELO	HPFTP Coolant Liner Overpressure	0.40	3.35E-04	1.00E-03	996	2.59\%	Evem Tree 7
SMEST	Crilical Structural Falure of SSME Components	1.13	9.53E-04	2.85E-03	350	7.38\%	Fail Trees-Pago 55
SMEHL	Hycraulic Lock-up Required	1.59	1.33E-03	4.00E-03	250	10.34\%	Event Tree 8
SMELP	Propellard Management System Ancior SSME Combustiole Leakage	0.32	2.65E-04	7.96E-04	1256	2.06\%	Fain Trees-Paga 54
SMELH	Helium System Leakage	0.26	2.15E-04	6.46E-04	1548	1.67\%	Event Tree 9
SMEPG	Failure To Provide Helum Pogo Charge	0.24	2.02E-04	6.05E-04	1653	1.56\%	Even Tree 10
SMEPV	Failure To Maintain Propellant Supply System Valve Positions	0.01		1.89E-05	52910	0.05\%	Fauli Trees-Page 65
SMEDS	Sitrumaneous Dual SSME Shundown	0.00		1.00E-05	100000	0.03\%	Faull Trees-Page 53 Even Tree 11
SMECD	Norninal MECO \& Durmp; No Mainstage Initiators	376		9.43E-01	1.060		Event Tree 12

$!$

INITIATOA	PROTECTIVE EVENTS					mitigating	SEQ.PROB.	class	SEQUENCE DESCRIPTION	*	TRANSFER TO
LOSS OF MCC PRESSURE	Pc PRESSURE DROP DETECTED.	CONTAOLER WCREASES O2 TO OPB	OPOV COMmANO Lmitt engaged	HPOTP TD TEMP REDLINE DETECTED	MCC Pc REDLME DETECTED	EMERGENCY HYDRAULIC SHUTDOWN					
SMEFO	PO	00	LE	OR	PR	EH					
SMEFO	PAGE 7	PAGE 11	PAGE 39	PAGE_13	CPD Succ (PD Succ	PAGE 3 PAGE 3 PAGE 3	$\begin{aligned} & 9.97 E-03 \\ & 1.16 E-08 \\ & 0.00 E+00 \\ & 2.30 \mathrm{E}-05 \\ & 1.00 \mathrm{E}-06 \\ & 1.16 \mathrm{E}-12 \\ & 0.00 \mathrm{E}+00 \\ & 1.50 \mathrm{E}-06 \\ & 1.74 \mathrm{E}-12 \\ & 2.25 \mathrm{E}-10 \end{aligned}$	OK abort LOV LOV transfer OK mbort LOV LOV OK abort LOV LOV	FOEH FOPR FOLE FOOO/EH FOOOPR FOPDIEH FOPDOR	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 0 \\ & 10 \end{aligned}$	SMEMO EVENT TREE

TRANSFER	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	\#
HIGH MIXTURE RATIO IN OPB	HPOTP DT REDLINE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMEFO/SMEMO	OR	EH				
$\begin{array}{\|l\|} \hline \text { 2.30E-05 } \\ \hline \text { SMEFO/SMEMO } \end{array}$		$\frac{1.16 E-06}{\text { PAGE } 3}$	$\begin{aligned} & 2.30 \mathrm{E}-05 \\ & 2.67 \mathrm{E}-11 \\ & 3.45 \mathrm{E}-09 \end{aligned}$	OK abort LOV LOV	MO/EH MO/OR	123
	$\frac{1.50 E-04}{\text { PAGE } 13}$					

$i 1$

InItiAtor	PROTECTIVE EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	\#	transfer to
LOSS OF GROSS H2 FLOW	CONTROLLER INCREASES O2 FLOW TO FPB					
SMEFH	OF					
SMEFH	PAGE 9	$\begin{aligned} & 1.25 \mathrm{E}-03 \\ & 1.25 \mathrm{E}-07 \end{aligned}$	TRANSFER TRANSFER	FH/OF	$\left\lvert\, \begin{aligned} & 1 \\ & 2 \end{aligned}\right.$	SMEMF EVENT TREE smepb event tree

TRANSFER	PRO"TECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	\#
HIGH MIXTURE RATIO IN FPB	HPFTP DT REDLINE DETECTED	emergency HYDRAULIC SHUTDOWN				
SMEFH/SMEMF	FR	EH				
$\frac{1.25 E-03}{\text { SMEFH/SMEMF }}$	$\frac{1.50 E-04}{\text { PAGE } 13}$	$\begin{aligned} & 1.16 E-06 \\ & \hline \text { PAGE } 3 \end{aligned}$	$\begin{aligned} & 1.25 \mathrm{E}-03 \\ & 1.45 \mathrm{E}-09 \\ & 1.88 \mathrm{E}-07 \end{aligned}$	OK abort LOV LOV	MF/EH MF/FR	1 2 3

INITIATOR	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	\#
HIGH MIXT RATIO IN OPB	HPOTP DT REDLINE DETECTED	EMERGENCY hYDRAULIC SHUTDOWN				
SMEMO	OR	EH				
$\begin{array}{\|l\|} \hline 6.27 \mathrm{E}-04 \\ \hline \text { SMEMO } \end{array}$	$\begin{aligned} & 1.50 \mathrm{E}-04 \\ & \hline \text { PAGE } 13 \end{aligned}$	$\frac{1.16 E-06}{\text { PAGE } 3}$	$\begin{aligned} & 6.27 \mathrm{E}-04 \\ & 7.27 \mathrm{E}-10 \\ & 9.41 \mathrm{E}-08 \end{aligned}$	OK abort LOV LOV	MO/EH MO/OR	123

HIGH MIXTURE RATIO IN OXIDIZER PREBURNER EVENT TREE 3 REV. 1

LOSS OF FUEL TO BOTH PREBURNERS EVENT TREE 5 REV. 1
1

INITIATOR	MITIGATING EVENTS		SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	\#	TRANSFER TO
FAILURE TO MAINTAIN SSME VALVE POSITIONS	FAIL-SAFE SERVOSWITCH WORKS	EMERGENCY PNEUMATIC SHUTDOWN					
SMEVP	HL	EP					
$\begin{array}{\|l\|} \hline 6.27 E-04 \\ \hline \text { SMEVP } \\ \hline \end{array}$	$\frac{2.10 E-06}{\text { PAGE } 8}$		$\begin{gathered} 6.27 \mathrm{E}-04 \\ 1.32 \mathrm{E}-09 \\ 1.86 \mathrm{E}-13 \end{gathered}$	TRANSFER		1	SMEHL EVENT TREE
		$\begin{aligned} & 1.41 E-04 \\ & \hline \text { PAGE } 5 \end{aligned}$		OK abort LOV	VP/HLEP	2 3	

FAILURE TO MAINTAIN SSME VALVES POSITION EVENT TREE 6 REV. 1

TRANSFER	PROTECTIVE EVENT		MITIGATING	SYSTEM EVENTS		SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	*
HYDRAULIC LOCK-UP REQUIRED	BY-PASS VALVE FAILS TO MOVE	NO VALVE DRIFT	EMERGENCY PNEUMATIC SHUTDOWN	MAIN ENGINE CUTOFF	PROPELLANT DUMP				
SMEVP/SMEHL	BL	ND	EP	ME	PM				
$\begin{array}{\|l\|} \hline 6.27 E-04 \\ \hline \text { SMEVP/SMEHL } \end{array}$	$\frac{32 E-06}{\text { AGE } 6}$	$\begin{aligned} & \text { PAGE } 38 \\ & \hline \text { PAGE } \end{aligned}$	$\frac{1.41 E-04}{\text { PAGE } 5}$	1.43E-04 PAGE 21 PAGE 21	$\frac{1.65 E-07}{\text { PAGE } 40}$ \qquad	$\begin{aligned} & 5.02 \mathrm{E}-04 \\ & 8.28 \mathrm{E}-11 \\ & 7.17 \mathrm{E}-08 \\ & 1.25 \mathrm{E}-04 \\ & 1.77 \mathrm{E}-08 \\ & 1.45 \mathrm{E}-09 \end{aligned}$	OK LOV LOV OK abort LOV LOV	HLJPM HLME HLND/EP HLBL	1 2 3 4 5

FAILURE TO PERFORM HYDRAULIC LOCK-UP EVENT TREE 6A REV. 1

INITIATOR	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	\#
COOLANT LINER OVERPRESSURE.	REDLINE DETECTED DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMELO	OP	EH				
SMELO		PAGE 3	$\begin{gathered} 1.00 \mathrm{E}-03 \\ 1.16 \mathrm{E}-09 \\ 1.50 \mathrm{E}-07 \end{gathered}$	OK abort LOV LOV	LO/EH LO/OP	123
	PAGE 18		$\begin{aligned} & 1.16 \mathrm{E}-09 \\ & 1.50 \mathrm{E}-07 \end{aligned}$			

COOLANT LINER OVERPRESSURE EVENT TREE 7 REV. 1

INITIATOR	PROTECTIVE EVENT		mitigating	SYSTEM EVENTS		SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	*
HYDRAULIC LOCK-UP REQUIRED	BY-PASS VALVE FAILS TO MOVE	NO VALVE DRIFT	EMERGENCY PNEUMATIC SHUTDOWN	MAIN ENGINE CUTOFF	PROPELLANT DUMP				
SMEHL	BL	ND	EP	ME	PM				
SMEHL	AGE 6	PAGE 38	AGE 5	PAGE 21	$\text { PAGE } 40$	$\begin{aligned} & 3.20 \mathrm{E}-03 \\ & 5.28 \mathrm{E}-10 \\ & 4.58 \mathrm{E}-07 \\ & 8.00 \mathrm{E}-04 \\ & 1.13 \mathrm{E}-07 \\ & 9.28 \mathrm{E}-09 \end{aligned}$	OK LOV LOV OK abort LOV LOV	HLPM HLME HLND/EP HL/BL	1 2 3 4 5

FAILURE TO PERFORM HYDRAULIC LOCK-UP EVENT TREE 8 REV. 1

INITIATOR	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	\#
FAILARE TO PRECHARGE POGO ACC.	LOW POGO PRESSURE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMEPG	PP	EH				
SMEPG		PAGE 3	$\begin{aligned} & 6.05 \mathrm{E}-04 \\ & 7.02 \mathrm{E}-10 \\ & 9.08 \mathrm{E}-08 \end{aligned}$	OK abort LOV LOV	PG/EH PG/PP	123
	BASIC EVENT		$\begin{aligned} & 7.02 \mathrm{E}-10 \\ & 9.08 \mathrm{E}-08 \end{aligned}$			

FAILURES DURING POGO ACCUMULATOR PRECHARGEEVENT TREE 10 REV. 1

dual ssme premature shutdownevent tree 11 REV. 1

INITIATOR	SYST	EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	\#
NOMINAL MECO AND PROPELLANT DUMP REQUIRED	$\begin{gathered} \text { MECO } \\ \text { PERFORMED } \end{gathered}$	$\begin{aligned} & \text { PROPELLANT } \\ & \text { DUMP } \\ & \text { PERFORMED } \end{aligned}$				
SMECD	MN	PD				
$\frac{.94}{\text { SMECD }}$	$\frac{\text { 2.46E-06 }}{\text { PAGE } 30}$	1.65E-07 PAGE 40	$\begin{aligned} & 9.43 \mathrm{E}-01 \\ & 1.56 \mathrm{E}-07 \\ & 2.32 \mathrm{E}-06 \end{aligned}$	OK LOV LOV	CD/PD CD/MN	1 2 3

19 ə6. ${ }_{\text {d }}$		


```
FUEL TURBINE TEMPERATURE REDLINE
    SENSOR RELIABILITY ASSESSMENT
```

```
SENSOR FAILURE DATA - FUEL SIDE ONLY
```

PART NUMBER	$7004-91$	7013	TOTAL
TOTAL SECONDS	264,000	158,000	422,000
FAILURES	3	2	5

both part numbers exhibit the same failure rate
MISSION RELIABILITY VALUES - SINGLE SENSOR (50\%CONFIDENCE)

FAILURE (HIGH OR LOW)	0.993104
FAIL HIGH - DISQUALIFY	0.9943159
FAIL HIGH - VOTE FOR CUTOFF	0.9967419
FAIL LOW - DISQUALIFY	0.9979538

HISTORICAL SSME RELIABILITY DATA

SINGLE ENGINE - 104% MISSION	0.9924918
EXCEED FUEL TURBINE REDLINE	0.9984938

ERRONEOUS SHUTDOWN PROBABILITY

FIRST FAILURE HIGH OR LOW (1 OF 2)	0.0137444
SECOND FAILURE HIGH and vote	0.0032581
COMBINED	$4.478 \mathrm{E}-05$
THREE ENGINE PROBABILITY	0.0001343
MTBF	7,440

LOSS OF PROTECTION PROBABILITY

FIRST FAILURE HIGH OR LOW (1 OF 2)	0.0137444
SECOND FAILURE - NO VOTE	0.0056841
COMBINED	$7.812 E-05$
THREE ENGINE PROBABILITY	
	MTBF

REDLINE EXCEEDED PROBABILITY

SINGLE ENGINE	0.0015062
THREE ENGINE PROBABILITY	0.0045117
MTBF	220

REDLINE PROVIDES NEEDED PROTECTION

SAFE SHUT DOWN FOR 20 PERCENT OF HISTORICAL FAIL	
EXPECTED NEED	1 IN 220 FLIGHTS
EXPECTED ERRONEOUS	1 IN 7,440 FLIGHTS
$=$	34 TO 1

SENSOR CATASTROPHIC POTENTIAL

LOSS OF REDLINE	7.812E-05
ENGINE EXCEEDS REDLINE	0.0015062
COMBINED	$1.177 \mathrm{E}-07$
THREE ENGINE PROBABILITY	3.53E-07
MTBF	2,832,780
ERRONEOUS SHUTDOWN (3 ENGINES)	0.0001343
SECOND ENGINE SHUTDOWN	0.0075082
COMBINED	$1.009 \mathrm{E}-06$
MTBF	991.450

UNABLE TO ASSESS ORBITER ABORT RISK
$\}$

CODE	10	DESCAIPTION
CADS	1	COMMAND ANO DATA SIMULATOR COMMAND (SIMULATES OÄBITEA COMPUTER)
CADS ELU	2	CADS - ELECTRONIC LOCKUP
CADS FTD	3	CADS - HPFTP TUABINE DISCHARGE TEMPERATUAE REDLINE LOST
CONT	4	ENGINE CONTPOLLER INITIATED
CONT FD	5	CONTROLLER - FUEL DENSITY (OBSOLETE)
CONTIEA	6	CONTROLLER - INPUT ELECTRONICS CHANNEL A
ENG RDY	7	LOSS OF ENGINE READY
F SPDK	8	HPFI'P SPEED IGNITION CONFIRM
F TD T	9	HPFTP TURBINE DISCHARGE TEMPERATURE
FTDTE	10	HPFTP TURBINE DISCHARGE TEMPERATURE - ERRONEOUS
F TIT	11	HPFTP TURBINE INLET TEMPERATURE (OBSOLETE)
FAC	12	FACILITY INITIATED CUTOFF (NOT AN ENGINE PROBLEM)
FAC E	13	FACILITY INITIATED CUTOFF - ERRONEOUS
H2O PR	14	FACILITY WATER PRESSUAE
HEX DP	15	HEAT EXCHANGER DELTA PRESSURE (OBSOLETE)
HEX PR	16	HEAT EXCHANGER PRESSURE (OBSOLETE)
HEX PA E	17	HEAT EXCHANGER PRESSURE - ERRONEOUS
HF ACC	18	HPFTP ACCELEROMETERS
HF ACC A	19	HPFTP ACCELEROMETERS - AXIAL (OBSOLETE)
HF ACC E	20	HPFTP ACCELEROMETERS - ERRONEOUS
HF ACC N	21	HPFTP ACCELEROMETERS - NON STANDARD MONITOR (OBSOLETE)
HF SPD	22	HPFTP SPEED (OQSOLETE)
HGM	23	HOT GAS MANIFOLD DELTA PRESSURE
HO ACC	24	HPOTP ACCELEROMETERS
HO ACC A	25	HPOTP ACCELEROMETERS - AXIAL (OBSOLETE)
HO ACC C	26	HPOTP ACCELEROMETERS - CROSSFEED FROM HPFTP
HO ACC E	27	HPOTP ACCELEROMETERS - ERRONEOUS
HO ACC N	28	HPOTP ACCELEROMETERS - NON STANDARD MOONITOR (OBSOLETE)
HO BRG T	29	HPOTP BEARING COOLANT TEMPERATURE
HO SPD	30	HPOTP SPEED (OGSOLETE)
HO SPD E	31	HPOTP - ERRONEOUS
INJ ACC	32	MAIN INJECTOR ACCELEROMETERS
LF ACC	33	LPFTP ACCELEROMETERS
LF ACC E	34	LPFTP ACCELERONETERS - ERRONEOUS
LO ACC E	35	LPOTP ACCELEROMETEAS - ERAONEOUS
LOX T E	36	HPOTP LOX DISCHARGE TEMP RISE - ERRONEOUS (OBSOLETE)
LPF TURB	37	LPFTP TURBINE INLET PRESSURE (ÓBSOLETE)
MCC	38	MCCC LINEA CAVITY PRESSURE
MCC ACC ${ }^{\text {E }}$	39	MAIN COMḂUSTION CHAMBER ACCELEROMETERS - ERRONEOUS
MCC PC	40	MAIN CHAMBER PRESSURE
MCF ACT	41	MAJÖ́ COMPONENT FAIL REPORT - ACTUATOR
MCF CL	42	MCF - COMMMAND LIMIT
MCF DCU	43	MLCF - DIGITAL COMPUTER UNIT
MCF FD	44	MCF - FUEL DENSITY
MCFFTD	45	MCF - HPFTP TUREINE DISCHARGE TEMPERATURE
MCF FMM	46	MCF - FUEL FLOWMETER
MCF OTD	47	MCF - HPOTP TURBINE DISCHARGE TEMPERATURE
MCF PC	48	MCF - MAIN CHAMBER PRESSURE
MOV ACC	49	MAN OXIDIZER VALVE ACCELEROMETER (OBSOLETE)
O DR DP	50	HPOTP PAMMARY OXIDIZER SEAL DAAIN DELTA PRESSURE (OBSOLETE)
ODR P	51	HPOTP PAIMARY OXIDIZER SEAL DAAIN PRESSURE (OBSOLETE)
ODR PE	52	HPOTP PRIIMARY OXDIIZER SEAL DRAIN PRESSURE - ERRONEOUS
ODA T	53	HPOTP PAKMARY OXIDIZER SEA DAAIN TEMPERATURE (OBSOLETE)
OIS PAG	54	HPOTP INTERMEDIATE SEAL PURGE PAESSURE
O ISCDP	55	HPOTP WNTERMEDIATE SEAL CAVITY DELTA PRESSURE (OBSOLETE)
O ISCP	56	HPOTP WNTERMEDIATE SEAL CAVITY PRESSURE (OBSOLETE)
OISCP E	57	HPOTP INTERMEDIATE SEAL CAVITY PRESSURE ERRONEOUS
0 TD T	58	HPOTP TURBINE DISCHARGE TEMPERATURE
OTDTE	59	HPOTP TURBINE DISCHAĂGE TEMPERATURE - ERRONEOUS
0 TIT	60	HPOTP TURBINE WLET TEMPERATURE (OBSOLETE)
OTITE	61	HPOTP TURBINE INLET TEMPERATURE * ERAONEOUS (OBSOLETE)
OBS	62	MANUAL CUTOFF BY OBSERVER
OBS E	63	ERAONEOUS OBSERVER CUTOFF
OBS FIRE	64	OBSERVER CUTOFF - FIRE
PB PGIC	65	PREBURNER PURGE IGNITION CONFIRM
PB PAG	66	PREEUPNER PUPGE FAILED ON
PBP PR	67	PREBURNER PUMP DISCHARGE PRESSURE (OBSOLETE)
PCKCH	68	CHANBER PRESSURE IGNITION CONFIRM - HIGH
PCKCL	69	CHAMBER PRESSURE IGNITION CONFIRIM - LOW
PC MS	70	CHAMBER PRESSURE MAINSTAGE
PH/T	71	POWERHEAD AREA ENVIRONMENT TEMPERATURE
PIF	72	LOW FUEL INLET PRESSURE (FACILITY)
P10	73	LOW OXIDIZER INLET PRESSURE (FACILITY)
SATS	74	SHUTTLE AVIONICS TEST SET (CLUSTER GROUND TEST ORBITEA COMPUTER SIMULATC
TH BNG	75	HPFTP THAUST BEARING SPEED (OBSOLETE)
TH BNG E	76	HPFTP THRUST BEARING SPEED - SENSOR MALFUNCTION (OBSOLETE)
VEH	77	VEHICLE (ORBITER) COMMAND

Sisme fhelintuke ctroffs (puration >2.4 seconts)

Catastrophic Failures in Entire ssme history

Ess						pousr			
	$\frac{\text { muorve }}{0212}$	HPOTP ${ }^{\text {comp }}$	${ }^{\text {23-Jun- }}$ Dit		${ }_{\text {dopation }}^{1270.72}$	$\frac{\text { Lever }}{96}$	EEARING WEAR WALLORB HODE PROM OCR	23129	P/PH2
992.471	2206	DUCT-LPF	02-Jun-89	LPF DUCT BELLOWS TIE EROKE	147.68	104	FLEX JOINT TRIPOD FATIQUE - SMAIL RADIUS	A0088935	5 FPI/P ${ }^{\text {a }}$ 2
750.285	0210	NOZZLE	21-May-87	FEED LINE CRACKAT STOP WELD	224.00	109	LEAKINNO. 3DOWNCOMMER	A015716	$5 \mathrm{FPL} / \mathrm{PH} 2$
750.259	2308	MCC	27-Mar-85	DISCH MAN RUPTURE-EXT DAM	101.56	109	PREM C/O. HPFIP ACCELS	A015713	5 FPL/PH2
901.468	0207	FPB	04-Feb-85	CRACK ATF-13 FLANGE-eng retired	203.86	109	CRACK STARTED IN BOSS TO MAN. WELD	A0 14585	FPT/PH2
901.436	0108	HPFTP	14-Feb-84	CLINI INR PR-MAIOR DAMAGE	611.06	109	EXTENSIVE TURB DAMAGE (RLCO)	A013338	FPL/PH2
750.175	2208	DUCT	27-Aug-82	HPOQUCT RUPTURE - ULTRASONIC F/M	116.08	11	PREM C/O P/B BOOST PUMP ACCLES	A011506	
750.160	0110	FPB-CE	12+eb-82	H2O FROM EDM/EXT DAMAGE (CGIB)	3.16	20	TURE DIS TEMP. WATER INENG, EDM OPER	ADI6045	
902.249	0204	HPFTP	21-Sep-81	TURB BL FAIL/VOLUTE RUPTURE/EXT DAM	450.57	109	PREM C/O HPFI TURB BLADE FAILURE	A018288	4 FPL
SFIOOI-C	0006	FPP	12-sul-80	HOLE BURNED IN PPB	106.52	102	OBSERVER PREMATURE CUT DUE TO FIRE	A015391	2 MPTA
SFO6OI-A	2002	MFV	02-Jul-79	MFV BODY FALURE	18.49	100	VALVE CAP TO BODY BOLIS BROKEN	A009437	2 MPTA
901.225	2001	MOV	27-Dec-78	MOV FRETING FIRE-EXT DAM	255.63	100	MOV FIRE - $\mathrm{HPFT}^{\text {R } / 2}$	A010816	2 MPTA
901.136	0004	HPOTP	08-Sep-77	HPOTP BNG FAILURE-EXI DAM	300.22	9	CUTOFF DUE TO HPOT FIRE OPOVA FID 34-0	A005350	PREMPTA
90.133	0004	FPB	27-Aug-77	HOLE \mathbb{N} FPBBOOY	48.21	90	HOLE BURNT THRU FPB BODY OF POWERHEAD	A005072	1 PRE MPTA
901.110	0003	HPOTP	24-Mor-77	HPOTP FIRE EXT DAM	74.07	75	SEVERE INTERNAL FIRE DAMAGE	A005353	1 PREMPTA

111

1

11

ETE

YYTY
1YYTYY

ISRB Hypothesis Descriptions

Hypothesis-1	The analyst made an educated estimate of the anticipated frequency of the event in question. This was deemed necessary when there was insufficient data to support a statistical analysis. The estimation was made after conferring with experts on reliability of the sub-component based on their respective experience.
Hypothesis-2	Insufficient data to support a statistical analysis was available for the NASA Standard Initiators (NSIs) and NASA Standard Detonators (NSDs) however the components were found to be similar in both design and function as the Confined Detonating Fuses (CDFs). However due to additional elements in the NSI and NSD assemblies they were assumed to be 2-3 times more prone to fail than the CDF.
Hypothesis-3	The data available for the Pyrotechnic Initiator Controllers (PICs) indicates that they are extremely reliable components however the fact that no actual failures have occurred makes the estimation of their failure rate difficult. As a conservative assumption, their failure rate was assumed to be on the same order of magnitude as the CDFs.
Hypothesis-4	The ISRB use pyrogenic igniters for which a limited amount of failure data exists. For this reason the analyst made a conservative assumption based on the data available and conversations with USBI personnel.
Hypothesis-5	This estimate concerned the possibility of an explosive device detonating without any external influences; an extremely rare event. A conservative estimate was made which considered such an event to be 10 times less likely than an explosive device (CDF) failing to detonate on command.
Hypothesis-6	The Booster Separation Motors (BSMs) have a limited amount of failure related data however it was agreed (USBI \& MSFC) that the failure modes were approximately an order of magnitude (10 times) more likely than an explosive device (CDF) failing to detonate.

COMPONENT	QTY/FLIGHT	\# OF FLIGHTS	GROUND TESTS	TOTAL	FAILURES*
Frangible Nut	8	62	141	637	0
Booster Ctdg (Frangible Nut)	16	62	189	1181	0
NSI Pressure Cartridge	20	62	271	1511	0
CDF Manifold	18	62	292	1408	0
CDF Assembly**	56	62	838	4310	0
CDF Initiator	32	62	409	2393	***1
Booster Separation Bolt	16	62	104	1096	0
Forward Separation Bolt	2	62	77	201	0
Aft Separation Bolt	8	62	141	637	0
* Only failures which could lead to loss of vehicle are included.					
** Similar designs (at E.T., Inc.) have had over 75,000 successful firings with no failures					
*** Failure successfully screened by LAT, lot rejected at vendors's facility (not counted as flight failure)					
Additional CDF related information obtained from Explosive Technologies: 19,460 test firings with no failures					

NOZZLE-TO-CASE JOINTS

Joint Component	Source	Hot Firings	Leak Checks	Leak Potentality Factor	Fallures
Polysuttide	Flights 1-37,39,41	78			5
	Static Tests	9			1
	Totals:	87			6
Wiper O-Ring	Flights 1-37,39,41	6	78		
	Static Tests	1	9		
	NUES/TPTA, QM6	1			
	Totals:	8	87	0.2	1
Vent Port Plug Primary O-Ring (nozze and case combined)	Flights 1-37,39,41		234		
	Static Tests		30		
	TPTA 1.3,2.1, 2.2	7			
	NUES/JES 3C	4			1
(47 motors courred as 23 lests)	SPC (701b Motor)	23	23		
	Totals:	34	287	0.9	1
Vent Port Plug Second O-Ring (nozzle and case combined)	Flights 1-37,39,41		312		
	Static Tests		40		
	TPTA 1.3, 2.1, 2.2	3			
	NUES/JES 3C	3			
	Totals:	6	352	0.9	0
Closure Vent Port Plug (nozzle and case combined)	Flights 1-37,39,41		312		
	Static Tests		40		
	TPTA 1.3,2.1	2			
	NUES/JES 3C	2			
	Totals:	4	352	0.6	0
Primary O-Ring	Flights 1-37,39,41		78		
	Static Tests		9		
	TPTA 1.2,2.1	2			
	NUES 3A,PVM1	2			
	Totals:	4	87	0.6	0
Leak Check Port Plug(case/nozzle/igniter combined)	Flights 1-37,39,41		780		
	Static Tests		100		
	SRM01-51L (fild)	4			
	SRM01-51L (noz)	7			
	Totals:	11	880	0.6	0
Stat-O-Seal	Case	100	9000		
	Igniter		5040		
	Nozzle	100	6776		
	Totals:	200	20816	0.9	0
Secondary O-Ring	Flights 1-37,39,41		78		
	Static Tests		10		
	TPTA 1.3	1			
	NUES 38	1			
	Totals:	2	88	0.9	0

IGNITER INTERNAL JOINTS					
Joint Component	Source	Hot Firings	Leak Checks	$\begin{gathered} \text { Leak } \\ \text { Potentiality } \\ \text { Fector } \\ \hline \end{gathered}$	Fallures
S\&A Primary Gasket	Static Tests	12	12		
	SRM, HPM, RSRM	128	128		
	Totals:	140	140	0.6	0
S\&A Secondary Gasket	Static Test		12		
	SRM, HPM, RSRM		128		
	Totals:		140	0.9	0
COMMON CAUSE Leak Check Port Plug (case/nozzle/igniter)					
	Flights 1-37,39,41		780		
	Static Tests		100		
	SRM01-51L (fid)	4			
	SRM01-51L (noz)	7			
	Totals:	11	880	0.6	0
$\begin{gathered} \hline \text { OPT Primary O-Ring } \\ \text { (3/igniter) } \end{gathered}$	Static Tests	36			
	SRM, HPM, RSRM	384			
	Minuteman	3300			
	Totals:	3720			0
OPT Secondary O-Ring (3/igniter)	TPTA-2.2	3	0		
	JES-3C	3	24		
	TPTA-1.3	3	256		
	Totals:	9	280	0.9	0
COMMON CAUSE Rotor Primary O-Rings	Static Tests	12	12		
	SRM, HPM, RSRM	128	128		
	Totals:	140	140	0.6	0
Rotor Secondary O-Rings	Static Tests	2	12		
	SRM,HPM, RSRM		128		
	Totals:	2	140	0.9	0
COMMON CAUSE SII Primary O-Ring					
	Static Tests	24	24		
	SRM,HPM, RSRM	256	256		
	Totals:	280	280	0.9	0
Sil Secondary O-Ring	Static Tests	2	24		
	SRM, HPM, RSRM		256		
	Totals:	2	280	0.9	0

IGNITER-TO-CASE JOINT					
Joint Component	Source	Hot Firings	Leak Checks	Lenk Potentiality Factor	Failures
INNER J-LEG	FSM-3	1			
	RSRM 23,35-37,39,41	12			
	Totals:	13			0
Special Bolt O-Ring	Static Test	48	48		
	SRM,HPM,RSRM	512	512		
(4/igniter)	Totals:	560	560	0.6	0
Outer J-Leg	FSM-3	1			
	RSRM 23,35-37,39,41	12			
	Totals:	13			0
Inner Gasket/lnner Seal	blow-holes (RSRM)	60			
	Static Tests		12		
	SRM, HPM, RSRM		128		
	Totals:	60	140	0.6	0
Inner Gasket/Outer Seal	blow-hole (RSRM)	60			
	Static Tests		12		
	SRM, HPM,RSRM		128		
	Totals:	60	140	0.9	0
Outer GaskeV/lnner Seal	blow-holes (RSRM)	60			
	Static Tests		12		
	SRM,HPM,RSRM		128		
	Totals:	60	140	0.6	0
Outer Gaskev/Outer Seal	Static Tests				
	SRM,HPM,RSRM		12		
	Totals:		128		
Stat-O-Seals (36/igniter)	Case	100	9000		
	Igniter		5040		
	Nozzle	100	6776		
	Totals:	200	20816	0.9	0
Leak Check Port Plug (case/nozzle/igniter)	Flights 1-37,39,41		780		
	Static Tests		100		
	SRM01-51L (fld)	4			
	SRM01-51L (noz)	7			
	Totals:	11	880	0.6	0

CASE FIELD JOINT					
Joint Component	Source	Hot Firings	Leak Checks	Leak Potentiality Factor	Fallures
J-Seal	Flights 1-37,39,41	234			
	Static Tests	15			
	JES 3A	2			
	TPTA 1.1, 2.1	3			
	Totals:	254			0
Capture Feature O-Ring	Flights 1-37,39,41		234		
	Static Tests		24		
	JES 3B	1	0		
	QM-6	1	2		
	PVM-1	1	1		
	Totals:	3	261	0.6	0
Vent Port Plug Primary O-Ring (nozzle and case combined)	Flights 1-37,39,41				
	Static Tests				
	TPTA 1.3,2.1,2.2	7			
	NUES/JES 3C	4			1
(47 motors counted as 23 tests)	SPC(701b Motor)	23	23		
	Totals:	34	287	0.9	1
Vent Port Plug Second O-Ring (nozzle and case combined)	Flights 1-37,39,41		312		
	Static Tests		40		
	TPTA 1.3,2.1,2.2	3			
	NUES/JES 3C	3			
	Totals:	6	352	0.9	0
Closure Vent Port Plug (nozzle and case combined)	Flights 1-37,39,41		312		
	Static Tests		40		
	TPTA 1.3,2.1	2			
	NUES/JES 3C	2			
	Totals:	4	352	0.5	0
Primary O-Ring	Flights 1-37,39,41		234		
	Static Tests	1	27		
	TPTA 1.3,2.1,2.2	5			
	JES3B/3C	2			
	Totals:	8	261	0.9	0
Outer Gasket/Outer Seal	Static Tests				
	SRM, HPM,RSRM		12		
	Totals:		128		
Leak Check Prot Plug (case/nozzle/igniter combinded)	Flights 1-37,39,41		780		
	static Tests		100		
	SRM01-51L (fld)	4			
	SAM01-51L (noz)	7			
	Totals:	11	880	0.5	0
Secondary O-Ring	Flights 1-37,39,41		234		
	Static Tests		27		
	TPTA 2.2	2			
	JES 3C	1			
	Totals:	3	261	0.9	0

NOZZLE JOINT					
Joint Component	Source	Hot Firings	Leak Checks	Leak Potentiality Factor	Fallures
RTV Backtiil	Joint 1	90			5
	Joint 2	18			7
	Joint 3	88			10
	Joint 4	88			10
	Joint 5	88			6
	Totals:	372			38
Primary O-Ring	Flight	24	390		
	Static Tests	14	50		
	Totals:	38	440	0.6	0
Secondary O-Ring	Flight		390		
	Static Tests		50		
	Totals:	0	440	0.9	0
Stat-O-Seals	Case	100	9000		
	Igniter		5040		
	Nozzle	100	6776		
	Totals:	200	20816	0.9	0
Leak Check Port Plug	Flights 1-37,39,41		780		
	Static Tests		100		
	SRM01-51L (fld)	4			
	SRM01-51L (noz)	7			
	Totals:	11	880	0.6	0

IIII
 .

B.3. Orbiter Auxiliary Power Uni//Hydraulics

9.0 DEVELOPMENT OF PROBABILITY DISTRIBUTIONS FOR FAULT TREES

The development of probability distributions for the fault trees is done using Bayesian updating methods. Prior probability distributions for failure rates are taken from the 1987 APU/HPU study, NPRD-95, [REP, IEEE Std. 500, WASH 1400, Shuttle experience and expert judgment. System level priors for the entire APU/HYD/WSB system (failure to start and failure to run distributions) are developed using component data mostly from the 1987 study. Bayesian updating was done at the system level using data found in the in-flight anomaly list (IFAS), PRACA reports, and Post Flight Mission Safety Evaluation Reports.

Data obtained shows that there have been four APU shutdowns on ascent due to the water spray boiler failing to provide adequate cooling, and a near hydraulic system failure due to a massive hydraulic leak during descent.

Due to the fact that the APU/HYD/WSB systems have redundancy, i.e., they are a two-out-ofthree or better system, common cause failures become a concern. The fault trees are evaluated using the Multiple Greek Letter (MGL) method to determine the common cause and independent failure rates

Section 9.1 describes how the MGL method is used to determine the independent failure rates and common cause failure rates from the generic failure rate for each sequence

Section 9.2 describes the prior distributions used in the study. Fault trees are included in this section to show how prior distributions are calculated for APU/HYD/WSB failure to start, APU/HYD/WSB failure to run, and APU turbine wheel runaway.

9.1 Models/Equations for Fault Tree Basic Events

9.1.1 List of Basic Events

Table 9.1-1 is a complete list of the basic events found in the fault trees, and their two letter identification code used throughout the model.

9.1.2 Assumptions

Several assumptions have been made concerning data input probability distributions. The first is that given a common cause leak, all three APU units leak. The second assumption pertains to the detection/confirmtion of the leaks. If all three units leak, and a leak is detected in one unit, then the leaks in all units are assumed to be found. A third assumption concerns the restarts of APU units. All units will have to go through a restart process sometime during the reentry process. Some scenarios have APU hydrazine leaks detected, in which case an APU unit is shutdown during the entry sequence. After an APU unit is shutdown, if another unit fails, then the shutdown unit is restarted. However, in the sequence, only one restart of the shutdown APU is considered. There are several reasons for this simplistic modeling. First, the reentry sequence will not begin until an APU unit is working to perform the flight controls check. Second, leaking APUs are shutdown only when a leak is detected and confirmed, and the probability of a leak being detected is only about one in twenty, so these scenario simplifications will not have a significant impact on the total risk.

Identification	Basic Event
CE	Flight critical equipment damaged given LL or TU
CF	Common cause failure to run
CL	Common cause leak
CO	No containment given turbine overspeed
CS	Common cause failure to start or run
HB	Hub breakup given turbine overspeed
ID	Independent/dependent failure to run (ascent)
IF	Independent failure to run (ascent)
IS	Independent failure to start or run (descent)
LA	Leak detected/confirmed given all three APU units leak
LD	Leak detected/confirmed given that one APU unit leaks
LF	Own leakage induced failure (ascent)
LK	Leak in one APU unit
LL	Large exhaust gas or hydrazine leak
LO	Leakage from another unit induced failure (ascent)
LS	Leakage from other unit induced failure to start or run (descent)
LU	Leak undetected given that one APU unit leaks
LZ	Leak undetected given that all three APU units leak
O1	APU unit okay given that one other APU unit leaks
O3	APU unit okay given that all three APU units leak
OK	APU unit okay
OL	APU unit okay given that it leaks
OS	Own leakage induced failure to start or run (descent)
SI	Structural integrity of aft compartment fails given LL or TU
SR	Successful restart of shutdown APU unit
TU	Turbine overspeed or hub failure at normal speed
UL	Unsuccessful single APU/HYD unit reentry, TAEM and landing

Table 9.1-1: List of Basic Events and Descriptions

9.1.3 Derivation of Common Cause Failure Equations

As components fail, it is not always entirely clear which failures are truly independent and which are common cause. In order to estimate the frequency of common cause failures from the total estimated frequency, several methods, such as the Multiple Greek Letter (MGL) or beta factor
methods, are used. In this analysis. the MGL method was used. The labeling of the APU units is as follows: if a single APU unit is leaking hydrazine, then that unit is labeled as unit 1 , or if all three APU units are leaking hydrazine, then the unit that is shutdown (if the leaks are detected/confirmed) is labeled as unit 1

9.1.3.1 One APU Unit Leaks Hydrazine During Reentry, TAEM and Landing (L0

 State) ${ }^{11}$
Sequence 4

In this sequence, APU units 1 and 2 , or 1 and 3 , fail. This is basically a 1 out of 3 system. denoted $\mathrm{Q}(1 / 3)$. There are two ways in which independent failures of this type can occur: $\mathrm{Q}_{1} \mathrm{Q}_{2}$ and $\mathrm{Q}_{1} \mathrm{Q}_{3}$. For the common cause failures, there are also two ways that those may occur: Q_{12}, and Q_{13}. Rewriting those terms in the MGL format using Q_{1} for independent failures and Q_{2} for common cause failure of two components yields the following equation for system failures:
$Q(1 / 3)=2 Q_{2}+2 Q_{1}^{2}$
In this form of the MGL method where we are dealing both with common cause failures for two systems and common cause failures for three systems. The MGL method defines two parameters β and γ. Beta is the ratio of two and three unit common cause failures of each unit to all failures for each unit. Gamma is the ratio of three unit common cause failures to two and three unit common cause failures. For each unit, beta is thus:
$\beta=\frac{2 Q_{2}+Q_{3}}{Q_{1}+2 Q_{2}+Q_{3}}$
and gamma is
$\gamma=\frac{Q_{3}}{2 Q_{2}+Q_{3}}$
Omitting the algebra, the single system and common cause for two system failures can be written as:
$Q_{1}=(1-\beta) Q$
$Q_{2}=\frac{1}{2}(1-\gamma) \beta Q$
Since Q represents the failures due to start or run failures, it should be rewritten as:

$$
\underline{Q}=q_{s}+\lambda t
$$

[^0]where q_{s} is the failure to start probability, and $\lambda \mathrm{t}$ is the probability of a failure during the run time. ${ }^{[3]}$ If we substitute into $Q(1 / 3)$ for $Q_{!}, Q_{2}$ and Q, then the equation for failures becomes
$Q(1 / 3)=\left[\left(1-\gamma_{s}\right) \beta_{,} q_{,}+\left(1-\gamma_{,}\right) \beta_{r} \lambda 1 \mid+2\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda_{t}\right]^{2}\right.$
This is the total failure rate. We now need to relate the above equation to the fault tree basic events. The first term in the above equation is the common cause term, and does not need to be changed. The second term in the above equation needs to represent the independent failures as depicted in the fault tree. For example, if we examine the fault tree for the sequence 4 LOV with the initiating LO state (one APU unit is leaking), then by analysis at the basic event level, the probability of the component failures in the sequence can be expressed as:
$P(1,2$ or 1,3$)=P(1 / F) P(2 I F)+P(1 / F) P(3 / F)+P(C C F)+P(1 / F) P(3 L O)+\cdots$
where IF, CCF and LO where defined previously as independent failures, common cause failure, and own leak induced failure. Since we are only concerned about independent and common cause failures, we will ignore the fourth and remaining terms as being inapplicable to the determination of the common cause failure rate and the independent failure rate. If the independent failure rates are the same for all APU units, then the previous two expressions can be combined as:
$P(C C F)=\left[\left(1-\gamma_{s}\right) \beta_{r} q,+\left(1-\gamma_{r}\right) \beta_{r} \lambda t\right]$
$2 P(I F)^{2}=2\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{,}\right) \lambda t\right]^{2}$
If we reduce the independent failure rate probability, we get:
$P(I F)=\sqrt{\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda_{t}\right]^{2}}$
which reduces to:
$P(I F)=\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda_{t}\right]$

Sequence 6

In this sequence, both APU units 2 and 3 have failed. This is basically a lout of 3 system, denoted $\mathrm{Q}(1 / 3)$. There is one way in which independent failures of this type can occur: $\mathrm{Q}_{2} \mathrm{Q}_{3}$. For the common cause failures, there is also only one way that this may occur: Q_{23}. Rewriting those terms in the MGL format using Q_{1} for independent failures and Q_{2} for common cause failure of two components yields the following equation for system failures:
$Q(1 / 3)=Q_{1}^{2}+Q_{2}$
As before, the single and common cause (for two systems) factors are defined as:
$Q_{1}=(1-\beta) Q$
$Q_{2}=\frac{1}{2}(1-\gamma) \beta Q$
${ }^{(2)}$ In this analysis the β, and β_{r} are given the same numerical value, and γ_{s} and γ_{r} are given the same numerical value.
${ }^{\text {(3) }}$ For ascent sequences, λt is the probability of basic event ID (or IF) in Table 9.3.1. For descent sequences $q_{s}+\lambda \not t$ is the probability of a basic event IS in Table 9.3-1.

Since Q represents the failures due to start or run failures, it should be rewritten as
$Q=q_{s}+\lambda t$
where q_{s} is the failure to start probability, and λt is the probability of a failure during the run time If we substitute into $\mathrm{Q}(1 / 3)$ for $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q , then the equation for failures becomes:
$Q(1 / 3)=\frac{1}{2}\left[\left(1-\gamma_{s}\right) \beta_{s} q_{1}+\left(1-\gamma_{r}\right) \beta_{r} \lambda t\right]+\left[\left(1-\beta_{s}\right) \mathcal{q}_{s}+\left(1-\beta_{r}\right) \lambda t\right]^{2}$
As before, we can see that the first term represents the common cause failure rate, and the second tern represents the independent failure rate. If we examine the fault tree for the sequence 6 LOV with the initiating L0 state, then by analysis at the basic event level, the probability of the component failures in the sequence can be expressed as:

$$
P(2,3)=P(2 I F) P(3 I F)+P((\% F)+P(2 I F) P(3 L O)+.
$$

where IF, CCF and LO where defined previously as independent failures, common cause failure, and own leak induced failure. Since we are only concerned about independent and common cause failures, we will ignore the third and remaining terms as being inapplicable to the determination of the common cause failure rate and the independent failure rate. If the independent failure rates are the same for all APU units, then the previous two expressions can be combined as
$P(C C F)=\frac{1}{2}\left[\left(1-\gamma_{s}\right) \beta_{s} q_{s}+\left(1-\gamma_{r}\right) \beta_{r} \lambda t\right]$
$P(I F)^{2}=\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda l\right]^{2}$
If we reduce the independent failure rate probability, we get:
$P(I F)=\sqrt{\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda t\right]^{2}}$
which reduces to:

$$
P(I F)=\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda_{l}\right]
$$

This is the same expressions as determined in the Sequence 4 LOV.

Sequence 7

In this sequence, since there is no leak detection, no distinction is made between which units fail and which do not. All three units fail, even though 1 out of 3 is needed for survival, so this is denoted $\mathrm{Q}(1 / 3)$. There is one way in which independent failures of this type can occur: $\mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{Q}_{\text {; }}$ For the common cause failures, there is also only one common cause for all three, Q_{123}. There are three combinations of pairs of common cause failures for two systems, i.e., Q_{12} and Q_{23} is one pair, and three combinations of an independent failure and a common cause failure for two systems, i.e., Q_{1} and Q_{13} and one pair. Rewriting those terms in the MGL format using Q_{1} for independent failures, Q_{2} for common cause failures of two components and Q_{3} for common cause failures of three components yields the following equation for system failures:
$Q(1 / 3)=Q_{3}+3 \underline{Q}_{1} \underline{O}_{2}+3 Q_{2}^{2}+\underline{O}_{1}^{3}$

Omitting the algebra. the failures can be written as
$Q_{1}=(1-\beta) Q$
$Q_{2}=\frac{1}{2}(1-\gamma) \beta Q$
$Q_{3}=\gamma \beta Q$
Substituting for $\mathrm{Q}_{1}, \mathrm{Q}$, and $\mathrm{Q}_{\text {: into }} \mathrm{Q}(1 / 3)$ yields
$Q(1 / 3)=\gamma \beta Q+\frac{3}{2}(1-\beta) \beta(1-\gamma) \underline{O}^{2}+\frac{1}{2}(1-\gamma) \beta\left[\frac{3}{2}(1-\beta) \beta(1-\gamma) Q^{2}\right]+(1-\beta)^{3} Q^{3}$
If we examine the above expression, we see that there are four terms, which from left to right we'll call one, two, three and four. The third term is negligible because
$\frac{1}{2} \frac{(1-\gamma)}{(1-\beta)} \beta \ll 1$
and is, furthermore, much less than the second term. As before:
$Q=q_{s}+\lambda t$
where q_{s} is the failure to start probability, and λ_{t} is the probability of a failure during the run time Substitute Q into $\mathrm{Q}(1 / 3)$ with the simplifying assumption yields:

$$
\begin{aligned}
Q(1 / 3)= & \left(\gamma_{s} \beta_{s} q_{s}+\gamma_{r} \beta, \lambda_{t}\right)+\frac{3}{2}\left\{\left[\left(1-\beta_{s}\right) \beta_{s}\left(1-\gamma_{s}\right) q_{s}^{2}\right]+\left[\left(1-\beta_{s}\right) \beta_{r}\left(1-\gamma_{r}\right) q_{s} \lambda t\right]+\right. \\
& {\left.\left[\left(1-\beta_{r}\right) \beta_{s}\left(1-\gamma_{s}\right) q_{s} \lambda t\right]+\left[\left(1-\beta_{r}\right) \beta_{r}\left(1-\gamma_{r}\right) \lambda^{2} f^{2}\right]\right\}+\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda t\right]^{3} }
\end{aligned}
$$

As before, we can see that the first term represents the common cause failure rate, and the second tern represents the independent failure rate. If we examine the fault tree for the sequence 7 LOV with the initiating L0 state, then by analysis at the basic event level, the probability of the component failures in the sequence can be expressed as:
$P(1,2,3)=P(1 I F) P(2 I F) P(3 I F)+P(C C F)+P(1 L O) P(2 I F) P(3 I F)+\cdots$
where IF, CCF and LO where defined previously as independent failures, common cause failure. and own leak induced failure. Since we are only concerned about independent and common cause failures, we will ignore the third and remaining terms as being inapplicable to the determination of the common cause failure rate and the independent failure rate. If the independent failure rates are the same for all APU units, then the previous two expressions can be combined as:

$$
\begin{aligned}
P(C C F)= & \gamma_{s} \beta_{s} q_{s}+\gamma_{r} \beta_{r} \lambda t+\frac{3}{2}\left\{\left[\left(1-\beta_{s}\right) \beta_{s}\left(1-\gamma_{s}\right) q_{s}^{2}\right]+\left[\left(1-\beta_{s}\right) \beta_{r}\left(1-\gamma_{r}\right) q_{s} \lambda t\right]+\right. \\
& {\left.\left[\left(1-\beta_{r}\right) \beta_{s}\left(1-\gamma_{s}\right) q_{s} \lambda t\right]+\left[\left(1-\beta_{r}\right) \beta_{r}\left(1-\gamma_{r}\right) \lambda^{2} t^{2}\right]\right\} } \\
P(I F)= & {\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda t\right] }
\end{aligned}
$$

Sequence 11

In this sequence, two APU units fail, and since the event is undetected, no distinction is made as to which two have failed. System failures are thus defined as:
$Q(1 / 3)=3 Q_{2}+3 Q_{1}^{2}$

As before, the failures are defined as:

$$
\begin{aligned}
& Q_{1}=(1-\beta) Q \\
& Q_{2}=\frac{1}{2}(1-\gamma) \beta Q
\end{aligned}
$$

Since Q represents the failures due to start and run failures, it should be rewritten as
$Q=q_{s}+\lambda t$
where q_{s} is the failure to start probability, and λt is the probability of a failure during the run time If we substitute into $Q(1 / 3)$ for Q_{1}, Q_{2} and Q, then the equation for failures becomes:

$$
Q(1 / 3)=\frac{3}{2}\left[\left(1-\gamma_{s}\right) \beta_{s} q_{s}+\left(1-\gamma_{r}\right) \beta_{r} \lambda t\right]+3\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda_{t}\right]^{2}
$$

As before, we can see that the first term represents the common cause failure rate, and the second tern represents the independent failure rate. If we examine the fault tree for the sequence 11 LOV with the initiating LO state, then by analysis at the basic event level, the probability of the component failures in the sequence can be expressed as
$P(2$ fail $)=P(1 I F) P(2 I F)+P(1 I F) P(3 I F)+P(2 I F) P(3 I F)+P(C C F)+P(2 I F) P(3 L O)+\cdots$
where IF, CCF and LO where defined previously as independent failures, common cause failure. and own leak induced failure. Since we are only concerned about independent and common cause failures, we will ignore the fifth and remaining terms as being inapplicable to the determination of the common cause failure rate and the independent failure rate. If the independent failure rates are the same for all APU units, then the previous two expressions can be combined as:

$$
\begin{aligned}
& P(C C F)=\frac{3}{2}\left[\left(1-\gamma_{s}\right) \beta_{s} q_{s}+\left(1-\gamma_{r}\right) \beta_{r} \lambda t\right] \\
& 3 P(I F)^{2}=3\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda t\right]^{2}
\end{aligned}
$$

If we reduce the independent failure rate probability, we get:

$$
P(I F)=\left[\left(1-\beta_{s}\right) q_{s}+\left(1-\beta_{r}\right) \lambda t\right]
$$

Sequence 12

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for IL0 sequence 7 .

Sequence 16

This sequence occurs when APU/HYD systems 1 and 2 or 1 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 4.

This sequence also models the remaining two APU units developing a common cause leak, given the initial leak in one unit "As described for OK sequence 21 , the formula for common cause leakage is given by
$P(C C F)=\gamma_{L} \beta_{L} \lambda_{l .} t+\frac{2}{2}\left(1-\beta_{l .)} \beta_{l .}\left(1-\gamma_{L}\right) \lambda_{L}^{2} t^{2}\right.$
Here, $\lambda_{2} t$ is the probability of the initial state, LO. So, since the conditional probability of developing the common cause leak is multiplied against the initial state probability, and given that the first term in the equation is by far the dominant factor, the common cause conditional probability should be entered as
$P(C C F)=\gamma_{L} \beta_{L}$

Sequence 18

This sequence occurs when APU/HYD systems 2 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for Lo sequence 6 . The equation for a common cause leak is the same as that described for L0 sequence 16.

Sequence 19

This sequence occurs when all APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7 . The equation for a common cause leak is the same as that described for L0 sequence 16.

Sequence 23

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11. The equation for a common cause leak is the same as that described for L 0 sequence 16.

Sequence 24

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for LO sequence 7. The equation for a common cause leak is the same as that described for L0 sequence 16.

9.1.3.2 All Three APU Units Leak Hydrazine During Reentry, TAEM and Landing (LT State)

Sequence 4

This sequence occurs when APU/HYD systems 1 and 2 or 1 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 4.
${ }^{(1)} \lambda_{L}$ is the frequency of event LK in Table 9.3-1.

Sequence 6

This sequence occurs when APU/HYD systems 2 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 6 .

Sequence 7

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7 .

Sequence 11

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11

Sequence 12

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 12

9.1.3.3 All Three APU Units are OK During Reentry, TAEM and Landing (OK State)

Sequence 4

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11 .

Sequence 5

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7

Sequence 9

This sequence occurs when APU/HYD systems 1 and 2 or 1 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 4 .

This sequence also involves a common cause treatment of APU leaks. Here, we are modeling any one of the three APUs develops a leak, which is basically a 1 out of 3 system, denoted as $Q(1 / 3)$ There are three ways in which independent failures of this type can occur: $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ or Q_{7}. Rewriting those terms in the MGL format using Q_{1} for the independent failures yields the following equation for system failures:
$Q(1 / 3)=3 Q_{1}$
As before, the failures are identified as:
$Q_{1}=(1-\beta) Q$

Since Q in this case represents leakage failures over the exposure time, Q is replaced by:
$Q=\lambda_{L} t$
where λ_{L} is the leakage failure rate and t is the exposure time of the system. If we substitute into $\mathrm{Q}(1 / 3)$ for Q 1 , then the equation for failures becomes:
$Q(1 / 3)=3\left(1-\beta_{L}\right) \lambda_{l} /$
Since independent failures are the only contributors in this equation, we get:
$P(I F)=3\left(1-\beta_{L}\right) \lambda_{L} I$

Sequence 11

This sequence occurs when APU/HYD systems 2 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 6. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 12

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 16

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11. The equation for independent leaks is the same as that described for OK sequence 9 .

Sequence 17

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 21

This sequence occurs when APU/HYD systems 1 and 2 or 1 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 4.

This sequence also involves a common cause treatment of APU leaks. Here, we are modeling all three APUs develop leaks. The equations for independent and common cause failures are similar to those described for L 0 sequence 7 , but with Q defined differently as in OK sequence 9 . Omitting the algebra, the new independent and common cause failure rates can be determined by the following equations
$P(C C F)=\gamma_{L} \beta_{L} \lambda_{L} t+\frac{3}{2}\left(1-\beta_{L}\right) \beta_{L}\left(1-\gamma_{L}\right) \lambda_{L}^{2} t^{2}$
$P(I F)=\left(1-\beta_{L}\right) \lambda_{L} t$

Sequence 23

This sequence occurs when APU/HYD systems 2 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 6 . The equations for independent and common cause leaks are the same as those described for OK sequence 21

Sequence 24

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for Lo sequence 7. The equations for independent and common cause leaks are the same as those described for OK sequence 21

Sequence 28

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11. The equations for independent and common cause leaks are the same as those described for OK sequence 21 .

Sequence 29
This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7. The equations for independent and common cause leaks are the same as those described for OK sequence 21

9.1.3.4 All Three APU Units are OK During Ascent (OK State)

For the ascent phase, it is assumed that all APU units are already started, otherwise the launch sequence would not have been completed. Hence, Q is now defined as:
$Q=\lambda t$

Sequence 4

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are similar to those described for L0 sequence 7, but with Q defined differently. Omitting the algebra, the new independent and common cause failure rates can be determined by the following equations:
$P(I F)=\left(1-\beta_{r}\right) \lambda t$
$P(C C F)=\gamma_{r} \beta_{r} \lambda t+\frac{3}{2}\left(1-\beta_{r}\right) \beta_{r}\left(1-\gamma_{r}\right) \lambda^{2} t^{2}$

9.1.3.5 At Least One APU Unit is Leaking Hydrazine During Ascent (LK State)

Sequence 6

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for OK sequence 4 . The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 7

This sequence occurs when one APU unit has an undetected leaks. The equation for independent leaks is the same as that described for OK sequence 9

Sequence 12

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for OK sequence 4 . The equation for independent leaks is the same as that described for OK sequence 9

Sequence 16

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for OK sequence 4 . The equations for independent and common cause leaks are the same as those described for OK sequence 21 .

Sequence 17

This sequence occurs when all three APU units have undetected leaks. The equations for independent and common cause leaks are the same as those described for OK sequence 21

Sequence 20

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for OK sequence 4 . The equations for independent and common cause leaks are the same as those described for OK sequence 21 .

9.1.3.6 MGL Parameters

The following point estimates are generic over all components and all failure modes. They were developed as part of a recent effort funded by EPRI to completely automate the process of analyzing common cause failures in PRAs. The software is available through Boyer Chu at EPRI. This recent effort was based on previous data development and MGL method development found in EPRI INP 3967 (1985), NUREG/CR-4780 (1988), and NUREG/CR-5801 (1993).

For information on methods and procedures for common cause failure you can refer to NUREG/CR-4780 (1988) and NUREG/CR-5801 (1993).

APU component failure rates are generally within the variability range of the generic database from which the Beta and Gamma factors are derived. We believe, therefore, that these are an indication of future failure rates of the APU, and the generic factors apply to the APUs.

We also used the generic data for common cause hydrazine leakage. We have found six leaks (see Section 9.2.2.6). Two of the leaks happened in the same mission (STS-9) for a common cause (carbonization and stress cracking of the injector). The Beta factor could be estimated as $1 / 3$ (3 of 6). However, we know that the manufacturing process has been altered to reduce the likelihood of this cause. There has also been an effort to reduce the exposure of the nozzles to hydrazine between missions. We have used, therefore, a generic Beta factor of 0.1 instead of the
data driven Beta factor of $1 / 3$. We see no justification to apply a Beta factor less than indicated by the generic level.

9.1.4 Equations Graphed in Fault Tree for Illustration

As an example of how the independent failure rate and common cause failure rate equations developed in the previous section are applied, see Figure 9.1-1. In the figure is a simple fault tree that shows the sequence 4 LOV for the ascent phase in which no hydrazine leaks have occurred.

Figure 9.1-1: Fault Tree for LOV Sequence 4 for an OK State During Ascent

For the LOV to occur. all three APU/HYD systems must fail. System failures can occur independently, or as common cause failures. These failure rates were determined from the total failure rate using the Multiple Greek Letter method previously described, and are shown under the basic events to which they pertain

From before, we defined $\mathrm{P}(\mathrm{CCF})$ and $\mathrm{P}(\mathrm{IF})$ as:
$P(I F)=\left(1-\beta_{r}\right) \lambda t$
$P(C C F)=\gamma_{r} \beta_{r} \lambda t+\frac{3}{2}\left(1-\beta_{r}\right) \beta_{r}\left(1-\gamma_{r}\right) \lambda^{2} t^{2}$

9.2 Prior Distribution for Model

The priors used in the assessment of P (IF) came from a previous study (McDonnell Douglas Astronautics Company Engineering Services, Space Shuttle Probabilistic Risk Assessment Proof-ofConcept Study Volume III: Auxiliary Power Unit and Hydraulic Power Unit Analysis Report, paper WP-VA88004-03, 1987). As described previously, the priors were updated at the system level with observed Shuttle in flight failures

9.2.1 Inputs Needed to Develop Priors

The study performed in 1987 was done at a component level; i.e., the failure rates of the components in the system were calculated, and no quantification was done on the system level. This study has defined basic events on the system level in order to have such information for future decision-making. Two prior distributions, the failure to start on demand and the run failure rate. were estimated using the component level data.

The fault tree in Figure 9.2-1 depicts the component failures that most contribute to a system failure to run. These components failure rates were agglomerated to obtain a prior distribution for APU system failure to run (events, ID, IF and IS).

Similarly, Figure 9.2-2 depicts a fault tree in which any of the component failures may cause a failure to start condition. These component failure rates were agglomerated for the start contribution of event IS

The 1987 study performed a detailed fault tree for turbine overspeed. Quantification of that tree showed that four events dominated the failure probability. These are shown in a simplified fault tree in Figure 9.2-3.

Figure 9.2-1: Fault Tree for APU/HYD/WSB Run Failures

Figure 9.2-2: Fault Tree for APU/HYD/WSB Start Failures

Figure 9.2-3: Fault Tree for Turbine Overspeed Failures

9.2.2 Output Distributions for Priors

9.2.2.1 APU Failure to Run

The first prior calculated is that for an APU to fail to run. Table 9.2-1 lists the component failures frequency distributions that were in the model for APU subsystem run failures

Fanlure	Mean-Dist	5th percentile	Median	95th percentile	Ref. (1)
Primary Valve Fails Closed When Pulsing	+.481E-03	$3.494 \mathrm{E}-04$	$2.404 \mathrm{E}-03$	$1.225 \mathrm{E}-02$	1
Isol. Valve Plugs (Contammation) When Open	$1.086 \mathrm{E}-106$	$4.681 \mathrm{E}-08$	$+343 \mathrm{E}-07$	$3.875 \mathrm{E}-06$	1
Magnetic Pickup Unit Fails Low	$2.240 \mathrm{E}-03$	$1.747 \mathrm{E}-04$	$1.202 \mathrm{E}-03$	$6.127 \mathrm{E}-03$	1
Fucl Pump Fails To Run	$7.685 \mathrm{E}-05$	$2.791 \mathrm{E}-06$	$2.887 \mathrm{E}-05$	$2.797 \mathrm{E}-04$	1
Lube Oil Pump Fails To Run	$7.685 \mathrm{E}-05$	$2.791 \mathrm{E}-06$	$2.887 \mathrm{E}-05$	$2.797 \mathrm{E}-04$	1
Lube Oil System Loss Of Flou	$2.664 \mathrm{E}-03$	$9.334 \mathrm{E}-05$	$9.698 \mathrm{E}-04$	$9.681 \mathrm{E}-03$	1
Gas Generator Fails To Run	$1.436 \mathrm{E}-04$	$9.020 \mathrm{E}-07$	$2.467 \mathrm{E}-05$	$+429 \mathrm{E}-14$	1
Turbine Fails To Run	$6.041 \mathrm{E}-04$	$2.722 \mathrm{E}-05$	$2.350 \mathrm{E}-04$	1837E-03	1
Gearbox Fails To Run	$2.628 \mathrm{E}-05$	$9.323 \mathrm{E}-07$	9.672E-06	$9651 \mathrm{E}-05$	1
Fuel Inline Filter Plugs	7.959E-06	$2.799 \mathrm{E}-07$	2.907E-06	$2.894 \mathrm{E}-05$	1
Fuel Pump Filter Plugs	$2.040 \mathrm{E}-04$	$2.722 \mathrm{E}-06$	5.002E-05	$6507 \mathrm{E}-104$	1
Failure Of Electric Put To Secondary Valves	$4.926 \mathrm{E}-05$	$9.231 \mathrm{E}-07$	$1.357 \mathrm{E}-05$	$1.866 \mathrm{E}-04$	1
HYD Accumulator Fails To Run	$2.664 \mathrm{E}-05$	$1.0 \mathrm{E}-06$	$1.0 \mathrm{E}-05$	$1.0 \mathrm{E}-04$	2
HYD Reservoir Fails To Run	$2.664 \mathrm{E}-05$	$1.0 \mathrm{E}-06$	$1.0 \mathrm{E}-05$	$10 \mathrm{E}-04$	2
HYD Line Filter Plugs	$7.840 \mathrm{E}-06$	6.0E-06	$7.746 \mathrm{E}-06$	$10 \mathrm{E}-05$	3
HYD Relief Valve Opens Spuriously	$1.212 \mathrm{E}-05$	$3.0 \mathrm{E}-06$	9.487E-06	$3.0 \mathrm{E}-05$	5
HYD Main Pump Fails To Run	$4.040 \mathrm{E}-05$	$1.0 \mathrm{E}-05$	3.162E-05	$1.0 \mathrm{E}-04$	2.5
HYD Circulation Pump Fails To Run	1.127E-04	7.0E-06	$5.292 \mathrm{E}-05$	4.0E-0.4	2,3
HYD Fluid Leak (Catastrophic)	$4.332 \mathrm{E}-04$	$5.0 \mathrm{E}-06$	$5.0 \mathrm{E}-05$	$5.0 \mathrm{E}-04$	1,3,4
Water Spray Boiler Fails To Cool	$3.385 \mathrm{E}-05$	$1.0 \mathrm{E}-0.4$	$2.236 \mathrm{E}-05$	$5.0 \mathrm{E}-06$	2.5
Total Fail To Run/Hr	$9.150 \mathrm{E}-03$	$3.059 \mathrm{E}-03$	$6.956 \mathrm{E}-03$	$2.174 \mathrm{E}-02$	

(1)

1. 1987 APU Study \quad 6. OREDA Shuttle histor of 0 failures is 882 demands in a maximum
2. NPRD-95 5. WASH-1 400 entropy \log normal: $882=(6 \mathrm{APU}$ Starts/Missions +4 HPU starts
3. IEEE-STD-500 +4 HPU Hot Fire Tests) $\times 63$

Table 9.2-1: Component Failures Leading to APU System Run Failure (Failures/hour)

In order to calculate the distribution of the sum of these failures, an @Risk Monte Carlo simulation (20,000 trials) in a Lotus 1-2-3 spreadsheet was used. A graphical representation of this distribution can be seen in Figure 9.2-4

9.2.2.2 APU Failure to Start

In Table 9.2-2, various component failures are listed that will lead to a failed-start condition. Once again, to calculate the failed-start distribution based on the sum of the various component failures, an @Risk Monte Carlo simulation (20,000 trials) in a Lotus 1-2-3 spreadsheet was used

Figure 9.2-4: @Risk Simulation Results for Failure to Run Frequency

Failure	Mean-Dist	5th percentile	Median	95th percentule	Reference
Bypass Valve Fails To Open (ni Demand	+689E-(14	$1.690 \mathrm{E}-105$	1.730E-04	$1.276 \mathrm{E}-03$	1
Common Cause Heater Train 13 Fanlure	$65 \mathrm{E}-105$	+6E-006	$3.6 \mathrm{E}-05$	1.5E-04	1
Common Cause Lube Oil Heater Sram Failure	2.1E-05	5.3E-07	$7.8 \mathrm{E}-06$	$5.7 \mathrm{E}-05$	1
Fuel Pump Fails To Start	1.278E-05	$9.139 \mathrm{E}-08$	$2.138 \mathrm{E}-06$	$+702 \mathrm{E}-05$	1
Lube Oil Pump Fails To Start	1.278E-05	9 139E-08	2.138E-06	$+702 \mathrm{E}-05$	1
Turbine Fails To Start	1.278E-05	$9.139 \mathrm{E}-08$	$2.138 \mathrm{E}-106$	$+702 \mathrm{E}-05$	1
Gearbox Fails To Start	1.278E-05	$9.139 \mathrm{E}-08$	$2.138 \mathrm{E}-06$	$4702 \mathrm{E}-05$	1
Electric Phut To Prmary Valve Farls	$6.2 \mathrm{E}-0.4$	$1.3 \mathrm{E}-05$	$2.0 \mathrm{E}-04$	$1.9 \mathrm{E}-03$	1
Electric Power To Secondar Value Fails	$6.207 \mathrm{E}-104$	$1.329 \mathrm{E}-05$	$2.045 \mathrm{E}-04$	$1879 \mathrm{E}-03$	1
MPU Fails Low	$7.409 \mathrm{E}-04$	$3.447 \mathrm{E}-05$	$3.260 \mathrm{E}-04$	$2.032 \mathrm{E}-03$	1
HYD Main Pump Fails To Start	+ 0 E-04	+.683E-05	$2.426 \mathrm{E}-04$	1.257E-05	6
HYD Accumulator Has No Pressure At Start	+475E-03	$1.68 \mathrm{E}-04$	$1.680 \mathrm{E}-03$	1.68E-02	2^{11}
HYD Reservoir Low/No Fluid At Start	$+475 \mathrm{E}-03$	$1.68 \mathrm{E}-104$	1.680E-03	$1.68 \mathrm{E}-02$	$2^{1 \prime}$
Total Failures To Start	1.205E-02	3.322E-03	7.949E-03	3.342E-02	

"' Converted hourly fallure rate to a start failure by multiplication by exposure time (168 hours)

1. 1987 APU Study
2. OREDA
3. NPRD-95 5. WASH-1400
4. Shuttle history of 0 failures is 882 demands in a maximum entropy log normal: $882=16$ APU Starts/ Missions +4 HPU Starts + HPU Hot Fire Tests) $\times 63$

Table 9.2-2: Component Failures Leading to APU System Start Failure (Failures/Demand to Start)

The @Risk Monte Carlo simulation (20,000 trials) for the failure to start probability distribution can be seen in Figure 9.2-5.

Figure 9.2-5: $@$ Risk Simulation Results for Failure to Start Frequency

9.2.2.3 Turbine Overspeed and Hub Failure at Normal Speed

Figure 9.2-3 depicted the fault tree for a turbine overspeed condition which is an initiating event (TU). Prior distributions were obtained from the 1987 APU study. The following Table 9.2-3 provides the priors and the in-flight shuttle data used for the likelihood function. The posterior failure rates of these various components are listed in Table 9.2-5. To calculate the turbine overspeed frequency distribution based on fault tree logic, @Risk Monte Carlo simulation (20,000 trials) in a Lotus 1-2-3 spreadsheet was used.

Event	Prior (Log Normal) 5 Percentile	Prior (Log Normal) 95 Percentile	Shuttle Specific Data
PASVC	$8 \times 10-5 / \mathrm{D}$	$7 \times 10-3 / \mathrm{D}$	$1 / 378$ Demands ${ }^{(1)}$
TASVE	$1 \times 10-4 / \mathrm{hr}$	$1 \times 10-2 / \mathrm{hr}$	$0 / 0^{(2)}$
TAMIL	$5 \times 10-5 / \mathrm{hr}$	$5 \times 10-3 / \mathrm{hr}$	$1 / 796 \mathrm{hrs}^{(3)}$
PAPVE	$1 \times 10-4 / \mathrm{hr}$	$1 \times 10-2 / \mathrm{hr}$	$1 / 292 \mathrm{hrs}^{(1)}$

[^1]Table 9.2-3: Priors and In-Flight Shuttle Data Used for the Likelihood Function

Shuttle in-flight failures used in the above table are described below in Table 9.2-4:

$\begin{aligned} & \mathrm{Car} \\ & \text { No } \end{aligned}$	Date	Flight No.	$\begin{array}{\|l} \hline \text { APU } \\ \text { No. } \\ \hline \end{array}$	Basic Event	Description
AC8511-01	08/06/84	41B	3	PASVC	GGVM Shut off valve leaking at a rate of 248 scim due to a broken poppet valve seat
AC0055-01	07/24/81	1	2	TAMIL	MPU \#2 was inopr; MPU resistance measured open
IFA STS-31-01	04/24/91	STS-31	1	PAPVE	Primary pulse control valve chipped (valve sent failure) allowing hydrazine to continue flowing. Secondary valve took over. Launch scrubbed.

Table 9.2-4: APU Turbine Component Failure Descriptions

The @Risk Monte Carlo simulation (20,000 trials) for the failure to start probability distribution can be seen in Figure 9.2-6

Failure	Mean-Dist	5th percentile	Median	95th percentule
Primary Valve Fails Open During Pulsing	$1.477 \mathrm{E}-03$	$6.852 \mathrm{E}-05$	$6.500 \mathrm{E}-04$	$+054 \mathrm{E}-03$
Magnetic Pickup Unit Fails Low	$2.240 \mathrm{E}-03$	$1.747 \mathrm{E}-04$	$1.202 \mathrm{E}-03$	$6.127 \mathrm{E}-03$
Secondary Valve Fails Open During Pulsing	$9.602 \mathrm{E}-04$	$5.032 \mathrm{E}-05$	$4.484 \mathrm{E}-04$	$2.685 \mathrm{E}-03$
Secondary Valve Fails To Close On Demand	$2.631 \mathrm{E}-03$	$2.305 \mathrm{E}-04$	$1.504 \mathrm{E}-03$	$7.500 \mathrm{E}-03$
Total Probability For Turbine Overspeed/Flight	$2.518 \mathrm{E}-04$	$6.733 \mathrm{E}-06$	$7.530 \mathrm{E}-05$	$9.403 \mathrm{E}-04$

(1) All APUs included

Table 9.2-5: Posterior Failure Rate Data for Component Failures
Leading to Turbine Overspeed

Figure 9.2-6: @Risk Simulation Results for Turbine Overspeed Frequency

Turbine hub failure at normal speed is not a significant contributor to the probability of this event. APU hub cracking is mapped and it has been shown by analysis (at JSC) that the likelihood of blade cracking propagating to a hub crack is very small. Furthermore, experiments on hub breakup show that even a notched or drilled hub requires a speed significantly above nominal to induce hub failure. NPRD-95 has a value of turbine failure of about $10-5 / \mathrm{hr}$. for all modes combined, not just hub failure. Therefore, hub failure at normal speed is at least an order of magnitude less in probability then turbine overspeed.

9.2.2.4 Other Prior Distributions

The remaining prior distributions were taken directly from the 1987 study, were defined by MGL analysis, or were a result of our assessment. tll of the prior distributions are in Table 9.2-8. The two letter descriptions were discussed previously in Table 9.1-1

Some events, such as an APU OK state, are not in this table since they are not incorporated into the quantification of the scenarios. For some inputs only a mean value was estimated

9.2.2.5 Large Exhaust Gas or Hydrazine Leak (LL)

This prior distribution was generated by breaking the event down into its three major contributors: tank/pipe rupture; hot gas leak, and isolation valve leak/rupture. For both the tank/pipe rupture and hot gas leak modes, a failure rate range based on variability was defined from Nonelectronic Parts Reliability Data 1995 (NPRD-95). The median value from this range was multiplied by the 1.5 hour total APU run time for ascent and descent, and times 3 for the number of APUs, to get a point estimate failure probability for the system per flight.

A failure rate range was also defined for the isolation valve leak from NPRD-95. In this case, the range was treated as defining the 5th and 95 th percentiles of a lognormal distribution which was used as the prior in a Bayesian update. The evidence data consisted of two incidents in which cracks were found in APU and HPU isolation valves which did not propagate to a through crack of the valve casing that separates the flow path from the solenoid cavity. The concern here is that when hydrazine comes in contract with the solenoid it could decompose and rupture the isolation valve causing an unisolatable leak. These were not "hard" failures, but are valid evidence of failure potential. They were treated, therefore, by a near miss methodology as follows.

The solution was to treat the data according to the probability that these incidents might propagate into "hard" failures on other flights, where the circumstances might be different. This is a matter of judgment on the part of the analyst. In this case, since these incidents were determined to have a low probability of propagating to "hard" failures, the evidence was treated as having a 5% probability of representing 1 failure in 72000 hours (a lower bounding estimate of the total exposure time for APU and HPU isolation valves), and a 95% chance of representing zero failures in 72000 hours. The overall posterior distribution was then generated by taking a weighted average (according to the previously determined weights) of the two possible posterior distributions.

The following Table 9.2-6 shows the prior distributions.

	5 Percentile	95 Percentile	Exposure Time
Tank/Pipe Replace (prior only)	$10-9 / \mathrm{hr}$.	$10-7 / \mathrm{hr}$	$63 \times 3 \times 1.5 \mathrm{hrs}$.
Hot Gas Leak (prior only)	same	same	same
Isolation Valve (prior)	$1 \times 10-7 / \mathrm{hr}$	$10-7 / \mathrm{hr}$.	72000 hrs.
Isolation Valve (updated)	$1.2 \times 10-9 / \mathrm{hr}$	$8 \times 10-8 / \mathrm{hr}$.	

Table 9.2-6: Distributions for Large Hydrazine or Exhaust Gas Leak

The data used in the isolation valve analysis is anecdotal. We are aware of a crack discovered in an APU isolation valve before STS-1. We are also aware of a recent crack found in an HPU, that when tested post-flight, leaked hydrazine into the solenoid cavity

9.2.2.6 Leak in One APU Unit (LK)

A Bayesian analysis was not performed for hydrazine leaks. Shuttle in-flight experience was used to generate a point estimate of the rate at which hydrazine leaks develop. This rate was based on the data in Table 9.2-7, showing 6 leaks in 31752 hours of exposure time (63 flights $\times 3$ APUs x assumed average flight duration of 7 days $\times 24$ hours/day). To generate a probability distribution, the point estimate was assumed to be the mean value of a maximum entropy ($\sigma=1.0$) lognormal distribution.

This assessment was based on a number of assumptions. We assume that the APUs are leak checked and only launched if found acceptable. Hydrazine leaks may occur at any time during the mission. Exposure to hydrazine may cause leaks even without the system operating. However, the leaks may only be revealed when the system is operating.

CAR	IFAS	Flight	Date	APU \#	Description
**		1CR	04/12/81	1	Hyd. leak from fuel pump cover
**		ICR	04/12/81	2	Hyd. leak at fuel pump inlet fitting
09F012-01		STS-9	11/28/83	1	Hyd. leak from cracked fuel injector tube *
09F013-01		STS-9	11/28/83	2	Hyd. leak from cracked fuel injector tube *
	X	STS-51F	07/29/85	1	Hyd. leak into gearbox ***
	X	STS-45	03/24/92	1	Hyd. leak into gearbox ****
* APU failed due to the hydrazine leak ** Data from APU subsystem manager database *** This leak was detected by increased pressure in the gearbox and the start of APU2 was delayed until Vrel $=10 \mathrm{k}$					
**** On thi	same m X	$\begin{gathered} \text { ission APL } \\ \text { STS-45 } \end{gathered}$	2 leaked oi $03 / 24 / 92$	/ GN2 fro 2	fom the gearbox to the aft compartment Lube oil / GN2 leak from gearbox through turbine seal

Table 9.2-7: Hydrazine Leakage History on STS

The APUs contain many potential leakage sites. The data simply indicates that some have already occurred. Others have yet to become active Because of this, we do not necessarily view corrective actions to individual leakage sites as reducing the predicted frequency of leaks. Rather. we treat past leaks as indicative of future rates

9.2.2.7 Leak Detected Confirmed (LD and LA)

The first four leaks above were not detected during the mission. The last two leaks were detected by increased pressure in the gearbox. We assess the probability of leak detection, and APU delayed start, as 1 in 6 based on this data. Since no action has ever been taken on leaks during ascent, this indicated zero probability of leak detection on ascent. The use of zero detected and confirmed leaks during ascent avoids the paradox associated with a groundrule of this study. The groundrule is that aborts are assumed to be successful. Therefore, a failure that leads to an APU induced abort actually reduces the calculated risk. Flight rules call for an APU shutdown and an MDF abort if a single hydrazine leak is detected and confirmed. Two such leaks lead to a PLS abort. To avoid having to treat leaks as successes, we assume no detection on ascent.

9.2.2.8 Own Leakage/Other Leakage Induced Failures (LF and LO)

These prior distributions were defined through a data based assessment utilizing the 1987 study, PRACA records, hazards analyses and an understanding of the phenomenology of the failure modes. Specifically, the mean value for own leakage induced failure during descent was defined from the data shown in Table 9.2-7, indicating 2 APU failures in 6 leaks. The mean values for the other three conditional probabilities were then derived by maintaining the ratios between the values from the 1987 study and scaling them to the 0.3 defined for LF (des). This produced values of 0.2 for LO (des), 0.1 for LF (asc) and 0.008 for LO (asc).

An assessment of the applicable distributions was then made for the four probabilities. In the case of LF (des), an upper 4σ bound of 0.5 was defined for the distribution, assuming a normal distribution. For LF (asc), an upper 4σ bound of 0.2 was defined, again assuming a normal distribution. And for LO (asc), given the small value of the mean (0.008), a lognormal distribution was judged to be more applicable, as greater uncertainty is expected for small defined values. For this distribution, an Error Factor of 5 was assumed. For the normal distributions, values below zero should be truncated when using the defined distributions

In the case of LO (des), data is available for a Bayesian update of the assessed value, so the distribution needs to be defined much broader than for the other cases (where the posterior was being defined directly), in order to overlap the likelihood function of the evidence. The prior distribution was defined using 0.2 as the mean value for a maximum entropy ($\sigma=1.0$) lognormal distribution. This was updated with evidence of 0 APU failures in 12 APUs exposed to other units leaking. Note the following for each leak: There are 2 opportunities for another APU to fail owing to the leak and 1 opportunity for itself to fail. For 6 leaks, there are $6 \times 2=12$ opportunities for failure of another APU owing to the leak. None has occurred. The mean value of LO (des) drops to 0.07 given this evidence. The result of the Bayesian analysis is shown graphically in Figure 9.2-7.

9.2.2.8.1 Sensitivity Treatment of APU 3 Failures

The previous section described the baseline treatment of these conditional probabilities. In the case of APU failure due to another units leakage (LO), it could be argued that APU 3 needs to be treated differently. APU 3 is physically located about 6 ' (on the starboard side) from the other two units, which are only a few inches apart. Thus, we believe that there is a lesser chance of APU 3 failing due to leakage in unit 1 than an APU 2 failure.

Our fault tree treatment is conservative in that each APU is considered "identical". It does not capture "full credit" for cases in which the actual APU 3 is leaking, which would lead to reduced LO conditional probabilities for both of the other units.

One way of capturing this logic would be to drop the LO conditional probability to a lower value for all of the APU 3 terms In order to illustrate the affect this would have on the results, two of the most significant leakage fault trees have been quantified, at the mean value, for these two cases. For the baseline case

- OK Initial State on Entry. Seq. 16 4.159E-04
- OK Initial State on Entry, Seq. 17 1.700E-04

For the sensitivity case, using as an example 0.01 as the unit 3 LO (des) probability:

- OK Initial State on Entry, Seq. 16
- OK Initial State on Entry, Seq. 17
$2.479 \mathrm{E}-04$
$6.214 \mathrm{E}-05$

Figure 9.2-7: Bayesian Analysis Result for LO (Des)

9.2.2.9 Unsuccessful Single APU/HYD Unit Reentry, TAEM and Landing (UL)

This prior distribution was generated according to judgment weighted by several factors. First, such landings are regularly simulated successfully in training. To the extent that the simulator is successful in characterizing the vehicle response given a single APU/HYD unit, this gives credence to a very high probability of success. However, this is tempered by the fact that a single APU/HYD unit landing is not certified by the program. Unfavorable weather conditions coupled with slower control rates could potentially indicate a much higher probability of a failed landing. The assessment team has translated this into a range of 80% to 100% for a successful landing. It was also determined that the lack of a strong conviction for any values within this range warranted a uniform distribution for this range.

ID	$\beta \delta$-factor	PRIOR (/hr or /demand)			
		Mean	Median	5th	95th
CE	N/A	$\begin{gathered} 0.5(\mathrm{LL}) \\ 0.88(\mathrm{TU}) \end{gathered}$			
CF	Calculated	using applicable	MGL method	formulas	
CL	Calculated	using applicable	MGL method	formulas	
CO	N/A	1			
CS	Calculated	using applicable	MGL method	formulas	
HB	N/A	0.9			
ID	N/A	$9.150 \mathrm{E}-03 / \mathrm{hr}$	$6.956 \mathrm{E}-03 / \mathrm{hr}$	$3.059 \mathrm{E}-03 / \mathrm{hr}$	$2.174 \mathrm{E}-02 / \mathrm{hr}$
IF	N/A	$9.150 \mathrm{E}-03 / \mathrm{hr}$	$6.956 \mathrm{E}-03 / \mathrm{hr}$	$3.059 \mathrm{E}-03 / \mathrm{hr}$	$2.174 \mathrm{E}-02 / \mathrm{hr}$
IS	N/A	$\begin{gathered} 1.205 \mathrm{E}-02 / \mathrm{start} \\ 9.150 \mathrm{E}-03 / \mathrm{hr} \end{gathered}$	$\begin{gathered} 7.949 \mathrm{E}-03 / \mathrm{start} \\ 6.956 \mathrm{E}-03 / \mathrm{hr} \end{gathered}$	$\begin{gathered} \hline 3.322 \mathrm{E}-03 / \mathrm{start} \\ 3.059 \mathrm{E}-03 / \mathrm{hr} \end{gathered}$	$\begin{gathered} 3.342 \mathrm{E}-02 / \mathrm{start} \\ 2.174 \mathrm{E}-02 / \mathrm{hr} \end{gathered}$
LA	N/A	$\begin{gathered} 0.0 \text { (asc) } \\ 0.1667 \text { (des) } \end{gathered}$			
LD	N/A	$\begin{gathered} 0.0 \text { (asc) } \\ 0.1667 \text { (des) } \end{gathered}$			
$\begin{aligned} & \text { LF } \\ & \text { OS } \end{aligned}$	N/A see posterior	1.0E-01 (asc)	1.0E-01 (asc)	6.0E-02 (asc)	1.4E-01 (asc)
LK	N/A	$1.890 \mathrm{E}-04 / \mathrm{hr}$	$1.152 \mathrm{E}-04 / \mathrm{hr}$	$2.224 \mathrm{E}-05 / \mathrm{hr}$	5.971E-04/hr
LL	N/A	$2.8 \mathrm{E}-05$			
$\begin{aligned} & \text { LO } \\ & \text { LS } \end{aligned}$	N/A	$8.0 \mathrm{E}-03$ (asc) 2.0E-1 (des)	$\begin{gathered} 5.0 \mathrm{E}-03 \text { (asc) } \\ 1.2 \mathrm{E}-01 \end{gathered}$	$\begin{gathered} 9.9 \mathrm{E}-04 \text { (asc) } \\ 2.3 \mathrm{E}-02 \end{gathered}$	$\begin{gathered} \hline 2.5 \mathrm{E}-02(\mathrm{asc}) \\ 6.36-01 \\ \hline \end{gathered}$
LU	N/A	$\begin{gathered} 1.0 \text { (asc) } \\ 0.8333 \text { (des) } \end{gathered}$			
LZ	N/A	$\begin{gathered} 1.0 \text { (asc) } \\ 0.8333 \text { (des) } \end{gathered}$			
SI	N/A	$\begin{gathered} 1.0(\mathrm{LL}) \\ 0.88(\mathrm{TU}) \\ \hline \end{gathered}$			
SR	N/A	0.98795/start	0.99205/start	0.99668/start	96658/start
TU	N/A	$2.518 \mathrm{E}-04$	$7.530 \mathrm{E}-05$	6.733E-06	$9.403 \mathrm{E}-04$
UL	N/A	0.1	0.1	0.01	0.19

Table 9.2-8: Prior Probability Distributions

9.3 Posterior Distributions for APU/HYD/WSB Failure to Run and Start (Ascent and Descent

Posterior distributions were determined by updating the prior distributions with available data using Bayes' Theorem. Data points not only include failures of the APU and HYD systems, but also the Water Spray Boiler (WSB). WSB failures, which lead to an APU shutdown and subsequent hydraulic loss, were not examined in the previous 1987 study, so data was extracted for these failures from all Shuttle flights. Other data points pertaining to these failures were taken from postChallenger flights (1988) to STS-65 (flight 63, 7/8/94).

9.3.1 Water Spray Boiler Failures Used in the Analysis

9.3.1.1 03-23-1982 STS-3

WSB 3 freeze-up during ascent. APU temperature message at lift-off plus 4 minutes 23 seconds reported lube oil temperature climbing. Controller B was then selected, but the temperature continued to rise. APU 3 shutdown at liftoff plus 8 minutes, and the right main engine went into hydraulic lock-up. After ascent, at lift-off plus one hour, controller A was then selected; both controllers appeared to be working properly. The maximum APU 3 lube oil temperature was $330^{\circ} \mathrm{F}$, and the maximum bearing temperature was between 355 and $360^{\circ} \mathrm{F}$. FCS checkout tested both controllers, and both were 100% nominal. This situation was also seen on STS-1 and 2 .

9.3.1.2 08-02-1991 STS-43

WSB 2 failed to provide cooling to the auxiliary power unit 2 lube oil throughout the mission. APU 2 (serial number 208) has been involved in lube oil over temperatures during seven of its eight flights. The WSB did not cool the lube oil on controller A following ascent. The crew switched to controller B when the lube oil return temperature reached approximately $297^{\circ} \mathrm{F}$. The APU was operated an additional 1.5 minutes on the B controller, and still no cooling was observed. The APU was shutdown when the lube oil return temperature reached $323^{\circ} \mathrm{F}$. The WSB is designed to control the lube oil temperature to $250 \pm 2^{\circ} \mathrm{F}$.

An extended flight control system check-out using APU 2 was performed and the WSB was not cooling on either controller. The APU ran for 11 minutes during check-out, then was shutdown and declared lost. During descent, APU 2 was activated at terminal area energy management due to the lack of cooling. The lube oil reached $259^{\circ} \mathrm{F}$ before shutdown after wheel stop with no evidence of cooling. The spray boiler may not have had the chance to function, however, as this temperature is close to the $250^{\circ} \mathrm{F}$ control limit.

9.3.1.3 09-12-1992 STS-47

During ascent, WSB 3 (serial number 15) exhibited no cooling until just prior to the early shutdown of APU 3. The lube oil temperature reached approximately $292^{\circ} \mathrm{F}$ when the controller was switched from A to B. The lube oil temperature continued to rise to $311^{\circ} \mathrm{F}$ when the decision was made to shut down APU 3 early. Prior to APU 3 deactivation, the WSB GN2 regulator outlet pressure indicated that spraying had begun. WSB 3 continued to spray until the spray logic was turned off (1 minute 43 seconds). Steady-state cooling was never achieved on either controller since the lube oil temperature was not allowed to drop to $250^{\circ} \mathrm{F}$ prior to boiler spray logic shutdown.

APU 3 was selected to perform FCS checkout. The checkout time frame was extended to verify WSB 3 cooling performance. The extended run time demonstrated satisfactory cooling on both controllers (3 minutes 42 seconds for B, then 1 minute 47 seconds for A). WSB lube oil and hydraulic cooling performance during entry was nominal.

Spray bar freeze up remains the most likely cause of the WSB failure, although it could have resulted from spray valve or controller failures.

9.3.1.4 01-13-1993 STS-54

During ascent, WSB 3 (serial number 15) exhibited no cooling until just after the early shutdown of APU 3. The lube oil return temperature reached approximately $295^{\circ} \mathrm{F}$ when the WSB was switched from controller A to B The lube oil return temperature reached $315^{\circ} \mathrm{F}$ when the decision was made to shut down APU 3 early. After deactivation, the WSB 3 GN2 regulator pressure indicated that spraying had started. WSB 3 continued to spray until the spray logic was turned off (approximately 35 seconds). Steady-state cooling was never achieved on controller A or B.

APU 3 was selected to perform the FCS check-out. The FCS checkout time frame was extended to verify WSB cooling performance. The extended APU 3 run-time demonstrated satisfactory cooling on both controllers, with a minor overcool observed on controller A. APU performance using controller B during entry was nominal.

Spray bar freeze-up remains the most probable cause of this cooling problem. However, data analysis also indicated that the local pressure at the vent nozzle of system 3 during ascent was somewhat higher than the other two systems. This high pressure is due to the location of the system 3 vent nozzle outlet (it is farther forward than the system 1 and 2 vent nozzle outlets). System 3's pressure remains higher than the other systems for the first 80 seconds of ascent, which is believed to be a contributing factor toward the repeated freeze-up anomalies observed in system 3.

Spray bar freeze-up conditions occur when the water triple point condition is met inside the heat exchanger. In the worst case freeze-ups, it is postulated the water triple point was reached prior to MECO. By increasing the water preload, the duration of heat exchanger tube bundle/water preload contact can be increased, which will reduce the likelihood/severity of spray bar freeze-up by maintaining pressure above the water triple point past MECO. The ongoing spray bar freezeup test analysis indicates that the severity of the bar freeze-up at water triple point conditions may inversely correlate to the amount of water in the boiler. Therefore, KSC has been requested to preload WSB 3 to $5+/-0.1 \mathrm{lbs}$. of water (normal is $3.75+/-0.24 \mathrm{lbs}$.).

9.3.2 Possible Water Spray Boiler Failure

It is unknown whether or not this reported problem is an actual failure or not. For this analysis, it has not been considered as an actual data point.

9.3.2.1 04-29-1985 STS-51B

Shortly after MECO, the backup flight system indicated an APU 3 lube oil over temperature condition. The crew switched from controller A to B at a lube oil temperature of $320^{\circ} \mathrm{F}$. The temperature continued to rise for an additional 20 seconds and reached a peak of $337^{\circ} \mathrm{F}$. The crew was instructed to shutdown APU 3 to avoid reaching the lube oil temperature limit of $355^{\circ} \mathrm{F}$. The

APU 3 lube oil temperature had decreased to approximately $320^{\circ} \mathrm{F}$ at shutdown, indicating that water spray boiler controller 3B was properly controlling lube oil cooling. Post flight testing has been unsuccessful in duplicating this problem. The A controller was replaced.

9.3.3 Possible Hydraulic System Failure

9.3.3.1 02-28-1990 STS-36

Appendix C contains descriptions from PRACA records and hazards analyses of a "near-miss" failure involving a flex hose rupture in the hydraulic system.

9.3.4 Updated Posterior Distribution

The four WSB failures in Section 9.3.1 were counted as APU shutdowns. All three of these failures occurred during the ascent phase. One of these failures was permanent and caused a late restart of the APU during the entry phase, but was not counted as a failure during the reentry phase because it successfully completed its mission. For reentry, the hydraulic system rupture is counted as a possible APU/HYD unit failure in the update. The methodology for this type of update is described in section 9.2 .2 .5 , where in this case the weighting uses 50% for 1 failure and 50% for zero failures. In the data column, if no data is available (i.e., no "trials"), an N/A for not applicable is placed in the box.

The common cause failure calculations for the MGL formulas used the ID and IS values, assuming 20 minutes for ascent and 1 hour for descent. The MGL calculations also used generic β and γ values of 0.1 and 0.27 , respectively.

Table 9.3-1 lists the data and corresponding posterior probability distributions for the basic events. The means from these data distributions are used as basic event probability distribution inputs for use in SAIC's CAFTA model.

ID	Data	POSTERIOR (/hr or /demand)			
		Mean	Median	5th	95th
CE	N/A	$\begin{gathered} 0.5(\mathrm{LL}) \\ 0.88(\mathrm{TU}) \end{gathered}$			
CF	Calculated	using applicable	MGL method	formulas	
CL	Calculated	using applicable	MGL method	formulas	
CO	N/A	1			
CS	Calculated	using applicable	MGL method	formulas	
HB	N/A	0.9			
ID	4/63 hrs	$2.078 \mathrm{E}-02 / \mathrm{hr}$	$1.931 \mathrm{E}-02 / \mathrm{hr}$	$1.030 \mathrm{E}-02 / \mathrm{hr}$	$3.622 \mathrm{E}-02 / \mathrm{hr}$
IF	4/63 hrs	$2.078 \mathrm{E}-02 / \mathrm{hr}$	$1.931 \mathrm{E}-02 / \mathrm{hr}$	$1.030 \mathrm{E}-02 / \mathrm{hr}$	$3.622 \mathrm{E}-02 / \mathrm{hr}$
IS	$0 / 189$ starts 0 to $1 / 252 \mathrm{hrs}$	$\begin{gathered} 5.677 \mathrm{E}-03 / \mathrm{start} \\ 6.479 \mathrm{E}-03 / \mathrm{hr} \end{gathered}$	$\begin{gathered} 4.448 \mathrm{E}-03 / \mathrm{start} \\ 5.614 \mathrm{E}-03 / \mathrm{hr} \end{gathered}$	$\begin{gathered} 1.433 \mathrm{E}-03 / \mathrm{start} \\ 2.369 \mathrm{E}-03 / \mathrm{hr} \end{gathered}$	$\begin{gathered} 1.194 \mathrm{E}-02 / \mathrm{start} \\ 1.219 \mathrm{E}-02 / \mathrm{hr} \end{gathered}$
LA	N/A	$\begin{gathered} 0.0 \text { (asc) } \\ 0.1667 \text { (des) } \end{gathered}$			
LD	N/A	$\begin{gathered} 0.0 \text { (asc) } \\ 0.1667 \text { (des) } \end{gathered}$			
LF	N/A	1.0E-01 (asc)	$1.0 \mathrm{E}-01$ (asc)	$6.0 \mathrm{E}-02$ (asc)	$1.4 \mathrm{E}-01$ (asc)
OS	2/6 Leaks	3.0E-01 (des)	3.0E-01 (des)	$2.2 \mathrm{E}-01$ (des)	$3.8 \mathrm{E}-01$ (des)
LK	N/A	$1.890 \mathrm{E}-04 / \mathrm{hr}$	$1.152 \mathrm{E}-04 / \mathrm{hr}$	$2.224 \mathrm{E}-05 / \mathrm{hr}$	5.971E-04/hr
LL	N/A	2.8E-05			
LO	N/A	8.0E-03 (asc)	$5.0 \mathrm{E}-03$ (asc)	$9.9 \mathrm{E}-04$ (asc)	2.5E-02 (asc)
LS	0/12 Leaks	$7.0 \mathrm{E}-02$ (des)	5.3E-02 (des)	$1.4 \mathrm{E}-02$ (des)	1.6E-01 (des)
LU	N/A	$\begin{gathered} 1.0 \text { (asc) } \\ 0.8333 \text { (des) } \end{gathered}$			
LZ	N/A	$\begin{gathered} 1.0 \text { (asc) } \\ 0.8333 \text { (des) } \end{gathered}$			
SI	N/A	$\begin{gathered} 1.0(\mathrm{LL}) \\ 0.88(\mathrm{TU}) \end{gathered}$			
SR	N/A	0.99432/start	0.99555/start	0.99857/start	0.98806/start
TU	N/A	6.962E-05	$5.501 \mathrm{E}-05$	$1.974 \mathrm{E}-05$	$1.672 \mathrm{E}-04$
UL	N/A	0.1	0.1	0.01	0.19 -

Table 9.3-1: Posterior Probability Distributions

9.4 APU/HYD/WSB ANALYSIS FOR SSME MODEL

The APU failure probability assessment for the SSME model being produced at SAIC is somewhat different than that for this APU model. First, the exposure time is at most 520 seconds instead of 20 minutes Second. only 1 of the WSB failures is relevant (STS-3) for purposes of calculating engine hydraulic lockup probability.

We started with the prior distribution for IF, given in Table 9.2-6, multiplied against the 520 sec ond time period to produce a probability of failure (POF). We updated with 1 failure in 63 missions to produce a posterior. This represents the case in which the WSB failure and APU shutdown continues to be representative of how MCC and crew will react to a WSB failure. Since STS-3, other WSB failures have not resulted in a call for APU shutdown before MECO. Flight Rules indicate that APU shutdowns should occur post-MECO.

We also updated the same prior distribution for IF with 0 failures in 63 missions. This is like saying that STS-3 never happened and gives an overly optimistic assessment. An accurate assessment lies somewhere in between. We used a weighted average of each posterior where each update was given equal probability of being the correct one.

The Bayesian calculation is shown in Figure 9.4.1.
The MGL method was used to calculate the probability of loss of hydraulics for a single engine and for two engines as follows:

1 Engine Goes into Hydraulic Lockup via Hydraulic Failure During Ascent

$\mathrm{Q}=3(1-\beta) q_{\mathrm{APU}}=3(1-0.1) 1.5 \mathrm{E}-04=4 E-04$
2 Engines Go into Hydraulic Lockup via Hydraulic Failure During Ascent (First 5.6 minutes)

$$
\begin{aligned}
\mathrm{Q}= & 3 / 2(1-\gamma) \beta(336 / 520) q_{\mathrm{APL}}+3(1-\beta)^{2}(336 / 520)^{2} q_{\mathrm{APU}}^{2}= \\
& 3 / 2(1-0.27) 0.1(336 / 520) 15 \mathrm{E}-04+3(1-0.1)^{2}(336 / 520)^{2} 1.5 \mathrm{E}-04=1 \mathrm{E}-04
\end{aligned}
$$

Figure 9.4-1: APU Failures on Ascent Causing SSME Hydraulic Lockup (POF)

Event Sequence Diagram of a Large

Because of the low frequency of
severe exhaust gas leak, we have leaks. Separate categorization of the events
would insignificantly change the estimated risk.

Event Sequence Diagram for APU/HYD Turbine Overspeed
and/or Hub Failure

Fault Tree For Sequence 2 MDFU
State From OK Start Without A
Hydrazine Leak During Ascent

Fault Tree For Sequence 4 LOV
State From OK Start Without A
Hydrazine Leak During Ascent

EVENT TREE OF APU/HYD HYDRAZINE LEAK STATE DURING ASCENT
QUENCE

UMBER l | SEQUENCE |
| :--- |
| DESCRIPTION | STATE

> and is Recoverable one APU/HYD Unit has a Detected/Confirmed Leak

Fault Tree for Sequence 3: PLSR2U End State From a Hydrazine Leak During Ascent, one APU/HYD
Unit has a Detected/Confirmed Leak and is Recoverable,
Both Other APU/HYD Units Fail

$$
\begin{gathered}
\text { Fault Tree for Sequence 4: MDFU End State } \\
\text { From a Hydrazine Leak During Ascent, one } \\
\text { APU/HYD Unit has a Detected/Confirmed Leak } \\
\text { and Subsequent Failure }
\end{gathered}
$$

Fault Tree for Sequence v: LOV End State From
a Hydrazine Leak During Ascent, one APU/HYD Unit
has a Detected/Confirmed Hydrazine Leak and all
Three APU/HYD Units Have Failures

Fault Tree for Sequence 7: IL0 End State From Hydrazine Leak During Ascent, one APU/HYD Unit has an Undetected Leak and no APU/HYD Units Have Failures

Fault Tree for Sequence 9: PLSR2U End State
From a Hydrazine Leak During Ascent, one APU/HYD
Unit has an Undetected Leak and is Recoverable, Both Other
APU/HYD Units Fail

Fault Tree for Sequence 11: PLS2U End State From
a Hydrazine Leak During Ascent, one APU/HYD Unit has an
Undetected Leak and Subsequent Failure, one Other APU/HYD
Unit Also Fails (Continued)

Fault Tree for Sequence 1\&. LUV End State From
a Hydrazine Leak During Ascent, one APU/HYD Unit
has an Undetected Leak and all Three APU/HYD Units Fail

Fault Tree for Sequence 13: PLS3R End State From a Hydrazine Leak During Ascent, all Three APU/HYD
Units Have Detected/Confirmed Leaks and no Failures

Fault Tree for Sequence 14: PLS2RU End State From a
Hydrazine Leak During Ascent, all Three APU/HYD Units Have Detected/Confirmed Leaks and one APU/HYD Unit Fails (Continued)

Fault Tree for Sequence 15: PLSR2U End State From
Hydrazined Leak During Ascent, all Three APU/HYD Units
Have Detected/Confirmed Leaks, two APU/HYD Units Fail
(Continued)

Fault Tree for Sequence 15: PLSR2U End State From
Hydrazined Leak During Ascent, all Three APU/HYD Units
Have Detected/Confirmed Leaks, two APU/HYD Units Fail
(Continued)

> Fault Tree for Sequence 15: PLSR2U End State From
Hydrazined Leak During Ascent, all Three APU/HYD Units
Have Detected/Confirmed Leaks, two APU/HYD Units Fail
(Continued)

Fault Tree for Sequence 16: LOV End State From Hydrazine
Leak During Ascent, all Three APU/HYD Units Have Detected

Fault Tree for Sequence 18: MDF2RU End State From a
Hydrazine Leak During Ascent, one APU/HYD Unit Fails

Fautt Tree for Sequence 18: MDF2RU End State From a Hydrazine Leak During Ascent, one
APU/HYD Unit Fails (Continued)

Fault Tree for Sequence 19: PLSR2U End State From a Hydrazine
Leak During Ascent, all Three APU/HYD Units Have Undetected Leaks,
two APU/HYD Units Fail (Continued)

Fault Tree for Sequence 19: PLSR2U End State From a Hydrazine
Leak During Ascent, all Three APU/HYD Units Have Undetected Leaks,
two APU/HYD Units Fail (Continued)

Fault Tree for Sequence 20: LOV End State From a Hydrazine
Leak During Ascent, all Three APU/HYD Units Fail
(Continued)

EVENT TREE OF OK STATE DURING REENTRY, TAEM AND LANDING

Fault Tree for Sequence 4 LOV: Two APU/HYD
Units Fail Without Hydrazine Leaks and Single
APU/HYD Unit Reentry, TAEM and Landing is Unsuccessful

APU/HYD Unit Reentry, TAEM and Landing is Unsuccessful

Fault Tree for Sequence 5 LOV: All Three
APU/HYD Units Fail Without Hydrazine
Leaks During Reentry, TAEM and Landing

Fault Tree for Sequence 11 LOV: One APU/HYD
Unit Leaks and is Shutdown, Remaining Units
Both Fail, Restart of Shutdown APU/HYD Unit
is Successful, but Single Unit Reentry, TAEM and
Landing is Unsuccessful

Sequence 17 LOV: vne APU/HYD
Unit Leaks Undetected and
all Three APU/HYD Units Fai

Fault Tree for Sequence 21 LOV: All Three APU/HYD Units Leak, APU/HYD Unit 1 is Shutdown, One
Other Unit Fails, Restart of Shutdown Unit is Unsuccessful
and Single APU/HYD Unit Loading is Unsuccessful

Fault Tree for Sequence . LOV: All Three
 APU/HYD Units Leak, APU/HYD Unit 1 is Shutdown, One Other Unit Fails, Restart of Shutdown Unit is Unsuccessful and Single APU/HYD Unit Loading is Unsuccessful (Continued)

Fault Tree for Sequenc, 24 LOV: All Three APU/HYD Units Leak, APU/HYD Unit 1 is Shutdown, Both
Remaining APU/HYD Units Fail and Restart of
Shutdown APU/HYD Unit is Unsuccessful
(Continued)

Fault Tree for Sequence $2 \times$ LOV: All Three
APU/HYD Units Leak Undetected,
Two APU/HYD Units Fail, Single APU/HYD
Unit Landing Unsuccesful

Fault Tree for Sequence 28 LOV: All Three
APU/HYD Units Leak Undetected,
Two APU/HYD Units Fail, Single APU/HYD
Unit Landing Unsuccessful (Continued)

EVENT TREE OF A PLSRU INITIATING EVENT DURING REENTRY, TAEM AND LANDING

Fault Tree For Sequence 6 LOV
State With PLSRU Initiating Event
During Reentry, TAEM and Landing

Event Sequence Diagram for
a PLSR2U State During Reentry,
TAEM and Landing

Assumption
Assuming remaining
AP($/ H Y$ II) unit restarted
before reentry.

Fault Tree For Sequence 2 MDFU
State From OK Start Without A
Hydrazine Leak During Ascent

Event Sequence Diagram of a PLS3R
State During Reentry, TAEM and Landing

EVENT TREE OF A PLS3R INITIATING EVENT DURING REENTRY，TAEM AND LANDING
SEQUENCE
DESCRIPTION
3L
3L2F
3L2FUR
3L2FURUL
3L2F3F
3L2F3FUL
3L2F3FUR
SEQUENCE

SEQUENCE
DESCRIPTION
3L
3L2F
3L2FUR
3L2FURUL
3L2F3F
3L2F3FUL
3L2F3FUR
NUMBER
$コ \quad \cdots \quad-$
UR

岗
「NMサにN
UR
$\stackrel{\mu}{N}$
ल

Fault Tree For Sequence 6 LOV State With A PLS3R Initiating Event During Reentry, TAEM and Landing

Fault Tree For Sequence 7 LOV
State With A PLS3R Initiating Event
During Reentry, TAEM and Landing

$$
\begin{gathered}
\text { IIIII } \\
\ldots . . .
\end{gathered}
$$

$$
8.1
$$

1

11

ORBITER ELECTRIC POWER SYSTEM: EVALUATION OF FAILURE MODES AND SEQUENCES POTENTIALLY SIGNIFICANT TO LOSS OF VEHICLE. *See last page for key assumptions and risk classifications.						
System failure	Failure sequence	Initiator or cause	Estimated sequence ond state conditional probability misasion	Basis of screening conditional probability estimate	号	Comments
ELECTRIC POWER SYSTEM FUNCTIONAL FAILURE SEQUENCES:						
1. No or insufficient dc power to critical systems.	1.1.1. Shrapnel, jet impingement, or pipe whip causes either reactant manifold rupture or multiple reactant system ruptures and suddenly depletes one or both reactants for 2 fuel cells.	1.1. Violent rupture of reactant tank, piping, or valve.	2E-06	1.1.1. [1e-6/hr for violent rupture]"[168hrs for typical mission]*[1e-2 for severe consequential damage] = 1.7e-6/mission	3	
Same	1.1.2. Shrapnel, jet impingement, or pipe whip disables 2 of 3 main distribution or mid power controller assemblies.	Same	2E-07	1.1.2 [1e-6/hr for violent rupture] ${ }^{*}$ [168hrs for typical mission] ${ }^{*}[1 e-3$ for severe consequential damage] = 1.7e-7/mission	-	
Same	1.2. 2 out of 3 fuel cells fail suddenly and concurrently (complete outage or insufficient voltage).	1.2.1. Undetected pre-flight fuel cell processing error.	1E-07	1.2.1. [1e-2 for processing error]" $[1 \theta-3$ for failure to detect before launch]"[1e-2 for failure progressing too fast for recovery or abort] $=1 \theta-7 / \mathrm{mission}$.	-	Low P (failure to detect) because FCs run under load and voltage is monitored for considerable period before launch.
Same	Same	1.2.2. Concurrent unrecoverable loss of ECLSS freon loops 1 and 2 (disables fuel cell cooling).	2E-06	2.1.2. See note 2.	3030	See note 2.
Same	1.3. Severe sustained overload fails one fuel cell; crew transfers load to another cell, which also fails on overload.	1.3. Severe sustained electrical overload.	1E-08	1.3. [1e-3 for severe sustained overload]'[1e-2 for crew transferring overload to second cell] [1e-3 for failing to notice and correct in time] $=1 \theta-8 / \mathrm{mission}$.	(Low P(failure to detect overload) because overload this severe would cause symptoms obvious to crew.
Same	1.4. One (or both) fuel cell reactants is depleted before detection and isolation.	1.4.1. Severe spontaneous external leak or rupture of reactant manifold or associated valves, etc.	1E-08	1.4.1. [1e-6/hr for severe leak or rupture]* [168hrs for typical mission] [$1 e-2$ for failure to detect and isolate in time] $=\mathbf{1 e - 8} / \mathrm{mission}$.	\%	
Same	Same	1.4.2. Reliel valve on isolated reactant manifold section spontaneously fails closed, causing overpressure and undetected rupture; isolation valve is then opened.	8E-07	1.4.2. [$2 \theta-6 / \mathrm{hr}$ for relief valve failure] ${ }^{*}[168 \mathrm{hrs}$ for typical mission] ${ }^{*}[0.5$ for leak or rupture on overpressure]" [1e-2 for failure to detect] ${ }^{*}[0.5$ for opening isolation valve] $=8 e-7 /$ mission.	部	

evaluation of failure modes and sequences potentially significant to loss of vehicle. *See last page for key assumptions and risk classifications.

System failure	Failure sequence	Initiator or cause	Estimated sequence end state conditional probability mission	Basis of screening conditional probability estimate	晨	Comments
Same	Same	1.4.3. Multiple reactant tank relief valves fail open due to undetected pre-flight processing or pressure set-point error.	1E-05	1.4.3. [1e-3 for processing or set-point error $]^{*}[1 e-2$ for failure to detect before launch] $=1 \theta-5 /$ mission .	遃	
Same	Same	1.4.4. Severe sustained electrical overload depletes reactants before detection of overload or low reactant level.	1E-10	1.4.4. [1e-3 for severe overload]" $10-4$ for failure to detect overload before reactant depletion] ${ }^{*}[1 \theta-3$ for failure to detect depletion in time] $=1 \mathrm{e}-10 /$ mission	(Low P(failure to detect overload) because overload this severe would cause symptoms obvious to crew.
Same	1.5. 2 of 3 fuel cells or main busses turned off and not restored.	1.5. Crew error.	1E-09	1.5. [1e-5 for turning off FCs, main busses, or essential busses]"[1e-4 for failing to notice and correct] $=1 e-9 /$ mission.	\%	
Same	1.6. 2 of 3 dc distribution trains fail open.	1.6.1. Undetected, unrecoverable pre-flight processing error (e.g. failure to restore after testing, RPC setpoint error) in 2	1E-06	$\begin{aligned} & \text { 1.6.1. [1e-3 for unrecoverable processing } \\ & \text { error }]^{*}[1 \theta-3 \text { for failure to detect open before launch }] \\ & =1 e-6 / \text { mission } \end{aligned}$	0	
Same	Same	1.6.2. Short circuit in one train propagates to second before interruption.	1E-11	1.6.2. [$4 \mathrm{e}-4$ for short circuit] ${ }^{*}$ [$1 \mathrm{e}-2$ for vulnerable components of another train being close enough to allow propagation]"[5e-6 for failure to trip in time to prevent propagation] $=1 e-11 /$ mission	\%	See note 3 for basis of estimate of short circuit probability. P (failure to trip) $=P(C B$ f.t. open on command) +P (prot. relay f.t. close)
Same	Same	1.6.3. Concurrent unrelated spontaneous failures of 2 trains.	6E-07	1.6.3. [8e-4 for failure of tst train] ${ }^{*}[8 \mathrm{e}-4$ for failure of 2 nd train] $=6 \boldsymbol{6}-7 / \mathrm{mission}$.	-	Same basis of estimate as 1.5.2 except all failure modes considered.
2. No or insufficient ac power to critical systems.	2.1. 2 of 3 inverter sets fail suddenly (complete outage or unacceptable voltage, frequency, or waveform).	2.1.1. Undetected pre-flight processing error.	1E-06	2.1.1. [1e-2 for processing error] ${ }^{\circ}$ [1e-4 for failure to detect before launch] $=1 \mathrm{e}-6 /$ mission.	\%	

ORBITER ELECTRIC POWER SYSTEM: EVALUATION OF FAILURE MODES AND SEQUENCES POTENTIALLY SIGNIFICANT TO LOSS OF VEHICLE. "See last page for key assumptions and risk classifications.						
System fallure	Failure sequence	Initiator or cause	Eatimated sequence end state conditional probability Imission	Basis of screening conditional probability estimate	\%	Comments
Same	Same	2.1.2. Concurrent unrevoverable loss of ECLSS H2O cooling loops 1 and 2 disables inverter cooling.	2E-06	2.1.2. See note 2.	0	See note 2.
Same	2.2. Mid-deck power components of 2 or 3 trains overheat and fail.	2.2. Concurrent unrecoverable loss of ECLSS freon cooling loops 1 and 2 disables mid-deck power component cooling.	2E-06	2.1.2. See note 2.	\%	See note 2.
Same	2.3. 2 of 3 inverters or ac busses turned off and not restored.	2.3. Crew error.	1E-09	2.3. [1e-5 for turning off inverters or busses)" $1 \theta-4$ for failing to notice and correct] $=1 \theta-9 /$ mission.	(1)	
Same	2.4. Shrapnel, jet impingement, or pipe whip disables 2 or 3 trains of mid-deck power components.	2.4. Violent rupture of reactant tank, piping, or valve.	2E-07	2.4. [1e-6/hr for violent rupture]"[168hrs for typical mission]*[1e-3 for severe consequential damage] = 1.7e-7/mission	-	
Same	2.5. 2 of 3 ac distribution trains fail open.	2.5.1-2.5.3. Analogous to 1.6.11.6.3 above.	2E-07	2.5.1-2.5.3. 1.6e-7/mission.	$\xrightarrow{2}$	Estimated by analogy to 1.6.1-1.6.3 above. Note: short circuit propagation is impossible because inverters lack necessary short circuit capacity.

ORBITER ELECTRIC POWER SYSTEM:

ORBITER ELECTRIC POWER SYSTEM: EVALUATION OF FAILURE MODES AND SEQUENCES POTENTIALLY SIGNIFICANT TO LOSS OF VEHICLE. *See last page for key assumptions and risk classifications.						
System failure	Failure sequence	Initiator or cause	Estimated sequence end state conditional probability mnission	Basis of screening conditional probability estimate	\%	Comments
SEQUENCES INTTIATED BY ELECTRIC POWER SYSTEM						
3. Electrical fire damage to other systems.	3. Electrical short circuit or component overheating initiates uncontrolled fire that unrecoverably disables other critical system(s).	3.1. Undetected pre-flight processing error.	5E-12	3.1. [1e-2 for fire-initiating processing error) ${ }^{*}$ (1e-2 for failure to detect before launch]"[1e-3 for failure to trip]"[1e-3 for presence of nearby combustibles when O 2 is available]"[0.5 for ignition]" $[0.1$ for failure of fire suppression] $=5 \mathrm{e}-12 / \mathrm{mission}$	\|lo	
Same	Same	3.2. Spontaneous component failure.	5E-11	3.2. [$1 \theta-3$ for fire-initiating component failure] ${ }^{[}[1 \theta-3$ for failure to trip]"[1e-3 for presence of nearby combustibles when O 2 is available]"[0.5 for ignition ${ }^{\star}[0.1$ for failure of fire suppression] $=5 e-$ 11/mission	(
4. Crew is disabled by fire suppression system response to electrical fire.	4. Electrical short circuit or component overheating initiates Haion flood of crew compartment; Halon exposure disables crew.	4.1. Undetected pre-flight processing error.	1E-12	4.1. [1e-2 for fire-initiating processing error] ${ }^{*}[1 e-2$ for failure to detect before launch]*[$1 \mathrm{e}-3$ for failure to trip]"[1e-3 for crew susceptibility to Halon]"[1e-2 for failure to don breathing apparatus in time] $=1 \theta-$ 12/mission	(
Same	Same	4.2. Spontaneous component failure.	1E-11	4.2. [1e-3 for fire-initiating component failure] ${ }^{*}[1 \theta-3$ for failure to trip] ${ }^{*}[1 e-3$ for crew susceptibility to Halon]" $10-2$ for failure to don breathing apparatus in time] $=1 e-11 /$ mission	(1)	
5. Critical systems are disabled by fire suppression system response to electrical fire.	5. Electrical short circuit or component overheating initiates Halon flood of affected compartment; presence of Halon or its decomposition products damages critical components or disables equipment cooling.	5.1. Undetected pre-flight processing error.	1E-12	5.1. [1e-2 for fire-initiating processing error] ${ }^{*}[1 \theta-2$ for failure to detect before launch $]^{*}[1 \theta-3$ for failure to trip]"[1e-3 for crew susceptibility to low Halon concentration $]^{*}[1 \theta-2$ for failure to don breathing apparatus in time] $=1 \theta-12 /$ mission	\%	

ORBITER ELECTRIC POWER SYSTEM: EVALUATION OF FAILURE MODES AND SEQUENCES POTENTIALLY SIGNIFICANT TO LOSS OF VEHICLE. *See last page for key assumptions and risk classitications.						
System failure	Failure sequence	Initiator or cause	Estimated sequence end state conditional probability mission	Basis of screening conditional probability estimate	\%	Comments
Same	Same	5.2. Spontaneous component failure.	1E-11	5.2. [1e-3 for fire-initiating component failure]"[1e-3 for failure to trip]"[1e-3 for crew susceptibility to Halon]"[1e-2 for failure to don breathing apparatus in time] $=1 \theta-11 /$ mission	(1)	
6. Orbiter structural failure.	6. Severe leak or rupture of fuel cell reactant tanks or associated piping and valves overpressurizes confined space leading to structural failure.	6. Rupture or severe external leak of tank, piping, or valve.	2E-06	6. [1e-6/hr for violent rupture]"[168hrs for typical mission]"[1e-2 for severe consequential damage] = 1.7e-6/mission		
7. Mechanical damage to other systems.	7. Shrapnel, jet impingement, or pipe whip unrecoverably disables other nearby critical system(s).	7. Rupture or severe external leak of tank, piping, or valve.	2E-06	7. [1e-6/hr for violent rupture] ${ }^{*}[168 \mathrm{hrs}$ for typical mission] ${ }^{[}[1 \theta-2$ for severe consequential damage] $=$ $1.7 e-6 / \mathrm{mission}$		

NOTES:	
1. Key assumptions: (1) probability estimates are based on IEEE STd 500-1984, IEEE Std 493-1990, and conservative (high) SAIC engineering estimates; (2) (168-hour) mission time; (3) per PRA ground rules, only catastrophic failures leading to loss of vehicle (not abort) are considered; (4) loss of 2 of 3 power train	
2. Concurrent ECLSS freon loop failures: zero failures in 55 flights implies mean failure frequency is 3.03 - 3 per flight per loop (using $1 / 3$ failure approximation failures are common cause/common mode. Double concurrent failure frequency is therefore $4.6 e-6$ per flight. Assuming 50% are recoverable, unrecoverable	
3. Estimate of probability of short circuit in distribution system: Assume each train comprises 6 equivalent circuit breakers, 1000 circuit feet of wire with 30 co bars equivalent to 50 CB units. IEEE 493 App. A mean failure rates per unit/year: LV fixed CB=0.0035, LV cable=0.00141/1000ft, LV cable connection=0.0001 equiv. CB unit. Assume 50% of failures are short circuits. P (short circuit) $=0.50^{\circ}\left[(168 \mathrm{hrs} / \mathrm{mission}) /\left(8766 \mathrm{hrs} / \mathrm{yr}^{2}\right)\right]^{*}\left[6^{*} 0.0035+1^{*} 0.00141+30^{*} 0.000127+50^{*} 0.0003\right.$	
DEFINITIONS OF RISK CLASSES:	P(sequence end state equivalent to LoV)
Severe	$P>=1 \theta-2$
Very high	$1 \theta-3<=P<1 \theta-2$
High	$1 \theta-4<=P<1 \theta-3$
Moderate	$1 \theta-5<=P<1 \theta-4$
Low	$1 \theta-6<=P<1 \theta-5$
Very low	$1 \theta-7<=P<1 \theta-6$
Negligible	$P<10-7$

[^0]: ${ }^{(1)}$ The LO descent initiating event state is equivaient to the ILO ascent end state.

[^1]: (1) 2 Demand/APU $\times 63$ millions $\times 3$ APUs/Missons $=378$ Demands
 ${ }^{\text {(2) }}$ Failure of primary valve in mission SB-31 generated a demand on the secondary valve for a few minutes before the launch was scrubbed. The secondary valve did not fail.
 ${ }^{(3)} 1.33$ hours/APU $\times 3$ APUs/Missions $\times 3$ HPUs/APUs $\times 63$ Missions $=796$ hours
 ${ }^{(4)} 1.33$ hours/APU $\times 3$ APUs/Missions $\times 63$ Missions $=292$

