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Abstract

Software integration is a growing area of concern for many programmers and software
managers because the need to build new programs quickly from existing compaonents is
greater than ever. This includes building versions of software products for multiple
hardware platforms and operating systems, building programs from components written
in different languages, and building systems from components that must execute on
different machines in a distributed network. The goal of software integration is to make
building new programs from existing components more seamless --- programimners
should pay minimal attention to the underlying configuration issues involved.

Libraries of reusable components and classes are important tools but only partial
solutions to software development problems. Even though software components may
have compatible interfaces, there may be other reasons, such as differences between
execution environments, why they cannot be integrated. Often, components must be
adapted or reimplemented to fit into another application because of implementation
differences --- they are implemented in different programming languages, dependent on
different operating system resources, or must execute on different physical machines.

The software packager is a tool that allows programmers to deal with interfaces between
software components and ignore complex integration details. The packager takes
modular descriptions of the structure of a software system written in the PACKAGE
specification language and produces an integration program in the form of a MAKEFILE.
If complex integration tools are needed to integrate a set of components, such as remote
procedure call stubs, their use is implied by the packager automatically and stub
generation tools are invoked in the corresponding MAKEFILE. The programmer deals
only with the components themselves and not the details of how to build the system on
any given platform.

1Supported by the Advanced Research Projects Agency Grant MDA 972-91-J-1022, the National
Aeronautics and Space Administration Grant NAG 5-2129, and the National Library of Medicine Grant
NO01-LM-3-3525.



1 Introduction

Software packaging [1] is an attempt to present a unified solution to the problems of building software
applications from reusable software components. Software packaging hides the difficult problems of
“putting the pieces together” that often prevent reuse, make configuration management difficult, and
prevent distribution of run-time components. The software packager creates an integration package
specialized for each constraint imposed by a specific nun-time environment. For example, from a single
description of the software structure, the packager produces different MAKEFILES [2] for each hardware
platform and operating system. These MAKEFILES handle the special integration cases for each
environment such as the location of include files, tools, libraries, etc.

The software packager tool (i.e.. package in the UNIX shell) is a utility for generating integration
programs (e.g.. MAKEFILES) from descriptions of software system structures that can be ported between
execution platforms. The packager relies on platform-specific rules to determine how to integrate
software components. However, unlike the imake tool [3] that also uses platform-specific rules to
integrate a portable application, the software packager allows more complex integrations of alternative
implementations as well as heterogeneous and distributed components.

The software packager is designed to be adopted incrementally so that existing applications can be quickly
and easily packaged. Programmers can later take advantage of more advanced features of software
packaging. In the first examples below, we will deal with homogeneous integrations that should be
familiar to programmers familiar with the make tool. In later sections, we will introduce more complex
integrations.

2 Example

We introduce software packaging with a simple example of integrating two homogeneous source
components written in the C programming language. Although this is a simple example where two
homogeneous programs are integrated, it helps illustrate software packaging in terms of existing
methodologies. Given the source program (see User’s Guide Example A);

main ()

int 1 = 5;
printf ("The factorial of %d 1s %d\n",1,1fact(1));

in afilemain.c and the source program

1fact (x)

1nt x;

1f(x < 1) return 1;

else return (x*1fact(x-1));

in the file fact.c, then the software packager can be used to build an executable file (e.g., a.out)
from these objects. Instead of a MAKEFILE, the programmer describes the structure of the application in a
PACkKAGE file. The software packager looks for this software structure description in the special file



Package in the current working directory. Our program has a simple modular structure that is described
in the Package file in the PACKAGE specification language as follows:

1mport stdpkg;

module Main;
module Fact;

implement Root as |
Main: main;
Fact: f;

i

implement Main with cmain ¢
FILE=main.c

}

1implement Fact with cfunc {
FILE=fact.c
}

This specification describes an application comprised of instances of two modules (the syntax of package
specifications are described in the next section.). Each module has a single implementation
corresponding to a source file written in the C programming language. The identifiers cmain and
cfunc correspond to types of components that implement modules. Given this description, the packager
determines if and how to build the executable. It uses a set of rules that is specific to each execution
environment. For example, in our environment (i.e., a UNIX based platform), a single cmain object and
0 or more cfunc objects can be integrated together into an executable using the C compiler and linker.
The use of these tools, however, is implied because the packager constructs the necessary MAKEFILE
automatically.

To produce the MAKEFILE automatically, invoke the package command from the sheil

¥ package

in the directory with the Package specification. The software packager will generate the MAKEFILE
shown in Appendix A. The application can then be integrated by invoking

% make
to build the executable file a.out.
3 Basic Package Specifications

A package specification describes the structure of an application in terms of its components without
describing which implementations are used for different components and without specifying how the
application is integrated on various execution platforms. The goal is to express a truly portable
description of a software application.

In general, a package specification consists of module declarations and their associated implementations.
In the previous example, two modules --- Main and Fact --- are declared. Another module, called
Root, is automatically declared in the imported package stdpkg. The remainder of the package
consists of implementations for the modules Root, Main, and Fact. The implementation of Root is
called a composite implementation. The implementations of Main and Fact are called primitive
implementations.



We must alter the PACKAGE specifications presented above because they are incomplete. One problem is
that the modules Main and Fact are unelaborated, i.e., they have no formal interfaces. For some
integrations, particularly homogeneous integrations such as above, modules can be left unelaborated. The
packager does not require complete interface descriptions of modules in order to be more compatible with
existing practices. For more complex integrations involving heterogeneous or distributed compaonents,
however, it is necessary to fully describe an interface in terms of the functions used and defined by a
module. We must change the PACKAGE specification of the application as follows (see User’s Guide
Example B):

import stdpkg;

module Main {

use ifact (int) (int});
}
module Fact {

def ifact (int) (int);
}

implement Root as {

Main: main;
Fact: f;
bind main'ifact to f'ifact;

}

1mplement Main witnh <mailn |
FILE=main.c
1

implement Fact with cfunc |
FILE=fact.c
4

The added lines in the new PACKAGE specification are shown in bold. They show that the Main module
"uses" a function called ifact that has an integer as formal parameter and produces an integer result.
Likewise, the Fact module supplies an ifact function with an identical syntax. In the composite
implementation of the Root module, the bind clause specifies that all uses and definitions of functions
in all instances of modules be linked together. Further details of module declarations and the bind
statement will be explained in later sections.

3.1 Software Structure Graphs

In general, a PACKAGE specification describes the modules and their logical connections in an application.
A PACKAGE specification for an application corresponds to a structure called a software structure graph
rooted at the module Root. The implement Root as clause is a composition of two module
instances that comprise the first level of the application. The form implement X as is used to specify
a composite implementation for any module X. For example, in the specification above, the application’s
Root module as implemented by a composite system comprised of two module instances: an instance of a
Main module (named main) and an instance of Fact module (named £). Thus, at the highest level, the
structure graph for this application looks like:

Root 1 [

Fact

The additional node "1" in the structure graph is added to distinguish this composite implementation of
Root from other possible implementations. All modules may have multiple, alternate implementations.



The "1" subtree of Root is only one possible implementation of the module Root (hence one possible
implementation of the entire application as well). It is possible to specify alternative implementations for
Root by using additional implement Root clauses.

Primitive implementations for modules can also be specified with the form implement X with Y. A
primitive implementation corresponds to an object of type Y in the execution environment that
implements a module X. The object type Y may correspond to any artifact of any type in the environment
---- a source code file, service, port number, thread, executable program, or a data file. Users may define
their own objects types (see the object statement for details). Object types may have various associated
properties like FILE, LANGUAGE, LOCATION, and VERSION. The object types cmain and cfunc are
defined in the imported stdpkg file. Primitive implementations of modules are found at the leaves of a
software structure graph because they cannot be further elaborated. The last two clauses in the PACKAGE
specifications above are primitive implementations of the Main and Fact modules respectively. With
these implementations, the final software structure graph for our example looks like:

Main ___ cmaln

FILE=main.c
Root— 1

Fact — cfunc

FILE=fact.c

In this structure graph, all modules have only single implementations. It is possible to assign multiple
implementations to any module including the Root module. The software packager will choose
appropriate implementations for each module based on integration rules specific to a particular execution
platform (e.g.. machine and operating system). For example, suppose we implement the Main module in
FORTRAN (see User’s Guide Example ().

n =3
nresult = 1fact(n)
write(6,10) n,nresult
10 format ('The factoriai of ',15,' 18 ',1I5)

end

and add the following primitive implementation to the Package specification:

implement Main with fmain |
FILE=main. f

for the Main module where the object type £main has associated properties appropriate for a FORTRAN
implementation with a main entry point. The FORTRAN implementation in main. f must support the
Main module specification. This alternate implementation for the Main module would make the
structure graph look like
Maln _{ fma";?'ILEzmaln f
cmal

ROO! I 1 _[ maP!}LE=maln.c

Fact — cfunc

FILE=fact.c

The packager will choose the appropriate collection of implementations that are viable (i.e., they can be
integrated) in the target environment. By analogy, software packaging is like compiling a program. A
compiler transiates source code into a machine program that can be assembled into an executable
program. A packager translates a software system description into an integration program that can be
invoked to build the executable program.



In the case where two or more implementations are viable for a module, the packager chooses
nondeterministically between them. To force the packager to distinguish between implementations, a
programmer can use constraints to eliminate candidate implementations. Constraints are described in a
later section.

Our examples have illustrated basic packager techniques in which two software components are
integrated. While homogeneous integration can be done with existing tools (e.g., MAKE and IMAKE), the
packager can be used to specify and build more complex, heterogeneous, and distributed configurations.
Homogeneous integration is simply the degenerate case of the more general concept of software
packaging. Packaging subsumes these existing techniques and expands on them into more general forms
of software integration.

3.2 Attributes

All components in a package specification can be assigned attributes (i.e., key-value pairs). The scope of
an attribute consists of the entire software structure subgraph below the node in which the attribute is
declared. For example, if we declare the attribute ARCH=sparc in the Root composite implementation,
then the ARCH attribute is visible in both the primitive implementation nodes of the Main and Fact
modules (see User's Guide Example D):

.mplement Root as
ARCH=spar:z
Main: ma.n;
Fact: £,

b

implement Main with cmain {

FILE=main-$(ARCH).c
}

Again, the value of the FILE attribute of the cmain implementation of the Main module would be
main-sparc.c. The reference to the attribute $ (ARCH) in the primitive implementation of Main
searches up the software structure graph for a declaration of ARCH.

The results of shell commands can also be assigned to attributes. The form of a standard attributes
assignment is (see User's Guide Example E).

ARCH=sparc
To assign the result of a shell command, use the form

ARCH := arch

where the right-hand side is a valid UNIX shell command. In this example, the ARCH attribute is
assigned the hardware architecture type using the UNIX arch command.

33 Parameters

Modules and their implementations in PACKAGE specifications can have formal parameters that are bound
to actual parameters when a module instance is created in a composite implementation. For example,
consider the following PACKAGE specification for a simple example in which the source file name is
dependent on a parameter (see User’s Guide Example F):



module Main(x);

1mplement Root as |
Main: main(sparc);

}

implement Main(x) with cmain {
FILE=main-$(x).c
}

where the FILE attribute of the cmain implementation of the Main module would be main-sparc.c.
Formal parameters can also be used in composite implementations of modules. To access the value of a
formal parameter the form $ (x) is used where x is the name of the formal parameter. This form is
identical to accessing the values of graph-scoped attributes.

34 Constraints

Attributes are useful, but their full utility is realized when combined with constraints. Constraints may be
declared at any node in a software structure graph. The scope of a constraint is the same as the scope of
an attribute: all subgraphs below the current node in the software structure graph. For example, if we
want to restrict the selection of a particular implementation for the Main module to a fast implementation
(e.g.. an implementation using static arrays instead of dynamic allocation), the constraint ARCH==sparc
can be set in the composite implementation for the Root module as follows (see User’s Guide Example
G

implement Root as
ARCH==sparc
Main: main;
Fact: £;

}

implement Main with cmain {
ARCH=sqg1
FILE=main-1ris.c

1

implement Main with cmain |

ARCH=sparc
FILE=main sund.c

In this case, the second implementation of Main is chosen because it satisfies the higher level constraint
on the ARCH attribute. The resulting manufacture graph would be

cmain

Main _E FILE=main-sung4.c
Root — 1 —1:




The alternative implementation of the Main module was eliminated from consideration (shown in gray).
This technique has also been used to maintain and package multiple versions of an application from a
single Package specification.

3.5 Object Types

The primitive implementation types cmain and cfunc are called object types and they are declared in
the stdpkg imported file as:

object cmaln : cob) |
ENTRY=ma1in

b

object cfunc : cob?;

where both object types inherit attributes from a parent type cob3j that is defined as

object cobj

sbiect |
LANGUAGE=C

}

These object types are declared in the stdpkqg imported file. Users may declare their own object types
and corresponding attribute assignments.

3.6 Module Ports

One of the more advanced features of software packaging deals with its capabilities as a module
interconnection language (MIL). In the first example, the Main and Fact modules were unelaborated,

i.e., they were declared without any formal module interface:

module Main;
module Fact;

But we then elaborated the interfaces for these modules as a series of ports that describe the use and
definitions of functions as follows:

module Main |

use 1fact(int) {(1nt);
}
module Fact {

def ifact(int}) (int);
}

The elaborated module interfaces describe the resources used and provided by a component so that it is
completely encapsulated. This approach is different than traditional object-oriented programming where
oanly provided resources (e.g.. methods) are part of an object's interface description. Module
interconnection languages like the PACKAGE specification language subsume the object-oriented approach
because module instances can be nested in composite implementations of more abstract modules.

3.7 Bindings

Module interface ports are connected together with the use of binding statements in composite
implementations (see User’s Guide Example H):

implement Root as {
Main: main;
Fact: f;
bind main'ifact to f'ifact;



The packager produces a file named a.pkg (the default name) that contains all the bindings in a
specification. The file is accessed by stub generators during the integration phase (e.g., during the
execution of the MAKEFILE). At that phase, other tools can determine if the integration is viable. For
example, the package specifications:

import stdpkg;

module Main |

use 1fact(int) (1nt);
}
module Fact {

def i1fact(int) (1int);
}

implement Root as |

Main: main;

Fact: f;

bind main'i1fact to f'ifact;
}

1implement Main with cmain |
FILE=main.c
}

implement Fact with rpcsve |
PROGRAM=4516
VERSICN=1
LOCATICN=hopper.cs.wvu.edu

During the integration process, external tools like stub generators can use the a . pkg file to generate the
needed "glue" code. Such extra code is often needed to implement connections between components in
run-time execution environments.

4 Package Imports

Files imported into PACKAGE specifications are found in a directories named by the PKGIMPORT
environment variable or by using the -I command line option. Unlike the include mechanism in the C
preprocessor, the packager does not simply expand the imported file inline. Instead, it searches the import
directories for files whose extension is ".pko" (package object file). This file is then imported into the
packaging process during construction of the software structure graph.

5 Package Library

If the environment variable PKGLIBRARY is set or the -L option is used, the packager will search the
specified directories for all files X.pko where X is the name of any module that needs expanding in the
software structure graph. Thus, if we specify the command:

% package -L fusrllocalllib

in our previous example of the factorial application, the packager will search the directory /usr/local/lib
for the files Main.pko and Fact.pko. In this fashion, developers can transparently share reusable
components as alternative implementations in their applications.

6 Basic Rule Specifications

Normally, developers should not be concerned with packager rule specifications. Skip this section if you
are not a system administrator. Software packager rules are relatively fixed for any execution
environment and shared by all developers in the environment. Rules resemble attribute grammars because



they describe the abstract form of integration processes in an environment, e.g., the abstract form of legal
MAKEFILES. For example, the rules used to produce the Makefile shown in Appendix A is shown in
Appendix B.

In general, a rules file is a "grammar"” consisting of individual rules such as

exec : cmalin cfuncs

t

’

where exec is on the left-hand side of the rule, cmain and cfuncs are on the right-hand side of the
rule. The labels exec and cfuncs represent non-terminal object types. Non-terminal object types are
found on the left-hand side of rules. The cmain, however, label represents a terminal object type. It is
not on the left-hand side of any rule.

The goal of the packager is to find a tree whose internal nodes correspond to rules in the abstract grammar
and whose leaves correspond to a complete set of primitive implementations in a given software structure
graph. The resulting tree, if found., is called a software manufacture graph. The packager operates in two
phases:

1. Perform a depth first, backtracking search of the rules to find nodes corresponding to all
leaf nodes of the structure graph.
2. If a complete graph is found, then execute actions associated with the graph starting at

the exec? node in the manufacture graph.

If the packager does not find a manufacture graph, then it is not possible to integrate the application in
the target environment. There is no free lunch or magic! The tools to integrate a system must exist. The
packager only hides their use from developers.

The rules express the integration processes available in an environment in terms of abstract software
manufacture graphs. A set of rules for an environment describe the abstract software manufacture graphs
and look something like an attribute grammar. A specific software manufacture graph, called a concrete
software manufacture graph, corresponds to the integration tree if it exists. For example, the manufacture
graph for our second example (with an alternative implementation of the Main module in FORTRAN):

cmain

cfunc
cfuncs

is found by the packager given the rules in Appendix B. Again, these rules are shared by all users in an
environment and maintained by the system administrator. Normal users should never deal with or have to
write such rules. The leaf nodes of the concrete manufacture graph above correspond to the leaf nodes of
the software structure graph. Another view of the packager process would be to take the software
structure graph and the manufacture graph and connect the two structures together like this:

[~ exec

2The type of target object that the packager builds is not limited to executables. It can be used to build
documents (e.g., dvi files), libraries, and other composite software objects.
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Main fmain

Fact — cfun
“rotun

This view, called a software production graph, presents a clear view that the fmain implementation of
the Main module is not chosen but all primitive implementations are accounted for in the manufacture
graph. Once the manufacture graph is determined, then the packager can execute actions associated with
each node starting from the root (of the manufacture graph, not the software structure graph). The actions
are contained in the : { ... } clause after each rule. Actions are comprised of commands (one per
line). In the rules in Appendix B, the first command,

exec

exec : cmaln cfuncs

tail: $1.AFPNAME

will produce the output

all: a.out

where the %" symbol directs the subsequent line to the current output file. By default, the current cutput
file is the MAKEFILE. The characters "all: " are echoed directly into the output. The clause
$1.APPNAME directs the packager to insert the value of the APPNAME attribute of the first object on the
right-hand side of the associated rule. In this case, $1 refers to the cmain object and the value of its
APPNAME attribute is the string a.out. This attribute is declared in the definition of the Root module
in the stdpkg file.

Commands on subsequent lines in the action associated with the rule work in the same fashion. The
command

$S1.APPNAME: S$1.FILE:r.o $2(OBJS)

illustrates two interesting features. First, in the clause $1.FILE:r.o, the :r represents an operation
that specifies that a single file extension be stripped from the value of the $1.FILE attribute value. In
this case, the value of $1.FILE (e.g., the FILE attribute of the cmain object) is main.c. Thus, the
value of $1.FILE:r is the string "main" since the extension ".c" is stripped off. Then, the extension
".0" is just appended to this to form the output string "main.o” for insertion in the output line.

The subsequent $2 (OBJS) clause does not access an attribute of a primitive implementation object. By
analogy with attribute grammars, the OBJS value is a synthesized attribute of the subtree rooted at the
cfuncs branch of the node associated with the exec : cmain cfuncs rule. In the rule cfuncs .
cfunc cfuncs, the clause

{ (OBJS) $L.FILE:r ".o" §$2(0OBJS) ]

declares the synthesized attribute OBJS associated with each node. The rule for cfuncs also has an
alternative rule whose right-hand side is empty:

cfuncs : cfunc cfuncs

« empty rule

i1



If the first part of the rule fails in a search, the second part of the rule will always succeed. The second
part of the rule does not declare any synthesized attributes or actions.

Finally, in the action associated with the rule cexec : cmain cfuncs.the command $2 on the last
line of the action:

exec H cmain cfuncs

directs the packager to execute the action of the node associated with the second object on the right-hand
side of the rule. Thus, the $2 clause executes the action associated with the cfuncs : cfunc
cfuncs rule. Table 1 shows all commands possible in rule actions and their semantics.

The resulting MAKEFILE is shown in Appendix A. The rules capture the abstract form of all MAKEFI ES
that integrate C programs. Through the use of both inherited and syntbesized attributes, the output
MAKEFILE is customized.
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Appendix A: A simple MAKEFILE

all: a.out

a.out: main.o fact.o
cc -0 a.out main.o fact.o

maln,o: main.c
cC ~-C maln.

3]

clean::
rm -f main.o *~ core a.out *.bak

clobber::
rm -f main.o a.out *~ core a.out *.bak

fact.o: fact.c
cc -c fact.c

clean::
rm -f fact.o

clobber::
rm -f fact.o

Appendix B: A simple rules file
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exec

cfuncs

{

cmain cfuncs

%all: $1.APPNAME

%$1.APPNAME: $1.FILE:r.o $2(OBJS)

%

¥ ce
%
$51.FILE:
% cc
%
Yciean::
% rm

EY

%

¥clobber::

-0 S1.APPNAME $1.FILE:r.o $2(0OBJS)
r.o: $1.FILE
-¢ $1.FILE

-f $1.FILE:r.o *~ core a.out *.bak

-f $1.FILE:r.o $1.APPNAME *~ core a.out *.bak

cfunc cfuncs

% rm
%

$2

i

H

| (0BJS)
$S1.FILE:
% [blo]
3clean::

% rm

%
¥clobber::
% rm
$2

$1.FILE:r ".o"™ $2(0OBJS) |
S1.FILE
S1.FILE

-f $S1.FILE:r.o

-f $1.FilLE:r.o
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