
/

NASA-CR-197763

NASA/WVU Software IV & V Facility
Software Research Laboratory

Technical Report Series

Software Packager User's Guide

NASA-IVV-94-006

WVU-SRL-94-006

WVU-SCS-TR-95-6

CERC-TR-RN-94-012

r,s _

/A_ _'_/-' 'to.--"

¢-,93-//

f_ /f

by John R. Callahan

(NASA-CR-Iq?163) SOFTWARE PACKAGER

USER'S GUIDE (West Virqinia Univ.)

N95-26693

Unclas

G3/61 0048511

National Aeronautics and Space Administration

West Virginia University

https://ntrs.nasa.gov/search.jsp?R=19950020273 2020-06-16T07:11:43+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42781379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

-"/' '}" y- i_ .fs"

""6¢e o r_/J(./ga b o'1ish Date . Callahan Date

Manlglaf, Software Engineering WVU Principal Investigator

Software Packager
User's Guide

John R. Callahan 1

Concurrent Engineering Research Center

West Virginia University

Abstract

Software integration is a growing area of concern for many programmers and software

managers because the need to build new programs quic.kly from existing components is

greater than ever. This includes building versions of software products for multiple

hardware platforms gad operating systems, building programs from components written

in different languages, and building systems from components that must execute on

different machines in a distributed network. The goal of software integration is to make

building new programs from existing components more seamless --- programmers

should pay minimal attention to the underlying configuration issues involved.

Libraries of reusable components and classes are important tools but only partial

solutions to software development problems. Even though software components may

have compatible intedaces, there may be other reasons, such as differences between

execution environments, why they cannot be integrated. Often. components must be

adapted or reimplemented to fit into another application because of implementation

dif:fe,renees --- they are implemented in different programming languages, dependent on

different operating system resources, or must execute on different physical machines.

The software packager is a tool that allows programmers to deal with interfaces between

software components gad ignore complex integration details. The packager takes

modular descriptions of the structure of a software system written in the PACKAGE

specificgion language and produces an integration program in the form of a _.
If complex integration tools axe needed to integrate a set of components, such as remote

procedure call stubs, their use is implied by the packager automatically and stub

generation tools axe invoked in the corresponding _. The programmer deals

only with the components themselves and not the details of how to build the system on

any given platform.

1Supported by the Advanced Research Projects Agency Grant MDA 972-91-J-1022, the Natiotml

Aeronautics and Space Adminis_ation Grant NAG 5-2129, gad the National Library of Medicine Grant
N01-LM-3-3525.

1 Introduction

Software packaging [1] is an attempt to present a unified solution to the problems of building software

applications from reusable software components. Software packaging hides the difficult problems of

"putting the pieces together" that often prevent reuse, make configuration management difficult, and

prevent distribution of run-time components. The software packager creates an integration package

specialized for each const;alnt imposed by a specific run-time environment. For example, from a single
description of the software structure, the packager produces different _ [2] for each hardware

platform and operating system. These _ handle the special integration cases for each
environment such as the location of include files, tools, libraries, etc.

The software packager tool (i.e.. package in the UNIX shell) is a utility for generating integration

programs (e.g.. _) from descriptions of software system structures that can be lxr, ed between

execution platforms. The packager relies on plaffm-m-specific rules to determine how to integrate

software components. However, unlike the imahe tool [3] that also uses platform-specific rules to

integrate a portable application, the software packager allows more complex integrations of alternative

implementations as weft as heterogeneous and distributed components.

The software packager is designed to be adopted _tally so that existing applications can be quickly

and easily packaged. Programmers can later take advantage of more advanced features of software

packaging. In the first examples below, we will deal with homogeneous integrations that should be

familiar to programmers familiar with the make tool. In later sections, we will inlzoduce more complex
integrations.

2 Example

We in_oduce softwarepackaging with a simple example of integratingtwo homogeneous source

components written in the C programming language. Although this is a simple example where two

homog_s programs arc integrated, it helps illustrate software packaging in terms of existing

methodologies. Given the source program (see User's Guide Example A):

maln()

int 1 = 5;

prlntf("The factorlal of %d ls %d\n",l,xfact(1));

inafilemain. c and the sourceprogram

ifact(x)

int x;

{

if(x < l) return i;

else return (x*ifact(x-l));

in the file fact. c. then the software packager can be used to build an executable file (e.g.. a. out)

from these objects. Instead of a _, the programmer describes the structure of the application in a

PACKAGE file. The software packager looks for this software structure description in the special file

Package in the current wccking directory. Our program has a simple modular structure that is described
in the Package file in the PACKAGEspecification language as follows:

import stdpkg;

module Maln;

module Fact;

implement Root as i

Maln: main;

Fact: f;

implement Haln wlth cmaln

F[LE-maln.c

}

implement Fact with cfunc {

F[LE=fact.c

}

This specffica6on describes an application comprised of instances of two modules (the syntax of package
specifications are described in the next section.). Each module has a single implementation
corresponding to a somw file written in the C programming language. The identifiers cmain and
cfunc correspond to types _ ¢C_lXments that implement modules. Given this description, the packager
determines if and how to build the executable. It uses a set of rules that is specific to each execution

environment. For example, in our environment (i.e.. a UNIX based platform), a single cmain object and
0 or morn cfunc objects can be integrated together into an executable using the C compiler and linker.

The use of these tools, however, is implied because the packager constructs the necessary
automatically.

To produce the _ automatically, invoke the package command from the shell

% package

inthedirectorywith the Package specification. The softwarepackagerwill genexam _e MAKeqLE

shown inAppendixA.The applicationcanthenbeinmgramdby invoking

make

to build the executable file a.out.

3 Basic Package Specifications

A package specifmation describes the structure of an application in terms of its components without
describing which implementations are used fix different components and without specifying how the
application is integrated on various execution platforms. The goal is to express a truly portable
description of a software application.

M general, a package specification consists of module declarations and their associated implementations.
In the previous example, two modules --- Main and Fact --- are declared. Another module, called
Root, is autmnatically declaredin _c imposed package stdpkg. The _mainder of the package

consistsofhnpMmentafionsfor the modulesRoot, Main, and Fact. The implementationofRoot i._

called a _nlx_ite implementation. The implementations of Ma£n and Fact are called primitive
implementations.

We must alter the PACKAGE specificatioilS preseJlte, d above because they are incomplete. One problem is
that the modules Main and Fact are unelaborated, i.e.. they have no formal interfaces. For some

integrations, particularly homogeneous integrations such as above, modules can be left unelaborated. The

packaser does not require complete interface descriptkms of modules in order to be more compatible with

existing practices. For more complex integrations involving heterogeneous or distributed components.

however, it is necessary to fully describe an interface in terms of the flmctions used and defined by a
module. We must change the PACKAOE specification of the application as follows (see User's Guide

Example 8):

import stdpkg;

module Maln {

ume ifact(int) (int);

}
module Fact {

def if&=t(int)(int);

)

implement Root as t

Maln: main;

Fact: f;

bind mlin'if&ct to f'if&ct;

}

implement Maln wlth cmaln

FILE=maln.c

}

implement Fact wlth cfunc

FILE-fact.c

The added lines in the new PACKAGEspeci.fication are shown in bold. They show that the Main module

"uses" a funcdon tRUed ifact that has an integer as formal parameter and produces an integer result.

Likewise. the Fact module supplies an ifact functkm with an identical syntax. In the composite

implementation of the Root module, the bind clause specifies that all uses and definitions of functions

in all instances of modules be linked together. Further details off module declarations and the bind
statement will be explained in later sections.

3.1 Software StructureGraphs

In general, a PACKAGE $pechCicatJon describes the modules and their logical connections in an application.

A PACKAGE speci.fication for an application om'_spoads to a structure called a software structure graph

rooted at the module Root. The implement Root as clause is a composition of two module

instances that comprise the first level of the application. The form implement x as is used to specify

a composite implementation for any module x. For example, in the specifmation above, the application's

Root module as implemented by a composite system comprised of two module instances: an instance of a

Main module (named main) and an instance of Fact module (named f). Thus, at the highest level, the

structure graph for this application looks like:

Main
r--

ROOt- 1 --'1
Fact

The additional node "1" in the structure graph is added to distinguish this composite implementation of

Root firom other possible implementations. All modules may have multiple, alternate implementations.

4

The "1" subtree of Root is only one possible implementation of the module Root (hence one possible

implementation of the entire application as well). It is possible to specify alternative implementations for
Root by using additional gmpleamnt Root clauses.

Primitive implementations for modules can also be specifted with the form implement: x with Y. A

primitive implementation corresponds to an object of type Y in the execution environment that

implements a module x. The object type Y may correspond to any artifact of any type in the environment

.... a source code fde, service, port number, thread, executable program, or a data f'fle. Users may defme
their own objects types (see the object statement for details). Object types may have various associated
properties like Fir.m, LANGU_UgE,LOCATION, and VERSION. The object types cautin and cfunc are

defmed in the imported stdpkg file. Primitive implementations of modules are found at the leaves of a
software structure graph because they cannot be further elaborated. The last two clauses in the PACKAGE

specifications above are primitive implementations of the t4ain and tact modules respectively. With
these implementations, the final software structure graph for our example looks like:

Main
r--

ROOt- 1
Fact

__ crnaln
FILE=mazn. c

-- cfunc
FILE=fact .c

In this structure graph, all modules have only single implementations. It is possible to assign multiple
implementations to any module including the Root module. The software packager will choose

appropriate implementations for each module based on integration rules specific to a particular execution
platform (e.g.. machine and operating system). For example, suppose we implement the Sain module in

FORTRAN (see User's Guide Example C):

n = 5

nresult = ifact(n)

wrzte(6, i0) n,nresuit

i0 format('The factorlai of ',[5,' is ',15)

end

and add the following primitive implementation to the Package specification:

implement Maln with fmaln

FILE:maln.f

}

for the Main module where the object type fmaainhas associated properties appropriate for a FORTRAN
implementation with a main entry poinL The FORTRAN implementation in main. f must support the

Main module specification. This alternate implementation for the Main module would make the
structure graph look like

Root- 1

fmain
FILE=maln. f

__[Main __...[cmainFILE=maln. c

Fact cfunc
FILE= fact. c

The packager will choose the appropriate collection of implementations that are viable (i.e., they can be
integrated) in the target environment. By analogy, software packaging is like compiling a program. A
compiler translates source code into a machine program that can be assembled into an executable
program. A packager translates a software system description into an integration program that can be
invoked to build the executable program.

In the case where two or more implementations are viable for a module, the packager chooses

nondetenninisticaUy between them. To force the packager to distinguish between implementations, a

programmer can use constraints to eliminate candidate implementations. Constraints are described in a
later section.

Our examples have illustrated basic packager techniques in which two software components are

integrated. While homog_ integration can be done with existing tools (e.g., MAKE and _E). the

packager can be used to specify and build more complex, heterogeneous, and distributed configuratkms.

Homogeneous integration is simply the degenerate case of the more general concept of software

packaging. Packaging subsumes these existing techniques and expands on them into more general forms

of software integration.

3.2 Attributes

All components ina package specificationcan be assignedattributes(i.e.,key-valuepairs).The scopeof

an attributeconsistsof the entiresoftwarestructuresubgraph below the node in which the attributeis

declared.For example, ifwe declaretheattributeaZCH=aparc in the Root composite implementation,

then the ARCH attributeis visible in both the _rimitive implementation nodes of the plain and Fact

modules (seeUser'sGuide Example D):

implement Ro,:,L as

ARCH spar,=

Main: malz;

}'act: f;

implement Maln wlth cmaln

FILE=maln-$(ARCH).c

}

Again, the value of the FIT.v.attributeof the cma£n implementationof the tda£n module would be

main-sparc, c. The referenceto the attribute$ (ARCH) in the primitiveimplementationof Main

searchesup thesoftwaresu_cmre graphfora declarationofARPAI.

The results of shell commands can also be assigned to attributes. The form of a standard attributes

assignment is (see User's Guide Example E):

ARCH=sparc

To assigntheresultofa shellcommand, use theform

ARCH :: arch

where the right-handside isa validUNIX shellcommand. In thisexample, the ARCH attributeis

assignedthehardware architecturetypeusingtheUNIX archcommand.

3.3 Parameters

Modules and theirimplementationsin PACKAGE speci_icalJOllScan have formalparametersthatarebound

to actual parameters when a module instance is created in a composite implementation. For example,

consider the following PACKAGE specification for a simple example in which the source file name is

dependent on a parameter (see User's Guide Example F):

module Mazn(x);

implement Root as I

Maln: maln(sparc);

}

implement Maln(x) wlth cmaln

FILE=maln-$(×).c

}

where _ FII_ amibute of the cmain implementation of the Main module would be main-sparc, c.

Formal parame_s can alsobe used incompositehnplementadons ofmodules. To _ the valueof a

formal parameter the form $ (x) isused where x isthe name of the formal parameter. Tlns form is

identical to accessing tho values of graph-scopod attributes.

3.4 Constraints

Attributes are useful, but their full utility is realized when combined with constraints. Constraints may be
declared at any node in a software structure graph. The scope of a constraint is the same as the scope of
an attribute: all subgraphs below the current node in the software sUucture graph. For example, if we
want to resffict the selection of a particular implementation for the Main module to a fast implementation

(e.g., an implementation using static arrays instead of dynamic allocation), the constraint ARCH==sparc

can be set in the composite implementation for the Root module as follows (see User's Guide Example
G):

Implement Root as I

ARCH:-sparc

Maln: maln;

Fact: f;

}

implement Maln with cmaln

ARCH=sgl

FILE=maln-lrls.c

}

implement Maln wlth cmaln

ARCH=sparc

FILE maln sun4.c

In this case, the second implementation of ma£n is chosen because it satisftes the higher level constraint

on the ARCH attribute. The resulting manufacture graph would be

Root _ 1

cmain
Main _ FILg=mazn-sun4. c

7

The alternative implementation of the Main module was eliminated from consideration (shown in gray).

This technique has also been used to maintain and package multiple versions of an application from a

single Package specification.

3.5 Object Types

The prmfive hnplemenmuon _es cumin and cfunc arc caUod ob_t _q_es and _ey are declined in

the stdpkg impor_d fde as:

ob]ect cmaln : cob]

ENTRY:maln

}

object cfunc : cob_;

where both object types inherit attributes from a parent type cobj that is defined as

object cob] : object {

LANGUAGE:C

}

These object types are declared in the stdpkg importedfile. Users may declare their own object types

and corresponding amibute assignments.

3.6 Module Ports

One of the more advanced featuresof software packaging deals with itscapabilitiesas a module

interconnectionlanguage (MILL In the firstexample, theMain and Fact modules were unelaboratod,

i.e., they were declared without any formal module interface:

module Main;

module Fact;

But we then elaborated the interfaces for these modules as a series of ports that describe the use and

definitions of functions as follows:

module Main

use ifact(int)(int);

}

module Fact {

def ifact(int)(int);

}

The elaborated module interlaces describe the resources used and provided by a component so that it is

completely encapsulated. This approach is different than traditional object-oriented programming where
only provided resources (e.g.. methods) are part of an object's interface description. Module

interconnection languages like the PACKAGEspecification language subsume the object-oriented approach

because module instances can be nested in composite implementations of more abstract modules.

3.7 Bindings

Module i-m_face ports axe connected together with the use of binding statements in composite

implementatkms (see User's Guide Example H):

implement Root as (

Main: main;

Fact: f;

blnd maln'ifact to f'ifact;

}

The packager produces a f'de named a .pkq (the default name) that contains all the bindings in a

specification. The fde is accessed by stub generators during the integration phase (e.g., during the
execution of the MAKnm_). At that phase, other tools can determine if the integration is viable. For
example, the package specifications:

import stdpkg;

module Main I

us_ lfact(lnt

}

module Fact {

def ifact(int

}

(int);

(int);

implemont Root as

Maln: main;

Fact: f;

bind maln'ifact to f'ifact;

}

Impl_ment Main with cmain

FILE=maln.c

}

:mplement Fact wlth rpcsvc I

PROGRAM=4516

VERSION=I

LOCATIC:N=hopper.cs.wvu.edu

}

During the integration process, external tools like stub generators can use the a. pkg file to generate the
needed "glue" code. Such extra code is often needed to implement connections between components in
run-time execution environments.

4 Package Imports

Files imported into PACKAGEspecifications axe found in a directories named by the PKGIMPORT
environment variable or by using the -I command fine option. Unlike the include mechanism in the C
preprocessor, the packager does not simply expand the imported file inline. Instead, it searches the import
directories for fries whose extension is ".pko" (package obj_t file). This fde is then imported into the
packaging process during construction of the software structure graph.

5 Package Library

If the environment variable PKGLIBRARY is set or the -L option is used, the packager will search the
specifu_d directories for all files X.pko where X is the name of any module that needs expanding in the
software structure graph. Thus. if we specify the command:

% package -L/usrllocalllib

in our previous example of the factorial application, the packager will search the directory/usr/local/lib
for the fries Main.pko and Fact.pko. In this fashion, developers can transparently share reusable

componentsasalternative implementations in their applications.

6 Basic Rule Specifications

Normally, developers should not be concerned with packager rule specifications. Skip this section if you
ate not a system administrator. Software packager rules are relatively fixed for any execution
environmont and shared by all developers in the envircmment. Rules resemble attribute grammars because

9

they describe the abstract form of integration processes in an environment, e.g., the abstract form of legal

MAKEFnY_S. For example, the rules used to produce the Makeffle shown in Appendix A is shown in
Appendix B.

In general, a rules file is a "grammar" consisting of individual rules such as

exec : cmalE cfuncs

:i

where exec is on tim left-hand side of the rule, cmain and cfuncs are on the right-hand side of the

rule. The labels exec and cfuncs represent non-terminal object types. Non-terminal object types are

found on the left-hand side of rules. The cmain, however, label represents a terminal object type. It is

not on the left-hand side of any rule.

The goal of the packager is to fred a tree whose internal nodes correspond to rules in the abstract grammar

and whose leaves correspond to a complete set of primitive implementations in a given software structure

graph. The resulting tree. if found, is called a software manufacture graph. The packager operates in two

phases:

. Perform a depth first, backtracking search of the rules to fred nodes corresponding to all

leaf nodes of the structure graph.

. If a complete graph is found, then execute actions associated with the graph starting at

the exec 2 node in the manufacture graph.

If the packager does not fmd a manufacture graph, then it is not possible to integrate the application in

the target environment. There is no five lunch or magic[The tools to integrate a system must exist. The

packager only hides their use from developers.

The rules express the integration processes availablein an environment in terms of abstract software

manufacture graphs. A set of rules for an environment describe the abstract software manufacture graphs

and look something like an attribute grammar. A specific software manufacture graph, called a conaete

software manufacture graph, corresponds to the integration tree if it exists. For example, the manufacture
graph for our second example (with an alternative implementation of the Main module in FORTRAN):

cmain _e

cfunc _"-cf xecunc_l-'-

is found by the packager giventhe rules in Appendix B. Again, these rules are shared by all users in an

environment and maintained by the system administratox. Normal users should never deal with or have to

write such rules. The leaf nodes of the concrete manufacture graph above correspond to the leaf nodes of

the software smmmre graph. Another view of the packager process would be to take the software

Stnlcture graph and the manufacture graph and commct the two structures together like this:

2The type of target object that the packager builds is not limited to executables. It can be used to build

documents (e.g.. dvi flies), libraries, and other composite software objects.

10

Mal. --If

Fact

fmain

cmain k

cfun _ F-exec

---chin --]

This view, called a software production graph, presents a clear view that the fmain implementation of

the Main module is not chosen but all primitive implementations are accounmd for in the manufacture

graph. Once the manufacture graph is detexmined, then the packager can execute actions associated with

each node starting from the root (of the manufacture graph, not the software structure graph). The actions
arc contained in the : { ... } clause after each rule. Actions are comprised of commands (one per

line). In the rules in Appendix B. the fast command,

_-xec : cmaln cfuncs

%all: $1.APPNAME

will produce the output

all: a.out

where the ""%" symbol directs the subsequent line to the current output fde. By default, the current output

file is the MAraWn_. The characters "all: " are echoed directly into the output. Tim clause

$1. APPNAME directs the packager to insert the value of the APPNAME attribum of the fast object on the

right-hand side of the associated rule. In this case. $1 refers to the cmain object and the value of its

APPNAME attribute is the string a. out. This attribute is declared in the definition of the Root module

inthe stdpkg fde.

Commands on subsequent lines in the action associated with the rule work in the same fashion. The
command

%$1.APPNAME: $1.FILE:r.o $2(OBJS)

iUus_rates two interesting features. First. in the clause $1. F I LE : r. o, the : r represents an operation

thatspecifiesthata singlefde extensionbc strippedfrom thevalueof the $i .FILE attributevalue. In

thiscase,the vdue of $i .FILE (e.g.,the FILZ aRributeofthe cmain ob_t) ismain.c. Thus, the

value of $I .FILE:r is the string "main" sinc¢ the extension ".C"is stripped off. Then, the extension

".o" is just appended to this to form the output string "maln.o" for insertion in the output line.

The subsequent $2 (OBJS) clause does not access an attribute of a primitive implementation object By

analogy with attribute grammars, the OBJS value is a synthesized attribute of the subm_e rooted at the
cfuncs branch ofthenode associatedwiththeexec : cn'_in cfuncs rule.In therulecfuncs .-

theclause

[{OBJS) $I.FILE:r ".o" $2(OBJS)]

declaresthe synthesizedattributeOBJS associatedwith each node. The ruleforcfuncs also has an

alternativerulewhose right-handsideisempty:

cfuncs : cfunc c runes

I 6-- empty rule

11

If the first part _ the rule fails in a search, the second part of the rule will always succeed. The seccmd

part of the rule does not declare any synthesized attributes or actions.

Finally, in the action associated with the rule cexec : cmain cfuncs, d_ command 82 On the last

line of the action:

exec : C_aln cfuncs

:{

$2

directs the packager to execute the action of the node associated with the second object on the right-hand
side of the rule. Thus, the $2 clause executes the action associated with the cfuncs : cfunc

rule. Table 1 shows all commands possible in rule actions and their semantics.

The resulting _ is shown in Appendix A. The rules capture the abstract form of all

that integrate C programs. Through the use of both inherited and synthesized attributes, the output
is customized.

7 References

[1] J. Callahan and J. Pu_rtilo. A packaging system for heterogeneous execution environments. IEEE

Transactions on Software Engineering. Julle 1991. Volume 17. Number 6. pp. 626-635.

[2] Feldman, S., Make: A Program for Maintaining Computer Programs, Software Practice and

Experience, April 1979, Volume 9, Number 4, pp. 255-265.

[3] McNutt, D., Imake: Friend or Foe?, SunExpert, November 1991, Volume 2. Number 11, pp. 46-
50.

Appendix A: A simple MAKEFILE

all: a.out

a.out: maln.o fact.o

cc c) a.out main.o fact.o

maln.o: maln.c

CC -C main c

clean::

rm -f maln o

clobber::

r_ -f main o

fact.o: fact.c

cc -c fact c

clean::

rm -f fact o

clobber::

rm -f fact o

*~ core a.out *.bak

a.out *~ core a.out *.bak

Appendix B: A simple rules file

12

exec

cfuncs

: cmaln cfuncs

:I

%all: $1. APPNAME

%

%$1.APPNAME: $1.FILE:r.o $2(OBJS)

% cc -o $1.APPNAME $1.FILE:r.o $2(OBJS)

%

%SI.FILE:r.o: $1.FILE

% cc c $1.F[LE

%

%ciean: :

% rm f SI.FILE:r.o *~ core a.out *.bak

%

%clobber : :

% _m -f $1.FILE:r.o $1.APPNAME *~ core a.out *.bak

%

S2

[,

: ,=func cfuDcs

[(OBJS) SI.FILE:r ".o" S2(OBJS)

:i

%$1.F[LE:[.o: $1.FILE

cc c $1.FILE

%clean: :

% rm C $1.F[LE:r.o

%clobDer : :

% rm f $1.F[LE:r.o

$2

13

