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AWARDS ABSTRACT

The invention relates to a solid-state photon-counting imaging device
for low light level imaging with photoelectron counting CMOS readout of
photon flux rate that features higher photon count rates than microchannel
plate (MCP) imaging devices.

FIGs. la and Ib illustrate two embodiments of the imaging device
comprising a layer I0 having a readout circuit for each of NxN photodetec-

tors in a focal-plane array which includes.a high gain, low power buffer
amplifier with 1/f noise dimension and a dlgital counter as a unit cell.
In FIG. laa planar layer 13 of photosensitive material having a focal-

plane array 12 of NxN photodetector diodes, each diode having a free
terminal and a second terminal that Is connected to a second terminal of

every other photodetector diode in said focal-plane array, is bump-bonded
onto the silicon layer 10 having the readout circuit as shown in FIG. 2.
Other techniques for bonding the layers I0 and 13 may be employed with
interconnection of photodetector diodes and the CMOS circuitry as disclosed
in U.S. Patent No. 5,236,871. Thus, each buffer amplifier has an input
terminal directly connected to a free terminal of a separate photodetector
diode for producing in response to each photon received a signal to be
counted by a separate one of an NxN array or a linear array of N time
shared digital counters for separately integrating over a fixed interval
of time photon-produced signals received from each photodetector diode as
a measurement of photon flux rate on each of said photodetector diodes of
said array. In FIG. lb the PIN photodetector diodes are interspersed in
the CMOS readout circuitry, such as adjacent the NxN array of buffer
amplifiers for the photodetector diodes of the NxN focal plane array, with
a counter adjacent each amplifier or one row of counters time shared with
every row of amplifiers.

FIG. 3a illustrates a schematic diagram for the implementation of a
readout circuit for use in either monolithic or hybrid focal-plane arrays
comprising a high gain, low power a_plifier and two timing switches. FIG.
3b illustrates the readout circuit of FIG. 3a with a feedback capacitance
for improving the readout circuit performance, FIG. 3c is a timing diagram
for initial reset and then readout operation of the buffer amplifiers for
the detectors of FIGs. 3a and 3b in the focal-plane imaging array of FIG.
la or lb. FIG. 3d illustrates schematically a technique for reducing
feedback capacitance in the operationalamplifler circuit of FIG. 3b by the
use of a capacitive divider.

FIG. 4a illustrates a schematic diagram of a buffered direct-injection
pixel readout circuit, and FIG. 4b Illustrates a schematic diagram of a
capacitive transimpedanceamplifler (CTIA) for the readout circuit of FIG.
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4a. FIG. 4c is a small signal equivalent circuit diagram of the CTIA of
FIO. 4b, and FIO. 4d illustrates a schematic diagram of a voltage-mode
background suppressed pixel readout circuit for use in a focal-plane array
of riG. la or lb.

FIG. 5a illustrates a schematic diagram of a current-mode background-
suppressing CTIA pixel readout circuit, FIO. 5b shows an equivalent circuit
of the photodetector in FIG. Ib, and FIO. 5c illustrates a schematic
diagram of a simple current memory cell and its sources of error.

FIG. 6a illustrates schematically a basic self-biasing FETamplifier,
and FIG. 6b illustrates schematically a self-biased cascade differential

amplifier using the self-biasing technique of the amplifier of FIG. 6a for
use as an alternative in the buffer amplifier of PIO. 3a for enhanced gain,

low power and high output impedance for photoelectron detection in the
focal-plane imaging array of FIO. 1.

FIG. 7 illustrates schematically cascaded buffer amplifiers for a
pixel unit cell to drive a digital counter.

FIO. S illustrates a CMOS circuit diagram for self-biased amplifiers
in the pixel unit cell of FIO. 7.

FIG. 9 illustrates a power saving scheme for the first of the two
self-blased amplifiers of PIG. S.

FIG. 10 illustrates a CMOS circuit diagram for a self-biased, high
gain buffer ampllfier for use as the sole amplifier in FIO. 3a or 3b, or
as an input amplifier in the unit cell of FIOs. 8 and 9 to drive a digital
counter.

FIO. II illustrates schematically the architecture for addressing one
row at a time of photoelectron sensor unit cells in the focal-plane array
of FIO. la or Ib and connecting them in parallel to a linear array of
buffer amplifiers, one buffer amplifier for each unit cell, the outputs of
which buffer amplifiers are connected to the inputs of a row of digital
photoelectron counters, one counter for each unit cell of the array
corresponding to the row of photoelectron sensor unit cells in the focal
plane, and a digital memory for storing separately every row of pixel data
as it is developed and then read into the memory, thus providing frames of
image data for subsequent processing and/or display.

The novelty of the invention resides in the provision of a high gain,
low power 1/f noise dimension amplifier coupling the photodetector diodes
to digital counters in a CMOS readout circuit in the embodiment of FIGs.
la and Ib for a monolithic structure (FIO. Ib) or virtually a monolithic
structure (FIQ. lb).
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SOLID-STATE IMAGE SENSOR WITH FOCAL-PLANE

DIGITAL PHOTON-COUNTING PIXEL ARRAY

ORIGIN OF INVENTION

The invention described herein was made in the perfor-

mance of work under a NASA contract, and is subject to the

provisions of Public Law 96-517 (35 USC 202) in which the

5 contractor has elected not to retain title.

TECHNICAL FIELD

The invention relates to a solid-state imaging system

having digital photon-counting pixels and readout circuitry.

BACKGROUND ART

10 The performance of focal-plane imaging arrays can be

significantly enhanced through the use of on-chip signal

processing. In state-of-the-art image sensors, such as CCDs,

the photon flux on each pixel of an array is integrated as an

analog charge. Readout of the sensor array requires the

15 shifting of an integrated charge from each pixel to an output

amplifier for conversion to a proportional voltage and finally

conversion from voltage to digital signals for storage. Each

of the shifting and converting steps introduces noise that

degrades the output. In harsh environments, sensor perform-
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ance can be further degraded due to radiation interference

during the readout process.

In a solid-state image sensor, the photon flux for each

pixel could be integrated by a digital electronic counter

5 coupled to the pixels by amplifiers, as shown in U.S. Patent

4,710,817. The readout process then involves reading out

digital signals that are not as susceptible to noise and

radiation interference as analog signals are. Furthermore,

analog-to-digital conversion would not be required, which is

10 another source of signal degradation problems. However, in

the aforesaid patent, an array of avalanche photodiodes or a

micro-channel plate (MCP) is required to provide an electrical

signal of sufficient amplitude to drive digital counters

through buffer amplifiers.

15 That architecture limits contrast in the output of the

image sensor during the presence of incident photons arriving

closely on individual pixels over such a short period of time

that they are recorded as a single unit. Consequently, in an

attempt to improve contrast, the photoelectron pulse created

20 by a group of photons arriving very close to each other in

time is converted in accordance with its peak value and time

duration into multiple units using a signal level detector

with an analog-to-digital converter and a differentiating

circuit. The differentiating circuit drives the counter to
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achieve a unit count for each photoelectron signal pulse, and

the level detector drives the analog-to-digital converter to

inject into the counter a count proportional to photoelectron

signal amplitude that is in excess of a threshold level set in

5 the level detector. That conversion is merely an approxima-

tion of the true image photon flux in that period of the

pulse.

More discriminating PIN photon-flux detector arrays are

commercially available for UV/visible photon-counting imaging

i0 devices from Hughes Technology Center (HTC), but with analog

integration and an analog multiplexer for pixel charge read-

out before analog-to-digital conversion. Thus, the HTC imag-

ing device has much higher noise (>50 electron rms) than can

be tolerated for many applications that require imaging opera-

15 tion under low light level conditions or under radiation sen-

sitive conditions. For example, several scientific and com-

mercial applications have been found to require accurate low

photon flux level detection of images. These applications in-

clude astronomy and astrophysics, where infrared images of ob-

20 jects have led to discovery of several features that are hid-

den in other spectral bands.

Several astrophysics-missions with space-telescopes and

spectrometers for IR band have been planned by the National

Aeronautics and Space Administration or are already in use.
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Satellites with IR detector arrays are being planned to

explore temperatures in the upper atmosphere, conduct surveys

of terrestrial minerals, water and agriculture, and record

weather patterns.

5 Medical researchers are using IR detector arrays as tools

to evaluate skin diseases, circulatory and neurological dis-

orders, breast cancer and neo-natal birth. IR detector arrays

also have potential applications in industrial robotics, and

are being used for industrial thermography (mechanical and

i0 electrical fault detection), high temperature and chemical

process monitoring, spectroscopy, and materials research.

Because of these examples requiring low photon flux level

detection of images, reference will sometimes be to an infra-

red focal-plane array (IRFPA) in the description of preferred

15 embodiments of the present invention. However, other applica-

tions require sensitive UV/visible detector arrays. Conse-

quently, it is not intended that the concept of the invention

be limited to infrared radiation bands, and for "IR" in IRFPA,

"UV/visible" is to be appropriately assumed equivalent depend-

20 ing upon the context where it is used. Similarly, wherever

FPA is used the reference is to be understood to be generic to

IR and UV/visible focal-plane arrays (FPAs) since application

of the present invention to image detection in other wave-

length bands, particularly in low image intensity applica-
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tions, would merely require the proper selection of the

photoelectric conversion material to be used in the pixel

array at the focal plane of an optical lens for the wavelength

band of interest.

5 In the past, IRFPAs have commonly used a two-dimensional

array of solid state detectors and an optical lens for focus-

ing the image on the focal plane of the array. The detector

pixels convert the radiation into electrical analog signals,

and readout circuitry multiplexes the analog signals to an

i0 analog-to-digital converter for serial pixel readout.

IRFPAs can be used in a scanning mode or a staring mode.

In the early days of IRFPA radiation detection when relatively

few detectors were available, the image field of the scene was

mechanically scanned. However, as the IR detector technology

15 matured, it became possible to reticulate a large number of

pixels with a high fill factor on the focal plane. Then the

IRFPAs were operated in the staring mode. In this mode, each

pixel is dedicated to detecting a very small spot of the

image, thus increasing the definition of the image detected.

20 While the inclusion of a larger number of detector pixels

increases the field of view, the elimination of a scanning

mechanisms simplifies the system design. However, since each

pixel is dedicated to a specific spot of the image, any non-

uniformities of detector responsivities translate directly
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into a distortion of the image. That is called detection

noise. Elimination of such noise is an important design

criterion for large array IRFPAs.

Like focal-plane arrays operating in UV/visible spectral

5 bands, large IRFPAs are also required to operate with severe

power dissipation, real-estate and throughput constraints.

Typical dimensions of an IRFPA readout unit-cell are 50_m x

50_m in area, and typical maximum power-dissipation is 100

_W/pixel. The low power-dissipation requirement also imposes

i0 a constraint on the kind of detector that can be used. State-

of-the-art IR detectors are photo-conductive or photo-voltaic

detectors. Photo-conductive detectors require a quiescent-

current for operation, increasing the focal-plane power-

dissipation. On the other hand, a photo-voltaic detector is

15 essentially a reverse-biased diode requiring very low quies-

cent-current for operation. Consequently, for low-power,

staring focal-plane arrays, a photovoltaic detector is

preferred.

The focal-plane array throughput is dependent both on the

20 IRFPA format as well as the application. In commercial appli-

cations, requiring real-time or near real-time decision mak-

ing, the throughput requirement is high and can pose a poten-

tial problem for FPA design. However, throughput is usually

not a concern in scientific applications.
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There are two major differences between UV/visible and

infrared imaging focal-plane arrays. First, silicon, the most

familiar and best understood photoelectron conversion mater-

ial, cannot be easily used for detection of infrared radia-

5 tion. This is because silicon has a bandgap energy of 1.12

eV. Therefore, a photon whose energy is less than 1.12 eV

will not generate an electron-hole pair in a silicon photo-

voltaic detector, thereby preventing its use for detection of

IR radiation. Thus, it can be seen that IRFPAs operating

i0 at 3-5 _m and 8-12 _m bands, require detector materials having

band gap energy of 0.25 eV and 0.1 eV, respectively. In the

absence of silicon photo-voltaic detectors at these wave-

lengths, photovoltaic detectors are built on narrow band gap

materials such as IV-VI compounds (lead salts), II-VI semicon-

15 ductors (mercury salts), III-V semiconductors (indium and

gallium salts). IR detectors are built on indium antimonide

(InSb), a III-V compound, and mercury cadmium telluride

(HgCdTe), a II-VI compound. IR detection in silicon is

carried out at 3-5 _m bands by using a platinum silicide

20 (PtSi) Schottky barrier diode (SBD) fabricated in an a-Si

layer.

In SBDs, internal photo-emission is responsible for

exciting a photo-current across the relatively small Schottky

barriers. However, the quantum efficiency of PtSi in a SBD is
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extremely low, being in the range of 1-2%. The quantum effi-

ciency can be increased somewhat by changing the thickness of

PtSi or by using an alternate metal film such as Pd2Si. How-

ever, the dark-current is also increased as a result, often

5 resulting in degradation of performance rather than an im-

provement. Other novel IR detector technologies exist, but

they are constrained by the absence of efficient low-noise

readout and multiplexer structures.

Apart from the problems caused by the unreliability of

i0 the photoelectron conversion materials, the reduced bandgap

energy required for detection of infrared radiation also de-

grades the photon detector performance, because the reverse-

bias current in photo-voltaic detectors depends exponentially

on the bandgap energy, causing a reduction in the detector re-

15 sistance. Further, due to materials problems, IR photodetec-

tors exhibit higher degree of response nonlinearity, poor

saturation characteristics and higher i/f noise. These prob-

lems can be ameliorated by operating the diode at a minimal

reverse bias and reducing operating temperature. It is noted

20 that the zero reverse-bias operation necessarily translates to

a smaller detector resistance.

The performance of IR detectors is characterized by the

product of the detector area, A, and the zero-bias resistance,

Ro. For the reasons outlined above, this product, R.A, is
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highly dependent on the operating spectral band and is also

found to decrease with the increase in the background flux

density as well. The decrease in the detector resistance

degrades the analog signal readout circuit response by making

5 it nonlinear due to loading of the readout circuit by the

detector resistance.

Unlike visible light imaging, the infrared image of a

typical terrestrial scene has very low contrast and has a high

background pedestal. The detection of low contrast infrared

I0 image in the presence of a high-background pedestal requires

accurate signal processing to estimate-and-subtract the back-

ground. Furthermore, due to response nonuniformity of the de-

tectors, the background pedestal varies from pixel-to-pixel,

requiring periodic calibration of the focal-plane array for

15 estimating the background pedestal. This signal processing is

usually carried out away from the focal-plane array using

expensive, computation intensive, digital signal processing

techniques called nonuniformity correction methods. However,

it is to be noted that a high background photon flux vis-a-vis

20 the photon flux of interest is present only in terrestrial and

some industrial applications where such expensive signal pro-

cessing equipment may be readily provided. Scientific and

astronomical applications of IR detection do not encounter

this high background, but nevertheless may suffer noise pro-
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blems from readout of analog signals which then require con-

version to digital signals for further processing and/or

storage.

There are three main mechanisms by which noise is

5 introduced in a focal-plane readout system. First is the

temporal noise present in the semiconductor devices used for

building the focal-plane array. Secondly, focal-plane arrays

exhibit fixed-pattern noise (or spatial noise) due to

nonuniformities in detector responsivities. Thirdly, even if

i0 the first two noise mechanisms were absent, the shot noise

present in the background flux will add noise to the readout

system. This shot noise is due to statistical variations in

the background that directly translates into an uncertainty in

the number of photoelectrons generated in the focal-plane

15 array. If N is the average number of photoelectrons generated

in a detector by the background radiation, the uncertainty in

this average is given by

where the over-score symbol n_ indicates temporal average.

If the IRFPA could be operated such that all other noise is

20 less than the shot noise due to the background radiation, the

focal-plane array is said to operate in background limited IR

performance (BLIP). The IRFPA then operates with the theore-
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tically minimum possible noise, and therefore, the goal of

every IRFPA is to operate at BLIP.

The first two noise mechanisms described above are not

easy to suppress, and for detectors with large response non-

5 uniformities, such as in HgCdTe focal-plane arrays, this re-

quires expense off-chip digital nonuniformity compensation

techniques. It is the intent of this invention to drastically

reduce complexity, mass and power associated with the signal

processing by incorporating analog buffer amplifiers and digi-

i0 tal integration on the focal-plane array that will allow

photoelectron counting so as to minimize noise problems by,

for example, reducing the detector impedance, utilizing a

capacitance transimpedance amplifier (CTIA) as a buffer ampli-

fier between each pixel having only one available terminal and

15 a digital counter for direct digital integration of photon

flux by counting photoelectrons. In conjunction with that

architecture, which may be monolithic or hybrid, other

techniques are intended to be used for background suppressed

readout of focal-plane pixel arrays as described by Bedabrata

20 Pain in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in the Graduate School of Arts

and Sciences at Columbia University in May 1993, and made

available to the public on January 15, 1994, by UMI Disserta-
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tion Services, which by this reference is incorporated herein

and made a part hereof.

STATEMENT OF THE INVENTION

An object of the invention is to provide a focal-plane

5 array of NxN photosensitive diodes in a layer of photoelectric

conversion material with a high percentage fill-factor and a

separate buffer amplifier for each photosensitive diode,

preferably a capacitive transimpedance amplifier (CTIA) or a

self-cascoding field-effect transistor (SCFET), for coupling

i0 each pixel of at least a row of pixels (in which case the CTIA

or SCFET are time-shared with all rows of the array) to at

least a row of photoelectron counters to be time-shared with

all rows of pixels, and a readout multiplexer, but preferably

a unit cell for each photosensitve diode comprising a buffer

15 amplifier and digital counter. All unit cells and readout

circuitry are fabricated in a semiconductor layer juxtaposed

with the layer of photoelectric conversion material reticu-

lated to define the focal-plane array of pixels in the case of

a hybrid focal-plane array or in the same semiconductor layer

20 of photoelectric conversion material used for the photodetec-

tor diodes, i.e., pixels of the array. A separate unit cell

provided for each pixel of the array simplifies the multiplex-

ing part of the readout circuitry, but adds to the realestate
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required for NxN unit cells instead of N unit cells. In

either case, VLSI readout circuitry includes high gain, low

power, analog buffer amplifiers having i/f noise reduction

capability at the input terminals of the photoelectron count-

5 ers for amplifying the signals generated by photon to electron

conversion in the pixels with a conversion gain in excess of

50_V/e, thereby providing ultralow light sensitivity (<i000

photons/sec) driving digital photoelectron counters.

Thus, as noted above and described in more detail below,

i0 a row of N counters, and even a row of N analog buffer ampli-

fiers, may be time shared with all rows of the NxN pixel array

in a sample and readout process of the photon flux rate of all

pixels in the array. However, it should be understood that

the pixels (photodetector diodes) of the array implemented as

15 PIN diodes may be distributed among CMOS buffer amplifiers and

counters for a monolithic structure in a silicon substrate.

In either case, monolithic or hybrid structure, a multiplexer

fabricated on the same semiconductor layer as the unit cells

is provided for digital readout of the counters. The need for

20 analog-to-digital conversion is thus eliminated in the digital

counter integration and readout process by direct digital

integration of photoelectrons to obviate noise problems in the

photon flux integration process and provide radiation harden-

ing by the digital counter readout process.
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The novel features that are considered characteristic of

this invention are set forth with particularity in the

appended claims. The invention will best be understood from

the following description when read in connection with the

5 accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. la illustrates a hybrid focal-plane imaging array of

pixels formed in a layer of photoelectron conversion material

by reticulating the layer into rows and columns of pixels and

i0 mating that layer with a silicon layer having CMOS photoelec-

tron digital integration circuit means and digital signal

readout processing circuit means prefabricated on it. FIG. lb

then illustrates a monolithic focal-plane imaging array of

pixels dispersed among an array of CMOS buffer amplifiers for

15 a more direct connection between the photodiode and input

terminals of the buffer amplifiers.

FIG. 2 illustrates in greater detail the implementation

of the array of pixels in FIG. 1 as an array of PIN photo-

detectors bump-bonded onto CMOS circuitry fabricated on the

20 silicon layer for separate connection of each pixel (PIN

photodetector) to a unit cell comprising a CMOS high gain, low

power buffer amplifier having 1/f noise reduction capability

driving a CMOS digital counter.
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FIG. 3a illustrates a schematic diagram for the implemen-

tation of a readout circuit for use in either monolithic or

hybrid focal-plane arrays comprising a high gain, low power

amplifier and two timing switches. FIG. 3b illustrates the

5 readout circuit of FIG. 3a with a feedback capacitance for

improving the readout circuit performance, FIG. 3c is a timing

diagram for initial reset and then readout operation of the

buffer amplifiers for the detectors of FIGs. 3a and 3b in the

focal-plane imaging array of FIG. la or lb. FIG. 3d illus-

i0 trates schematically a technique for reducing feedback capaci-

tance in the operational amplifier circuit of FIG. 3b by the

use of a capacitive divider.

FIG. 4a illustrates a schematic diagram of a buffered

direct-injection pixel readout circuit, and FIG. 4b illus-

15 trates a schematic diagram of a capacitive transimpedance

amplifier (CTIA) for the readout circuit of FIG. 4a. FIG. 4c

is a small signal equivalent circuit diagram of the CTIA of

FIG. 4b, and FIG. 4d illustrates a schematic diagram of a

voltage-mode background suppressed pixel readout circuit for

20 use in a focal-plane array of FIG. la or lb.

FIG. 5a illustrates a schematic diagram of a current-mode

background-suppressing CTIA pixel readout circuit, FIG. 5b

shows an equivalent circuit of the photodetector in FIG. Ib,
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and FIG. 5c illustrates a schematic diagram of a simple

current memory cell and its sources of error.

FIG. 6a illustrates schematically a basic self-biasing

FET amplifier, and FIG. 6b illustrates schematically a self-

5 biased cascade differential amplifier using the self-biasing

technique of the amplifier of FIG. 6a for use as an alterna-

tive in the buffer amplifier of FIG. 3a for enhanced gain, low

power and high output impedance for photoelectron detection in

the focal-plane imaging array of FIG. i.

i0 FIG. 7 illustrates schematically cascaded buffer ampli-

fiers for a pixel unit cell to drive a digital counter.

FIG. 8 illustrates a CMOS circuit diagram for self-biased

amplifiers in the pixel unit cell of FIG. 7.

FIG. 9 illustrates a power saving scheme for the first of

15 the two self-biased amplifiers of FIG. 8.

FIG. i0 illustrates a CMOS circuit diagram for a self-

biased, high gain buffer amplifier for use as the sole

amplifier in FIG. 3a or 3b, or as an input amplifier in the

unit cell of FIGs. 8 and 9 to drive a digital counter.

20 FIG. 11 illustrates schematically the architecture for

addressing one row at a time of photoelectron sensor unit

cells in the focal-plane array of FIG. la or Ib and connecting

them in parallel to a linear array of buffer amplifiers, one

buffer amplifier for each unit cell, the outputs of which
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buffer amplifiers are connected to the inputs of a row of

digital photoelectron counters, one counter for each unit cell

of the array corresponding to the row of photoelectron sensor

unit cells in the focal plane, and a digital memory for

5 storing separately every row of pixel data as it is developed

and then read into the memory, thus providing frames of image

data for subsequent processing and/or display.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. la, a solid-state photon-counting imag-

10 ing device employs CMOS circuits developed on a silicon semi-

conductor layer 10 epitaxially grown on a substrate 11 for

signal processing in a focal-plane array 12 (part of which is

shown in FIG. 2 for three pixels in a linear array) for photo-

electric conversion using a layer 13 of suitable photosensi-

15 rive material for the wavelengths of interest, such as a-Si

for UV/visible images or other material for IR images. The

image is focused on the focal-plane array 12 with an optical

lens 14.

In this example, the photocetectors of the array 12 con-

20 sist of fully depleted PIN silicon detector reticulated into

an array of NxN pixels with 100% fill factor. CMOS circuitry

comprising unit cells (amplifiers and counters), an accumula-

tor, and addressing means for multiplexing digital pixel data
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out are produced in the silicon layer i0 and connected to the

pixels of the array 12 by bump bonding as shown in FIG. 2 or

by a method disclosed by Fossum et al. in U.S. Patent No.

5,236,871 for producing a detector array in a layer of semi-

5 conductor material and integrated pixel readout circuitry in

a separate layer of semiconductor material lifted off a sub-

strate and bonded onto the focal-plane array after which

interconnected channels are etched and plated to provide

electrical connections to the pixels of the focal-plane array.

i0 The technique of bump bonding is illustrated in FIG. 2

for the purpose of discussion as one example of an embodiment

of the invention using as the focal-plane array a commercially

available HAC PIN detector array that is commercially avail-

able bonded to an integrated CMOS readout circuit that is

15 unique to this invention. In other words, the intent of this

invention is not to provide a bonding technique between a

focal-plane detector array and integrated CMOS readout cir-

cuitry, but rather to improve performance of the readout

circuitry of the focal-plane array, particularly where the

20 focal-plane detector array is intended for use with low levels

of image photon flux.

In applications that permit the photodetector diodes to

be fabricated in a layer of silicon together with CMOS readout

and other CMOS circuitry, the focal-plane array of NxN photo-
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detector diodes may be interspersed with an array of CMOS buf-

fer amplifiers, one diode directly connected to the input ter-

minal of each separate one of the NxN array of buffer ampli-

fiers, as illustrated in FIG. lb. In that case, a separate

5 digital photon counter may be provided for each buffer ampli-

fier interspersed in the focal-plane array as an integral part

of each photodetector unit cell in the array, or one row of

counters may be time shared with a row of photodetector

diodes.

i0 In either case, hybrid or monolithic focal-plane array,

CMOS unit cells include at least a buffer amplifier, each row

of which may timeshare N digital counters for an array of NxN

pixels. Alternatively, each unit cell may include a digital

counter. A digital buffer memory is separately provided

15 together with all necessary timing and control circuits for

the pixel array data read out sequentially row by row from the

buffer amplifiers and counters. As will become apparent from

later discussion with reference to FIG. I0 of a time-sharing

architecture, the CMOS unit cells may be produced simultan-

20 eously as CMOS integrated circuitry but with the buffer memory

on a part of the silicon semiconductor that extends beyond the

array of NxN pixels.

The intent of whichever fabrication method is chosen to

provide a monolithic or a hybrid focal plane is to connect the
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input terminal of the CMOS unit cells as directly to the one

photodetection diode terminal of each pixel as possible to

drive separate ones of the photoelectron digital counters for

unit counts in response to each photoelectron produced in the

5 respective pixels at the focal plane. Alternatively, N rows

of pixels may be read out through one row of time-shared

digital counters when only the CMOS circuit of the buffer

amplifiers fit within the pixel area, but when feasible to

include both the CMOS buffer amplifiers and CMOS digital

i0 photoelectron counters of the pixel cell units within the

pixel area in order to avoid the time sharing of the one row

of counters can be avoided.

FIG. 3a illustrates the basic architecture of a high

gain, low power analog buffer amplifier 15, which may use a

15 CTIA or an SCFET amplifier to be described below, connected

directly to a terminal of a pixel detector (PIN or PN photode-

tector) 16. When the photodetector diode is fabricated in the

si layer as a PIN diode, the CMOS circuitry may also be fabri-

cated in the same Si layer, thus providing a monolithic focal-

20 plane digital photon-counting pixel array.

Initially, a switch #r,t is momentarily closed to reset

(discharge) the memory capacitance Cd of the photosensor.

Then after a set period of time, a switch @=z is closed to

sample the pixel flux as shown in FXG. 3c. Each incident
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photon producing a photoelectron will produce, through the

high gain amplifier (conversion gain in excess of 50_V/e), an

amplified voltage pulse sufficient to drive a digital counter

through a column bus Bc. This assumes the photodetector diode

5 16 is fabricated within the CMOS area for the amplifier 15 or

is placed directly under the pixel area of that detector 16 to

which it is dedicated for directly connecting the input ter-

minal of the amplifier 15 to the single terminal of the pixel

detector 16 in the case of the hybrid focal-plane array illus-

10 trated in FIGs. la and 2, and that the digital counter is not

placed under the pixel area with the amplifier 15 but is in-

stead located near a CMOS digital memory produced in the

extended part of the silicon layer i0 and connected to it by

the column bus Be, either as one counter dedicated to one

15 pixel in the focal-plane array, which is yet another possible

arrangement, or as one counter of a row of counters time

shared with all rows of the focal-plane array.

In any of the three possible architectures, operation of

the readout circuit is enhanced by implementing it as a

20 capacitive transimpedance amplifier (CTIA) 15', i.e., with a

feedback capacitance Cf as shown in FIG. 3b. In either case,

the buffer amplifier is preferably implemented as a CMOS

circuit with sufficient pulse gain to overcome distributed

line capacitance CL of the column bus to drive a counter.
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After each Qr,t pulse discharges the capacitor Cf through a

parallel switch, a timing pulse #coi connects the buffer

amplifier to the column buffer and waits for a photoelectron

(indicated as a dot on the V o output trace) to be counted.

5 The waiting period shown in FIG. 3c is selected to minimize

the possibility of more than one photon being detected during

that period, a feat made possible by designing the CTIA using

CMOS circuit techniques.

It has been shown that reduction of the detector imped-

i0 ance in the long wavelength IR (LWIR) spectral band (8-12 _m)

is one of the two main causes of inaccurate readout of IR sig-

nals. The lowering of the zero-bias resistance (Ro) of the

detector 16 makes the readout circuit of FIG. 3b nonlinear and

causes a larger portion of the photo-current to couple into

15 the detector resistance. The proportion of the current cou-

pled to the readout circuit depends on the ratio of the zero-

bias detector resistance to the input impedance of the readout

circuit, i.e., the CTIA. The problem of low detector resist-

ance can therefore be circumvented by constructing readout

20 circuits that either reduce the input impedance of the readout

amplifier, or effectively increase the detector resistance

seen by the readout amplifier. One such circuit is the buf-

fered direct-injection input amplifier stage of the readout

circuit as shown in FIG. 4a which operates by modulating the





F92125 23

gate of an injection field-effect transistor (FET) M_

proportional to the change in the detector bias so that the

transconductance (also the input impedance of the circuit) of

the injection FET increases by a factor of (I+A_), where A_ is

5 the gain of the buffer-amplifier.

In either a monolithic or hybrid focal-plane array, only

one terminal of the detector is available to the readout

circuit, the other terminal (Vd.t) being common to all

detectors. For that reason there are only a few readout

I0 circuits that can be considered for use in conjunction with

detectors having a low R_A product. If instead both the

terminals were available, other alternative designs would be

possible for use in the circuit of FIG. 3a. However, there is

at least one other circuit that is compatible with such

15 detectors having a low R_ product. This circuit, shown in

FXG. 4b is the capacitive transimpedance amplifier (CTIA)

referred to above with reference to FXG. 3b.

The CTIA of FIG. 4b is a feedback amplifier that is used

to integrate the photo-current on a feedback capacitor Cz, as

20 shown in FIG. 3b. The circuit consists of an input network

consisting of the capacitor C d in FIG. 3b and the input imped-

ance Ro of the amplifier 15'; a feedback network consisting of

the MOSFET-switch M_ and the capacitor Cf; and a MOS

differential amplifier 15" with a differential gain of A_.
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The circuit operates as follows. Once the switch MRsT is

closed, the amplifier functions in unity-gain-mode, so that

the dc level of the output, which is tied to the inverting

input, settles to a value very close to the dc bias on the

5 noninverting input V B. The residual difference between the

voltage levels of the two inputs depends on the open-loop gain

of the amplifier, as well as offsets resulting from component

mismatches. Having established the operating conditions, the

switch M_ is opened and the photo-current is allowed to inte-

i0 grate on the capacitor network. The maximum integration-time

is limited by the dynamic range of the amplifier. However,

the presence of the resistors (comprising the detector resist-

ance and resistors in the feedback loop) in the circuit fur-

ther lowers the maximum possible integration-time. This can

15 be observed from the transfer function of the CTIA, which is

derived from the equivalent circuit shown in FIG. 4c with the

resultant current transfer function being given by:

Vo.t(f) 1
Hi (f) -

(2)

J/

with the cut-off frequencies defined as:
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gf +go
gf+ --

Avo gm g.

2;Yfc- Cz+C d CL +C f ; Avo- ; Avd-gds gd
C f+-- +--

Av° Avd (3)

2;Yfa=2_fLAvo -I ; 2=fr- gal.

I +--cd CL+C_
C:

The pole given by fa is due to the differential ampli

fier, and that given by f= is due to the resistor-capacitor

network at the input and in the feedback loop. It can be seen

from the expression for the transfer function that the detec-

5 tor resistance has been effectively increased by a factor of

;_, the open-loop gain of the amplifier. Thus, by designing

the CTIA with a high enough open-loop gain, the errors intro-

duced by low Ro value can be avoided.

The cut-off frequency fo should be much smaller than fa

i0 in order to allow proper integration of the photo-current. If

this is the case, the cut-off frequency of the CTIA is deter-

mined by fc, and smaller its value, longer can be the integra-

tion-time. If the bandwidth due to the input and feedback

network is smaller than the MOS amplifier bandwidth, the

15 effective time-constant (re) of the CTIA is determined by the

resistor capacitor network at the input and the feedback loop,

and can be calculated from Equation (3) to be:
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C d +Of
Of+ --

mvo
_c-- (4)

gd +g:
gf-

Avo

For typical values of the capacitances and resistances, rc is

of the order of 5 msec for a LWIR detector. Since, the inte-

gration-time must be smaller than the time-constant, this

means that the integration-time of a typical LWIR readout for

5 terrestrial applications is limited to about 1 msec.

While the high background-flux in LWIR makes it

possible to theoretically reach lower NEAT levels, where NE_T

is defined as the equivalent temperature differential in the

background for which the IR signal at the output of the

i0 detection system is equal to the electronic noise at the same

mode, it also demands unduly large analog storage capacity.

In other words, the required storage capacitor is too big to

be integrated into a focal-plane array unit cell. However, if

the number of the background photocharges could be estimated

15 and subtracted at the readout unit-cell amplifier circuit, the

limitation imposed by the signal handling capacity can be

overcome. Additionally, such a circuit would possess several

desirable features as follows:

i. The increased electronic signal-to-background con-

20 trast (i.e. the contrast seen by the readout cir-
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cuit) will ease the dynamic range requirement of

the readout circuit.

2. Since the background-flux will, anyway, be con-

verted into an equivalent number of charges by the

5 photo-detector, it is possible to achieve a very

low value of NEAT, in spite of the fact that the

number background-charges at the output of the

readout amplifier circuit is reduced to an insig-

nificant level.

i0 3. Lastly, it is pointed out that background-subtrac-

tion acts as a non-uniformity suppressor, reducing

the spatial noise and making BLIP operation feas-

ible even with detectors having large non-unifor-

mity.

15 Voltaqe-mode Subtraction of Backqround Charqes

The background-charge-estimation can be carried out

either in the voltage domain or in the current domain. In the

voltage-mode operation of the background suppression circuit,

shown schematically in FIG. 4d, the background-flux is esti-

20 mated by integrating the background-charges on the capacitance

C I. It is subsequently sampled-and-held on capacitance C,.
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The background-pedestal, stored on C,, is finally subtracted

when the IR signal is read out, thereby canceling the back-

ground-pedestal. The subtraction can, in principle, be car-

ried out with a differential amplifier.

5 Apart from the issue of signal handling capacity, one of

the major problems with this scheme is the offset produced by

the charge-feedthrough from the switch M._ in FIG. 4d, and

the nonuniformity in the buffer-amplifier due to threshold

voltage variations. It has been shown that the feedthrough-

i0 related error is of the order of 30 mV or more for reasonably

large capacitances. Further, threshold-related error can add

another 15-20 mV to it. Since the minimum signal-to-back-

ground contrast is very small (0.01 or less), the random error

in the background-estimation will be more than the detectable

15 signal.

Available offset and non-uniformity free sample-and-hold

circuits require the use of amplifiers and complicated clock-

ing-schemes in order to achieve the required compensation.

This results in an unacceptable increase in real-estate and

20 power for focal-plane array applications. Alternately, the

sample-and-hold circuit can be replaced by a CCD-based analog

buffer memory that is small enough in size and power consump-

tion for focal-plane array applications.
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Although demonstrated to operate without offset, this

CCD-based scheme was not pursued, since voltage-mode back-

ground-suppression is inherently limited by signal handling

capacity.

5 Current-mode Subtraction of Backqround-Flux

Since the background-flux presents itself to the readout

circuit in the form of a current, it is more sensible to carry

out the background-subtraction in the current-mode itself.

Unlike the voltage-mode operation, subtraction of the back-

i0 ground-pedestal in the current-mode is carried out prior to

photo-current integration, resulting in reduction of the back-

ground-current itself. Consequently, far fewer background-

charges are integrated on the focal plane, resulting in over-

coming charge handling capacity limitations.

15 The current-subtraction scheme can be incorporated along

with the focal-plane readout circuit by adding a transistor in

the feedback loop of the CTIA as shown in FIG. 5a. An

equivalent circuit of the photodetector 16 shown in FIG. 5a,

which is the same detector shown in FIGs. 3a and 3b, is shown

20 in FIG. 5b. For the operation of the background-suppressed

CTIA readout circuit, a calibration-cycle is needed. During

the calibration-cycle, the focal-plane array is made to stare

at an equivalent background-scene, and the resultant
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background-current is memorized in the circuit. This is

accomplished by resetting the circuit of FIG. 5a by turning

the switch M_s_ ON. This operation biases the transistor Mm_

with its gate-and-drain short-circuited. The background-

5 current flowing from the detector is coupled to the transistor

M_ and the gate-to-source voltage of the transistor charges

up to the required voltage level to support this current. At

the end of the calibration-cycle, the switch M_s_ is shut OFF,

causing a voltage to be stored on the capacitor C_., the

10 voltage being equivalent to the channel current through M_.

During the readout,phase, the detector current increases

by an amount equal to the signal current. The voltage stored

on C_. causes a current to flow through M_. This current is

the same as the background-current. Thus, the share of the

15 detector current that is due to the background-flux, is

bypassed through the transistor M_ and is therefore not

integrated on the capacitance C_t. In other words, the

background-flux is subtracted in this circuit by bypassing it

through M._.

20 The transistor _ along with the reset-switch and the

storage capacitance C..is called the current memory circuit.

Of course, due to an error associated with the current memory,

whose sources will be described later, the entire background

current is not subtracted, but is reduced to a value equal to
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KIb, where _ is the background-suppression factor and Ib is the

background-current. Using the circuit shown in FIG. 5a, typi-

cal values Of K have been measured to be 0.1%. By comparing

FIG. 5a with FIG. 3b, it will be appreciated that the current-

5 mode background suppressing CTIA shown in FIG. 5a is a prefer-

red embodiment of the basic detector readout circuit of FIG.

3b.

Another parameter of concern is the injection efficiency

of the circuit during calibration. It can be calculated by

i0 writing KCL at the input node of the CTIA. Noting that the

impedance of the transistor M_ during the calibration-phase

is equal to its transconductance (g.), the injection efficien-

cy (in the calibration-phase) can be computed as:

i,... g_Ro (1 +Avo )

_c- ip - l+g_o( l +Avo) (5)

For typical values in LWIR, such as Ro = 0.5 M_, gm = 1 _A/V

15 (for Ib = 100 nA) and ;Wo = 200, Rc=0.99.

One advantage of using the circuit of FIG. 5a over a

buffered direct-injection circuit is that unlike the latter,

the circuit of FIG. 5a is not susceptible to injection

efficiency (_) degradation during the integration-mode. As

20 long as the integration-time (Ti.t) is smaller than the time-





F92125 32

constant (to) of the circuit, the impedance of the capacitors

is much more than that of the resistors during integration,

and all the detector current is coupled into the capacitors

only. Of course, during integration, the photo-current is

5 shared between capacitors C_t and Cd. However, this does not

degrade the performance of the readout circuit, since unlike

the detector resistance, the detector capacitance Cd does not

depend upon the background flux. Further, due to the feedback

operation, the detector capacitance is effectively reduced by

i0 a factor of A. compared to C_t , in a manner similar to im-

provement in injection efficiency. The performance of this

background-suppressed readout circuit depends upon the

performance of the current memory portion of the circuit which

will now be discussed.

15 Current Memory

MOS transistors require no gate current to control their

drain currents. Dynamic analog techniques have exploited this

property for storage of analog information on the gate

capacitor. These techniques have often been used for offset-

20 compensation and proper biasing of CMOS amplifiers. In recent

years, current-mode analog signal processing has been shown to

perform better than voltage or charge-mode signal processing
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in some applications. Consequently, sampled-data systems have

tried to tap the advantages offered by current-mode analog

signal processing by developing sampled-current techniques.

Current memory is an example of a sampled-current circuit. It

5 is essentially a sample-and-hold cell, as illustrated in FIG.

5c which indirectly samples the drain current flowing through

a MOSFET by storing its gate-to-source voltage required to

maintain that current.

This circuit has been referred in literature by various

I0 terms such as current copier cell, current self-calibration

circuit, and dynamic current mirror. The operation of the

circuit can be understood from the simple circuit diagram

shown in FXG. Sc. The current Qf._ to be memorized is made to

flow through the memorizing transistor M._ when the clock #._

15 is high by short-circuiting the gate and the drain of the

memorizing transistor. The short-circuiting is achieved by

turning ON the MOSFET switch M,, when #._ is high. The gate

voltage of the memorizing transistor M.. is charged up to an

adequate level required to support the drain current. After

20 the switch M w is turned OFF, this voltage is held on by the

capacitor C.tm, so that at a later time, when the clock #=_

goes HIGH, memorized current is read out.
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The current memory system is affected by parasitic

capacitance C_= in the store and readout circuit as will be

noted below.

Since the same transistor is used both to read and write

5 data in the current memory, the very notion of mismatch due

to technological variations disappears. This is unlike cir-

cuits operated in voltage-mode, where cell-to-cell mismatch is

a major source of random error. However, a current memory has

its own sources of error, the main one usually being the

10 charge-feedthrough associated with the MOSFET switch M_.,

causing the sampled voltage to be different from the actual

gate-to-source voltage of the MOSFET.

The current retrieved from the current memory will always

be different from the current that was memorized by a small

15 amount. For a current memory array, two kinds of errors are

of concern, the original-to-copy error and the relative error.

The original-to-copy error refers to the error (within a given

cell) between the current memorized and that read out. The

sources of this kind of error are indicated in FXG. 5c. The

20 relative error refers to the fractional difference in the

current read out from two different current memory cells,

after the same current was written into both of them.

The main source of error in a current memory is the

switch-feedthrough. Switch feedthrough refers to the residual
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channel-charge of a MOSFET-switch that is dumped on the stor-

age node following the turn-OFF of the MOSFET. If Qch be the

channel charge present under the MOSFET gate when it was ON,

and C.to= be the storage capacitance, the switch-feedthrough is

5 given by:

AZf£_ g=Qch (6)
I Cstor,

Since the switch-feedthrough-related error depends upon the

g./I ratio, the fractional error given by the Equation 2 is

lower for higher values of current memorized, i.e. when the

transistor operates in strong-inversion. This is because in

i0 strong-inversion, g. is proportional to the square root of the

drain current. Therefore, g. to I ratio, decreases with in-

creasing levels of current memorized, thereby reducing the

fractional error. On the other hand, when extremely small

current-levels (1-200 nA) are memorized, causing the memoriz-

15 ing transistor to operate in weak-inversion, the transconduct-

ance can be expressed as:

I (7)
gin-mvk

where m is a constant that varies from one transistor to
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another. Its typical value is between 3 to 5 for CMOS

technology. Equation 2 can now be rewritten as:

Izt Qch
n - (8)

I mVkTCstor .

The switch-feedthrough error is independent of current for the

transistor operating in weak-inversion and is inversely pro-

5 portional to the storage capacitance size. For W_ = 3 pm, L.,

= 5 _m, C_ = 0.85 fF/_m 2, Vg. - VT = iV, and C.t_o = 0.5 pF, the

charge feedthrough-related error can be calculated from Equa-

tion (8) and is of the order of 25%, if it is assumed that the

channel-charge is split in equal halves, and one half goes to

i0 the drain side and one half to the source side.

The actual charge that is fed onto the source end depends

upon a number of factors. It has been shown that the charge-

feedthrough depends upon the rate of turn OFF of the MOS

switch, its ON conductance, the impedance on the drain end,

15 and the ratio of the capacitance on the drain to that on the

source side. For a slow enough rate of switch turn-OFF, the

fraction of channel-charge fed through to the source side

becomes smaller as the ratio of the drain side capacitance to

the source side capacitance decreases. For a current memory,

20 the source-end capacitance (C.to_) is less than that in the

drain-end (CI_ , not shown). Therefore, for slow enough turn-
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OFF rate, the amount of switch feedthrough to the storage node

decreases. Even then, the resultant switch feedthrough-

related error can be significantly large.

The drain-to-source voltage of the memorizing transistor

5 during the write-mode is the same as its gate-to-source

voltage. However, in the readout-mode, this voltage will be

larger causing the current flowing through the transistor to

be different due to the finite output impedance of a MOSFET in

saturation.

i0 The small-signal output conductance of a MOSFET in

saturation is dependent on the current flowing through it, and

is usually modeled as:

gds = kids (9)

with values of k being in the range of 0.01 to 0.05 for a 2 _m

15 CMOS technology. Further, the output conductance is more for

a p-MOS than for an n-MOS by a factor as much as 5 times. The

error induced by the channel-length-modulation can be

expressed as:

_Icl gd_Vout
- -kavo.t (lo)I I
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This error is also independent of the current memorized and is

of the order of 2-5%.

There is always a parasitic capacitance (C_) between the

drain and the gate of a MOSFET, a large component of which is

5 the overlap capacitance between the gate and drain. This

overlap capacitance C_ is proportional to the width of the

memorizing transistor M_. and is usually small. However, when

the stored memory is being read out and the drain voltage is

different from what it was during the write-phase, this capa-

i0 citor C_ will couple a part of this increased drain voltage

to the gate, causing a change in the current proportional to

the increase in the drain voltage. This error can therefore

be expressed as:

A oo_( iAVoo (11)I Cpar+C,tor.) mVkT

where V_ is the thermal voltage. Equation (ii) indicates that

15 the error can be kept small by reducing the parasitic capaci-

tance, and by making the memorizing capacitance C,tor. large

which can be done by proper integrated circuit layout.

Temporal errors in a current memory are caused when the

write-time is too small or when there is junction leakage

20 associated with the memorizing node between the switch M n and

the capacitance C.to_. If the write-cycle is terminated before
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the circuit settles in equilibrium, and the gate voltage of

the memorizing transistor cannot charge up to its proper

value, there will be an error during the readout-phase. This

error is particularly troublesome for small currents memor-

5 ized, since for small currents the memorization time is usual-

ly longer. The memorization time is mainly determined by the

time-constant due to the C.t=o and the transconductance of the

memorizing transistor C._, since the switch ON conductance is

much larger than the transconductance (g_) . Assuming a

i0 single-pole system, the error in the gate voltage as a

function of the write-time (t_) is given by:

AVgs( twr) -Vgs(
)=exp- (12)

vg,(-)

where z._ is memorization-time-constant given by:

= Cstorelg_ (13)

It can be seen from Equation (13) that the smaller the current

the larger the memorization-time-constant. Since a small

15 error in the gate voltage causes a large error in the drain

current, t_> 10.r._, for this error to be negligible.

The other temporal error is caused by the p-n junction-

diode leakage at the memorizing node. The presence of this
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error cannot be avoided since the source of the switching

transistor M._ is connected to this node by this diode. The

leakage-current associated with this diode will decrease the

voltage on the capacitance C.to_ , so that the memory perfor-

5 mance will degrade over a period of time. The time duration

over which the memory is retained depends upon the tolerable

error and the magnitude of the leakage current. This error

can be expressed as:

AI1k-g_IiAt- IiAt (14)
I Cstore/ mVkTCstor e

The noise associated with the circuit MOSFETs will impose

i0 a physical limit to the minimum error level that can be

reached by the current memory even if all other sources of

error were suppressed. However, at present, current memory

operation is far from being limited by noise. The noise in

current memory is contributed from two other distinct sources.

15 First, there is a statistical uncertainty in the voltage sam-

pled on C.to_ following the shut-OFF of the switching transis-

tor. This uncertainty is due to the sampling of the noise of

both the MOSFETs M n and M.., This noise is called the reset-

noise, and is present in any circuit that operates with peri-

20 odic-reset. The noise due to the switch is negligible, where-
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as the noise in memorizing MOSFET determines the reset noise

and the uncertainty in the voltage sampled is given by:

_. _ kT (15)
C,tore

Further, during the readout of the current memory, the channel

noise is also present and causes another error in the

5 memorized current. At the same time, because of the periodic

reset of the circuit, it reduces the low-frequency i/f noise

of the current memory.

When the CMOS counters will not fit under the limited

pixel areas with its cell unit, a row of N photoelectron

i0 counters may be produced on the extended silicon semiconductor

area together with the digital memory, one digital counter for

each column of the NxN pixel array, each to be time shared by

all N pixels in the column. As these N digital counters com-

plete sampling a row of N pixels over a timed integration

15 period, the contents of the counters are transferred serially

or in parallel to a corresponding row of N registers in the

digital memory. The necessary address decoding and timing

circuits are also produced on that extended silicon semicon-

ductor area. In an extreme case of very high definition, it

20 may be necessary to place even the unit cell amplifier for

each of the pixels in the extended part of the silicon
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semiconductor layer next to the digital converters. In that

case, only N time shared unit cells are provided, one for each

of N photoelectron counters for each of N columns of pixels.

Improved Readout Circuitry

5 Although the readout circuits in FIGs. 3a and 3b through

FIGs. 5a and 5c may be found in the literature in other

contexts, i.e., in other architectures, the following unique

readout circuits will provide better performance for low light

level imaging with lower voltage and power requirements in

10 either monolithic or hybrid architectures. MCP detector

arrays which operate at a high voltage (2000 volts), large

effective pixels (40 _m resolution), low intrinsic quantum

efficiency at Lyman-a (1216A, 8%), high sensitivity to water

vapor and the need to be periodically "scrubbed" for

15 stability. CCD detector arrays offer large formats, low noise

readout and do not require such high voltages, but have an

equally unappealing collection of limitations. These include

the need for backside illumination or frontside application of

a down converting phosphor.

20 Backside illumination calls for thinning a large area

device and then treating the mechanically fragile surface to

ensure electrical stability and high UV QE. The use of a

frontside phosphor results in more limited QE and cutoff at
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about 500 _. The high vapor pressure of the phosphor, and its

tendency to crystallize leads to long term reliability

concerns.

Other issues important for CCDs are their fundamental

5 sensitivity to radiation (e.g., proton) damage that signifi-

cantly reduces charge transfer efficiency and hence signal

fidelity, and residual read noise (3-5 e- rms) that precludes

photon counting. It should also be noted that while sub-

electron read noise has been demonstrated for CCDs using

i0 multiple non-destructive sampling, the transport of single

electrons (or even a few electrons) across macroscopic

distances has not yet been demonstrated. (CTE is typically

quoted for more than 1000 electrons in a charge packet, and

with enough illuminated pixels to ensure that single electron

15 traps are filled.)

While both CCD and MCP approaches find supporters and

continue to be improved, one would like to ideally combine the

photocounting ability of the MCP detector array with the com-

parative ease of solid-state monolithic detectors whenever the

20 photoelectron conversion material can also be used for the

readout circuits, as in the case of CMOS circuits for PIN

photodetector diodes. This is so it would be possible to have

a detector array that could count photoelectrons as they are

generated within the pixel so that the readout could be digi-
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tal and hence noise free. The present invention is thus in-

tended to provide an advanced solid-state monolithic photon-

counting imaging device when possible that represents a next-

generation sensor beyond the microchannel plate (MCP) device.

5 The monolithic device is a focal-plane array that

consists of a fully-depleted PIN silicon detector array with

100% fill-factor and high QE, made possible by a

photoelectron-counting silicon CMOS readout with a multi-

plexer. The purpose of this device is to count individual

i0 photoelectrons on the focal plane at a much higher rate than

is presently possible with the MCP/MAMA or strip and wedge

readout system (-i000 counts/pixel/sec) with higher spatial

resolution and low voltage operation. The device will have a

25 micron spatial resolution, and quantum efficiency and dark

15 current similar to that of backside illuminated CCDs (QE a 20%

at 100-400 nm, dark current of 40 count_/pixel/sec at -50°C).

The array format may be readily provided with a i024xi024

pixel array based on proven infrared hybrid focal-plane array

technology. Its main advantage is that the device will not

20 require high voltages typical of MCPs, thus simplifying

associated electronics and packaging. The size of the pixel

will scale with commercial microelectronics minimum feature

sizes and thus will have even higher resolution in succeeding

generations. Since the readout multiplexer uses the common
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CMOS fabrication process widely used in space applications,

the radiation hardening of the multiplexer to levels that are

orders of magnitude greater than that of the CCD is also

readily achievable.

5 The open-face nature of the PIN focal-plane detector

array permits inclusion of UV QE enhancement technology under

development for backside illuminated CCDs (e.g., various

pinning technologies, down-converting phosphors, molecular

beam epitaxy of thin silicon films, etc.), and will hence

i0 always have a QE equal to that of backside illuminated CCDS.

Thus, this invention sets the stage for a new class of

UV/visible detectors that will compete favorably against the

MCP technology as well as small format (si0242) CCDS, especi-

ally under low light level conditions. The detectors will be

15 applicable to a wide range of future UV/visible image detec-

tors for large and small missions.

The critical component of the improved device is the

photoelectron-counting readout unit cell design. PIN detector

arrays are already commercially available from Hughes Techno-

20 logy Center (HTC) as noted hereinbefore, albeit with a analog

multiplexer that has much higher noise (>50 electrons rms),

which lends itself to a hybrid architecture, but which is more

advantageously used in a monolithic solid-state architecture.

Thus, in either architecture the primary novelty of the
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present invention is the photoelectron-counting circuitry.

The proposed unit cell contains a ultra-low power (<i _W),

very high gain amplifier (A>200,000) with an embedded i/f

noise reduction scheme that extensive circuit analysis and

5 simulation has already shown to exhibit sub-electron input-

referred noise levels. This unit cell gives high confidence

that a photoelectron counting circuit can be achieved in

minimal pixel area.

Referring to FIGs. 1 and ib, which show the photons are

i0 incident on the front surface where they are converted to

electron-hole pairs through the photo-absorption process. The

electrons diffuse through the thin, neutral p-region of the

PIN photodetector diodes and enter the electric field region

(I-layer). They drift through the depleted I-layer and then

15 are collected in the neutral n-region. The photoelectron

charges the capacitance of the buffer amplifier that includes

the detector capacitance as well as the CMOS connection capa-

citance, input transistor gate capacitance, and parasitic

circuit capacitances resulting in change in input voltage to

20 a digital counter. A digital readout multiplexer out of the

counter typically consists of a source-follower amplifier and

selection transistors for gating the readout.

Infrared focal-plane arrays of the prior art use analog

CMOS readout multiplexers. Typical read noise levels for the
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most advanced multiplexers (e.g., low background) are in the

range of 30-50 electrons rms, though with multiple nondestruc-

tive readout techniques, noise levels as low as i0 electrons

rms have been reported. The major source of noise is present-

5 ly believed to be random noise introduced on the focal plane

from clocking signals. The intrinsic unit cell noise is domi-

nated by MOSFET i/f noise for low light level signal detection

involving long integration times and is of the order of I0

electrons rms. To date, there has been no report of any ana-

l0 log readout system that attempts to quantify photoelectrons

within the unit cell. The overall design of a pixel unit cell

capable of detecting a single photoelectron is as follows:

i. The required gain of the cell buffer amplifier is

approximately 200,000. The cell size, using 0.8 _m

15 design rules, is estimated to be 25 _m x 25 _m. It

is estimated the unit cell will be capable of

counting up to i000 photoelectrons per second and

dissipate less than 1 _W of power.

2. Assemble the unit cells in a CMOS circuitry plane

20 with an on-chip scanner and accumulator circuits

for reading out the unit cells which include a

digital counter for photon flux integration. The

single bit output of each cell buffer amplifier is





F92125 48

accumulated in an array of dedicated counters

located adjacent to, the detector array. This

counter array is then accessed to readout the

photon flux detected. The output of the counter

5 array is the digital representation of the photon

flux incident on each pixel.

The basis for the unit cell high gain buffer amplifier with an

embedded i/f noise rejection scheme for simultaneously

achieving low noise, high gain, low power and small real

i0 estate amplifier circuits is a novel self-cascoding FET

(SCFET) shown in FIG. 6a. The SCFET is compatible with low

power operations, requires virtually no extra real estate, and

features high output impedance.

The amplifier should be configured to operate in sample-

15 and-subtract mode, so that the i/f noise sample collected

during the reset phase of operation is subtracted during the

high gain phase, thereby directly reducing i/f noise.

The SCFET of FIG. 6a is a common-gate composite

transistor consisting of a cascoding transistor Mc connected

20 in series with the controlling transistor M,. The dimensions

of the two transistors are properly chosen so that the

cascoding transistor M c acts as a screen gate shielding the

main transistor MI from all the variations at the output node,

thereby increasing the output resistance. It has been
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demonstrated that a twenty-fold increment in the output

resistance can be achieved with ease.

A buffer amplifier and a comparator fed by the SCFET is

implemented using a cascode differential amplifier as shown in

5 FIG. 6b. The reason for choosing the cascode differential

topology is to increase gain due to cascoding, increase power

supply rejection ratio due to a small common mode gain, in-

crease output impedance due to cascoding, and provide band-

width control by changing the bias current. For the SCFET

10 differential amplifier to be used for electron counting

applications, it is required to possess self-biasing

capability. Auto biasing by dynamic analog techniques will

fail to work because of the high gain of the amplifier in

question. The high gain of the circuit amplifies the effect

15 of any residual switch-feedthrough causing the amplifier to be

driven into saturation.

The novel switch-feedthrough canceling self-biased

differential cascode amplifier shown in FIG. 6b is preferred.

In this circuit, the composite transistors Mil and M_ are the

20 input transistors, ML, and M_ are the load transistors, and M b

is the bias transistor. Because of the increased output

resistance of the SCFET, the differential amplifier possesses

a large gain for a single stage (-500). This value can be
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further increased, if necessary, through controlled positive

feedback circuitry.

The switch-feedthrough cancellation scheme takes

advantage of the low common mode gain and large common mode

5 range available in differential topology. By allowing the

switch feedthrough (as a result of the shutting off of the

switch _) to occur in common mode, its effect can be

completely suppressed.

The self-biasing action also results in i/f noise

i0 reduction due to the sample-and-subtract operation inherent in

it. The noise analysis for such periodically resetting

amplifiers have been carried out by the coinventor in his

Ph.D. dissertation cited above and closed form expressions for

noise have been derived. These closed form expressions have

15 emerged as extremely helpful tools in predicting noise

performance of the i/f noise reducing amplifier for a given

bias current (Ib) and sample period (T.). Using the results

derived in the dissertation, the input-referred noise can be

written as:
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where g_ and g_ are the transconductances of the input and

the load FETS, fc is the cut-off frequency of the amplifier,

L I and L 2 are the channel lengths, tr is the response time,

is the mobility, C= is the oxide capacitance per unit area,

5 and K s and Kf. are the flicker noise coefficients. This

design equation allows the choice of an optimum channel length

and width for maximizing the signal-to-noise ratio.

Since the proposed circuit operates by counting single

photoelectrons, the dynamic range is determined by the

i0 shortest and the longest possible wait times (i.e. the time

interval between the arrival of consecutive photons) of the

circuit. The maximum wait-time is determined by the tolerable

i/f noise. From Equation (16), it can be seen that the I/f

noise depends on the ratio between the sample-period (T.) and

15 the response-time (£r)- Since, the response time cannot be

increased beyond 0.5 msec without paying severe penalty in

terms of load capacitance size, T./2t r ratio can be as high as





F92125 52

i0,000 for ultra-low level signal-detection. From Equation

(16), the increase in the rms i/f noise voltage is found to be

only one-and-half times, which means that even for extremely

long wait times, i/f noise will not be critically large. The

5 shortest possible wait time, on the other hand, is determined

by the tolerable white noise. It has been demonstrated that

sub-electron input-referred noise is achieved over a large

range of response time values. Further, there exists a trade

off between the minimum response time for which single

i0 electron detection is possible and the power budget. A

typical number for the minimum response time is about 50 _sec,

indicating that the dynamic range is more than 50,000 and the

maximum count rate is greater than i000 per pixel per sec.,

which is orders of magnitude higher than what is achievable

15 with MCPS.

FIG. 7 illustrates the manner in which the buffer

amplifier described with reference to FIGs. 6a and 6b may be

employed to implement the readout circuit of FIG. 3a using two

buffer amplifiers in cascade for sensitivity given by

AVo- AIA2_q _lOmV (17)
Cd
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for Cd=4OfF

At=A2=50

_rmtl and #_t2 are internal resets required for biasing the gain

stages. For photon counting, neither accurate gain nor

stability is required. Gain of 50-100 per stage is enough.

FIG. 8 illustrates a CMOS circuit diagram for cascaded

5 self-biased amplifiers with cascode input for reduction of

Miller capacitance. Reset noise is dominated by C, and C2, not

by small parasitic input capacitance. Feedthrough on capaci-

tors CI and C 2 limit utility for biasing the high-gain stage,

with a total gain of approximately 5,000 to i0,000. However,

i0 this circuit design is not unity gain stable and therefore

cannot be used for the circuit of FIG. 3a.

FIG. 9 illustrates a power saving scheme for a buffer

amplifier connected directly to a PIN pixel diode 16. However

such a readout circuit creates some concern for parasitic

15 capacitance coupling during transition from high to low bias

current and speed of switching bias currents that must be

attended to in the CMOS layout.

FIG. i0 illustrates a self-biased SCFET buffer amplifier

with cascode input for reduction of Miller capacitance that

20 can be used for the circuit of FIG. 3b.
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FIG. II illustrates schematically a hybrid architecture

for the readout system of FIG. i with an address decoder 20

for gating a unit cell buffer amplifier (CTIA or SCFET) to a

row 21 of digital counters which can be serially read out if

5 desired and an address decoder 22 for gating the time shared

row of counters into discrete rows of digital registers in a

buffer memory 23. This arrangement of a CMOS buffer amplifier

provided in an integrated silicon chip, one buffer amplifier

for each pixel in the silicon chip area underneath the focal-

I0 plane array eliminates the need for ultra-high gain buffer

amplifier at each pixel, and sharing one row 21 of photoelec-

tron digital counters provides semiparallel periodic readout,

while the buffer memory 23 provides an accumulator for

extended storage. A row 24 of shift registers provides

15 ultimate semiparallel periodic readout to a permanent storage

device 25, which may be, for example, a reel of magnetic tape,

all under control of a programmed control unit 26.

In the event a complete unit cell comprising a buffer

amplifier and a 10-bit digital counter can be integrated in

20 CMOS circuitry in the silicon area under each reticulated

pixel area, the row of counters 21 may be omitted. The

decoders 20 and 22 normally coordinate control of the buffer

amplifiers of the focal-plane array. Time shared counters 21

and the buffer memory 23 plus the readout shift register 24
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under the control of the unit 26 would then need to coordinate

the focal-plane array and counters together and the transfer

of the contents of the digital counters to the buffer memory

and from there to the output shift register 24 for extended

5 memory also under control of the unit 26.

For a monolithic architecture comparable to that of the

hybrid architecture in FXG. i0, there are virtually no

constraints in the CMOS layout adopted. It would be possible

to provide the SCMOS buffer amplifier and CMOS 10-bit counter

i0 in a single readout cell with the PIN photodetector diode

connected to the input terminal of the amplifier. Each pixel

may then be read out in sequence or in parallel row by row

into the buffer memory. However, it would also be possible to

time share a row of digital counters as in the hybrid

15 structure. The advantage of the monolithic architecture is to

be found not only in improved performance, but also in the

ease of fabrication.

Although particular embodiments of the invention have

been described and illustrated herein, it is recognized that

20 modifications may readily occur to those skilled in the art.

Consequently it is intended that the claims be interpreted to

cover such modifications and equivalents thereof.
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SOLID-STATE IMAGE SENSOR WITH FOCAL-PLANE

DIGITAL PHOTON-COUNTING PIXEL ARRAY

ABSTRACT OF THE DISCLOSURE

A photosensitive layer such as a-Si for a UV/visible

5 wavelength band is provided for low light level imaging with

at least a separate CMOS amplifier directly connected to each

PIN photodetector diode to provide a focal-plane array of NxN

pixels, and preferably a separate photon-counting CMOS circuit

directly connected to each CMOS amplifier, although one row of

10 counters may be time shared for reading out the photon flux

rate of each diode in the array, together with a buffer memory

for storing all rows of the NxN image frame before transfer to

suitable storage. All CMOS circuitry is preferably fabricated

in the same silicon layer as the PIN photodetector diode for

15 a monolithic structure, but when the wavelength band of inter-

est requires photosensitive material different from silicon,

the focal-plane array may be fabricated separately on a dif-

ferent semiconductor layer bump-bonded or otherwise bonded for

a virtually monolithic structure with one free terminal of

20 each diode directly connected to the input terminal of its

CMOS amplifier and digital counter for integration of the

photon flux rate at each photodetector of the array.
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