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EXTENSIONAL FLOW CONVECTING A REACT ANT UNDERGOING A FIRST ORDER 

HOMOGENEOUS REACTION AND DIFFUSIONAL MASS TRANSFER FROM 

A SPHERE AT LOW TO INTERMEDIATE PECLET AND 

DAMKOHLER NUMBERS 

N.Y. Shah and X.B. Reed, Jr. 
University of Missouri-Rolla 

Rolla, Missouri 

SUMMARY 

Forced convective diffusion-reaction is considered for viscous axisymmetric extensional 
convecting velocity in the neighborhood of a sphere. For Peclet numbers in the range 0.1 !> Pe !> 500 
and for Damkohler numbers increasing with increasing Pe but in the overall range 0.02 ~ Da ~ 10, 
average and local Sherwood nwnbers have been computed. By introducing the eigenfunction expansion 
c(r,e) = L cn(r)Pn(cose) into the forced convective diffusion equation for the concentration of a 
chemical species undergoing a first order homogeneous reaction and by using properties of the 
Legendre functions Pn(cose), the variable coefficient POE can be reduced to a system of N+ 1 second 
order ODEs for the radial functions Co (r), n-o,I,2, ... ,N. The adaptive grid algorithm of Pereyra and 
Lentini can be used to solve the corresponding 2(N+ 1) first order differential equations as a two-point 
boundary value problem on 1 ::s: r ::s: r •. Convergence of the expansion for a specific value of N can 
thus be established and provides "spectral" behavior as well as the full concentration field c(r,6). 

INTRODUCTION 

The prevalence of small often spherical or approximately spherical particles, bubbles, or 
droplets in atmospheric physics, chemical reaction engineering, combustion science, and environmental 
technology implies the small Reynolds nwnber (Re « 1) assumed here. For concreteness a solid 
sphere is also assumed. Unlike the axisymmetric uniform streaming motion past a sphere (Stokes, 
1851) that is a reasonable ~ption in the neighborhood of sedimenting particles or those in 
fluidized beds, however, the flow field in neighborhood of most particles in other natural, industrial, 
and laboratory circumstances is neither uniform nor can it be assumed to be the so-called slip velocity 
characteristic of the ensemble average over all the particles in complex, even turbulent two phase flow 
such as occurs in stirred tanks, for instance. 

We are interested in considering other physically realistic - and therefore necessarily more 
complicated - flow fields that would have another domain application. TIle ubiquitous spherical 
geometry and the mathematical simplicity ofaxisymmetry make the axisymmetric extensional flows 
(Re « 1) a natural candidate. The occurence of extensional flows, in particular of locally 
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axisymmmetric ones in the neighborhood of small spherical particles, bubbles, or drops, one of the 
basic building blocks in the rheology and flow of a wide variety of dispersions. 

There are two axisymmetric extensional flow fields. The biaxial and uniaxial flows both have 
the same streamlines. However, the biaxial flow comes along the axes froUl z = too and approaches the 
poles of the sphere symmetrically, departing radially outwardly in the symmetry (x,y)-plane, whereas 
the uniaxial flow is oppositely directed and approaches radially symmetrically in the equatorial plane 
and departs along the ±z axes. Far from the sphere, the dimensionless Cartesian components of the 
velocity are (0 11 ,0 y ,0 z) .. ±(x ,y ,-2z), with ± referring throughout to biaxial and uniaxial, 
respectively. 

For Re-o, all flow fields are at rest, and the Sherwood number is independent of the Peclet 
number arid depends solely on the Damkohler number, i.e., Sh-Sh (Dau). For Re « 1 but not 
identically zero, Sh-Sh (Pe,Dau). Pe no more characterizes convection than Re characterizes the 
velocity field. Different velocity fields convect heat and mas; differently, even if they have the same 
small non-zero Re and the same Pe. For Re-o, Sh-l +v'Dau, but for Re « 1, although the 
axisymmetric uniform streaming flow and the axisymmetric extensional flows all three have the same 
asymptote for Sh (viz., 1 +v'Dau) as Pe .. 0, for Pe « 1 but Pe .. 0, the functional dependance upon 
Pe, Dau will be different for the uniform flow, for the biaxial flow, and for the uniaxial flow, 
Sh=Sh(Pe,Dau) will be different, even though Pe and Dau are identical. What is more, the local mas; 
transfer coefficients Sh(6;Pe,Dau) will be even more different For a uniform streaming flow at 
infmity, Pfeffer and his co-workers have studied homogeneous first order reactions for low Reynolds 
number convective diffusion (Rutland and Pfeffer, 1967), (Chen and Pfeffer, 1970) 

We compare and contrast the results for convective diffusion-reaction for biaxial and uniaxial 
flows with one another and with those for the uniform streaming flow. Our emphasis, however, is on 
the theoretical approach, the mathematical calculations, and the use of the Pereyra-Lentini adaptive 
grid algorithm, above all on certain constraints and computational limitations that arise. 

THEORETICAL APPROACH 

Rather than directly attacking the forced convective diffusion/diffusion-reaction equation 
numerically as a variable coefficient partial differential equation in which the extensional velocity field 
introduces the known but complicated set of variable coefficients, we take another tack. We introduce 
the eigenfunction expansion 

(1) 

with the Pn(cos6) being Legendre functions and the radial functions en(r) are unknown. By utilizing 
properties of the Pn(~)' ~-cos6, we then reduce the single partial differential equation for c(r,6) to a 
system of N+ 1 ordinary differential equations for the en(r) and solve them numerically, as outlined in 
the next section. 

The dimensionless forced convective diffusion-reaction equation investigated may be written 

(2) 

in which the second Damkohler number may be exp~ in terms of the first, 
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(3) 

and the Peelet number Pe for the extensional flow utilizes the characteristic velocity E a , in which E 
is the rate of strain at infinity and a is the radius of the solid sphere: 

Pe .. E a 2 / ~, Da I - k/ E , Da II = k a 2/ ~ 

The low Reynolds number axisymmetric extensional flow has two non-vanishing 
dimensionless velocity components 

Ur = ± ( r - ~ r -2 + ~ r -4 ) ( 1 - 3 cos 29 ) , 

q, = ± ( r - r -4) ( 1 - 3 sin 9 cos 9 ) . 

(4) 

(5) 

The ± signs refer to the biaxial/uniaxial flows, respectively. The streamlines for the two are identical 
and are shown in Figure I, with the flow being oppositely directed along the streamlines. The biaxial 
flow comes from infinity toward the poles and exits radially symmetrically in the equatorial plane. The 
axisymmetric extensional creeping flow was obtained by specialization of the solution to the creeping 
flow equation of Batchelor (1970) for a general linear rate of strain at infinity; see also Leal (1992) for 
the final result. 

The partial differential equation to be solved, 

may be rewritten upon introducing the expansion (1) as 

in which, 

F (r) 

G( r) 

= ( r - ~ r -2 + 

= (l-r-S). 
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In order to reduce this to a system of ordinary differential equations by utilizing the 
orthogonality of the Pn(IJ), we must first reduce all the 6-dependent coefficients to Legendre 
polynomials. To accomplish this we use both algebraic and differential recurrence relations for them 
(Abramowitz and Stegun, 1965) , the former repeatedly as required. Ultimately, the convection terms 
may be written as 

The remaining terms of the equation need not be rewritten. Upon utilizing the orthogonality of the 
Pn(lJ) and solving for the second derivatives, we obtain for the general n (n ... 0,1), 

d
2 
cDR [F ( ) dc D 3 ( ( k+ 1 ) 2 0

2
) 

dr2 = ± e r fir - (20+1) (20+3) + (20-1) 

o( 0-1) ( dc D-2 ) 
-3 (20-1) (20-3) F (r) ~-( 0-2) G( r) C D - 2 ( r) 

( 0+ 1 ) ( 0+2) ( dc D+2 ) 1 -3 (20+3) (20+5) F (r) ~+( 0+3) G( r) C D+2 ( r) 

-1 dc D + o( 0+ 1) c (r) + Da II c (r) 
r fir r2 D D 

(10) 

In the computations and results, it is more informative to vary Pe and Dal (called K in the program 
and figures). 

The boundary conditions on c(r,6) are 

which imply 

c( r, 8) = 1 , 

c( r -00, 8) = 0 , 

co(r=1) = I, 

c D( r = 1) = 0, 0 ~ 1, 

c D( r - 00) = 0, 0 ~ O. 
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NUMERICAL ALGORITHM 

The algorithm of Pereyra and Lentini (1978) as codified now in the IMSL subroutine 
DBVPFD was used. It is a robust program for solving two-point boWldary value problems. In order to 
solve the ordinary differential equation system represented by (10)-(12), we first must terminate the 
infinite series (1) at N < 00, and the spatial domain at rM < 00 • The former leads to a finite system of 
second order equations for which Cn(r) .. 0 for n < 0, n > N. TIle latter leads to the modified boWldary 
conditions 

Co( r=l) = 1 
C D( r=l) = 0 

CDC r=r J = 0 
n ~O 
n ~O 

(13) 

The results for Cn (r;Pe,Dal) will obviously depend upon N and rM • The latter (rj is a parameter that 
can be varied in the program. The former (N) must be selected before the program can be run, but 
once selected (as conservatively as possible), convergence of the series can be established. The other 
crucial computational parameters in the subroutine are the initial and maximum number of mesh points 
(NINIT, MXGRID). 

Finally, the system of N+ 1 second order equations must be converted in the usual way to 
a system of 2(N+ 1) flrst order equations in order to employ the IMSL subroutine: 

co(r) -Yt(X) 
ct(r) -Y2(x) 

. 
de D dYD+t 
(F( r) = ----ax ( x) -Y ~QN.s:D+t( x) 

dc N- t (r) 
dr 

dc N(r) 
dr 

dy !!!!f!!.s - t 

= dx (x) -YNEQNS- t (x) 

dy !!!!f!!.s 
= dx (x) - YNEQNS< x) 
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RESULTS AND DISCUSSION 

For a practicing engineer and for many engineering and other scientists and mathematicians, 
the principal goal of such an investigation would be a relation between ~ average Sherwood number 
(the dimensionless mass transfer coefficient) Sh and the physicochemical parameters, viz., Sh(pe;Dal). 
Of some practical interest is also the local Sherwood number, which for an axisymmetric convecting 
velocity would be expressible as Sh(6;Pe,Dal}, the integral of which, when carried out over the surface 
of the sphere, yields the average Sherwood number Sh. The magnitude of the local Sherwood number 
is the normal derivative of the concentration field c(r,6} at the sphere surface, a cIa r (r,6) 1,-1 . 
Although the concentration field c(r,6) in other approaches to the forced convective diffusion-reaction 
problem would be the object of the numerical research, it generally receives short schrift as being of 
little practical interest. In multiparticie systems, the extent of the concentration fields non-negligible 
level for a single particle can for instance, be useful in assessing, or at least estimating, the minimum 
interparticle distance at which concentration fields of neighboring particles would affect one another. 

We start our discussion, neither with Sh(6;Pe,DaJ} nor with c(6;Pe,DaJ)' but with the object of 
our numerical study, the radial fimctions Cn(r;Pe,Dal}, denoted as Cn(r;Pe,K}. In Figure 2a,b for r. (=R 
in the notation employed throughout the paper) - 10 and Pe-S, K=I we show the radial fimctions 
Cn(r}, for n-o,1,2, ... ,70 for a biaxial flow. Consistent with the reflection symmetry across the equatorial 
(6=1t/2) plane, only the even radial modes are nonvanishing. The radial fimctions decrease in 
magnitude, and N=70 clearly produces a convergent series. 

Biaxial 

When the radial fimctions are multiplied respectively by their corresponding Legendre 
polynomials, the isocontour plot shown in the upper half of Figure 1 results. The biaxial velocity field 
produces the thin(ner) stagnation concentration boundary layer at the poles. The concentration wake 
then imbeds the equatorial plane symmetrically. There are, to emphasize the point, neither momentum 
boundary layers nor momentum wakes (Re « 1). At the same Pe, r., and N, an increase of K from 1 
to 2 reduces (Figure 3) the boundary layer a bit and the wake more, effects that are still more 
pronounced for K-S (pe-S) in Figure 4. For K-1O (pe-S), all of the isocontours (0.1-0.9 in increments 
of 0.1) except for c-O.OI are spherically symmetric (FigureS), as far as is apparent to the naked eye 
(and undoubtedly a boon to theoreticians). 

For an increase of Pe to SO, the K-2 (Figure 6) is of course dissimilar to that for Pe-S, but for 
K=S,IO similar remarks apply to the Pe-SO isocontours: there is one nonspherical isocontour for K=S 
and none at K -10 (plots not shown). 

For a further increase to Pe-200 (Figure 7) the isocontours show a 2-d salient at K = I, which 
has become almost spherically symmetric at K -2 (Figure 8). For K -S and 10 (plots not shown) 
spherical symmetry reigns, the differences being solely the decreasing radii of the circles with 
increasing K. 

The isocontour plot for Pe-SOO and K-O.S (Figure 9) is similar to that for Pe-200 and K=I 
(Figure 7). 

Uniaxial 

The area of stagnation concentration boundary layer for uniaxial extensional creeping flow is 
centered on the stagnation velocity ring, the equator. The concentration wakes are two, stretching from 
the poles (6-0,1t), qualitatively similar to the concentration wake on the downwind pole of a sphere in 
a uniform streaming flow at infinity. Such observations are rendered more faithfully in Figure 10 for 
Pe-S, K-S than in words. 
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An increase from K =5 to 10 for the same Pec1et number (pe=5) brings about expected 
isocontours (Figure 11), as does an increase of Pe to 50 for K=5 (Figure 12) and for K=10 (Figure 
13), by which values spherical isocontours result 

Local Sherwood Numbers 

For fast reactions (Dal-K-5,1O), spherical isocontours were observed. An increase in the 
convection (i.e., in Pe) served to feed the reaction faster but did not further influence the spherical 
symmetry of the isocontours, once a Pe was reached at which they were spherical. This is nowhere 
more evident than for the biaxial flow in Figures 14a,b for K-5 and 10 respectively; Pe-5, 50,200, 
500. There are slight local maxima at 6=0,1t and a slight local minimum at 6=1t/2. Increases in Pe 
lead to dramatic increases in the level of mass transfer rates without however appreciably affecting 
local values over the surface, relative to one another. The increase in Dal from 5 to 10 increases the 
level of order 10 % for each Pe shown. 

Absent reaction, biaxial convective diffusion produces a local Sherwood number that is peaked 
at 6=0,1t and troughed around 6=1t /2. The clear minimum is reduced rapidly as the maxima increase 
with K (Figure 15a, Pe=5; Figure 15b, Pe=50; Figure 15c, Pe-200; Figure lSd, Pe=500). 

For a uniaxial flow the convective diffusion problem without reaction produces a pronounced 
maximum at 6=1t/2 and minima at 6=0,1t, as expected (Figure 16a). Also as expected, the strong 
maximum is reduced relative to the minima with increasingly fast reaction (Figure 16a), an effect 
observed with higher Pe (Figure 16b,c). 

Crossplots for K -5 and 10 for the several values of Pe in Figures 17a,b, emphasizing the weak 
6-dependence of Sh(6) for fast reactions. 

A verage Sherwood Number 

Different velocity fields convect heat and mass differently, as is evident even for the two types 
of axisymmetric extensional flows. Concentration isocontours, other than those for very high Dal , are 
different for biaxial and uniaxial flows. 

For Pe-5, convective diffusion (K-O in Tables 1,2) by uniaxial flow manifests a greater 
average mass transfer coefficient than by biaxial flow. Indeed, strictly speaking, for any value of Pe 
and K, Sh(pe j , Kj) 1ft > Sh(pe j , Kj ) bi ,as is evident from Tables 1 and 2. 

Nonetheless, for Pe-5, K .. t, Shun; is greater than S~ by only 0.07; for K=2, by only 0.03; for 
K-5, by only O.OOS. For Pe-SO and K"S, 10, Sh..u > Shm only in the third decimal place, which also 
holds for the same K's , at Pe-200. For K-IO, at Pe-500, they differ only in the fourth decimal place. 
Thus, from this limited set of results, Sh is virtually identical for uniaxial and biaxial flows for K=S,1O 
for Pe~50. For smaller reaction rates and for smaller convection (smaller Pe), small but perceptible 
differences will arise between biaxial and uniaxial creeping flows, with the latter being the larger of 
the two. 
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FIGURE 1 
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BIAXIAL FLOW WITH HOMOGENEOUS REACTION 

PE=5 K=1 R=10 ORDER=1 L=70 

LEVELS: 0.01, 0.1 TO 0.9 BY 0.1 

Z 

STREAM FUNCTION ISOCONTOURS 

BIAXIAL AND UNIAXIAL EXTENSIONAL FLOW 

LEVELS: +/- 0.01, +/- 0.1, -5 TO 5 BY 0.5 
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BIAXIAL FLOW WITH HOMOGENEOUS REACTION 
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FIGURE 15b 
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FIGURE 16b 

UNIAXIAL FLOW: HOMOGENEOUS REACTION 
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FIGURE 17a 

UNIAXIAL FLOW: HOMOGENEOUS REACTION 
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TABLE 1: Average Sherwood Numbers for Biaxia:l Flow 

Pe K R Avg. Sherwood N NI NM NF NE N TOL 
5 0 10 2.4222332546 60 600 166 142 70 lE-06 
5 1 10 3.4844020321 60 600 135 142 70 lE-06 
5 2 10 4.2826214867 60 600 135 142 70 lE-06 
5 5 10 6.0326632737 60 600 104 142 70 lE-06 
5 10 10 8.0806645862 60 600 101 142 70 lE-06 

50 5 5 16.8417150406 100 875 140 142 70 lE-06 
50 10 5 23.3676877824 100 875 130 142 70 lE-06 
200 5 5 32.6445658252 100 875 219 142 70 lE-06 
200 10 5 45.7258627584 100 875 235 142 70 lE-06 
500 5 5 51.0160617125 100 875 425 142 70 lE-06 
500 10 5 71. 7138264523 100 875 202 142 70 lE-06 

TABLE 2: Average Sherwood Numbers for Uniaxial Flow 

Pe K R Avg. Sherwood N NI NM NF NE N TOL 
5 0 10 2.6345022231 60 600 141 142 70 lE-06 
5 1 10 3.5533852471 60 600 178 142 70 lE-06 
5 2 10 4.3116939874 60 600 189 142 70 lE-06 
5 5 10 6.0374513084 60 600 154 142 70 lE-06 
5 10 10 8.0814290608 60 600 141 142 70 lE-06 

50 5 5 16.8450206823 100 875 309 142 70 lE-06 
50 10 5 23.3680425224 100 875 243 142 70 lE-06 

200 5 5 32.6462378512 100 875 527 142 70 lE-06 
200 10 5 45.7260072732 100 875 353 142 70 lE-06 
500 10 5 71.7138969816 100 875 417 142 70 lE-06 

NI N ..... ofinitial pid points. incl~ the endpoinIa (NINIT) 

NM M.ximwn Dumber of pid poinIa allowed (MXGRJD) 

NF Number offmal pid points. incl~ the endpoinIa (NFINAL) 

NE Number of(fll'lt order) cIi1rcrenliai equabOlll (NEQNS) 

N Number oflaml in the ciaenfimction cxpIIIIion 

TOL RclGi\oc cmlI' control panmcser 
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ABSTRACT 
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The paper presents the numerical solution of heat and mass transfer during cross-flow (orthogonal) 
mixed convection. In this class of flow, a buoyancy-driven transport in the vertical direction and a forced 
convective flow in the horizontal direction results in a three-dimensional boundary layer structure adjacent 
to the plate. The rates of heat and mass transfer are determined by a combined influence of the two 
transport processes. The equations for the conservation of mass, momentum, energy, and species 
concentration were solved along with appropriate boundary conditions to determine the distributions of 
velocity components, temperature, and concentration across the thickness of the boundary layer at 
different locations on the plate. Results were expressed in dimensionless form using Reynolds number, 
Richardson number for heat transfer, Richardson number for mass transfer, Prandtl number, and Schmidt 
number as parameters. It was found that the transport is dominated by buoyancy at smaller vertical 
locations and at larger distances away from the forced convection leading edge. Effects of forced 
convection appeared to be very strong at smaller horizontal distances from the leading edge. The cross
stream forced convection enhanced the rate of heat and mass transfer by a very significant amount. 

INTRODUCTION 

Heat and mass transfer under the combined influence of a vertical buoyant force and an externally
imposed horizontal flow occurs frequently in nature and has several technological applications as well. 
Some examples of such cross-flow mixed convection are: the cooling of electronic circuit boards by fans, 
heat transfer from vertical walls in buildings, heat loss mechanisms from solar collectors, mass transfer 
during a drying process, and wind-driven propagation of fire. 

There have been a number of past studies devoted to the understanding of mixed convective heat 
and mass transfer. These include aiding, opposing, and cross flow situations. Lin et al. (ref. I) have 
studied the mixed convection problem of an isothermal horizontal plate moving in parallel or reversely 
to a free stream. They concluded that the heat transfer rate increases significantly with increase in 
buoyancy, and increase in the velocities of the plate and the free stream. Khouaja et al. (ref.2) studied 
mixed convection in slender vertical cylinders for power law variation in surface heat flux. They found 
that the local heat transfer rate increases with increasing Prandtl number, increasing curvature. and 
increasing value of power law exponent. A vertical flat plate was simulated as a limiting form of the 
cylinder and provided satisfactory results. Wickern (ref.3) studied mixed convection from an arbitrarily 
inclined semi-infinite flat plate for different inclination angles and for different Prandtl numbers. He found 
that for opposing buoyancy forces, singular as well as regular behavior can occur. 

In a cross-flow situation, the transport is more complicated because of the three-dimensional nature 
of the boundary layer flow. In an early study, Young and Yang (ref.4) used a perturbation analysis and 
found that a weak cross-flow has very little effect on natural convection over a vertical flat surface. 
Eichorn and Hasan (ref.5) as well as Plumb (ref.6) have obtained similarity solutions for Falkner-Skan 
type three-dimensional mixed convection. But similarity exists only for certain power law surface 
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temperature distributions. Evans and Plumb (refs. 7, 8) extended the box scheme developed by Keller and 
Cebeci (ref.9) to three dimensions and obtained numerical solutions for mixed convection from an 
isothermal surface in a. cross-flow. Rahman and Carey (refs. 10,11) examined the transient behavior of 
the flow that may prececte the final steady state configuration. They looked at heat transfer from a vertical 
plate in a number of transient conditions. They found that under certain conditions, the local velocity and 
temperature fields overshoot before reaching the final steady-state configuration. 

The present study explored the process of combined heat and mass transfer during cross-flow 
mixed convection. The three-dimensional cross-flow boundary layer flow was analyzed when buoyancy
driven flow and transport in the vertical direction was the same order of magnitude as the forced 
convection in the horizontal direction. Equations governing the conservation of mass, momentum, energy, 
and species concentration were solved numerically to predict velocity, temperature, and concentration 
distribution across the boundary layer and the variation of heat and mass transfer rate over the plate. A 
parametric study was performed to determine the effects of Reynolds, Richardson (Ri and Rio), Prandtl, 
and Schmidt numbers. 

MATHEMATICAL MODEL 

The schematic of the problem under consideration is shown in Figure 1. A vertical flat plate of 
finite length and height is placed in an extensive horizontal fluid stream. The surface of the plate is 
maintained at a constant temperature To and the concentration of the diffusing medium at the surface 
remains constant at Co. The ambient fluid is at a constant temperature T ~ and has the diffusing species 
with a constant concentration C~. It is assumed that To>T~ and Co>C~. The velocity of the fluid in 
the free stream far away from the plate remains constant at w_. A three-dimensional boundary layer flow 
develops adjacent to the plate due to the combined effects of the horizontal forced flow and buoyancy 
force due to temperature and concentration differences acting in the vertical direction. The characteristics 
of the mixed convective flow are determined by the relative magnitudes of the forced and buoyancy-driven 
flows. 

The equations describing the conservation of mass, momentum, energy, and concentration inside 
the boundary layer for steady, incompressible, laminar flow, with constant fluid properties (Boussinesq 
approximation for buoyancy) are given by: 

au + av + aw =0 
ax ay az 
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( 1 ) 

(2 ) 

(3 ) 

(4 ) 



u ac +v ac +w ac =D a2 c 
ax ay az ax2 

( 5 ) 

The boundary conditions are given by: 

x = 0 : v = 0, w = 0, T = To, C = Co (6 ) 

x .... 00 v = 0, w = w .. , T = T .. , C = c .. (7 ) 

y = 0 v = 0, w = w .. , T = T .. , C = C .. (8 ) 

z = 0 : V = 0, W = w .. , T = T .. , C = C .. (9 ) 

It is convenient to define the following non-dimensional variables at this point. 

e T- T .. C- C .. = t = 
To - Too Co - C .. 

U= u V= v W= W - , -
W .. W .. W .. 

X= x y= y z = z 
L 

, 
L 

, 
L 

Using the above non-dimensionalized variables, the governing equations (1-5) can be expressed as: 

(10) 

(11) 

uaw +vaw +w aw =...l.. (J2w 
aX ay az Re ax2 

(12) 
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ae ae ae 1 1326 u-+v-+w-= --ax ay az Re. PI ax2 
(13) 

(14) 

And, the boundary conditions (6-10) are transfonned to : 

x=o v = 0, W = 0, 6 = 1, t = 1 (15) 

X- co :V=O,W=l, 6=0, t=o (16) 

y=o V=o, W=l, 6=0, t=o 
(17) 

z=o:V=o, W=l, 6=0, t=o (18) 

The governing equations (10-14) contain the Reynolds number, Re, PrandtI number, Pr, Schmidt 
number, Sc, Richardson number, Ri, and Richardson number for mass transfer Rio as parameters. The 
relative magnitude of these parameters determines the characteristics of the flow. The effects of each of 
these parameters on the flow configuration has been studied during the course of the present investigation. 
The parameters were varied over the following range. Re = 103

, Hr, and lOS; Pr = 0.7 and 7 
(corresponding to air and water respectively); Sc = 0.6 and 580 (nominally for water vapor-air system 
and sodium chloride - water system ); Ri = I, 10, and 100; and Rio=l, 10 and 100. 

COMPUTATIONAL PROCEDURE 

The governing transport equations, along with the boundary conditions described in the previous 
section were solved numerically using the PHOENICS computer program. A Cartesian grid structure 
covering the entire boundary layer region was used for the computation. The distribution of cells in the 
computation domain was determined from a series of test runs with different number of cells in the x, y, 
and z directions. It was found that 6Ox20x20 cells are adequate for the present computation. The finite 
volume equations were derived by using the principles of conservation of mass, momentum, energy, and 
species concentration at each cell. The variables were stored in a staggered fashion where they made more 
physical sense for cell conservation. For each cell, the velocity components were stored at downstream 
boundaries, whereas all pressures and temperatures were stored at the cell center. The hybrid difference 
scheme demonstrated by Patankar (ref. 12) was used to preserve the relative contribution of convection and 
diffusion to a cell from its neighbor in tenns of cell Peelet number. The discretized equations were solved 
by using the SIMPLEST algorithm (ref. 13). The convergence of the numerical solution was monitored 
by spot checking of field values during the course of the computation and by calculating and monitoring 
the sum of residuals for each equation. Iterations were continued until sum of residuals for each 
computational cell dropped below 10-7

• AIl equations had to be solved simultaneously because of the 
coupling of velocity, temperature, and concentration through the buoyancy tenns. 
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RESULTS AND DISCUSSION 

The numerical solution procedure described in the last section was used to compute the velocity 
components. and temperature and concentration distributions for different. combinations of Reynolds 
number. Richardson number (Ri and Rio), Prandtl number, and Schmidt number. These results were used 
to predict Nusselt and Sherwood numbers which quantified the rates of heat and mass transfer. Figure 
2 shows the variation of the vertical component of velocity across the thickness of the boundary layer for 
a combination of Re = 103

, Ri = 1, Rio = 0, and Pr = 0.7. Physically, it corresponds to pure heat transfer 
from an isothermal vertical plate to air. The plot shows the velocity profile at four different locations on 
the plate. Of these four locations chosen, two were near the leading edge and the other two farther 
downstream (looking at both natural convection and forced flow directions). These were chosen to observe 
the increasing influence of the boundary layer growth. It is observed that, at all four locations. the vertical 
component of velocity has a bell shaped structure typical for natural convection with zero velocity at the 
wall as well as at the edge of the boundary layer. For any given value of Z (horizontal location), the 
magnitude of V increases with increasing Y (vertical location). This is because of the growth of buoyancy
induced boundary layer in the vertical direction of the plate. The effects of buoyancy becomes stronger 
with increase in vertical height. For any given Y. there is a very significant increase of buoyant flow with 
increase in the horizontal coordinate. The forced convection boundary layer develops in the horizontal 
direction. The effects of forced flow remains strong near the near edge of this boundary layer. As the 
fluid particles move downstream, their horizontal component of velocity decreases because of the viscous 
resistance from the wall. With increase in horizontal location, the effects of forced convection become 
weaker. and buoyancy becomes the more dominant transport mechanism. 

Figure 3 shows the variation of horizontal component of velocity across the boundary layer. As 
expected, the horizontal component of velocity increases monotonically from zero to the free stream value 
with increase in X at locations on the plate. It may be noticed that at smaller values of Z, there is no 
significant change of W -velocity profile with vertical distance. This is because buoyancy is relatively 
weaker in that region. Further downstream in the horizontal direction, the magnitude of W-velocity 
decreases with Y because of a significant increase in buoyancy induced flow. The continuity has to be 
preserved at all locations of the flow. Therefore, a steeper variation of one velocity component results in 
a corresponding variation in the other velocity component The distribution of temperature across the 
thickness of the boundary layer is demonstrated in Figure 4 for the same combination of parameters used 
in figures 2 and 3. Analogous to a two-dimensional boundary layer flow (for either natural or forced 
convection). the temperature decreases monotonically with X at all locations on the plate. The slope of 
the temperature curve at the wall is proportional to the rate of heat transfer from the wall. It may be 
noticed that heat transfer is larger near both forced and natural convection leading edges and increases as 
the boundary layer increases in thickness. Comparing with figure 3. it can be noticed that the thickness 
of the thermal boundary layer is somewhat larger because of the Prandtl number smaller than 1. 

The effects of Reynolds and Prandtl number on the flow and heat transfer are demonstrated in 
figures 5 and 6. Figure 5 shows the variation of the vertical component of velocity across the boundary 
layer for a given plate location. for a number of combinations of Reynolds and Prandtl number. The 
corresponding plots for temperature distribution are shown in figure 6. It can be noticed that with increase 
in Reynolds number. the thickness of both velocity and thermal boundary layer decrease. The decrease 
in boundary layer thickness causes a slight increase for the peak of the vertical velocity even though the 
Richardson number is preserved constant. With increase in Reynolds number. the slope of the temperature 
curve at the wall also increases. This indicates a larger rate of heat transfer. The increase of heat transfer 
with fluid velocity is obviously expected. With increase of Prandtl number. both vertical component of 
velocity and boundary layer thickness decrease. The temperature curve becomes steeper showing an 
increase of heat transfer rate with Prandtl number. 
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The effects of the variation of Richardson number (Ri) is explored in figures 7 and 8. Richardson 
number indicates the ratio of buoyant force and the inertia due to forced convection. The usual definition 
of Richardson number is modified in the present study with the plate aspect ratio to account for different 
lengths and heights of the plate. For a given Reynolds number and aspeet ratio. a higher Richardson 
number (Ri) implies a higher Grashof number (GrH). which in tum means a stronger natural convection 
component and smaller boundary layer thickness. This can be clearly seen in figure 7 where the vertical 
component of velocity is plotted for a number of combinations of Reynolds and Prandtl number. 
Comparing the peak values of V. it can be realized that a ten time increase in Ri results in more than 3 
times increase in vertical velocity. Results for both Prandtl numbers confurn the same trend. but a larger 
Prandtl number results in a smaller boundary layer thickness and a smaller vertical velocity. In figure 8. 
it can be noticed that the temperature curve becomes steeper and the rate of heat transfer at the wall 
increases with increase in both Reynolds and Prandtl numbers. 

The distribution of Nusselt number over the plate is demonstrated in figure 9. where the variation 
of Nusselt number with the horizontal coordinate is plotted for two different vertical locations. Results for 
both fluid systems (Pr=<>.7 and 7) are shown in the figure. The Nusselt number is calculated here with the 
vertical height as the length scale. The plot therefore essentially demonstrates the variation of the actual 
heat transfer coefficient. In a cross-flow situation. both vertical and horizontal distances are useful length 
scales and can be used in the calculation of dimensionless parameters. The Nusselt number is maximum 
near the vertical leading edge. drops down very rapidly as one proceeds along Z and finally reaches a 
stable value at large values of Z. The magnitude of Nu for any given Reynolds number and vertical 
location is significantly higher for an higher Prandtl number. This is because of the smaller " boundary 
layer thickness and steeper temperature profile at the wall. The effects of Reynolds number (strength of 
the forced flow) on Nusselt number is shown in figure 10. It can be noticed that the increase of Nusselt 
number with Reynolds number is very significant at all locations on the plate. Therefore. a reasonable 
cross-flow may very significantly alter the fluid flow and heat transfer scenario in an otherwise natural 
convection situation. Comparing with the magnitude of Nusselt number for pure natural convection flow. 
it was noticed that an order of magnitude increase in heat transfer was noticed at smaller Z-locations. The 
enhancement factor became smaller at larger values of horizontal coordinate. 

Mass transfer from a vertical plate in the presence of a horizontal cross-flow was studied for two 
specific fluid systems. These are: the evaporation of water from a porous vertical wall which involves 
the diffusion of water vapor to ambient air; and the dissolution of sodium chloride into water. The Schmidt 
number for these diffusion processes under normal atmospheric pressure and temperature are 0.6 and 580. 
respectively. To illuminate the mass transfer process. the vertical wall containing the diffusing medium 
is assumed to be at the same temperature as the free stream. In addition Soret and Dufor effects are 
neglected. Therefore. Richardson number for heat transfer (Ri) is zero during these mass transfer 
processes. The buoyant force is created due to concentration difference and the corresponding Richardson 
number is labeled as Rio. 

The variation of the vertical fluid velocity and the concentration of water vapor into air are shown 
in figures II and 12 for different locations of the plate. It is not surprising that the V distribution looks 
very similar to that in figure 2 and concentration distribution looks similar to that of temperature 
distribution presented in figure 3. This is because. in either case though the cause of the buoyancy force 
is different. the resulting effect is almost the same. Also. we are considering the case of Ri*=I. which 
means that the buoyancy forces are about the same order of magnitude of the forced flow. Hence. even 
though the physics of the problem is totally different for heat transfer and for mass transfer. 
mathematically they are very similar. For locations near the vertical leading edge (smaller Z). forced 
convective flow predominates and there is not much change in the V or T profiles with Y. But as one 
proceeds further downstream. the natural convective effects begin to show up and the magnitude of the 
peak value of V increases. From figure 12. it can be seen that the concentration gradient is higher at 

30 



locations nearer the leading edge, thus implying that the rate of mass transfer is higher here. 
The effects of Reynolds number on the vertical velocity and concentration profiles for a particular 

location in the plate is shown in figures 13 and 14. A larger Reynolds number decreases the boundary 
layer thickness and increases the slope of the concentration curve. Therefore, the rate of mass transfer 
increases. The effect of Schmidt number is very significant. It significantly enhances the rate of mass 
transfer. The vertical velocity for the dissolution of NaCI into water is much smaller in magnitude 
compared to the vertical velocity attained during diffusion of water vapor into air. The vertical velOCity. 
V increases greatly with increase in Ri* (figure 15). This is due to the fact that for any given values of 
Reynolds number and any aspect ratio of the plate, Rio is directly proportional to GrH 

0 

, which controls 
the buoyancy force. Increase in Ri * causes reduction of the thermal boundary layer thickness and results 
in steeper concentration profiles, suggesting a high diffusion rate of the species. Comparing the two fluid 
systems, the rate of mass transfer is larger for Nacl-H20 system owing to much steeper concentration 
profile at the wall. 

The Sherwood number (Sh) variation along the Z direction is plotted in figure 17 for different Y
locations for a fixed Re and Ri*. Results for both flow systems has been shown in this plot. Analogous 
to heat transfer, the mass transfer rate is largest near the leading edge for forced convection, diminishes 
monotonically with Z, and approaches a constant value at locations far away from the leading edge. The 
Sherwood number is higher for higher values of Y and increases significantly with Sc, thus stressing the 
importance of fluid properties in determining the mass transfer coefficient. The variation of Sh along the 
Z-direction for different values of Re, for Sc=O.6 and Sc=580 is shown in figure 18. It can be seen that 
increase in Reynolds number increases Sh significantly. This effect is more pronounced at locations near 
the forced convective leading edge. Therefore, the presence of a cross-flow may very significantly 
enhance the rate of mass transfer in practical diffusion processes. 

CONCLUSIONS 

The objective of the present analysis was to identify the relative importance of the free and forced 
mode of transport at different locations over a vertical flat plate in cross-flow and also to determine the 
influence of the different dimensionless parameters on the flow structure and on the rate of heat and mass 
transfer. It was found that forced convection dominates at locations near the vertical leading edge and 
nawral convection attains importance at locations further downstream. The heat as well as mass transfer 
coefficients are higher at the leading edge owing to smaller thermal boundary layer thickness and steeper 
gradients of temperature and concentration. With increase in Reynolds number and/or Prandtl number, 
the boundary layer thickness became smaller and both heat and mass transfer coefficient increased. A 
larger Richardson number (Ri or Rio) resulted in larger buoyancy-induced transport. The combined effects 
of natural and forced convection resulted in much larger overall rate of heat and mass transfer. 

NOMENCLATURE 

Aspect ratio, ratio of the length of the plate to its height ( UH ) 
Mass concentration 
Mass diffusivity 
Acceleration due to graVity 
Mass transfer coefficient 
Grashof number for heat transfer, g~H3 (Tw - T_/v2 
Grashof number for mass transfer, g~OH3 (Co - C_/V2 
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h 
H 
k 
L 
Nu 
Pr 
Re 
Ri 
Ri" 
Sc 
Sh 
T 
u 
U 
v 
V 
W 

W 
x 
X 

Y 
Y 
z 
Z 

a 
~ 
~" 
v 
e 
'II 
Q 

o 

Heat transfer coefficient 
Height of the plate ( in the y-direction ) 
Thermal conductivity 
Length of the plate ( in the z-direction ) 
Nusselt number, hy/k 
Prandtl number 
Reynolds number, w.L/v 
Richardson number for heat transfer, GrH A3

/ Re2 

Richardson number for mass transfer, GrH" A 3
/ Re2 

Schmidt number 
Sherwood number, GY/QD 
Temperature 
Velocity component in the x-direction 
Dimensionless velocity component in the x-direction, u/w_ 
Velocity component in the y-direction 
Dimensionless velocity component in the y-direction, v/w_ 
Velocity component in the z-direction 
Dimensionless velocity component in the z-direction, w/w_ 
Normal coordinate 
Dimensionless normal coordinate, xIL 
Vertical coordinate 
Dimensionless vertical coordinate, y/L 
Horizontal coordinate 
Dimensionless horizontal coordinate, zIL 

Greek Symbols 

Thermal diffusivity 
Coefficient of thermal expansion 
Volume expansion coefficient for concentration 
Kinematic viscOSity 
Dimensionless temperature, (T- T_) / (To - T_) 
Dimensionless concentration, (C - C_) / (Co - C_) 
Density 

Plate-fluid interface 
Free-stream condition 

Subscripts 
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Figure 3. Horizontal velocity profile at 
different locations on the plate 
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Figure 5. Vertical velocity profile at 
different Reynolds number 
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different locations on the plate 
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ANALYSIS OF GAS ABSORPTION TO A THIN LIQUID FILM IN THE PRESENCE 

OF A ZERO-ORDER CHEMICAL REACTION 

S. Rajagopalan and M.M. Rahman 
Department of Mechanical Engineering 

University of South Florida 
Tampa, Florida 

SUMMARY 

The paper presents a detailed theoretical analysis of the process of gas absorption to a thin liquid film 
adjacent to a horizontal rotating disk. The film is formed by the impingement of a controlled liquid jet 
at the center of the disk and subsequent radial spreading of liquid along the disk. The chemical reaction 
between the gas and the liquid film can be expressed as a zero-order homogeneous reaction. The process 
was modeled by establishing equations for the conservation of mass, momentum, and species concentration 
and solving them analytically. A scaling analysis was used to determine dominant transport processes. 
Appropriate boundary conditions were used to solve these equations to develop expressions for the local 
concentration of gas across the thickness of the film and distributions of film height, bulk concentration, 
and Sherwood number along the radius of the disk. The partial differential equation for species 
concentration was solved using the separation of variables technique along with the Duhamel's theorem 
and the final analytical solution was expressed using confluent hypergeometric functions. Tables for 
eigenvalues and eigenfunctions are presented for a number of reaction rate constants. A parametric study 
was performed using Reynolds number, Ekman number, and dimensionless reaction rate as parameters. 

At all radial locations, Sherwood number increased with Reynolds number (flow rate) as well as Ekman 
number (rate of rotation). The enhancement of mass transfer due to chemical reaction was found to be 
small when compared to the case of no reaction (pure absorption), but the enhancement factor was very 
significant when compared to pure absorption in a stagnant liquid film. The zero-order reaction processes 
considered in the present investigation included the absorption of oxygen in aqueous alkaline solutions 
of sodiumdithionite and rhodium complex catalyzed carbonylation of methanol. Present analytical results 
were compared to previous theoretical results for limiting conditions, and were found to have very good 
agreement. 

IN1RODUCTION 

Mass transfer with chemical reactions into thin films has been the subject of many theoretical and 
experimental investigations. Understanding the process of gas absorption into thin films and its effect on 
the chemical kinetics of the associated reactions is very imponant in chemical process industries. 
Absorption of oxygen into thin films is imponant in medical engineering. Wetted wall columns are being 
extensively used in mass transfer studies. The present study presents a detailed theoretical analysis of gas 
absorption to a thin liquid film adjacent to a horizontal rotating disk. This kind of absorption process 
is useful in a microgravity environment where usual falling film columns cannot be established and the 
rate of transport can be enhanced by the introduction of fluid acceleration by an alternative approach such 
as rotation. In addition to its fundamental scientific contribution and possible application in space based 
chemical processes, the results of this research will be useful for the design of a spacecraft thermal 
management system using absorption heat pump. 
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In the past, there has been a number of studies on mass transfer to a falling liquid film. Olbrich 
and Wild [ref. 1] studied the diffusion from the free surface into a liquid film in laminar flow over a 
sphere, a cone and a cycloid of revolution. They used the Laplace transform technique to solve the 
governing differential equations followed by the application of the residue theorem. Gas absorption with 
zero-order reaction for a liquid moving in a plug flow was studied by Astarita and Marrucci [ref. 2] Riazi 
and Faghri [ref. 3] analyzed the gas absorption in a laminar falling film with zero-order reactions. The 
differential equations were solved by the method of separation of variables, and the subsequent solution 
was given using an infinite series of hypergeometric functions. They also presented the enhancement 
factor when compared to the absorption rates in a stagnant liquid film found from a simple penetration 
model. A simplified form of the enhancement factor was derived for specific conditions. 

The overall reaction rate in a gas-liquid reaction is controlled by the physical mass transfer rate 
and/or by the chemical reaction rate. Two models are generally used to describe the transfer mechanism, 
viz., the film model and the penetration model. The film model postulates a stagnant film at the surface 
of the liquid next to the gas . While the rest of the liquid is kept uniform in composition, the gas diffuses 
into the film by molecular diffusion alone. The penetration theory assumes that after some time the 
interface is renewed by fresh liquid and fresh gas. The elements of gas and liquid leaving the interface 
are more or less saturated with the absorbed component. Of the two theories, the film model is the 
simplest and is applied most frequently. Landau [ref. 4] studied the simultaneous interphase mass transfer 
and a zero-order reaction using the film model. He gave analytical solutions for three regimes of the 
absorption process, viz., low rates of absorption when the reaction goes to completion in the film, higher 
rates of absorption when it goes to completion in the bulk and, at still higher rates of absorption when it 
does not go to completion. Van de Vusse [ref. 5] derived expressions for the overall reaction rate for mass 
transfer with chemical reactions. He used both the film theory and the penetration theory. He showed that 
at high transfer rates the overall reaction rate approaches the chemical reaction rate. The effect of chemical 
reaction on the bulk-phase concentration was studied by Nagy and Ujhidy [ref. 6]. They gave a 
mathematical model to calculate the bulk-phase concentrations in the entire finite reaction rate regime in 
case of both irreversible and reversible reactions. Analyses of mass transfer in hemodialysers for laminar 
blood flow and homogeneous dialysate was done by Cooney, Kim and Davis [ref. 7]. The solutions were 
obtained in terms of confluent hypergeometric functions. They also discussed the application of their 
mathematical model to systems used in clinical practice. 

Mass transfer to a thin film adjacent to a rotating disk surface was studied by Rahman and Faghri 
[ref. 8]. They gave analytical and numerical solutions to the problem. The analytical solution was obtained 
using the method of separation of variables and hypergeometric functions. Sherwood numbers and bulk 
concentration were calculated for different values of Reynolds and Ekman numbers and then the results 
were compared with that of the numerical finite difference solution. They found that significant 
enhancement of absorption rate can be obtained when the angular velocity of the rotating disk is 
increased. Their problem involved pure absorption with no chemical reaction. 

Several experimental investigations have also been done to study effect of chemical reactions on 
mass transfer into a thin liquid film. Jhaveri and Sharma [ref. 9] studied the absorption of oxygen in 
aqueous alkaline solution of sodium diothionite. The reaction was found to be first order with respect to 
diothionite concentration below 0.08 g molll. and second order with respect to diothionite concentration 
above 0.08 g molll. The reaction was found to be zero order with respect to oxygen for all other 
diothionite concentrations. Roberts and Danckwerts [ref. 10] studied the kinetics of carbon dioxide 
absorption in alkaline solutions. They devised a method to eliminate the "stagnant film" end effect on 
wetted-wall columns. The catalytic effect of arsenite ions on the reaction between carbon dioxide and 
water was measured. Autocatalytic oxidation of Cyclohexane was investigated by Suresh et al [ref. 11]. 
The behavior of the reaction was found to be complex arising from the fact that the reaction was 
autocatalytic and the reaction was zero order in oxygen over the entire absorption range. Astarita [ref. 12] 
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studied the absorption of carbon dioxide into hydroxide solutions and in carbonate- bicarbonate buffer 
solutions. The absorption rates were measured for a packed tower column. The kinetics of the absorption 
of Carbon dioxide in monoethanolamine solutions at short contact times was studied by Clarke [ref. 13]. 
The rates of absorption of carbon dioxide at contact times of 3 and 20 ms and at gas pressures of 1 and 
0.1 atm. was measured. He observed that the heat of reaction influences the rate of absorption. The effect 
of interfacial turbulence during the absorption of carbon dioxide into monoethanolamine was studied by 
Brian et al [ref. 14]. They discussed the discrepancies between the theoretical conSiderations and the 
available experimental data. They stated that this could be due to the interfacial turbulence driven by 
surface tension gradients. They found that the use of actual physical mass transfer coefficient during the 
reaction improves the agreement between the penetration theory model and experimental data. Hjortkjaer 
and Jension [ref. 15] investigated the kinetics of the Rhodium complex catalyzed carbonylation of 
methanol. The reaction was investigated at carbon mono-oxide pressures between 1 and 50 atm and in the 
temperature range of 150 - 225 °c. The reaction was discerned to be zero-order with respect to the 
reactants, and first order with respect to the catalyst and promoter. The activation energy was found to be 
14.7 kcallgmol. 

Although a significant number of research has been done on mass transfer into thin liquid films 
with simultaneous chemical reactions, especially with respect to falling liquid films, very few work has 
been done on mass transfer into thin liquid films adjacent to a rotating disk. The present study gives a 
detailed theoretical analysis of gas absorption into a thin liquid film over a rotating disk in the presence 
of a zero-order chemical reaction. A theoretical model is developed and the effects of Reynolds number, 
Ekman number and dimensionless reaction rate are studied. 

MA TIIEMA TICAL MODEL 

The flow of a thin film adjacent to a horizontal rotating disk is considered in the present study. 
The system is schematically shown in Figure 1. The film is formed by the impingement of a controlled 
liquid jet at the center of the disk. The disk rotates about its axis with a constant angular velocity ro. The 
liquid film enters the gas medium at a radial location r=rin• A coordinate system attached to the free 
surface (Figure 1) is used for the analysis. The following assumptions are made to simplify the problem. 

(1) v « u or wand a/ay» alar. These assumptions are valid since the thickness of the film 
is much smaller than the radius of the disk. 

(2) For a very thin liquid layer there is no significant hydrostatic pressure variation. The pressure 
everywhere in the film is equal to the ambient pressure. 

(3) The gravitational body force is negligible when compared to the centrifugal force even for 
a moderate rate of rotation. 

(4) w « u and u=c.or. These assumptions are valid only at a large rate of rotation, and become 
more appropriate at a larger radii. 

Under these assumptions. the average velocity at any radial location can be calculated in a closed 
form and is given by 

(1) 

The conservation of mass at any radial location gives 
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Q=21trW6 (2) 

From equation (1) and (2). the film thickness can be expressed as 

(3) 

The above assumptions simplify the differential equation describing the conservation of gas 
concentration in the liquid stream. In the presence of a simultaneous zero-order chemical reaction 
occurring in the liquid phase. this equation is described by 

ac alc v-=D--k , Or c3%2 

The appropriate boundary conditions to equation (4) are 

r=r",: 

z=O: 

z=6: 

c=O 

c=c· 

de -=0 
c3% 

Equation (4) can be written in a dimensionless fonn as follows 

a1j1 cJI1j1 (I-yl)-=--cx 
ax ay2 

where 

X =B 1/l[~1l{J -I] 

and 

B- 1 Re-4f'JE-2/3Sc-1 
(192)1/3 '" ", 
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(5) 

(6) 

(7) 

(8) 

(9) 
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Corresponding boundary conditions are given by 

where 

X=o and OsYsl: 

y=o and X>O: 

Y=Y· and X>O: 

.=0 

.=1 

a. =0 ay 

r=1 when as2 

=~ when a~2 

(11) 

(12) 

(13) 

(14) 

In equation (14), (X$2 corresponds to the case when the maximum depth of penetration is equal to the film 
thickness. 

~2 corresponds to the case when the maximum depth of penetration is less then the film 
thickness. In that situation, the boundary condition given by equation(13) should be changed to 

Y=Y· and X>O: and a. =0 ay 

Now a can also be written as, 

where 

Hence, the equation (8) becomes 

a=-P
VX+B 

p=a",/B 

(15) 

(16) 

(17) 

(18) 

The present system [Equations (18), (11-15)] has non-homogeneity in the differential equation 
which is a function of the variable X, and in the boundary condition which is a constant. The principle 
of separation of variables can be used to solve the corresponding problem with the non-homogenity in the 
differential equation being independent of the variable X. Then Duhamel's theorem [ref. 16] can be 
applied to obtain the actual solution. 
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Introducing the parameter 't in equation (18), the auxiliary problem can be taken as 

and the associated boundary conditions being 

and, if aQ 

or, if~ 

Y=O and X>O: .=1 

X=O and O~Yd: .=0 

y=r and X>O: at =0 ay 

Y= r and X>O: a1jr =0 and '" =0 ay 

(19) 

(20) 

(21) 

(22) 

(23) 

Equation (19) along with the boundary conditions (20-23) was solved using the method of 
separation of variables, thus obtaining the solution to the auxiliary problem as 

• 
4>(X,Y,.~)= P y2_--P-y r+l-EC

Il
i.!IlYexp(-i.!x> 

2{~ +B {~+B ,,-I 

x exp( -l.Y'J2)M (3~\%,l.Y') 
(24) 

The eigen values, "'" are given as roots of the following equation. 

(25) 

The constant, en can be determined by using the orthogonal property of the eigen functions, and given 
as 
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1 

(( - p y2+--L..Yr -1](1- y 2)N,,(Y)dY 

c = {~ 2fPB fPB 
" 1 J(1- y2)N;(Y)dY 

o 

where, Nn(y) are the eigen functions given by 

and M(a,b,c) is the confluent hypergeometric functions with arguments a,b and c [ref. 17]. 

(26) 

(27) 

The solution to the present auxiliary problem is similar to that obtained by Riazi and Faghri [ref. 
3] for gas absorption in a falling liquid film in the presence of a zero order chemical reaction. 

The Duhamel's theorem relates the solution of the auxiliary problem to the original problem and 
is given by 

alx 
.(X,y)=- .(X -t,Y,t)dt ax T-o 

(28) 

After performing the integration, we get the concentration profile as 

-
.(X,y)=.!y2 -cxY· + 1-EA,,1~Yexp( _1"y2/2)exp( -A~ 

2 II-I 

(
3-111 3 z] 

x M -4-''2,1"Y 

(29) 

where 

1 

~ - ; y2+CX YY. -1 )(1-YZ)NII(Y)dY 
A =..:o~ _________ _ 

" 1 
(30) 

J(1- Y~N;(Y)dY 
o 

The frrst fifteen values of I..., and ~ are listed in Table 1. The eigen values I..., were determined 
from equation (25) by using the bisection method and the corresponding integration constants, ~ were 
obtained from equation (30). The numerical integration was performed using Simpson' rule. Up to 32 
digits were retained for all mathematical calculations though we list only eight digits after the decimal in 
table· 1. This was required to overcome truncation errors during the computation of confluent 
hypergeometric functions which are periodic in nature. 

43 



The Sherwood number for gas absorption can be written as 

After substituting for", from equation (29) into equation (31), the Sherwood number can 
be written as 

• 
ar+ EAllexp(-A!x>A~ 

II-I 

(31) 

(32) 

In order to get a better understanding of the change of absorption rate with the flow rate and the 
rate of rotation, Sherwood number without the film thickness, Sh was also calculated.The Sherwood 
number, Sh can be related to Sh' by the relation 

(33) 

The influence of the chemical reaction can be evaluated by comparing the rate of gas absorption, 
G to the rate of gas absorption, G_o of an infinitely deep stagnant liquid with the same physical 
properties and with no chemical reaction. The ratio, G/G_o is known as the enhancement factor [ref. 3]. 
The the Enhancement Factor when compared to the case of physical absorption, E_ can be written as 

(34) 

The influence in the chemical reaction can also be evaluated by comparing the absorption rate, 
G with the absorption rate, Go, of the same flow system but in which the chemical reaction is absent. Thus 
the Enhancement Factor when compared to the case of no chemical reaction but the same flow system, 
Eo is given by 
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(35) 
- A 2 E _" (l-e -A.;X) 

11-1 1314 
II 

RESULTS AND DISCUSSION 

The mathematical model developed in the previous section was used to calculate the mass transfer 
rates and enhancement factors for some specific flow rates and rates of rotation. The flow system that was 
considered in the present investigation is shown in figure 1. The fluid enters the gas medium at a radial 
location r=rin and is dispersed along the radial direction. The gas is absorbed and reacts with the fluid in 
zero-order simultaneously and the absorbed gas is transponed downstream with the flow. It is assumed 
that the mass of the gas absorbed is negligible compared to the mass of the liquid. The flow remains 
laminar throughout the physical domain considered in the present investigation. The imponant 
dimensionless parameters are: the radial location X, the normal coordinate Y, the concentration '1', the 
Reynolds number Re, the Ekman number E and the reaction parameter a. 

The thickness of the liquid film is given by equation (3). As can be seen from the equation, the 
thickness decreases monotonically with the radius. The thickness depends on the fluid flow rate and the 
rotational speed. At larger radii, the flow is driven by the centrifugal force. The effects of inertial force 
are significant only at smaller radii. The present study did not consider the development region near the 
center of the disk. For a small Ekman number (large rate of rotation), the flow is primarily driven by 
centrifugal force even at small radial locations. The film height can greatly influence the rate of 
absorption. Under a very fast reaction, a low diffusion rate, or when the thickness of the film is large, 
the penetration depth remains smaller than the film thickness(~) at the entire flow domain. Under a 
slow reaction, a very thin film, or a high diffusion rate, the penetration depth becomes equal to the film 
thickness (~) after the film has travelled some distance downstream. 

The analytical solutions for dimensionless concentration and Sherwood number (dimensionless 
mass transfer rate) are given by equation (29) and equation (32), respectively.These equations represent 
the solution as a series of confluent hypergeometric functions, and are valid for any given reaction rate. 
The solution for the first fifteen sets of eigenvalues (~) and the coefficients (eJ are presented in Table 
I for different values of a. The eigen values were obtained as roots of equation (25). The bisection 
method was used to calculate the eigenvalues. Simpson's rule was used to perform the numerical 
integration with 5000 intervals. In all numerical computations, 32 digits were retained after the decimal 
to accurately calculate the values of hypergeometric functions. The values in Table 1 were compared with 
those presented by Riazi and Fagbri [ref. 3] for gas absorption to a falling film with zero order chemical 
reaction and Olbrich and Wild [ref. 1] and Rahman and Fagbri [ref. 10] for the case of a=O (absorption 
with no chemical reaction). The present results differed slightly from those of Riazi and Faghri [ref. 3]. 
The difference becomes larger at higher eigen values. It was found that the discrepancy is due to 
truncation errors in the calculations of Riazi and Fagbri [ref. 3] who used double precision arithmetic for 
their calculations. The results in this paper appears to be more accurate as up to 32 significant digits were 
used for the calculations and the eigen values and the integration coefficients agree exactly with that of 
Olbrich and Wild [ref. 1] and Rahman and Faghri[ref. 10] for the limiting case of a=O. The eigen values 
calculated from the equation (25) are independent of a when ~ but it depends on a when ~ (since 
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y'=..J(2Ja.) when ~2). It may be noted that for any given flow rate and speed of rotation, the 
dimensionless reaction parameter a., varies with the radial location as it is dependent on the local film 
thickness. 

The concentration profile at different radial locations for a.=0.1 and· a.=2 are shown in figures 2 
and 3 respectively. In both these graphs, it can be seen that the concentration increases in the 
downstream direction at all locations across the thickness of the film. As the liquid film moves 
downstream, the gas diffuses in and reacts with the film. At values of a. less then or equal to 2, the gas 
can penetrate the entire film thickness. When a. is larger then 2, the penetration can extend only through 
a part of the film thickness. It can be seen in figure 2 that at a.=0.1, the gas penetrates the entire film 
thickness when X is larger than 0.05. At larger values of X, the concentration increases all across the film 
thickness, until at about 0.7, the concentration profile reaches a fully-developed condition. The 
concentration profile does not change as the film moves further downstream. This profile is shown as X=oo 
in the plots. In figure 3, it can be noticed that at a.=2, the gas penetrates only through the part of the film 
thickness and part of the liquid remains pure. The penetration depth becomes larger and larger as the film 
moves downstream, and in the fully developed condition, it just touches the solid wall. The fully
developed concentration profile for different values of a. is demonstrated in figure 4. It can be clearly seen 
from the graph that the reaction goes to completion within a part of the film when ~. As a increases, 
the fully developed concentration decreases for any particular radial location. 

Figures 5 and 6 shows the variation of Sherwood number (Sh and Sh 0) along the radius of the disk 
for different values of Ekman number. In these plots, both Reynolds number and the chemical reaction 
rate are preserved constant. In figure 5, it can be noticed that the Sherwood number decreases downstream 
monotonically. As the Ekman number becomes smaller, the Sh' also becomes smaller. This is due to the 
fact that at smaller Ekman number (Le. at larger rotational speed) the film thickness also becomes smaller. 
To single out the variation of mass transfer rate with the rotational speed of the disk, Sh is plotted in 
figure 6. As expected, the Sherwood number increases with a decrease in Ekman number as the actual 
mass transfer coefficient increases with the increase in rotational speed. The effect of Reynolds number 
on Sherwood number can be seen in figures 7 and 8. In these plots, the Ekman number and the chemical 
reaction rate are kept constant. From figure 7 it can be seen that an increase in Reynolds number causes 
an increase in Shoo This is true, since an increase in the flow rate can cause an increase in the mass 
transfer rate. Figure 8 shows the variation of the Sherwood number (Sh) with the radius at different 
Reynolds number. It can be noticed that the Sherwood number, Sh decreases monotonically with the 
radius. For flow over a rotating disk, at smaller radii the flow is dominated by the inertial force and at 
larger radii, it is dominated by the centrifugal force. Figures 9 and 10 show the variation of the bulk 
concentration with the radial location, ~ at different values of Ekman and Reynolds numbers. As expected, 
in both these plots, the bulk concentration increases with the radial location at all values of Reynolds and 
Ekman numbers. 

The effect of reaction rate is shown in figures 11 and 12. The figures show the variation of the 
Sherwood number and the bulk concentration with the radius for two different chemical reactions. These 
are the reaction of oxygen with the aqueous alkaline solution of sodium dithionite (K=6.4xI02

) and the 
carbonylation of methanol (K=1.42xI06

). Figure II shows the variation of Sherwood Number Sho along 
the radius for the two chemical reaction rates considered. The Sherwood number, Sh' decreases with an 
increase in rate constant k for both the flow systems considered. When the rate constant is larger, an 
increase in the mass transfer coeffiCient might be expected for a given set of fluid properties. But the 
dimensionless parameter a. also depends upon the diffusion rate, D and the solubility of the gas in the 
liquid, C". Thus for a given film thickness, the mass transfer coefficient depends upon the quantity 
kI(c"D). Therefore, when two different gas liquid reactions (zero-order) are considered, it would be 
appropriate to consider the variation of the parameters with respect to the ratio of the quantity klc"D. 
When this quantity is larger, the gas absorption rate increases. This is consistent with the trend seen in 
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figure 11. The quality klc"D for the reaction of sodium dithionite with oxygen is 8.95x107 and for the 
carbonylation reaction it is 5.5x107 m-2

• Figure 12 shows the variation of bulk concentration with radius 
for the two different reactions considered in the study. The bulk concentration shows an increase with an 
increase in the reaction rate. 

The enhancement factors (equations 34 and 35) were calculated for different values of X and 
different combinations of reaction reate, Reynolds number, and Ekman number. It was found that E_ is 
the maximum near the entrance and reduces rapidly with the radius_ The larger enhancement near the 
entrance may be attributed to the smaller concentration boundary layer thickness in that region. 

CONCLUSIONS 

An analytical solution for the process of gas absorption to a thin film liquid film adjacent to a 
hOrizontal rotating disk in the presence of a zero order chemical reaction is presented. The analysis 
yielded closed form solutions in terms of a series of confluent hypergeometric functions. It was found that 
the gas can penetrate all across the thickness of the film only if the dimensionless reaction rate (X. is less 
than or equal to 2. For a>2, the penetration depth can be only a part of the film thickness. It was also 
observed that the concentration profile attains a fully developed condition at approximately X=0.7. The 
rate of mass transfer increased with flow rate as well as with the rate of rotation. The chemical reaction 
influenced the rate of gas absorption at the free surface. The mass transfer coefficient increased with 
increase in klC·D_ The enhancement factor was found to be very significant when compared to absorption 
in a stagnant liquid film. 
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Sh 

NOMENCLATURE 

integration coefficient for n th eigen value (equation 30) 
constant defined by equation (10) 
Concentration of dissolved gas in the liquid [kmol m-3

] 

Concentration of the dissolved gas at the interface [kmol m-3
] 

integration coefficient for n th eigen value (equation 26) 
liquid phase diffusion coefficient [m2 S-I] 
Ekman number,v/c.orZ 
enhancement factor for the case of no chemical reaction 
enhancement factor for the case of infinitely deep stagnant liquid 
gas absorption rate [kg m-2 sol] 
gas absorption rate when the chemical reaction is absent [kg m-2 sol] 
gas absorption rate without chemical reaction in an infinitely 
deep stagnant liquid [kg m02 sol] 
zero-order reaction rate constant [kmol m03 sol] 
dimensionless gas absorption rate 
dimensionless gas absorption rate when the chemical reaction is 
absent 
confluent hypergeometric function 
constant defined by equation (17) 
volumetric flow rate lm3 sol] 
radial coordinate [m] 
Reynolds number, WfYv 
Schimdt number, vlD 
Sherwood number, [G(y/g)II3]/pD 
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Sh" 
u 
v 
w 
W 
x 
y 

z 

(X 

o 
a 
A. 
v 
; 
P 
't 

CI> 

'I' 
CI.) 

Sherwood number in tenns of the film height, GO/pD 
velocity in the angular direction [m S·I] 

velocity in the normal direction [m S·I] 

velocity in the radial flow direction [m S·I] 

average velocity along the radius [m S·I] 

dimensionless coordinate in the radial direction 
dimensionless coordinate normal to the plate, zlo 
coordinate normal to the plate [m] 

Greek symbols 

dimenesionless reaction parameter, ko2/c*D 
fIlm thickness [m] 
angular coordinate [rad] 
eigen value 
kinematic viscosity [m2 S·I] 

dimesionless radial coordinate, rlrin 
density of the liquid [kg m·3] 

parameter introduced in the auxiliary problem 
solution of the auxiliary problem given by equation (24) 
dimensionless concentration, C/c" 
angular velocity [rad S·I] 

Subscripts 

in condition at entrance 
ave average value across the film thickness 
b . mixed-mean (bulk) condition 
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TABLE 1. Eigen values and Integration Coefficients 

C. 0.=3 a=4 
No )." 

a=O a=O.1 0.=2 A., Cn i." C, 

1 2.26311053 1.79238360 1.72977244 0.54016045 2.38906211 0.41660402 ~.59139039 0.36164776 

2 6.29768520 :.02469014 1.02672555 1.06539830 6.74541597 0.93826498 "7.42019229 0.87219849 

3 10.30772681 0.79631238 0.79386970 0.74745885 11.11656887 0.72127416 12.28077919 0.72237188 

I 4 14.31279359 0.67455957 0.67511830 0.68573409 15.49931414 0.63800582 17.15401771 0.64786122 

I 5 18.31592741 0.59583217 0.59511046 0.58139800 19.88870854 0.57066555 ::::.03297228 0.51668786 

6 22.31808871 0.53954469 0.53980138 0.56467864 24.28213765 0.52485522 Z6.91492866 0.51736060 

7 26.31968463 0.49671455 0.49637764 0.48997642 28.67816743 0.48388371 31.79863869 0.4,2056847 

8 30.32091973 0.46270665 0.46285379 0.46564935 33.07595966 0.45403568 36.68345574 0.44504888 

9 34.32190893 0.43485365 0.43466002 0.43098101 37.47499588 0.41836349 41.56901374 0.39960741 

10 38.32272219 0.41149648 0.41159178 0.41340251 41.87493997 0.40073456 46.45509083 0.35605761 

11 42.32340476 0.39154207 0.39141699 0.38903440 46.27556533 0.36863628 51.34154512 0.37809093 

12 46.32398727 0.37423651 0.37430322 0.37557063 50.67671399 0.36209288 56.22828181 0.31925983 

13 50.32449129 0.35904110 0.35895337 0.35728658 55.07827279 0.33499816 61.11523525 0.34052013 

14 54.32493248 L1,34555884 0.34560810 0.34654405 59.48015860 0.33538518 66.00235857 0.31814302 

i5 58.32532250 /'33349027 0.33342546 0.32106149 63.88230912 0.31361091 7088961745 0.28518091 
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Figure 1 Schematic diagram of the flow system 
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Figure 2 Concentration profile for a=O.l 
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SUMMARY 

f- / It:, 

An IBM Personal Computer (PC) version of the Groove Analysis Program (GAP) was developed 
to predict the steady state heat transport capability of an axially grooved heat pipe for a specified groove 
geometry and working fluid. In the model, the capillary limit is determined by the numerical solution 
of the differential equation for momentum conservation with the appropriate boundary conditions. This 
governing equation accounts for the hydrodynamic losses due to friction in liquid and vapor flows and 
due to liquid/vapor shear interaction. Back-pumping in both O-g and 1-g is accounted for in the boundary 
condition at the condenser end. Slug formation in O-g and puddle flow in l-g are also considered in the 
model. At the user's discretion, the code will perform the analysis for various fluid inventories 
(undercharge, nominal charge, overcharge, or a fixed fluid charge) and heat pipe elevations. GAP will 
also calculate the minimum required heat pipe wall thickness for pressure containment at design 
temperatures that are greater than or lower than the critical temperature of the working fluid. 

This paper discusses the theory behind the development of the GAP model. It also presents the 
many useful and powerful capabilities of the model. Furthermore, a correlation of flight test performance 
data and the predictions using GAP is presented and discussed. 
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NOMENCLATURE 

Cross-sectional area 
Gravitational constant 
Permeability 
Number of grooves 
Pressure 
Axial heat flow 
Heat transport capability at capillary limit 
Meniscus radius 
Reynolds number 
Groove root radius 
Groove root comer radius 
Groove tip comer radius 
Vapor core radius 
Pseudo-land thickness 
Wetted perimeter 
Groove width 
Axial location 
Angle to define groove geometry in Figure 1 
Angle to define groove geometry in Figure 1 
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Subscripts 

v 
vi 
x 

ATS 
CRYOHP 
GAP 
HPP 
NASA 
PC 
RPM 

Angle to define groove geometry in Figure 1 
Groove land taper angle 
Contact angle 
Heat of vaporization 
Dynamic Viscosity 
Kinematic Viscosity 
Groove aspect ratio (half groove width/groove depth) 
Function defined in equation (5) or (6) 
Density 
Angular velocity 
Surface tension 

Liquid 
Vapor 
Vapor/Liquid 
Axial direction 

ACRONYMS 

Applications Technology Satellite 
Cryogenic Heat Pipe Experiment 
Groove Analysis Program 
Heat Pipe Performance Experiment 
National Aeronautics and Space Administration 
Personal Computer 
Revolutions Per Minute 

INTRODUCTION 

In recent years, spacecraft size and power requirements have increased, along with a corresponding 
demand for more efficient waste heat rejection. The design of heat pipe-based spacecraft thermal 
management systems requires a clear understanding of the thermal performance and working fluid 
behavior of heat pipes in microgravity. On Earth, the strong gravitational field dominates the capiIlary 
forces developed in the heat pipe wick. However, in the absence of gravity, the surface tension forces 
within the wick are the heat transpon's limiting factor. One method of predicting O-g performance is by 
extrapolating ground test data, but the presence of a liquid puddle in the condenser can make this 
technique unreliable. This is panicularly true with axially grooved ammonia heat pipes at the high end 
of their operating temperature range and with most cryogenic fluids because of their low surface tensions. 

The principal micro gravity application of heat pipe technology is cooling electronics packages in 
spacecraft and satellites. Commercial telecommunication spacecraft alone are utilizing more than two 
thousand heat pipes annually for high power thermal management. The majority of these pipes are 
aluminum/ammonia axially grooved tubing because of their simplicity and high reliability. It has been 
very apparent that there is a need to accurately predict the microgravity performance characteristics of 
a heat pipe to minimize the penalties associated with over-design. One problem that often arises is how 
to use ground test data to predict microgravity thermal performance of a heat pipe. In space, the heat 
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pipes can also be exposed to a wide range of temperatures, and the expansion and contraction of the 
working fluid can lead to excess or insufficient fluid inventories. During a cold startup scenario, a heat 
pipe containing the correct fluid charge for nominal operating temperatures may be undercharged due to 
liquid contraction. <;>ne common method of preventing this condition is to overcharge the heat pipe by 
5 percent or more. At higher operating temperatures this leads to excess fluid that could form a thick 
film over the condenser wick, or a liquid slug, either of which will result in decreased heat rejection 
efficiency and higher operating temperatures. Also, as a result of limited heat pipe performance flight 
data, thermal systems engineers currently must specify heat pipes with large performance margins to 
compensate for possible degradations and uncertainties in heat transpon capacity, therein incurring 
volume and weight penalties. 

Therefore, a design tool is needed to assist the thermal engineers in designing an axially grooved 
heat pipe for a particular space application. This design tool must be accurate in predicting the thermal 
performance of a heat pipe at any operating condition and also be easy to use. This IBM PC version of 
GAP was designed to accomplish both requirements. 

MATHEMATICAL FORMULATION 

An IBM PC version of the GAP model was developed to predict the steady state heat transpon 
capacity of an axially grooved heat pipe for a specified groove geometry and working fluid. An example 
of the geometry applicable to GAP is the divergent groove shown in Figure 1. A full description of the 
model is contained in the user's manual (Reference 1). 

o 

y + IS • 11 

"1r 

.... 
.... ....J ---

Figure 1. Divergent Groove Geometry 
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In the model, the capillary limit of the heat pipe is detennined by the numerical solution of the 
differential equation for momentum conservation with the appropriate boundary conditions. This 
governing equation accounts for the hydrodynamic losses due to friction in the liquid and vapor flows and 
due to liquid/vapor shear interaction. Back-pumping which is the capillary force that develops at the 
condenser end in both I-g and O-g is accounted for in the condenser boundary condition. Slug formation 
in O-g and puddle flow in I-g are also considered in the model. At the user's discretion, the code will 
perform the analysis for various heat pipe elevations and fluid inventories, including both undercharged 
and overcharged conditions. GAP will also calculate the minimum heat pipe wall thickness required for 
pressure containment at design temperatures that are greater than or lower than the critical temperature 
of the working fluid. 

The capillary pumping limit is the transpon limit generally experienced in O-g heat pipe operation. 
Sonic and vapor limits are typically encountered in I-g applications with very high axial heat fluxes or 
when operating near the melting point. The viscous limit becomes important if the pipe is very long and 
is operated at lower temperature range of the working fluid. The capillary limit occurs when the capillary 
pumping head can no longer sustain the hydrodynamic losses. In the operation of an axial groove heat 
pipe, as heat is applied to the evaporator and is removed from the condenser, fluid flows develop within 
the heat pipe. The vapor flows to the condenser end and the liquid in the grooves is pumped back to the 
evaporator. In addition to the viscous pressure drops due to the vapor and liquid flows, there is an 
additional pressure drop due to shearing at the liquid/vapor interface. For steady state operation, the sum 
of all these pressure drops and those of body forces must be balanced by the capillary pumping force 
developed by the groove opening, i.e. 

This constitutes the basic hydrodynamic governing equation for an axially grooved heat pipe. A 
differential form of this equation can be derived by making the following assumptions: 

(1) One dimensional laminar liquid flows in the axial groove and one dimensional laminar or turbulent 
vapor flow in the inner core of the heat pipe; 

(2) The groove depth is small compared to its wicking height, thus the hydrostatic loss associated with 
the groove depth is negligible; 

(3) Identical grooves with uniform groove propenies for each groove over the entire length; and 
(4) Uniform heat transfer in the evaporator and condenser. 

The governing equations are thus: 

• Laminar vapor flow (Rev < 2(00) 

aCosfl, dR 

R2 dx 
= p ,gSinp + [ 8~ v 2 + _~ ,_ (1 + 4>2 '" z)j Q(x) 

p~yR; KA,p, 3 A 
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• Turbulent vapor flow (R~ > 2000) 

oeas9 c dR 

R2 dx 
. 0.06558 ~ ~25 (Q(X) )1.7S ~ I· ( 4>2 ) Q(x) 

= p,gSln~ + -- + -- 1+-$ --
A 1.7S"I.25 l KA p 3 % l 

PV''''' .~ I I 

(3) 

where the groove aspect ratio cp, defined as the ratio of half the groove width to the groove depth, can 
be written as 

4> = 
(R" + R,) Siny - R, 

Rj-R" 

and the parameter 1/;. which accounts for liquid/vapor shear (Reference 2) is defined as 

• Laminar vapor flow 

4(R j -R,) v v A,,.t 

Rv vI Av 

• Turbulent vapor flow 

R -R A 0.25 )0.7S 
$ % = 0.03279 _'_' _v -2L ~ (Q(X) 

,,0.25 A 1.7S P v l 
.~ " v 1 

(4) 

(5) 

(6) 

The left hand side of equation (2) or (3) represents the capillary pumping. The right hand side represents 
the following pressure losses: 

(1) The first term is the hydrostatic loss; 
(2) The second term is the viscous vapor loss; and 
(3) The third term is the liquid flow loss which combines both the viscous loss and the 

liquid/vapor shear interaction. The magnitude of the shear loss relative to the viscous liquid 
loss is cp21/;.I3. The factor 113 in this term is recommended in Reference 3 for grooves that 
have groove depths larger than groove widths, which is usually the case for axially grooved 
heat pipes. 

Equations (2) and (3) are solved by using a fourth order Runge-Kutta integration method. The 
variables include working fluid propenies, axial groove geometries, and heat pipe dimensions. The 
boundary conditions and heat distribution are also required to completely specify the problem. The 
integration of expression (2) or (3) yields the local meniscus radius required to suppon the local pressure 
drop in each groove. The integration process starts from the evaporator end with a minimum meniscus 
radius specified as half the groove width and proceeds to the condenser end. This process is normally 
repeated many times with the heat transpon rate continuously updated until the boundary condition at the 
condenser end is satisfied. The liquid flow analysis conducted in Reference 2 demonstrated that the 
maximum transpon is obtained when the meniscus radius at the upstream end of the evaporator is a 
minimum. Therefore, the boundary condition at the evaporator end for both O-g and I-g environments 
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for all fluid charge conditions is 

@x=O R=R.mn= (7) 

where Ruuo for the axial groove geometry is shown in Figure 1. 
At the condenser end, e.g. x = L, the boundary condition depends on the fluid charge condition and 

the gravitational environment. For nominal charge and overcharge, the meniscus radius is set to a 
maximum value to obtain the highest capillary pumping in the grooves. In O-g, the excess liquid will 
form a slug in the vapor core at the condenser end. Two radii of curvature both equal to half the vapor 
core diameter define the minimum energy condition at the slug's liquid/vapor interface. Mass continuity 
between the liquid slug and the liquid in the grooves in tum dictates an equivalent groove radius in the 
condenser. In the code, the meniscus radius at the condenser end is set at half the vapor core radius to 
model this condition 

For O-g, @ x = L (8) 

In 1-g, when there is excess liquid in the pipe, a puddle will form at the condenser end. Beyond the 
puddle, if preferential drainage is neglected. only one radius of curvature exists in the groove. This 
liquid/vapor interface extends from the tip of one fin to the tip of the adjacent fin and its maximum value 
is equal to the vapor core radius, i.e. 

For I-g, @ x = L (9) 

For undercharge condition, the meniscus radius at the condenser end is incremented gradually from Ruun 
up to Rmu until the specified fluid charge is found. Thus, depending on the amount of undercharge and 
the gravitational environment, the actual meniscus radius at the condenser end will be between ~ and 
the value shown in equation (8) or (9). 

The program estimates the maximum transpon using a closed form solution for liquid losses only. 
It then uses an incremental heat load based on this value and solves the differential equation to determine 
the axial variation of the meniscus. Once this is known, the corresponding liquid and vapor inventories 
are calculated. Repeating this solution procedure will then yield the maximum transpon that can be 
obtained as a function of fluid inventory up to the nominal charge condition. 

FEATURES IN GAP 

The IBM PC version of this GAP code is a menu-driven computer program designed for user 
friendliness and flexibility not only in the data input but also in the code operation and in the processing 
of the output data. The general flow chan of the code is shown in Figure 2. The code is written in 
standard FORTRAN 77 and assembly language. It is designed to operate with an IBM PC or compatible 
system that employs an 80286, 80386, or 80486 microprocessor with an appropriate coprocessor. The 
present code has been intended to be interactive and user-friendly. It can be installed into a PC in a few 
minutes and with the interactive data input feature. the user can run the code immediately to get the 
results. Other special features of the code include: 

58 



-------- ----- --

• Multiple runs for various heat pipe elevations and over a wide range of temperatures are readily 
achieved; 

• A comprehensive data base that contains the propenies of 24 heat pipe working fluids is included 
with the code. A listing of these working fluids and their corresponding range of operating 
temperatures are included in Table 1; 

• For pressure contairunent, the minimum required heat pipe wall thickness can be determined for 
specified factors of safety; and 

• At the user's discretion, the desired output data is written to a plot file which can be imponed 
to most spreadsheet or graphic software programs for fast quality plotting. 

CALLSUBSCR 
TO SET SCREEN 

CONTROL CODES 

CALL GIIINPT TO 
COMPlITE HEAT PIPE 

GEOMETRY 

CALLINPTSC 
TO MODIFY 
INPUT DATA 

CALL PATFILE 
ORPLmLE 

TOPAOCESS 
OUTPUT DATA 

NO 

CALL CATFILE 
TO SAVE 

INPUT DATA 

CALL QUIIIT TO 
COMPlITE SONIC, 
ENTRAINMENT, & 
VISCOUS UMns 

ELEVAnON lOOP 

CALL CALC TO FIND 
HEAT PIPE mANSPOAT 

PERFORMANCE, PRESSURE 
CONTAINMENT, ETC 

NO 

NO 

Figure 2. GAP General Flowchart 
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Table 1. Heat Pipe Working Fluids in GAP 

Working Auid Temperature Range (K) Working Fluid Temperature Range (K) 

Acetone 250 to 474 Freon 21 213 to 449 

Ammonia 200 to 404 Freon 113 293 to 368 

Argon 85 to 149 Heptane 273 to 472 

Benzene 270 to 559 Lithium 500 to 2099 

Butane 260 to 349 Mercury 280 to 1069 

Cesium 400 to 1499 Methane 91 to 189 

Dowthenn-A 373 to 669 Methanol 273 to 502 

Dowthenn-E 283 to 609 Nitrogen 65 to 124 

Ethane 100 to 304 Oxygen 55 to 154 

Freon 11 293 to 412 Potassium 400 to 1799 

Freon 13 163 to 292 Sodium 400 to 1499 

Freon 14 130 to 221 Water 273 to 642 

FLIGHT DATA CORRELATIONS 

The GAP code was used to predict the heat transpon capacity of the axially grooved heat pipes 
employed in the Heat Pipe Performance (HPP) (References 4 and 5) and the Cryogenic Heat Pipe 
(CRYOHP) (Reference 6) flight experiments. The results were obtained by running the code to predict 
O-g performance for each pipe with a nominal charge at various operating temperatures. These results 
were then correlated with the flight test data to assess the accuracy of the code. The following sections 
discuss the GAP predicted performance and the associated correlations with flight data for these pipes. 

HPP Freon 113/Aluminum Heat Pipe 

This heat pipe utilizes a rectangular groove geometry with its measured groove geometry shown in 
Table 2. The detail of the HPP experiment design is discussed in References 4 and 5. The GAP 
predicted O-g steady state heat transpon capacity of the pipe as a function of the operating temperature 
range of interest is shown in Figure 3. At 58°C, the pipe is expected to transpon about 23 watts before 
dry-out occurs. This power level is in excellent agreement with the actual 24 watts obtained in flight. 
It should be noted that these pipes were charged for operation at 400C and have a 4.9% overcharge at 
58OC. This charge is based on the accounting for meniscus recession. 

The prediction of the heat transpon capacity of a heat pipe subjected to adverse spin was determined 
in the following manner. First, the maximum transpon under a no spin condition was obtained from 
GAP. Then, this value was used in the following expression to determine the heat transpon capacity of 
a heat pipe under adverse spin as: 

QL • (QL)_ [I - ! PloW'''~R:-R;)l (10) 

60 



Table 2. HPP Freon Il3/Aluminum Heat Pipe Design Summary 

Groove Cross Section 

Number of Grooves 

Outer Diameter (inch. mm) 

Inner Diameter (inch. mm) 

Vapor Core Diameter (inch. mm) 

Fin Tip Comer Radius (inch. mm) 

Groove Root Comer Radius (inch. mm) 

Pseudo-land Tip Thickness (inch. mm) 

Groove Land Taper Angle (radian) 

Groove Width (inch. mm) 

Wetted Perimeter (1 Groove) (inch. mm) 

Total Groove Area (inch2• mm2) 

Evaporator Length (inch. mm) 

Transpon Section Length (inch. mm) 

Condenser Length (inch. mm) 
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- /{ 
x 25 

~ 20 
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0.00428.0.1087 

0.00409.0.1039 

0.00638. 0.1621 

0.047 

0.0143. 0.3635 

0.0909. 2.308 

0.0222. 14.31 

4.0. 101.6 
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i I 
I 

-r---l 
I 

I -
! 
I 

I 
I 

80 90 100 
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Figure 3. HPP Freon Heat Pipe O-g Transport Capability vs. Temperature 
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where QL 
(QL)mu 
PI 

'" U 

Rc 
R. 
WI 

= transpon capacity of the heat pipe experiencing adverse spin 
= maximum transpon capacity under no spin condition 
= density of the liquid phase 
= angular velocity 
= surface tension 
= linear distance from the center of roWion to the end of the condenser section 
= linear distance from the center of roWion to the end of the evaporator section 
= groove width 

With this procedure, the maximum heat load for the pipe at 320C versus adverse spin rate is computed. 
The data indicates that at a spin rate of about 6 RPM, the pipe can transpon a maximum power of 6 
watts. This result is in good agreement with the flight data which showed that dry-out for the pipe 
occurred between 6 and 8 RPM with 6 watts applied. 

HPP Water/Copper Heat Pipe 

This heat pipe utilizes a rectangular groove geometry. Table 3 provides the groove measurement 
of this pipe. The GAP code was used to predict the O-g steady state heat transport capacity of the pipe 
as a function of the operating temperature range as shown in Figure 4. Note that at SO"C, the curve 
seems to have a discontinuity. This is the point at which the vapor flow in the pipe is predicted to 
transition from a laminar to a turbulent flow regime. The pressure losses due to vapor flow and vapor
liquid shear in turbulent flow are higher than those in laminar flow; and thus, the slope of the heat 
transport curve decreases slightly. With the same procedure used for the freon heat pipe, the heat 
transpon capacity of this water heat pipe at 72"C was predicted as a function of adverse spin and it is 
shown in Figure S. From this Figure, one would expect a pipe transporting about 40 watts to dry out 
at about 10.4 RPM. This turns out to be the case in flight where the measured dry-outs were obtained 
between 10 to 12 RPM. 

Table 3. HPP WtJlerlCopper HeDl Pipe Design SUIIIIIIIUY 

Groove Cross Section Rectangular Fonn 

Number of Grooves 25 

Outer Diameter (inch, mm) 0.497, 12.631 

Inner Diameter (inch. mm) 0.454, 11.521 

Vapor Core Diameter (inch. mm) 0.375.9.535 

Fin Tip Corner Radius (inch. mm) 0.00464. 0.1178 

Groove Root Comer Radius (inch, mm) 0.01462, 0.3713 

Pseudo·land Tip Thickness (inch, mm) 0.00391.0.09934 

Groove Land Taper Angle (radian) 0.08155 

Groove Width (inch. mm) 0.0351,0.8915 

Welted Perimeter (1 Groove) (inch, mm) 0.1092,2.775 

Total Groove Area (inch2• mm2) 0.0335.21.622 

Evaporator Length (inch. mm) 4.0. 101.6 

Transpon Scction Length (inch, DUn) 0.0,0.0 

Condenser Lengdl (ioch. mm) 12.76.324.1 
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Figure 4. HPP Water Heat Pipe O-g Transport Capability vs. Temperature 
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TRW Cryogenic Heat Pipe (CRYOHP) 

This heat pipe has oxygen working fluid and employs a rectangular groove geometry with relatively 
shallow grooves (-0.8 mm deep) as shown in Table 4. This design was intentionally degraded so that 
its heat transport capacity could be tested within the limits of the CRYOHP's cooling capacity (- 5 watts 
at 80 K). The CRYOHP experiment design and component test results are discussed in Reference 7. 

The O-g steady state heat transport capacity of the heat pipe predicted by GAP is shown in Figure 
6 with the flight and ground test data. Flight data points are the actual electrical heater power applied 
to the evaporator. The GAP predictions include a 0.8 watt parasitic heat leak from the surrounding 
environment to the heat pipe. This heat leak was determined from ground and flight data transients 
(Reference 6). The GAP predictions are in good agreement with the flight test data. GAP correctly 
predicted the fully dry-out heat load at 69 K and under-predicted the values at 92 K and 102 K by 
approximately 0.5 watt. The applied power increments for the TRW pipe are 0.5 watt and therefore there 
is up to a 0.5 watt uncertainty when full dry-out occurs. 

Also shown in Figure 6 is the I-g performance at 82 K that was extrapolated from the component 
tilt test results presented in Reference 7. At this temperature, the pipe was predicted to be over-filled 
as listed in Table 5. The nominal charge required at 82 K as predicted by GAP is 8.54 grams. If the 
grooves were filled without any meniscus recession, the charge would increase by 1.05 grams or 12.2 % 
above the nominal charge with recession. In addition to the amount associated with meniscus recession 
and based on the actual 10.3 grams charge, there is an additional 0.71 gram or 8.4% of further 
overcharge at 82 K. The O-g slug length at 82 K for this overcharge condition is 3.63 cm. The GAP 
predicted performance at 82 K for a I-g horizontal test condition was obtained with this overcharge (Le. 
1.76 grams excess) and is plotted in Figure 6. Note that in this I-g analysis, the same 0.8 watt parasitic 
heat leak to the pipe was assumed. This theoretical data point is only 0.3 watt lower than the 
extrapolated ground-test data point. 

Table 4. TRW CRYOHP Heat Pipe Design Summary 

Groove Cross Section Rectangular Form 

Number of Grooves 17 

Outer Diameter (inch. mm) 0.442. 11.224 

Inner Diameter (inch. mm) 0.349. 8.872 

Vapor Core Diameter (inch. mm) 0.2865. 7.277 

Fin Tip Comer Radius (inch. mm) 0.004.0.1016 

Groove Root Comer Radius (inch. mm) 0.00508.0.1291 

Pseudo-land Tip Thickness (inch. mm) 0.02887. 0.7334 

Groove Land Taper Angle (radian) 0.1685 

Groove Width (inch. mm) 0.0175.0.445 

Wetted Perimeter (I Groove) (inch. mm) 0.0822. 2.089 

Total Groove Area (inch2• mm2) 0.0094. 6.065 

Evaporator Length (inch. mm) 6.0. 152.4 

Transpon Section Length (inch. mm) 40.8. 1015.24 

Condenser Length (inch. mm) 6.0. 152.4 

Fluid Charge (gr) 10.3 
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Figure 6. TRW CRYOHP Heal Pipe Transport Capability vs. Temperature 

Table 5. TRW CRYOHP Heal Pipe Fluid Charge Conditions 
Actual Charge = 10.3 gr 

Operating GAP Computed Percentage Charge 
Temperawre (K) Nominal Charge (gr) (Actual/GAP Nominal) 

60 8.93 115.34 

79 8.71 118.23 

80 8.58 120.11 

90 8.40 122.62 

100 8.29 124.24 

110 8.45 121.89 

120 9.05 113.86 

130 10.16 101.36 

140 12.17 84.61 

150 18.06 57.02 
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Hughes Aircraft Cryogenic Heat Pipe (CRYOHP) 

This heat pipe also utilizes oxygen with the conventional A TS rectangular groove geometry 
(Reference 8). Design details of the heat pipe and the groove geometry obtained from a shadowgraph 
measurement are listed in Table 6. The oxygen charge for this heat pipe is 33.7 grams. 

The GAP predicted O-g steady state transpon capability of this heat pipe is shown in Figure 7 versus 
operating temperature. Flight and thermal vacuum test data are also included in this figure. The GAP 
predictions include a 1.1 watt uniform parasitic heat leak to the heat pipe from the surroundings 
(Reference 6). In general, the flight data is in good agreement with the GAP prediction. A panial dry
out is the best measure of a heat pipe's capillary transpon limit and these data points correlate almost 
exactly over the test temperature range of 100 to 140 K. The model tends to under-predict the dry-out 
condition by almost 5 watts at 128 K. This data point was obtained under transient condition because 
of inadequate cooling, and transient performance is not an accurate measure of the transpon limit. 

Also shown in Figure 7 is the I-g performance at 85 K that was extrapolated from the component 
tilt tests in Reference 8. At this temperature, the Hughes heat pipe was predicted to be slightly over-filled 
by just 0.1 gram. Fluid charge conditions at other temperatures were predicted by GAP and are listed 
in Table 7. Again the performance of this heat pipe at 85 K for a I-g horizontal position with a 1.14 watt 
parasitic heat leak to the pipe was predicted and is included in Figure 7. This single GAP data point is 
approximately 1.5 watts lower than the extrapolated ground-test data. The small difference is, however, 
well within the accuracy of the groove measurements and the experimental error. 

Table 6. Hughes Aircraft CRYOHP Heat Pipe Design Summary 

Groove Cross Section Rectangular Fonn 

Number of Grooves 27 

Outer Diameter (inch, mm) 0.627, 15.914 

bmer Diameter (inch, mm) 0.429, 10.897 

Vapor Core Diameter (inch, mm) 0.334, 8.484 

Fin Tip Comer Radius (inch, mm) 0.0064,0.1623 

Groove Root Corner Radius (inch, mm) 0.00625, 0.1588 

Pseudo-land Tip Thickness (inch, rnm) 0.00159, 0.0403 

Groove Land Taper Angle (radian) 0.0546 

Groove Width (inch, mm) 0.0259, 0.658 

Wetted Perimeter (1 Groove) (inch, mm) 0.1281, 3.253 

Total Groove Area (inchl, mml) 0.036,23.226 

Evaporator Length (inch, mm) 6.0, 152.4 

Transpon Section Length (inch, mm) 42.8, 1065.2 

Condenser Length (inch, mm) 6.0, 152.4 
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Figure 7. Hughes Aircraft CRYOHP Heat Pipe Transport Capabilily vs. Temperature 

Table 7. Hughes Aircraft CRYOHP Heat Pipe Fluid Charge Conditions 
Actual Charge = 33.7 gr 

Operating GAP Computed Percentage Charge 
Temperarure (K) Nominal Charge (gr) (AcruaI/GAP Nominal) 

60 35.69 94.42 

70 34.78 96.89 

80 33.79 99.73 

90 32.99 102.15 

100 31.68 106.38 

110 30.73 109.66 

120 30.57 110.24 

130 31.20 108.01 

140 32.39 104.04 

150 36.66 91.93 
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CONCLUSIONS 

An IBM PC model of GAP was developed to predict the steady state thermal performance of an 
axially grooved heat pipe operating in I-g or microgravity environment. The model is user-friendly and 
easy to use. It has been shown to accurately predict the transpon capability of axially grooved heat pipes. 
For the HPP flight experiment, static dryout limits of the aluminum/freon pipes in microgravity were 
obtained and are in excellent agreement with the analytical predictions by the model. The transpon limits 
of the freon and water pipes under adverse spin also correlate well with the predictions by the GAP 
model. For funher verification, the computer model was applied to predict the transpon limits of two 
aluminum/oxygen pipes flown in the CRYOHP experiment. These predictions are also in excellent 
agreement with the test data over a wide range of operating temperatures. 

In suppon of the on-going Heat Pipe Performance Reflight (HPP-2) project and with the 
recommendations by several users, the current GAP model is being upgraded to accommodate the actual 
boundary conditions of an axially grooved heat pipe utilized in most applications. The following features 
have been planned for this new version: 

• Boiling limit will be included in the calculation of transpon limits. Heat diffusion in the heat 
pipe wall will be accounted for in this calculation. Therefore, thermal conductivity of the heat 
pipe wall is an impQl1ant parameter and will be correlated with the evaporator temperature; 

• Asymmetric heating and cooling of the evaporator and condenser, respectively, will be considered 
in the computation of maximum heat transpon capability. In most practical applications, the heat 
pipe is embedded inside a panel, which results in non-uniform heating or cooling of the 
evaporator or condenser, respectively. In these cases, the heat pipe exhibit lower heat transpon 
capability because of local dry-out in the grooves; and 

• Multiple sections of evaporator, transpon, and condenser will also be included in the model. 
This feature is critical to account for distributed heat loads along a heat pipe in many 
applications. 
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VALIDATION OF THE SINDAIFLUINT CODE USING SEVERAL ANALYTICAL SOLUTIONS 
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Lockheed Engineering and Sciences Company 

Houston, Texas 

ABSTRACT 

The Systems Improved Numerical Differencing Analyzer and Fluid Integrator 
(SINDAIFLUINT) code has often been used to determine the transient and steady-state response 
of various thermal and fluid flow networks. While this code is an often used design and analysis tool, 
the validation of this program has been limited to a few simple studies. 

For the current study, the SINDAIFLUINT code was compared to four different analytical 
solutions. The thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA 
portion) was first COfl1)8red to two separate solutions. The first comparison examined a semi-infinite 
slab with a periodic surface temperature boundary condition. Next, a small, uniform temperature 
object (lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of 
the code (FLUINT) was also compared to two different analytical solutions. The first study examined 
a tank filling process by an ideal gas in which there is both control volume work and heat transfer. 
The final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The 
results of all these studies showed that for the situations examined here, the SINDAIFLUINT code 
was able to match the results of the analytical solutions. 

INTRODUCTION 

The Systems Improved Numerical Differencing Analyzer and Fluid Integrator 
(SINDAIFLUINT) program has often been used to determine the transient hydrodynamic and 
thermal response of various thermal and fluid networks. For example, the Space Station Freedom's 
(SSF) Active Thermal Control System (ATCS) [1] and airtock [2], the Space Shuttle's A TCS [3], and 
the SSFs Lunar Transport Vehicle Hangar [4] have all been analyzed using this code. While this 
code has provided important results in the design and analysis of these and other space related 
hardware, the validation of this program has been limited. 

The validation of any numerical code is important, since once a code has been verified for 
several test cases, a user will have confidence that the code can accurately predict the physical 
processes of other, more complex problems. In general, there are three main verification methods. 
The first method compares the predicted results with those of a previously validated code [5]. The 
second method uses experimental data to verify the model's predictions [6]. Finally, the predicted 
results can be compared to those of a closed form analytical solution [7]. 

To date, the SINDAIFLUINT code has been validated with three simple closed form 
solutions [8,9,10] and one relatively complex experimental comparison [11]. The three closed form 
solutions considered were the transient conduction in a semi-infinite slab [8], the filling and 
decompression of a rigid, adiabatic tank with an ideal gas [9], and the transient heat transfer 
associated with a single phase fluid flowing in a duct [10]. The experimental comparison examined 
the combined radiative, conductive, and convective heat rejection process associated with the 
operation of the Space Shuttle's ATCS during orbital conditions [11]. For all the tests cases 
considered, the predictions of the SINDAIFLUINT code were able to match the results of either the 
closed form solutions or the experimental data; however, the program has yet to be validated for 
more complex situations such as transient radiation, conduction or fluid flow phenomenon. 

This paper details a validation study of the SINDAIFLUINT program for several simple 
situations. The code was validated by comparing its results with those of several closed form 
analytical solutions. The SINDA portion of the code was compared to two different analytical 
solutions, while the FLUINT portion of the code was also validated with two separate analytical 
solutions. The results of these studies showed that for the situations examined here, the code was 
able to accurately predict the heat transfer and fluid flow processes. 
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HEAT TRANSFER IN A SEMI-INFINITE SOLID 

The SINDA portion of the code was first validated using the classical closed form solution for 
conduction heat transfer in a semi-infinite solid. For this test case, a periodic surface temperature 
boundary condition was considered. A schematic of this system and its associated boundary 
condition is shown in FlQure 1. 

Tsurface = f(t) 

I X • 

Figure 1 Schematic of a Semi-Infinite Solid. 

The heat conduction in a semi-infinite solid, with no internal generation and constant 
thermophysical properties, is governed by the following differential equation. 

(1) 

where the variables T, x, a, and't are the temperature, distance, thermal diffusivity, and time, 
respectively. To reduce the complexity of the solution process, the temperature is replaced by a 
new variable, e, which is defined as 

(2) 

where the subscript i denotes the initial condition. The new governing equation and the boundary 
conditions for this problem are 

a2e 1 ae 
(3) ax2 =a:cn 

e(x,O) =0 (4) 

e(-,'t) =0 (5) 

8(0, 't) • eoCOSCO't (6) 

where eo and Q) are the amplitude and frequency, respectively. To obtain a solution for equation 
(3), the separation of variables method must be used and for brevity will not be presented here. A 
detailed discussion of this solution procedure can be found in Reference 12. The solution to 
equation (3) with the appropriate boundary conditions is 

8(~t) = e-(ar'2a)1I2x co{ Q)'t - (:a) 1/2x] (7) 
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It is important to note that equation (7) is only valid for large values of time since there is a 
discontinuity at the initial conditions. In other words, equation (7) cannot accurately predict transient 
effects during the first increase of the solid's outer surface. 

Once the analytical solution had been obtained for conduction in a semi-infinite solid, a 
SINDA model was built for the comparison study. A schematic of this SINDA model is shown in 
Figure 2. Here, a series of nodes with a height and depth of unity are placed together. The 
lengthwise spacing and thermophysical properties are input parameters and chosen in such a way 
that the co~utational process is si~lified. 

• • • • • " -- -

.. x 

FlQure 2 Schematic of the SINDA model. 

Figure 3 shows the comparison between the results of the SINDA model and those of the 
analytical solution at different depths into the semi-infinite slab. As anticipated, the predictions 
show an exponential decay in the oscillating temperature as the depth into the solid increases. In 
addition, the predictions also show a phase shift in the OSCillating temperatures and is associated 
with the time it takes the heat to be conducted into the solid. As is evident, for the parameters 
examined here, the predictions are nearty identical to those of the analytical solution. The greatest 
temperature difference between the results of the two solutions is less than 1.25 OF. Other 
conditions were also examined and a sirrilar enor was noted. 

COOLING BY RADIATIVE HEAT TRANSFER 

The SINDA portion of the code was next validated using a closed fonn solution of a simple 
radiative cooling process in which a warm object cools by thennaI radiation to a cold sink. To simplify 
the analysis, the lumped capacitance method was employed and the object radiated to one source. 
In other words, the entire solid was at a unifonn temperature, one cold sink was available and there 
was no reflected radiation. To further simplify the analysis, the radiating source was taken to be 
diffusive. Applying these assumptions, the heat loss, a, at an instant in time is given by 

a = £ A (J [T4 - T4sinkl (8) 

where £ is the emissivity, A is the surface area, (J is the Stefan-Boltzmann constant, T is the object's 
lumped temperature, and Tsink is the radiative sink temperature. Rewriting equation (8) for 
transient conditions and using the lu~ed capacitance assumption yields 

- p V Cp ~ = a = £ A (J [T4 - T4sink1 (9) 
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where the new variables p, V, Cp, and t represent the density, volume, the specific heat and time, 
respectively. Rearranging and integrating equation (9) yields, 

T = Tf 
t - f aT - £ A a f at 

T4 - T4sink - p V Cp 0 
T = Ti 

(10) 

where Ti and Tf are the initial and final temperatures, respectively. Carrying out the integration on 
equation (10), yields equation (11) 

t=PVCp [ 1 Ij(Tf + Tsink)/(Tf - TSink)} + 1 (tan-1 -.!L_ tan-1 -"IL)~ (11) 
tAa 4T3sink 'l(Ti + Tsink)/(Ti' Tsink) 2T3sink \.. Tsink Tsink U 

Equation (11) reveals that for a given initial temperature, the final temperature is governed 
by the time, 't, the sink temperature, Tsink, and the term, pVCp/tAa, (capacitance divided by 
radiative conductance). These terms were varied during the verification process. For the present 
study, the sink temperature was held at either -100 OF, -200 OF or -400 OF, while the capacitance
conductance ratio was set at 0.25, 0.5, 1.0 and 4.0. For each simulation, the initial temperature was 
held at 70 OF and the object was allowed to cool for 10 hours. 

The results from both the SINDA model and the analytical solution for all the above 
conditions are shown in Figure 4. As expected, the cooling process follows a typical exponential 
decay, and the higher capacitance (or lower radiative conductance) objects cool more slowly. As is 
evident, the SINDA generated results are in good agreement with those of the analytical solution, 
since the predicted results are nearly identical to those of the analytical solution. The greatest 
temperature difference between the results of the two solutions is less than 1.5 OF, which 
corresponds to an error based on absolute temperature of less than 0.5% . 

FLOW BETWEEN TWO INFINITE RESERVIORS OF PRESSURE 

When two infinite reservoirs of different pressure are connected by a circular duct, such as 
those shown in Figure 5, the flow rate between the two, neglecting any entrance effects, is related 
by the following expression, 

4P=Pf~ v: (12) 

where P is the pressure, p is the density of the working fluid, f is the friction factor, L is the length of 
the duct, 0 is the diameter of the duct, and V is the velocity of the fluid. 

L 

Figure 5 Schematic of the System. 

73 



Temperature 
(OJ=) 

Temperature 
(OF) 

Temperature 
(OJ=) 

100~-----------------------' 

o 

100~------------------------~ 

o 

-100 

-200 

100 

0 

-100 

-200 

-300 
0 2 4 6 8 10 

Time (hr) 

pVCr/fAO 

II 4.0 

• 1.0 

• 0.5 
~ 0.25 

- Analytical Solution 

pVCr/eNJ 

II 4.0 

• 1.0 
• 0.5 
~ 0.25 

- Analytical Solution 

pVCpkAo 

• 4.0 
• 1.0 

• 0.5 
~ 0.25 

- Analytical Solution 

Figure 4 Predicted Temperature Response for Various Capacitance-Conductance Ratios for 
a) T sink = -100 OF, b) T sink. -200 OF, and c) T sink. -400 OF. 

74 



The velocity of the fluid is related to the mass flow rate by 

V = rrVpA (13) 

where m is the mass flow rate and A is the cross sectional area of the duct. The area of the duct is 
given by 

A = n[)2/4 

Substituting equations (13) and (14) into equation (12) and rearranging yields 

8fm2L 
4P= pn205 

Solving for the friction factor gives 

f
_4Pcm205 
- 8m2L 

For laminar flow the friction factor is given by 

f =641Re 

where Re is the Reynolds number which is given by 

VD Re-v 

(14) 

(15) 

(16) 

(17) 

(18) 

where v is the kinematic viscosity. For turbulent flow the friction factor is a function of the Reynolds 
number and the wall roughness ratio (eID). The value of turbulent friction factors must be 
detennined experimentally and can be found on the Moody chart [13]. Reviewing equations (12) 
through (16) shows that for a given fluid if the pressure difference, pipe diameter and length are 
fixed, the velocity can be detennined, directly for laminar flow and iteratively for turbulent flow. As 
such, any numerical code that is developed correctly should be able to accurately predict fluid 
velocities when the other parameters are fixed. 

For the system shown in FlQure 5, a simple FLUINT model was developed. The duct was 
represented by the TUBE option so that internal pipe friction would be included in the model. The 
pressure source and sink were represented by plenums (PLEN in FLUINT) which maintained a 
constant pressure at the ends of the TUBE. A schematic of this FLUINT model is shown in Figure 6. 

For the current study, the pressures of the PLENa, and the pipe length and diameter of the 
TUBE are fixed. The model is then run in a steady-state mode until a converged solution is 
obtained. Using this flow rate, the friction factor and Reynolds number were calculated (Equation 
(16) and (18» and compared to the analytical solutions. If the FLUINT code is properly developed, 
the predictions should match the analytical solution or the Moody chart values. 

PLEN TUBE PLEN 
100 300 200 

Figure 6 Schematic of the FLUINT Model. 
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Figure 7 

Figure 8 
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The model was run over Reynolds numbers ranging from 1 to 106 for four different values 
of eID and the predicted friction factors can be found in Figures 7 and 8. When laminar flow was 
oonsidered (Figure 7), the friction factor was found to be independent of the wall roughness and a 
linear function of the Reynolds number. For this situation, the predicted FLUINT results are nearly 
identical « 0.1 %) to those of the analytical solution. 

When the flow is turbulent (Re > 2300), the friction in the pipe is a function of the both the 
Reynolds number and the wall roughness. The greater the wall roughness, the great the friction 
factor. The predicted friction factors in the turbulent regime for various wall roughness ratios can be 
found in Figure 8. As is evident, the predicted friction factors agree with those taken from the 
Moody chart and also shows the dependence of the friction factor upon wall roughness after the 
laminar regime. 

TANK FILLING WITH HEAT TRANSFER AND CONTROL VOLUME 
WORK 

Development of the Analytical Solution 

Many thermodynamic processes involve unsteady flow and are difficult to analyze; however, 
several processes, such as the filling of a closed oontainer, can be approximated by a simplified 
model. These types of problems are known as uniform-state, uniform-flow (USUF) processes. The 
basic assumptions for this flow oondition are as follows: 

1) The thermodynamic state of the mass within the control volume may 
change with time, but at any instant of time the state is uniform throughout 
the entire oontrol volume. 

2) The thermodynamic state of thernass entering the control volume is 
oonstant with time. 

Work 

Figure 9 Schematic of the System. 

Using these assumptions and Figure 9 as a guide, the first law [14] can be simplified for a 
tank filling scenario with heat transfer and oontrol volume work. With no vetocity or gravity potential 
tenns, the first law for this tank filling process is, 

(19) 

where m is the mass, h is the enthalpy, u is the internal energy, WrN is the total oontrol volume work, 
and Ocv is the total heat transfer. The subscripts in, 2, and 1 denote the inlet, final and initial states, 
respectively. From the oontinuity equation, the following relationship can also be developed. 

(20) 
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Substituting equation (20) into equation (19), replacing the enthalpy with CpT and the internal 
energy with Cy T (the assu~tion of constant specific heats) yields 

(21) 

where Cp, Cy and T are the constant pressure specific heat, the constant volume specific heat and 
temperature, respectively. Incorporating the ideal gas law (PV=RT) into equation (21) gives 

(22) 

where P is the pressure, V is the volume, and R is the specific gas constant. Rearranging equation 
(22) produces 

~"p'V')('~T. _(p "p,V')"u+ Wcv R + Qcv R 
~T2 T,V2 -p In 2 V2 vy V2 V2 

Dividing by the constant volume specific heat, Cy, and defining a new variable 

V, 1 
V2=Vr 

equation (5) becomes, 

where k is the ratio of the specific heats. Rearranging equation (7) gives 

~ = P2Vr " P, +.fL+ Wcy R + Q cy R 
T2 kTinVr T,Vr kTinCyV2 kTinCyV2 

Solving for the final temperature gives, 

Further simplification yields, 

T2 = kP2T,TjnV, 

(P2Vr" P,)T, + kP,Tin + WCCv~~' + QcC;;') 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

Reviewing equation (28) shows that when work or heat leaves the control volume, the final 
temperature will be reduced compared to a system in which these quantities are absent. It is also 
important to note that in the absence of work and heat transfer, equation (28) reduces to a common 
equation that is used to estimate final te~ratures in rigid adiabatic containers [14]. 

In writing equation (28) it is assumed that the total work, Wcv, that occurs between the initial 
(1) and final (2) states is known or can be detennined. In general, the work term is not constant and 
varies with both system pressure and volume. From thermodynamic refationships [14], the total 
control volume work is defined as 
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2 

WCV= !PdV 

Typically, volume is related to the pressure by an arbitrary function. 

V =f(P) 

Similarly the pressure is related to the volume by the inverse function 

P=t'M 
Replacing the pressure term in equation (29) with equation (31) gives 

2 

Wcv = If·' (V) dV 

(29) 

(30) 

(31) 

(32) 

For the present study, the function, f(P), was chosen so that the integral could easily be 
evaluated. The manipulation of the SINDAIFLUINT code to include control volume work will be 
discussed shortly in an upcoming section. . 

Development of the SINDA Model 

Figure 10 shows a schematic of the FLUINT model that was used to validate the code. 
Here, a TANK is connected to a PLEN (PLENum) by an MFRSET (Mass Flow Rate SET). By using 
the TANK option, the first assumption for USUF processes (uniform state within the control volume) 
is met. The use of the PLEN ensures that the second USUF assumption of constant inlet 
properties is also maintained. To ensure that the working fluid is an ideal gas, an 8000 series fluid, 
using nitrogen as the woricing fluid, was developed and employed. 

TANK PLEN 

MFRSET 

Figure 10 Schematic of the FLUINT Model. 

While the SINDAIFLUINT program does not directly calculate (include) work terms for 
expanding (or contracting) control volumes, the code does calculate the thermal and hydraulic 
response of compliant (soft) TANKs. In the code, the compliance is defined as 

1 dV 
COMP· VdP (33) 

Therefore, if there is a function relating pressure and volume, an expanding control volume can be 
included in the FLUINT model, and by using equations (29) through (32), the control volume work 
can then be determined for the analytical solution. 

Before the results are examined, it is important to first review the analytical solution. 
Equation (28) has been derived from a basic thermodynamic equation which was integrated over 
time. While the FLUINT code uses a rate based thermodynamic equation, the code integrates this 
equation over sma/I discretized time intervals and the starting conditions at one time step are taken 
from the final conditions of the previous time step. This procedure employed by the FLUINT is the 
numerical equivalent of an integration. Since FLUINT has been developed using rate based 
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equations and the analytical solution uses overall heat transfer, one of the solution methods must 
be modified. To modify the heat transfer terms so that they can be included in the analytical 
solution, all that is required is that the FLUINT heat transfer term (aDOT in FLUINT) be multiplied by 
the total run time (TIMEN) and thus total heat transfer. 

Results 

The comparison study was conducted in several steps. First, the model considered 
situations where only heat transfer or the volume changed. The model was then run for situations in 
which there was both simultaneous heat transfer and control volume work. For all the cases 
examined, the initial pressure and temperature within the storage container was set to 100 psia and 
70 OF, respectively, while the inlet temperature was held to 70 OF. The final pressure of the tank was 
limited to 1000 psia. The volume of the TANK was initially set to 0.5 ft3. The results from these 
studies are summarized in Tables 1 through 4. 

Figure 11 shows the predicted control volume temperature as a function of pressure for a 
variety of cooting rates with a fixed volume. As expected, the greater the heat loss, the lower the 
predicted temperature. In other words, a portion of the heat of compression is removed, resulting in 
lower predicted temperatures. More importantly, however, is to note that regardless of the heat 
transfer rate, the predictions are nearly identical to those of the analytical solution. 

Figure 12 presents the analytical and predicted control volume temperature as a function of 
pressure for various heating rates. For these cases, the higher the heat addition, the higher the 
final volume temperature. Again, the predided results are nearly identical to those of the analYtical 
solution. 

Figure 13 shows the predicted and analytical solution temperatures for the situation of an 
expandable control volume in which there is no heat transfer. Since a portion of the working fluid's 
energy must be used to produce work, the temperatures are lower then for the case in which the 
volume is fixed. For this situation too, the code was able to predict results nearly identical to those 
of the analytical solution. 

Figure 14 presents the analytical and predicted temperatures for the conditions which 
include both control volume work and heat transfer. The volume is equal to the pressure multiplied 
by a constant. Depending on the situation examined, the predicted temperature was either greater 
(heating) or. less (cooling) than the base case. As is evident, the code was able to match the results 
of the analytical solution. 

SUMMARY AND CONCLUSIONS 

This paper details a validation study of the SINDAIFLUINT program for several simple 
situations and focused on the major building blocks of the SINDA and FLUINT portions of the code. 
The code was validated by comparing its results with those of four closed form solutions. The 
thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA portion) was first 
compared to two separate solutions. The first comparison examined a semi-infinite slab with a 
periodic surface temperature boundary condition. Next, a small, uniform temperature object 
(luf11)ed capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion ot the 
code (FLUINT) was also compared to two different analytical solutions. The first study examined a 
tank filling process by an ideal gas in which there is both control volume work and heat transfer. The 
final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The results 
of all these studies showed that for the situations examined here, the SINDAIFLUINT code was able 
to match the results of the analytical solutions. 

To date only one large scale SINDAIFLUINT model has been built and used to validate the 
FLUINT code [11] and the interaction between SINDAIFLUINT modeling components has yet to be 
examined. Therefore, future studies should be devoted to building large sized models which can 
be verified by either analytical solutions or experimental data. 
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Table 1 Predicted and Analytical Temperatures for Various Heat Loading Conditions. 
Initial Conditions P1 = 100 psis, T1 = 70 of, Tin == 70 of, Pfinal = 1000 psia 

SINDAIFLUINT Analytical 
TfnaI Ttnal a Volume 
("F) ffl (Btulhr) Relationship 

253.02 253.46 0.0 V=C 
241.29 241.63 -500.0 V=C 
229.58 229.75 -1000.0 V=C 
193.65 193.64 -2500.0 V=C 
132.69 132.30 -5000.0 V=C 

5.77 5.05 -10000.0 V=C 

Table 2 Predicted and Analytical Temperatures for Various Heat Loading Conditions. 
Initial Conditions P1 = 100 psis, T 1 = 70 of, Tin == 70 of, Pfinal = 1000 psia 

SINDAIFLUINT Analytical 
TfnaI TfnaI a Volume 
("F) ffl (BtLllhr) Relationship 

253.02 253.46 0.0 V=C 
264.57 265.22 500.0 V=C 
276.13 276.96 1000.0 V:C 
310.59 311.76 2500.0 vee 
366.44 368.39 5000.0 V-C 
473.25 476.80 10000.0 V.c 

Table 3 Predicted and Analytical Temperatures for Volume Relationships 
Initial Conditions P1 = 100 psis, T 1 = 70 OF, Tin == 70 OF, PfinaJ = 1000 psia 

SINDAIFlUINT Analytical 
TfnaI TfNI a Volume 
("F) ffl (BtLllhr) Relationship 

253.02 253.46 0.0 V ... C 
156.12 157.01 0.0 V=CP 
125.55 125.38 0.0 V=CP2 
189.30 189.66 0.0 V.Cp1I2 

Table 4 Predicted and Analytical Temperatures for Various Heat Loading Conditions and 
Volume Relationships. 
Initial Conditions P1 = 100 psis, T1 == 70 OF, Tin == 70 OF, Pfinal = 1000 psia 

SINDAIFlUINT Analytical 
TfnaI TfNI a Volume 
(OF) ffl (BtLllhr) Relationship 

156.12 157.01 0.0 V.CP 
133.83 133.70 -1000.0 V ... CP 
180.19 180.29 1000.0 V=CP 
40.84 40.21 -5000.0 v.ep 

272.59 273.57 5000.0 V=CP 
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Figure 11 Predicted and Analytical ( Solid Une --) Temperature Response for Various Heat 
Losses and no Control Volume Work. 
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Figure 12 Predicted and Analytical ( Solid Una -) Temperature Response for Various Heating 
Rates and no Control Volume Work. 
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Figure 13 Predicted and Analytical (Solid Une -) Te~ure Response for Various Pressure
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TRANSIENT STUDIES OF G-INDUCED CAPILLARY DRYOUT AND REWET 

M.K. Reagan and W.J. Bowman 
Department of Aeronautics and Astronautics 

Air Force Institute of Technology 
Wright Patterson Air Force Base, Ohio 

SUMMARY 

A transient. one-dimensional numerical code is developed to model the liquid motion in an axial 
groove with square cross section. Axial variation in liquid level. shear stress and heat transfer between 
the groove wall and the liquid. evaporation and transient body forces are accounted for in the model. 
Dryout and rewet of the groove are allowed; the front location is determined numerically using 
conservation of mass and linear extrapolation. Several numerical test results are presented and discussed. 

INlRODUCTION 

Heat pipe technology has been proposed for use in the aerospace environment as a means of 
cooling electronics on fighter aircraft or as a means of thennal management aboard space-based platforms 
(refs. 1-3). These environments are dynamic ones where time-varying body forces will primarily influence 
the motion of the working fluid within the wick structure of the heat pipe. While the magnitudes of the 
body forces in these two examples may be quite different. the effect on the working fluid in the wick is 
the same; namely. a bulk movement of the fluid towards either the evaporator or the condenser. depending 
on the magnitude and orientation of the body force. If the bulk motion of the fluid is towards the 
condenser. then dryout of the wick structure will be enhanced and heat pipe failure will result. The ability 
to correctly model liquid motion in a wick structure subject to transient body forces. then. is a necessary 
first step before heat pipe technology will be accepted as a means of thermal management in the aerospace 
industry. 

Several attempts have been made to numerically model the liquid flow in a heat pipe wick. Two 
models repeatedly found in the literature are the Groove Analysis Program (GAP). developed by NASA 
(ref. 4) and a piston model developed by Beam (ref. 5). GAP is a steady-state formulation that is 
applicable only to grooved wick structures. Because it is steady-state. it does not account for the time
varying nature of body forces. It properly models the axial variation in radius of curvature; however. this 
radius of curvature is only allowed to vary from a minimum at the evaporator (equal to one-half the 
groove width) to a maximum at the condenser (equal to the radius of the vapor space). Because of this. 
dryout is never allowed to occur and therefore. it provides no capability to predict or model the dryout 
and rewet phenomena. 

The piston model of Beam; however. is an unsteady formulation that does account for transient 
body forces. The wick is assumed to be entirely full up to the dryout front. past which no liquid may be 
present. The front is perpendicular to the axial direction. hence the reference to a piston. Because the 
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wick is assumed to be entirely full up to the front location. no recession of liquid and therefore. no radius 
of curvature, is allowed axially along the wet ponion of the wick. In an actual heat pipe, recession of the 
liquid into the wick structure occurs continuously between the evaporator and condenser without causing 
dryout and always occurs as a precursor to dryout. Visual observations of Reagan (ref. 6) and Hawthorne 
(ref. 7) have verified this behavior. Because no liquid recession into the wick is allowed, the piston model 
predicts dryout earlier than actually occurs. 

A limitation of both models is that neither attempts to describe the nature or behavior of the liquid 
front within the wick. In the GAP model, no liquid front is allowed to develop; the simulations are 
stopped when the capillary limit is reached. In the piston model, the front is treated like a piston with no 
attempt to describe what it actually looks like. 

Additionally, both models assume that momentum changes in the liquid are negligible. This 
reduces the momentum equation to a form of Darcy flow, which models the pressure drop by equating 
the sum of pressure, shear and body force terms to zero and neglects any change in the liquid inertia. 
During steady-state behavior, the liquid velocity is small and hence, inertia effects are most likely 
negligible. The same conclusion cannot be deduced for the case of a transient body force environment. 
A new transient numerical model is therefore warranted. 

TIIEORY 

Several assumptions are made concerning the derivation of the governing equations. The wick 
is an axial groove with square cross section of constant width, w and depth, O. One end of the groove 
can be tilted relative to the other end which provides the transient body force. No flooding of the groove 
is allowed and the pressure above the liquid in the groove is assumed constant and equal to ambient 
pressure, p... . 

The working liquid is ethanol and is assumed to be incompressible with density, p = 785 kg/m3
• 

Laminar flow within the groove is assumed at all times and kinetic and potential energy changes are 
assumed negligible with respect to changes in the internal energy. Free convection and radiation losses 
to the environment are also considered negligible with respect to the energy lost via evaporation. 

Consider the control volume shown in Figure 1. This control volume encompasses the liquid only 
and not the groove structure. The liquid flow is from left to right and the meniscus level is assumed to 
vary linearly through the control volume. The equation of conservation of mass for this control volume, 
noting that p dx is constant, yields 

dA d(AV) In 
+ +' - 0 dt dX pdx -

(1) 

where A is the liquid cross-sectional flow area, V is the average liquid velocity and liz. is the evaporative 
mass flow rate for the differential control volume. 

Figure 2 shows the same control volume with the appropriate forces (solid arrows) and momentum 
terms (dashed arrows). The groove with the liquid is tilted at an angle, 'V , around a center of rotation 
relative to the horizontal level and this angle is a function of time, which provides the transient body 
force, pAgsin'Vdx (g = gravitational constant). Momentum changes within the liquid, evaporative 
momentum flux, shear and capillary forces are all accounted for. The meniscus radius of curvature, R , 
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Figure 1. Control Volume for Conservation of Mass Analysis 
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Figure 2. Control Volume for Conservation of Momentum Analysis 
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is a function of the liquid cross-sectional flow area and therefore can vary with axial location. The 
(pAQ2 X )dx term is a fictitious force term which accounts for the non-inertial reference frame of the 
governing equations. Applying conservation of momentum to this control volume yields 

a(A V) a P A Til V siny "tA 1 (J 1 (2) _..--_+ (AV 2 +_)= t. -Agsin'V- __ -_(P .. -_)wtany+AQ-x at dx p pdx pdx P R 

where y is the angle generated by the axial variation in meniscusJevel. V. is the evaporative mass flux 
velocity. "t is the shear stress between the groove wall and liquid. A is the area over which the shear stress 
acts. (J is the surface tension coefficient and Q is the angular rotation rate. 

The average liquid pressure. P • at any axial location is assumed to be the ambient pressure minus 
the capillary pressure due to the curved interface. plus the pressure head due to the depth of liquid in the 
groove. The average depth of liquid in the groove. h. is approximated by h = A / w. and the average 
pressure head can be shown to be Y.!p g hcos'V. The average liquid pressure then. is a function of the 
groove tilt angle. 'V. the cross-sectional flow area. A. and the meniscus radius of curvature. R. 

This meniscus radius of curvature is a function of the liquid cross-sectional flow area and is 
assumed to behave as shown in Figure 3. When the groove is entirely full of liquid. there is no meniscus 
and the radius of curvature is infinite. As liquid evaporates or is moved by bulk motion. the meniscus 
recedes into the groove and R decreases from infinity until a hemispherical shape is formed. The radius 
of curvature at this condition is R = w/2. This hemispherical shape remains constant until the tangent 
to the meniscus is coincident with the bottom of the groove. As more liquid is removed by bulk motion 
or evaporation. the meniscus recedes further into the comers of the groove and the radius of curvature 
continues to decrease. This decrease is allowed to continue until the resulting liquid pressure is zero--a 
physical limitation. These three conditions (entirely full. initial hemisphere shape and tangent condition) 
allow a mathematical relationship between the cross-sectional flow area and the radius of curvature to be 
derived. Details of this derivation are found in Reference 6. 

The shear stress between the groove wall and the liquid. "t • is modeled using 

"t = !pV
2 

2 
(3) 

where the friction coefficient. f, is determined using rectangular tube flow data from Shah (ref. 8) and 
modified for channel flow according to Chi (ref. 9). The remaining quantities in Eqn (2) (evaporative 
mass flux. groove tilt angle and angular rotation) are assumed to be known or measurable quantities. 

The energy equation for this system is derived using the control volume in Figure 4. The total 
energy per unit mass is approximated by the internal energy, E 11:1 e = cT. where c is the liquid specific 

p p 

heat and T is the bulk liquid temperature. The energy influx. Qin' is modeled using Newton's Law 

Q. = h. A. (T - T), where A. is the groove wall area across which the heat energy travels, T is the 
In m In g In g 

groove wall temperature which is assumed known or measurable. and hin is the transfer coefficient. This 
coefficient was calculated using 
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(4) 

where Nu is the Nusselt Number, k is the liquid thermal conductivity and Dh is the hydraulic diameter. 
Nu was determined using convection correlations for constant surface heat flux (ref. 10), laminar tube flow 
and corrected for channel flow similar to the method used for the friction coefficient (see ref. 6 for more 

information). 
The energy outflow, QOIlI' is determined using Q OU1 = m.i.., where i.. is the latent heat of 

vaporization. QCO/td is the rate of energy conducted axially through the control volume and was calculated 
using Fourier's Conduction Law. Applying these definitions, the energy equation for this control volume 
is written as 

~(AE) + a (AV[E +!...] = (Qin - QOIll) _ ~ aQeO/td 
at dX p p dx P ax 

(5) 

Eqns (1), (2) and (5) form the set of governing equations for the new model. The pressure-area 
and radius-area relationships discussed {!!eviously provide closure for the system. The temporal derivative 
terms are grouped into a 3 x I matrix, U, and the spatial derivative terms are grouped into a 3 x 1 matrix, 
E. The remaining terms are combined into a source term, S and the resulting system is written as 

- - -
U +E =s 

I JC 
(6) 

where the subscripts t and x refer to time and space derivatives respectively. Eqn (6) is non
dimensionalized and integrated using a first order accurate, explicit Roe scheme. Details of the solution 
methodology are found in Reference 6. 

BOUNDARY CONDmONS 

The integration is performed on a one-dimensional grid, GRID I, that is I nodes wide as shown 
in Figure 5. Node I lies on the left boundary; this node is also the center of rotation of the groove. As 
such, it always contains liquid and because of the physical boundary, the velocity is always zero. The grid 
extends to I nodes, some or all of which have liquid in them, depending on the dryout/rewet front location. 
Node nb refers to the last wet node and is only equal to node I if the groove is fully wet. The grid 
remains fixed to the groove structure and does not move with the liquid. 

At time level n, the total mass of liquid in the groove, m r' is known. At time level n+ I, assuming 
mass loss only by evaporation, the total mass of liquid in the groove is 

lib 

m = m - mat n+l n E' A 
g g • 

(7) 
i-2 
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Figure 5. Numerical Grid Definitions 

A second grid. GRID2. is used to update the boundary conditions and is also shown in Figure 5. 
The mass within any control volume using this grid is found using 

(8) 

and the internal mass. minI' is calculated by summing m/ between volumes 3 and lib. Applying the 
principle of conservation of mass to the leftmost control volume of GRID2 yields the area of node I as 

n+! ft A ( • ft . ft) m. = m. - u.1 m. + 111, 

(9) 

The velocity at node 1 is zero because of the physical boundary and the temperature is updated assuming 
an adiabatic end condition. 

The remaining mass in the groove. ttl r' at time levelll+ 1 is found by subtracting the internal mass 
and the mass at node 2 calculated in Eqn (9) above from the predicted mass at time level1l+1 (Eqn (7» 
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ft+l ft+l n+l n+l 
In. = Ing - minI - m2 

(10) 

If the groove is not in a state of dryout. then m. occupies control volume I and the area at node I is found 
by a simple average of the areas at nodes I and 1-1. The velocity at node I is identically zero and the 
temperature is updated assuming an adiabatic end condition. 

If. however. the groove is in a state of dryout or rewet. then a front exists and m. occupies some 
specified volume extending beyond node 00. Several possibilities exist regarding the distribution of liquid 
extending beyond this node. Two of the more obvious are seen in Figure 6. The first order 
approximation fills a right triangle with the remaining mass. while the second order approximation 
attempts to match the remaining mass to a parabola with a specified slope at the front location. Higher 
order matches are also possible. For this work. the first order approximation is used. 

- - - - - First Order 

.......... Second Order 

, d 

;;s d 

Figure 6. Sample Front Approximations 

Defining the location in the groove where the cross-sectional flow area goes to zero as the 
extinction point. ep. then the distance between node Ilb and the extinction point is 

(11) 

This length can extend to one or to several nodes beyond node nb or it may not even extend to node nb+ I 
depending on the magnitude of In.. Regardless. the boundary conditions at the extinction point are 
defined by the following relationships 
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Figure 8 shows the results of a ten second real time computer run. This is a three-dimensional 
plot of the non-dimensional area distribution in the groove, A * , as a function of non-dimensional time, 
t* , and non-dimensional axial groove location, x*. Each axis runs from a minimum value of zero to a 
maximum value of one. The perspective of the liquid distribution is from an observer positioned on the 
groove. According to the figure, the area distribution does not vary with time from its initial level value 
of 0.5 (one-half full); the steady-state condition. 

Test Two--Steady Body Force 

This test was accomplished similarly to the first test; the only difference being in the initial groove 
angle and liquid distribution. The groove is set at an initial angle of, 'ViNt = tan-1(o/Loo ) , and the initial 
distribution of liquid is such that A * = 1 at the left end of the groove (x* = 0) and A * = 0 at the right end 
(x* = 1) with a linear distribution in between, as shown in Figure 9. This provides the same volume of 
liquid used in the first test. In the absence of any capillary or body forces, there should be no tendency 
for the liquid to change from this position, which is the steady-state solution for the initial conditions. 

Figure 10 shows the results of a ten second real time computer run and reveals no change from 
the initial distribution described above. This result demonstrates that the hydrostatic and atmospheric 
pressure forces, along with the body force, are modeled properly and coded correctly. 

Test Three--Steady Body Force With Motion 

It was necessary to determine if the code could predict the correct steady-state solution for an 
initial condition other than steady-state. To demonstrate this behavior, a setup identical to test two was 
used with the initial liquid distribution similar to that of test one and is shown in Figure 11. From this 
initial condition, the liquid should begin to flow towards the left end of the groove (x* = 0) and reach the 
steady-state conditions of test two. 

Figure 12 shows the results of a ten second real time computer run. Note that as time progresses, 
A * increases at x* = 0 and decreases at x* = 1. This shows bulk liquid motion towards x* = 0, and at 
t* = 1, steady-state conditions are achieved. This test demonstrates that the code predicts the correct 
steady-state solution for a non steady-state initial condition. 

Test Four--Steady Body and Capillary Forces 

This test was performed to determine if the capillary force was modeled and coded properly. The 
initial conditions for this experiment are seen in Figure 13. The groove tilt angle was similar to test three 
and the liquid distribution was the same as test two. In the absence of the capillary force, it was seen in 
test two that the liquid had no tendency to move. However, if the capillary force is now considered, the 
liquid should have a tendency to move towards x* = 1 since the liquid in that end has receded further into 
the groove and the capillary influence should be greatest. 

Figure 14 shows the results from this study. With the capillary force present, the liquid does 
indeed move towards x* = 1 as seen by the increase in A * at x* = 1 and a corresponding decrease in A * 
at the other end of the groove, x* = O. The liquid approaches a steady-state distribution different from 
the steady-state condition seen in Figure 10. This is due to the inclusion of the capillary force. 

93 



A =0 .p 

(12) 

If d is less than ax, then m is not sufficient to extend the triangular profIle to the node nb+ l. In this 
~ , 

case, the area, velocity and temperature distributions of the liquid are completely defined and no funher 
calculations are required. 

If, however, d.
p 

is greater than ax, then the remaining mass is sufficient to extend the profIle to 
node nb+1. In this case, A;;;1 is calculated using the area at node nb and the slope from Eqn (12). 
Applying conservation of mass on the control volume between nodes nb and nb+l yields the velocity as 

(A V):; 1 _ (if V) 
,,+1 l dt lib +1 P 

Vnb + 1 = -----.;~~---
11+1 

Allb + 1 

(13) 

where \;:j is the volume of the differential element A first order approximation to the volume derivative 
term is used and the evaporation term is evaluated at the temperature of node nb at time level n+ 1. The 
temperature is updated assuming no axial conduction. 

Mter the area, velocity and temperatures are updated, the mass in the new control volume is 
calculated and subtracted from m, and a new m, is established. Node nb+ I is renumbered as node nb 
and a new value of d.p is calculated and established. The procedure described above is repeated until this 
new value of d is less than ax . • p 

NUMERICAL TEST PARAMETERS AND RESULTS 

Several numerical experiments were performed with the new model to establish confidence in its 
ability to model the flow of liquid in a heated capillary structure subject to transient body forces. Since 
no comparisons to physical data are made, absolute accuracy of the results is not considered imponant. 
However, correct trends need to be demonstrated as well as the ability to numerically model the formation 
of a front in the groove structure. 

Test One--No Body Force 

The pwpose of this test was to demonstrate that liquid in a groove that is initially level and 
remains level should have no tendency to move. The test setup is shown in Figure 7. The groove, shown 
by the dotted line in the figure, is a square channel. The width, w , and depth, f> , are 1.5875 mm, where 
the width dimension is into the page. The groove length, L.., , is 0.254 m, the liquid is ethanol and the 
capillary force and evaporation are neglected. In this test, the groove is maintained at the ambient 
temperature, T = 295K , and is not allowed to rotate. The initial area distribution is such that the groove 
is exactly one-half full. This is represented by the shaded area in the figure. 
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----------

The remammg three numerical experiments were performed with the capillary force and 
evaporation present. The goal of these remaining experiments was to determine the code's ability to 
model the liquid motion in the groove under transient body forces and external heating; two imponant 
parameters that were neglected in tests one through four. The magnitude and duration of the body forces 
and heating were sufficient to result in dryout in the groove: a phenomenon also not studied in tests one 
through four. 

Test Five--Transient Body Force. No External Heating 

This test was performed to determine if the code could capture the formation of a dryout front in 
a groove that was subject to a transient body force but no external heating. No external heating refers to 
no externally applied heat sources. such as a heater. It does not mean that no heat transfer takes place; 
in fact. heat transfer does occur in the form of evaporation. 

In this test. the groove was initially at a level condition and one-third full of liquid. The groove 
was rotated through the schedule shown by the bold line in Figure 15. This schedule was 

'V = 'V
max 

sin(21tcot) 0S;tS;5 

t> 5 

with a maximum angle, 'V mtU ' of 0.0524 radians and a frequency of co = 0.1 Hz. This panicular schedule 
was chosen after numerous numerical test runs because it resulted in a panial dryout of the groove 
followed by a rewet. The results of this test run are shown in Figure 16. As the transient body force is 
applied. the level of liquid at x* = 0 increases and the level at x* = 1 decreases. indicating bulk liquid 
motion towards x* = O. At approximately t* = 0.3 , the groove begins to dry out as noted by A * = 0 at 
x* = 1. As the tilt schedule reverses direction back towards the initial level condition, the liquid motion 
follows and the rewet is captured by the increase in A * from its zero value. At t* = I, the liquid 
distribution in the groove is not level as steady-state conditions would dictate. The code was allowed to 

run for additional time and the liquid distribution did eventually reach a quasi-steady-state condition. This 
quasi-steady-state refers to the liquid level in the groove being uniform along its length but decreasing in 
time due to evaporation of the liquid. The time shown in Figure 16 was chosen to reveal details of the 
dryout and rewet. This experiment validated the code's ability to capture a dryout and rewet due solely 
to a transient body force. 

Test Six--No Body Force, External Heating 

This test was performed to determine if the code could capture the formation of a liquid front in 
a groove subjected to external heating but no transient body force. In this test, the groove was initially 
at a level condition and entirely full of liquid. The groove was kept level throughout the test as shown 
in Figure 17. The left end of the groove was maintained at T = 295K , while the right end was 
maintained at T = 345K , with a linear distribution of temperature between x* = 0 and x* = l. A 
maximum temperature of 345 K was chosen to remain below the boiling point of ethanol. This test was 
carried out for 480 seconds. For the first 420 seconds. the temperature proflle described above was used. 
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This was done to generate a dry region in the groove. Between 420 and 480 seconds. the temperature 
profIle was reduced to a uniform temperature of T = 295K to allow a rewet to occur. 

The results of this experiment are seen in Figure 18. Several interesting trends are seen in this 
figure. First, the decrease in liquid volume between t* = 0 and t* = I is· evident by the decrease in A * 

along the groove. Note however, that the rate of decrease in A * is greater at x* = I than at x* = O. This 
is due to the elevated temperatures as x* approaches one. Higher temperatures result in higher evaporation 
rates and a quicker depletion of liquid from the groove. 

The second trend is the formation of a dryout front. A * = O. at approximately t* = 0.9. At this 
point. the elevated temperature profile was reduced to the uniform profile and a rewet of the groove was 
noted. At t* = I the liquid has not reached its quasi-steady-state condition. This test validated the code's 
ability to capture a dryout and rewet due solely to external heating. 

Test Seven--Transient Body Force. External Heating 

This numerical experiment was performed to determine the code's ability to capture a dryout and 
rewet in a groove subject to both transient body forces and external heating; similar to what was 
investigated in the physical experiments. The test setup is shown in Figure 19. The heating schedule of 
test six was combined with the tilt schedule of test five. The total run time for this experiment was ten 
seconds. This was done to compare the results to those of test five. 

The results are seen in Figure 20. The same trends noted in Figure 16 are seen here; namely, the 
dryout of the groove at approximately t* = 0.3 and the rewet following the groove rotation back to level. 
The primary difference between these two figures is in the rewet phase. In Figure 16 the rewet is seen 
by the rise in A * at x* = I between 1* = 0.5 and t* = 1. The same region in Figure 20. however. shows 
a dryout condition; in fact. at x* = 1, A* is zero at t* = 1. compared to A* = 0.045 in Figure 16. This 
is due to the elevated temperatures and correspondingly increased evaporation rates. 

Test Eight--Increased Frequency 

An additional numerical study was performed to demonstrate the ability of the code to model the 
liquid flow in a heated capillary structure under a frequency and amplitude greater than those of tests one 
through seven. The code was run at the same conditions as numerical experiments one through seven. 
but the amplitude was allowed to vary between +0.0524 and -0.0524 radians. Additionally. a frequency 
of 1 Hz was used; one order of magnitude greater than the maximum frequency of the first seven 
numerical tests. Initial liquid distribution and temperature boundary conditions are shown in Figure 21. 

The results of a sixty second run are shown in Figure 22. The sinusoidal motion of the liquid is 
evident. The overall volume of liquid in the groove is decreasing with time as evidenced by the maximum 
amplitude of the area peaks at x* = 0 and x* = 1 decreasing with time. No dryout is seen in the figure 
but this is only because the computer run was stopped before dryout occurred. The code appears to 
predict the correct trends in the liquid motion. 
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CONCLUSIONS AND RECOMMENDATIONS 

A transient. one-dimensional numerical code has been developed which is capable of modeling 
the liquid motion in a grooved heat pipe wick structure subject to transient heat loads and body force 
effects. Simple numerical tests demonstrated its ability to predict the correct trends in axial variation of 
liquid inventory, to include both dryout and rewet, caused by asymmetric heating, transient body forces 
or a combination of both. It is recommended that experimental data be generated to compare with the 
results from this model to provide validation of the governing equations. simplifying assumptions and 
solution methodology. 
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SUMMARY 

A higher-order finite-difference technique is developed to calculate the developing-flow 
field of steady incompressible laminar flows in the entrance regions of circular pipes. Navier
Stokes equations governing the motion of such a flow field are solved by using this new finite
difference scheme. This new technique can increase the accuracy of the finite-difference 
approximation, while also providing the option of using unevenly spaced clustered nodes for 
computation such that relatively fine grids can be adopted for regions with large velocity gradients. 
The velocity profile at the entrance of the pipe is assumed to be unifonn for the computation. The 
velocity distribution and the surface pressure drop of the developing flow then are calculated and 
compared to existing experimental measurements reponed in the literature. Computational results 
obtained are found to be in gOod agreement with existing experimental correlations and therefore, 
the reliability of the new technique has been successfully tested. 

INTRODUCTION 

Due to the effect of viscous dissipation, velocity and pressure distributions in fluid flows 
nonnally vary non-unifonnly. The flow velocity typically has a large spatial variation near a wall 
and a relatively small variation in a region far away from wall surfaces. To calculate flow 
characteristics, the classical finite-difference method discretizes the mathematical domain into 
unifonn-size meshes. In order to obtain accurate results without resolving to using extremely fme 
meshes, the physical domain is preferable to be discretized into unenvenly spaced clustered nodes 
such that fine meshes can be adopted in regions with large velocity gradients and coarse meshes 
can be used in regions with small velocity gradients. As was discussed by Anderson et al (ref. 1), 
a physical domain discretized by using unevenly spaced clustered nodes can be transfonned into a 
mathematical domain consisting of evenly spaced nodes by using the method of coordinate 
transfonnation such that the classical finite-difference technique can be applied. However, to find a 
proper mathematical function to transfonn coordinates of a physical domain discretized by using 
arbitrarily clustered nodes into new coordinates for a mathematical domain with unifonnly spaced 
meshes is practically infeasible because of the complex nature of this type of transfonnation. In 
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addition,transformed governing equations for the mathematical domain can become highly 
transcendental because of the nonlinear behavior of fluid flows. Hence, it is highly desirable to 
develop a finite-difference technique which can be applied directly to a mathematical domain 
discretized by using arbitrarily spaced clustered nodes such that the transformation of governing 
equations can be avoided. . 

Several existing methods which utilize the classical finite-difference formulation to solve 
partial differential equations have been major tools in computational fluid mechanics. The 
conventional explicit method, Crank-Nicholson method, and the Box method of Keller (refs. 2 to 
4) are major finite-difference techniques that have been widely used in computational fluid 
mechanics. However, theses methods are only second-order accurate and are not appropriate to be 
applied to cases with unevenly spaced clustered nodes without using the coordinate transformation 
technique. In view of these shoncomings, the objective of this work is to develop a founh-order 
explicit finite-difference scheme such that clustered nodes can be directly used in a mathematical 
domain. In addition to having the capability of allowing untransformed governing equations be 
applied directly to unevenly spaced clustered nodes in a physical domain, this new technique 
detennines the first four derivatives of dependent variables with respect to any independent variable 
consistently to the founh-order accuracy. Therefore, it should be more accurate than the classical 
second-order fmite difference method. 

In order to test the reliability of the new explicit finite-difference technique, it is used to 
solve the flow-development problems of fluid flows in the entrance region of a circular tube as well 
as in the leading-edge region between parallel plates. The well known solutions of Couette flow 
and of plane Poiseuille flow are applicable to the fully developed regions of these problems. As 
were described by Sparrow et al (ref. 5), several analytical techniques such as linearized methods 
and boundary-layer approaches have also been developed to approximately model flows in the 
entrance regions of these two problems. Sparrow et al (ref. 5) used a linearized method to solve 
the developing flow problems for both cases. In addition, Bodoia and Osterle (ref. 6) also utilized 
the classical finite-difference method to solve these flow-development problems. However, they 
applied Prandtl's momentum equation for the boundary layer instead of Navier-Stokes equations to 
these problems. In order to properly model the actual developing process, the present analysis 
applies Navier-Stokes equations to the entire domain and utilizes an iterative sweeping technique to 
calculate nonlinear terms. Therfore, the present mathematical approach is different from any 
existing analyses. 

HIGHER-ORDER FINITE-DIFFERENCE FORMULATION 

Five different types of higher-order fmite-difference formulations which allow the usage of 
clustered nodes can be developed by using Taylor's series expansion of functions up to the founh
order accuracy. Nodal intervals for these five types of formulation, namely, the central difference, 
the partially forward difference, the fully forward difference, the partially backward difference. and 
the fully backward difference, are shown in Figure 1. All five types can be used for different nodes 
in the same domain and their selection for each node depends upon the distribution of unknown 
dependent variables surrounding the node under consideration. The first, the second, the third, and 
the founh derivatives of a dependent variable with respect to an independent variable evaluated at 
this particular node (node i) can be expressed algebraically in terms of the nodal values of the same 
dependent variable associated with the five neighboring clustered nodes. The coefficients of these 
linear algebraic relationships can be calculated for any values of nodal intervals by solving four 
simultaneous linear algebraic equations relating to Taylor's series expansion. As an example, 
central-difference relationships for the case with uniform intervals (hi = h2 = h3 = h4 = h) can be 
expressed as 
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[~] X=Xj= ili (Ui-2 - 8Ui-l + 8Ui+l - Ui+2) 

[~] = _1_ (-Ui-2 + 16ui_l - 30Ui + 16ui+l - Ui+2) 
dx X=Xj 12h2 

[d3t] = _1_ (-Ui-2 + 2Ui-l - 2Ui+l + Ui+2) 
dx3 

X=Xj 2h3 

[~] =.l (Ui-2 - 4Ui-l + 6Ui - 4Ui+l + Ui+2) 
dx4 

X=Xj h4 

(1) 

(2) 

(3) 

(4) 

where Ui-2. Ui-lt Ui. Ui+l and Ui+2 are values of u evaluated at xi-2. Xi-It Xi. Xi+l and Xi+2. 
respectively. 

FORMULATION OF TIIE PROBLEM 

Two physical problems are considered to test the higher-order finite-difference technique. 
one is the axisymmetric developing incompressible laminar flow in a circular pipe and the other is 
the two-dimensional developing incompressible laminar flow between parallel plates. Flow 
velocity and the pressure at the inlet region are assumed to be uniform and the no-slip boundary 
conditions are imposed on all wall surfaces. By utilizing a switching constant m for both the two
dimensional problem (m = 0) and the axisymmetric problem (m = 1). governing equations for both 
problems in different regions can be expressed as follows: 

(A) General Region of Fluid Flow (0 < y. < 1) 

(1) Continuity Equation 

du· • dv· b-+mL+-=o 
dx· y. dy· 

(2) Momentum Equations 

• du· • du· dP· ,,2 d
2
u· du· 1 d

2
u· 

bu -+v -=-ab-+.Jl---+~-+---
dx· dy· dx· Re dx·2 y·Re dy· Re dy·2 

• dv· • dv· dP· ,,2 iv· dv· • iv· bu -+v _=_a_+.Jl-__ +......m...... __ .IIlL+...L __ 
dx· dy· dy· Re dx·2 y"Re dy· y·Re Re dy·2 

(B) Centerline Region (y.= 0) 

(1) Continuity Equation 

du· dv· 
b-+(m+1)-=0 

dx· dy· 

(2) Momentum Equations 
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(6) 

(7) 

(8) 



• :\2 • :\2 • 
bu. ou· = -ab op + .li._Q_U_ + (1+m) Q u 

ox· ox· Re ox·2 Re oy·2 

v· =0 

(C) Wall-Surface Region (y. = 1) 

(1) No-Slip Conditions 

u· = v· = 0 

(2) Momentum Equation 

222 
op· Op. ",2 0 u· Tn ou· 1 0 u· ",2 0 v· m ov· 

ab - + a - = .l.!-__ + ---UL-_ + ....L __ +.l.!---+ ----
ox· oy· Re ox·2 y·Re oy· Re oy·2 Re ox·2 y*Re oy· 

:\2 • 
_ mv· +-L_Q_V_ 

(9) 

(10) 

(11) 

y·Re Re oy·2 (12) 

where 

p
a5--

pU':, 

pHU_ 
Re5--

Jl 

Y·5 L 
H, 

p·5L 
p-, 

Here, x and y are either the Cartesian coordinates in the longitudinal and the transverse directions 
for the parallel-plate problem or the cylindrical coordinates in the axial and the radial directions for 
the circular-pipe problem. The origins of these coordinate systems are located at the flow inlets. 
The x axis is located either at the centerline of the parallel planes for the two-dimensional problem 
or at the center of the pipe for the axisymmetric problem. The flow domain in the x and y directions 
are denoted as Land H, respectively. Hence, H represents either the half distance between two 
parallel planes or the radius of the circular pipe. The axial velocity and the pressure at the inlet are 
specified as v. and p., respectively. Velocity components in the x and the y directions as well as 
the pressure, me density, and the viscosity of the flow are denoted as u, v, p, p, and Jl, 
respectively. The x-momentum equation applied at x = 0 (centerline region) is derived by applying 
L'Hospital rule to the Navier-Stokes equation. In addition, equation (12) is obtained by combining 
both the x and the y components of the momentum equations such that the number of unknowns 
can be identical to the number of equations at each surface node. 

Governing equations for the entire domain, equations (5-12), are discretized in the y. 
direction by using the present higher-order finite-difference technique to adapt to unevenly spaced 
clustered nodes. However, they are discretized in the x· direction by applying the classical fmite
difference formulation to evenly spaced nodes such that an iterative sweeping technique can be 
used to calculate nonlinear terms. The initial value of a nonlinear term associated with a given node 
can be estimted by using values of terms evaluated at upstream nodes at the same y. location such 
that.governing equations can be solved line by line from the upstream to the downstream by using 
the classical backward difference formulation in the x· direction. To reduce the inaccuracy due to 
this approximation, results calculated for each line are iterated to a convergent value before the 
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next marching sequence of the sweeping process is undertaken. To start the process, the flrst two 
lines have to be solved simultaneously by using the central difference for the flrst line and the 
backward difference for the second line in the x· direction. For all subsequent sweeping 
calculations, only oqe line of nodes are involved in the process. 

NUMERICAL RESULTS 

The normalized domains for both the parallel-plate and the circular pipe problems are 
discretized by dividing the domain in the x* direction into 30 evenly spaced intervals and the 
domain in the y* direction into 20 uneven clustered intervals. These unevenly speced intervals in 
the y* direction vary from 0.0025 at the wall to 0.1 at the centerline. Table 1 compares non
dimensional axial velocities of the circular pipe between those obtained by the present analysis and 
those measured by Nikuradse (ref. 7) as well as those calculated by Sparrow et al (ref. 5). Table 2 
shows the comparison of non-dimensional longitudinal velocities for the parallel-plate problem 
between those calculated by using the present technique and those determined by Sparrow et al as 
well as by Bodia and Osterle (refs. 5 and 6). Table 3 summarizes the comparison of the non-

2 
dimensional centerline pressure drop, [2(p_ - p) ]/(p U:J, of the pipe flow between those calculated 
by using the present analysis and the Schiller's experimental correlation reported by Prandtl and 
Tietjens (ref. 7). Results obtained by using the present technique are shown to be in good 
agreement with those determined by existing techniques. The non-dimensional entrance length of 
the circular pipe estimated by locating the cross section with its centerline velocity being 99% of the 
fully developed centerline velocity is found to be approximately equal to xJ(DReo) = 0.0593 or 
xJ(HRe) = 0.237 which is roughly consistent with the value of xJ(DReo) = 0.05 suggested by 
Kays (ref. 8) or the value of x/(HRe) = 0.26 reported by Prandtl and Tietjens (ref. 7) for pipe 
flows. 

CONCLUSIONS 

A higher-order finite-difference technique which allows the usage of clustered nodes has 
been successfully developed. Numerical results obtained in the present analysis have also verified 
the reliability of this technique. Therefore, it can be a very useful tool in computational fluid 
mechanics because of its accuracy and the need to use unevenly spaced clustered nodes for 
modeling fluid flows. 
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(a) Fully Forward Difference 
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(b) Partially Forward Difference 
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(c) Central Difference 
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(d) Partially Backward Difference 
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(e) Fully Backward Difference 
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i - 4 i - 3 i - 2 i-I 

Figure 1. Higher-order finite-difference nodes 
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TABLE 1 - Comparison of the non-dimensional axial velocity (u/U_) of pipe flows 

Present Analysis Nikuradse's Expennental Analysis by Sparrow et al 
Measurement (ref.7) (ref. 5) 

-A- y/H y/H y/H 
HRe 

0.0 0.4 0.8 0.9 0.0 0.4 0.8 0.9 0.0 0.4 0.8 0.9 

0.01 1.34 1.32 0.99 0.63 1.30 1.32 1.12 0.71 1.32 1.31 1.00 0.59 

0.02 1.44 1.41 0.92 0.53 1.43 1.44 0.95 0.58 1.44 1.42 0.92 0.51 

0.03 1.53 1.48 0.87 0.48 1.53 1.53 0.89 0.52 1.53 1.49 0.87 0.47 

0.04 1.60 1.52 0.84 0.46 1.60 1.58 0.86 0.50 1.60 1.53 0.84 0.45 

0.05 1.66 1.56 0.81 0.44 1.66 1.60 0.83 0.48 1.66 1.57 0.81 0.44 

0.10 1.84 1.63 0.76 0.40 1.83 1.65 0.77 0.41 1.85 1.63 0.76 0.40 

0.20 1.97 1.67 0.73 0.38 1.97 1.67 0.72 0.38 1.97 1.67 0.72 0.38 

TABLE 2 - Comparison of the non-dimensional axial velocity (u/U_) of flows between parallel plates 

Present Analysis Finite-Difference Calculation Calculation by Sparrow et al 
by Bodia and Osterle (ref. 6) (ref. 5) 

_x_ y/H y/H y/H 
HRe 

0.0 0.5 0.7 0.9 0.0 0.5 0.7 0.9 0.0 0.5 0.7 0.9 

0.01 1.20 1.15 1.00 0.50 1.16 1.16 1.05 0.50 1.18 1.16 1.03 0.48 

0.02 1.25 1.18 0.96 0.42 1.22 1.18 0.99 0.41 1.24 1.18 0.96 0.40 

0.03 1.30 1.18 0.91 0.37 1.27 1.18 0.93 0.37 1.29 1.18 0.91 0.37 

0.04 1.33 1.18 0.88 0.35 1.31 1.18 0.89 0.35 1.33 1.17 0.88 0.35 

0.05 1.36 1.17 0.86 0.34 1.34 1.17 0.86 0.33 1.36 1.16 0.86 0.33 

0.10 1.44 1.15 0.80 0.30 1.44 1.14 0.80 0.30 1.44 1.14 0.80 0.30 

0.20 1.49 1.13 0.77 0.29 1.49 1.13 0.77 0.29 1.49 1.13 0.77 0.29 
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TABLE 3 - Comparison of the non-dimensional centerline pressure drop, 

2(p_-p)/pU:', of pipe flows. 

_x_ Present Analysis Schiller's Correlation 
HRe (ref. 7) 

0.01 0.89 0.66 

0.02 1.21 1.03 

0.03 1.49 1.27 

0.04 1.74 1.48 

0.05 1.96 1.80 

0.10 2.94 2.68 

0.12 3.30 3.18 

0.16 3.98 3.70 
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ABSTRACT 

The view factors which are used in diffuse-gray radiation enclosure calculations are often 
computed by approximate numerical integrations. These approximately calculated view factors will 
usually not satisfy the important physical constraints of reciprocity and closure. In this paper several 
view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares 
numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo 
investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into 
the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least
squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat
flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very 
sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares 
rectified view factors are very good with an original view-factor matrix computed to only one-digit 
accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area 
uncertainty in this case study. 

INTRODUCTION 

It is general knowledge in the radiation heat transfer literature that the view factors in diffuse
gray radiation enclosure calculations should be computed in such a way that they satisfy the physical 
constraints of reciprocity and closure. For systems with a large number of surfaces, the only 
practical way to compute the view factors is by approximate numerical integrations. Monte-Carlo 
integration is a popular technique which is robust and has the added advantage of providing an 
estimate of the uncertainty in each calculation. These approximately computed view factors will only 
in the rarest of coincidences satisfy the reciprocity and closure constraints, and artificial means of . 
enforcement must be adopted. 

Most heat transfer textbooks adopt a naive enforcement. Only the view factors above the 
diagonal in the view-factor matrix are computed. The view factors below the diagonal are computed 
using reciprocity relationships, and the view factors along the diagonal are computed using closure. 
This technique is naive because it allows the view factors along the diagonal to be negative. Negative 
view factors are of course blatant physical impossibilities. Tsuyuki [1] presents a refined form of the 
naive enforcement which avoids negative view factors. van Leersum [2] presents an iterative 
approach which enforces closure and reciprocity on an approximate set of view factors and avoids 
negative instances. 

It is often stated in the radiation heat transfer literature (Brewster [3] for example) that reciproci
ty and closure are required to avoid ill-conditioned matrixes in the linear equation set that results from 
the diffuse-gray enclosure analysis. Taylor et al. [4, 5] have demonstrated that diffuse-gray radiation 
enclosure problems can be very sensitive to errors in the view factors even when the coefficient 
matrixes are very well-conditioned with condition numbers of order 2 and 3. In their work, they 
found that the simultaneous enforcement of reciprocity and closure using the naive algorithm 
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described above will greatly reduce this sensitivity. Also, Taylor et al. demonstrated that enforce
ment of closure and reciprocity reduced the sensitivity of the heat-flux results to uncertainties in the 
surface areas. 

This paper extends the previous work of Taylor et al. by considering more advanced reciprocity 
and closure enforcement algorithms and comparing the propagation of the view-factor errors and 
surface-area errors into computed heat-flux results of the diffuse-gray enclosure analysis for the 
different methods. 

Four view-factor enclosure algorithms are discussed and compared 
1) No enforcement--all view factors independently computed. 
2) Naive enforcement. 
3) van Leersum's enforcement. 
4) Optimal enforcement. 

The optimal enforcement algorithm uses a least-squares optimization which finds the minimum root
sum-square charge in the view factors which will simultaneously enforce reciprocity and closure. 
Nonnegativity conditions can also be included in the optimization algorithms. 

The technique used for the comparison is a Monte-Carlo uncertainty analysis of a sample 
problem which has proven to be hypersensitive to errors in the view factors when reciprocity and 
closure are not enforced. The results are the distributions in computed surface heat fluxes for 
assumed uncertainty distributions of the original unrectified view factors and for assumed uncertainty 
distributions in surface areas. 

DIFFUSE-GRA Y ENCLOSURE FORMULATION 

Radiation exchange between finite diffuse-gray areas which form an enclosure is discussed in 
almost all general heat transfer textbooks. Excellent detailed discussions can be found in any thermal 
radiation heat transfer textbook (Brewster [3] and Siegel and Howell [6], for example). The basic 
restrictions are that each surface have uniform temperature, uniform radiative properties which are 
diffuse and gray, and uniform radiosity. Boundary conditions for the k-th surface are expressed by 
specifying either the surface heat flux, qk, or the surface temperature, tk' Mixed boundary conditions 
cause no problem. If all of the surfaces with specified heat flux are considered first as surfaces 1 
through M and the surfaces with specified temperatures numbered M + 1 through N, the following 
set of linear equations can be obtained for the radiosity values [4,5] 

(1) 

where Da is a diagonal matrix with areas as elements, F is the view factor matrix, D:' is a diagonal 
matrix with zeros for elements in rows 1 through M and Ek in rows k = M + 1 to N, b is a vector 

whose first M elements are qk (k = 1,2 .... ,M) and whose last N-M elements are Eke": (k = 
M + l .... ,N), and qo is the vector of radiosities. 

Equation (1) is solved for the radiosities. If the result r is taken to be the vector whose first M 
.. 

elements are EA;atk (k = 1,2, .. ·,M) and whose last N-M elements are qk (k = M+l .. ··,N), the final 
equation is 

(2) 
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where D ,.M is the complement of D:' and has Ek for the first M elements and zeros for the last N-M 

elements. 
Usually at this stlJge of the development, the view-factor reciprocity relationship 

(3) 

is substituted into equations (1) and (2) to simplify the formulas. However, in this investigation, we 
are interested in cases where reciprocity is not strictly enforced. In that case, it is more appropriate 
to work with equations (1) and (2). 

VIEW -FACTOR RECTIFICATION 

Three view-factor rectification schemes are considered: 1) Naive, 2) Leersum's, and 3) least
squares optimum. For the least-squares optimum three subsets are considered: 1) unweighted 
without nonnegativity, 2) unweighted with nonnegativity, and 3) weighed with nonnegativity. Each of 
these procedures is discussed below. 

Naive Rectification 

For the naive rectification, the view factors above the main diagonal in the view-factor matrix, 
F, are retained and all others are discarded. The upper-triangular matrix containing these remaining 
view factors is designated as U and its transpose as UT. Equation (3) can then be used to compute 
the missing view factors below the diagonal. If the lower-triangular matrix containing the view 
factors below the main diagonal calculated by reciprocity is designated LN , equation (3) can be 
written as 

_ -1 T 
LN - D" U D" 

The rectified view-factor matrix excluding the diagonal is obtained by combining the lower- and 
upper-triangular matrixes 

Next the diagonal elements are computed using the closure relation 

N 

IN;; = 1 - L INi/ 
j-I 
j-i 

No attempt is made to ensure nonnegative view factors. The physically impossible negative view 
factors are naively accepted. 

Leersum's Rectification 

(4) 

(5) 

(6) 

van Leersum (1989) has published an iterative scheme which can be considered a refinement of 
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the naive rectification. His method spreads the closure adjustments over all of the view factors and 
assures nonnegative view factors. His algorithm is given below. 
1) For each row in the F, compute a correction factor based on closure 

where m is the number of nonzero view factors in row i. 
2) For each nonzero view factor in row i, apply the correction 

J Uk = Iii + di , k = 1, ... , N 

If any fLij < 0, decrease m by the number of negative values and recalculate ~ bypassing the 
view factors which made the previous fLij negative. Repeat this procedure until no negative 
view factors are obtained. 

3) Enforce reciprocity by computing values for column i 

aJUk 
,k 1, ... , N 

4) Repeat this process in turn for each row. 
5) Since the enforcement of reciprocity in 3) disturbs the closure forced in 1) and 2), repeat the 

entire process iteratively until the values of ~ are arbitrarily small. 
The step-by-step enforcement of reciprocity in 3) over wrights all of the original view factors 

below the main diagonal; therefore, Leersum's procedure only considers the diagonal and upper 
triangular elements in the original view-factor matrix. Also, it is not clear why zero-valued view 
factors are considered to be exact and are not allowed to be modified. 

Least-Squares Optimum 

The least-squares optimization problem can be posed as the quadratic minimization of 

N N 

(7) 

(8) 

(9) 

Y = L L wijf/Oij - Jij)2 (10) 
i-I j-I 

subject to the closure and reciprocity equality constraints where the fij'S are the original approximate
ly determined view factors, foij's are the corrected view factors, and wij's are the weights used when 
the view factors have unequal uncertainty. The closure and reciprocity constraints are 

N 

L loij = 1, i = I, ... , N (11) 
j-I 

ajlOji - a;!Oij = 0 i = 1, N - 1, j = i +1, N (12) 
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If nonnegativity is desired, the inequality constraints can be applied 

IOij ~ 0 i = 1, ... , N, j = 1, ... , N (13) 

This problem can be readily solved using any number of nonlinear-programming techniques. 
However, considerable insight can be gained and a computational formula can be derived if the 

problem is viewed from a geometric standpoint. First, the view factors are grouped into a column 
vector instead of a matrix. The view-factor matrix is stacked in row-major form; for example, the 2 
x 2 view-factor matrix becomes 

Closure and reciprocity are enforced by applying the equality constraints (equations 11 and 12) to 
form a set of linear equations 

R of = c 

The 2 x 2 system would yield, for example 

In 
1 1 0 0 

ft2 
1 

0 0 1 1 = 1 

0 °1 -°2 0 hi 0 
122 

(14) 

(15) 

(16) 

Equation (15) has N(N - 1)/2 degrees of freedom. The Naive rectification is obtained by specifying 
the N(N - 1)/2 view factors above the main diagonal and computing the remainder from equation 
(15). However, it is more desirable to use all of the N2 view factors. 

The solutions of equation (15) can be factored into two orthogonal subspaces--the rowspace and 
the nUllspace. The rowspace component of the solution is computed using the expression (Strang [7]) 

(17) 

This vector is the particular solution of equation (15) which has the least norm. It is a unique and 
necessary component of all solutions of equation (15). The other component of the solution (f - frow) 
should lie in the nullspace of the reciprocity and closure matrix R and can be expressed as a linear 
combination of basis vectors for the nullspace 

(18) 
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where Nb is the matrix whose columns form that basis and x contains the weights of the linear 
combination. However, if there are errors in the computed view factors, C, equations (18) will not be 
consistent, and we must resort to the least-squares solution [7] 

The projection of (C - Crow) onto the nullspace, then, is the desired set of corrected view factors 

( 
T )-1 T 

fnull = N" N" N" N" (f - f",,,,) 

and the least-squares optimum set of view factors is 

When the data are not all equally reliable (usually the case for view factors), weighted least 
squares should be used for the solution of equations (18) [7] 

/. '" = N (NTV-1 N )-1 NTV-11f - f. ) 
"fill "" "" " "'''' 

where V is the covariance matrix, and 

J.'" - f. + f.'" 
." -"'''' "UU 

(19) 

(20) 

(21) 

(22) 

(23) 

The view-factor rectifications computed using equations (21) and (23) do not enforce nonnegativ-
ity. 

The least-squares optimum view-factor rectification obtained through equations (21) and (23) are 
exactly the same as those which would be obtained by solving the quadric minimization problem in 
equations (10), (11), and (12) without considering the nonnegativity constraints. 

As discussed before the view factors must be nonnegative to be physically realistic; a negative 
view factor is meaningless. It is our opinion and experience that allowing slightly negative values in 
the rectified view-factor matrix does not seriously impact the fidelity of the heat transfer results. 
Certainly, the strict enforcement of reciprocity and closure has had a much stronger impact on our 
results. 

A two-step procedure which is easy to implement and closely approximates the results of the 
nonlinear-programming solution with the nonnegativity constraints is to apply equations (21) or (23) 
and to assume that the equality in equations (13) would be enforced on all negative values. These 
view factors are set to zero and removed from consideration obtaining a reduced order problem, and 
the process is then repeated with the reduced set of data. This procedure has proven to give exactly 
the same set of rectified view factors as the nonlinear-programming solution in about 90% of the 
cases and only slightly different ones in the other 10% of the cases. 

The rectification algorithm for the least-squares projection is as follows 
1) Construct the closure and reciprocity matrix R. 
2) Compute the row space component Crow using equation (17). 
3) Construct the nullspace matrix N. (1bis can be constructed using standard routines). 
4) Compute the nullspace least-squares projection using equation (20) or equation (22) for the 
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weighted case. 
5) Compute the optimum rectified view factors using equation (21) or (23). View factors ropt 

or I.;' now satisfy reciprocity and closure. 

6) If nonnegativity is enforced, search ropt or I.;' for negative entries, and set these to zero. 
7) Remove all zero view factors from consideration. Remove the columns of matrix R 

corresponding to each diagonal zero element. For each off-diagonal zero reciprocal pair, 
remove the corresponding columns and reciprocity rows from the matrix R. The process is 
run a second time starting with step 2 and the reduced set of original view factors. 

All of the rectification algorithms presented herein apply reciprocity using the best estimates of 
the areas in equation (15) as if the areas were known exactly. This is usually not a serious deficiency 
since the areas can usually be determined with low uncertainty. The authors are currently exploring 
procedures to properly weight the rectification procedure to account for area variance. 

NUMERICAL EXAMPLES 

The following problem from the heat transfer text by Incropera and Dewitt [8] is used as a basis 
of comparison of the different techniques in this paper. 

13.62 A room (Figure 1) is represented by the following enclosure, where the ceiling (1) has 
an emissivity of 0.8 and is maintained at 40°C by embedded electrical heating' ele
ments. Heaters are also used to maintain the floor (2) of emissivity 0.9 at 50°C. The 
right wall (3) of emissivity 0.7 reaches a temperature of 15°C on a cold, winter day. 
The left wall (4) and end walls (SA, 5B) are very well insulated. To simplify the 
analysis, treat the two end walls as a single surface (5). Assuming the surfaces are 
diffuse-gray, find the net radiation heat transfer from each surface. 

, 

T j 
: 

4m ' _ ...... -_ ....... _-------------

-L ~-------------~---.J...--

- 6 m---:o-"""'\ 2 
3 

Figure 1. Schematic of a Room for the Example Problem. 

This problem was the genesis of our interest in the subject of view-factor sensitivity and rectification. 
This problem was assigned in the second heat transfer course at Mississippi State University during 
the Fall 1992 term. Two students, Miguel and Simon, ignored the simplification and worked the 
problem as a six-sided enclosure. Miguel computed his view factors to four-digit accuracy and Simon 
to two-digit accuracy; they got radically different answers for the heat fluxes. An analysis of this 
problem and the cause for this hypersensivity are discussed in a previous publication (Taylor et al. 
[4]). 
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The view-factor matrix computed to four-digit accuracy is 

0.0 0.394 0.1921 0.1921 0.1109 0.1109 

0.394 0.0 0.1921 0.1921 0.1109 0.1109 

0.2881 0.2881 0.0 0.196 0.1139 0.1139 (24) F= 
0.2881 0.2881 0.196 0.0 0.1139 0.1139 

0.2774 0.2774 0.1898 0.1898 0.0 0.066 

0.2774 0.2774 0.1898 0.1898 0.066 0.0 

Seven different numerical experiments have been performed. In each case, the starting point was 
the view-factor matrix listed above. Random errors were then introduced by sampling a random
number generator which produced normally distributed values. The difference in each experiment 
resulted from the way that the variance of these random errors was assigned to the view factors. A 
thousand view-factor trials were conducted for each case. This was followed by a thousand trials 
where the areas were varied randomly. In all of the following, covariance terms are assumed to be 
negligible. 

Equal Variance 

The first numerical experiment considered the view factors to have equal variance with a view
factor standard deviation of 0.01 and the areas to be fixed. Table 1 gives mean values of the heat 
flux for several of the rectification schemes. Since the variances were all equal and the covariances 
were assumed to be zero, the weighted least-squares optimum scheme and the unweighted schemes 
are identical. The exact solution is computed using the view factors in equation (24) directly. Table 
2 shows the standard deviations for the heat flux calculations and the root-mean-square average 
standard deviation for each treatment. 

Table 1. Mean Heat-Flux Values for Equal View-Factor Variance Case. 

Least-Sguares 
Surface Not N.L.P. No Recti-

Nonneg. Nonneg. Nonneg. Leersum Naive fication Exact 

1 -3.6273 -3.6030 -3.6036 -3.6231 -3.6570 -3.9179 -3.6891 
2 83.9532 83.7224 83.7249 83.7249 83.9429 83.9205 83.8721 
3 -120.4888 -120.1792 -120.1820 -120.4798 -120.3951 -120.3969 -120.5353 

Table 2. Standard Deviations in Heat Flux for Equal View-Factor Variance Case. 

Least-Sguares 
Surface Not N.L.P. No Recti-

Nonneg. Nonneg. Nonneg. Leersum Naive fication 

1 0.4374 0.3449 0.3447 0.6364 1.0005 10.2714 
2 0.5776 0.4394 0.4398 0.8416 1.5774 11.8809 
3 0.7272 0.5138 0.5148 0.9571 2.2777 12.3575 

rms-avg 0.5927 0.4382 0.4383 0.8225 1.7007 11.5379 
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From Table 1, all of the rectification schemes seem to have means which are roughly equal to the 
exact solution. Table 2 shows, however, that there is a large difference in the standard deviations of 
the calculated heat fluxes. For surface 1, the case of no rectification has a standard deviation which 
is almost an order of magnitude larger than the rectified values. Figure 2 shows histograms of 
surface-3 heat-flux distributions for each rectification scheme and for no rectification. 

The tables and figure reveal that all of the rectifications are effective for this problem. The 
nonnegative least-squares procedures are about twice as effective in reducing errors in the heat flux 
calculations as Leersum's rectification which in turn is about twice as effective as the Naive 
rectification. Among the least-squares, the nonnegative projection scheme and the nonlinear
programming scheme yield almost identical results as expected, and the least-squares without 
nonnegativity has very slightly larger errors in heat flux than its nonnegative counter parts. 

Next, the view factors were set at the values given in equation (24) and the areas were varied 
using a standard deviation of 1 % for each area. Table 3 gives the standard deviations for the heat
flux calculations and the rms average standard deviation for each treatment. 

Table 3. Standard Deviations in Heat Flux for the Area Variance Case with Equal View-Factor 
Variance. 

Least-Sguares 
Surface Not Nonneg. Nonneg. Leersum Naive No Rectification 

1 0.4414 0.5132 0.4601 0.2285 4.641 
2 0.5281 0.4678 0.4225 0.4928 4.377 
3 0.3211 0.3334 0.4915 0.8307 4.461 

rms-avg 0.4385 0.4447 0.4586 0.5730 4.794 

The table shows that with no rectification the area uncertainties result in considerable uncertainties in 
the heat fluxes. However, when the view factors were rectified by enforcing closure and reciprocity 
these uncertainties in heat flux are reduced by an order of magnitude. All of the algorithms give 
about the same decrease in the sensitivity to area uncertainty for this case study. 

Unequal Variance 

Six cases were considered which contained unequal variance: 1) diagonal-dominated, 2) counter
diagonal-dominated, 3) row-dominated, 4) column-dominated, 5) upper-triangle-dominated, and 6) 
random variances. Depending on the location of the uncertainties in the view-factor matrix, the 
relative success of the rectification schemes with respect to the sensitivity to view-factor uncertainty is 
vastly different from that seen for equal variance. 

For the diagonal-dominated case-study the view factors along the main diagonal are considered to 
have standard deviations which are 100 times as large as the off-diagonal view factors. The standard
deviation matrix corresponding to the view-factor matrix is 
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Figure 2. Histogram of Surface-3 Heat Flux [watts/m2] for Equal Variance Case. 
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--------------~-----

0.1000 0.0010 0.0010 0.0010 0.0010 0.0010 

0.0010 0.1000 0.0010 0.0010 0.0010 0.0010 

O.O(HO 0.0010 0.1000 0.0010 0.0010 0.0010 (25) S = 
0.0010 0.0010 0.0010 0.1000 0.0010 0.0010 

0.0010 0.0010 0.0010 0.0010 0.1000 0.0010 

0.0010 0.0010 0.0010 0.0010 0.0010 0.1000 

Tables 4 and 5 show the mean and standard deviations of the heat fluxes for 1000 trials where the 
view factors in equation (24) were perturbed by values from a gaussian random number generator 
with standard deviations given by equation (25). 

Table 4. Mean Heat-Flux Values for the Diagonal-Dominated View-Factor Variance Case. 

Nonnegative 
Least-Sguares 

Surface Unweighted Weighted Leersum Naive Exact 

1 -3.4722 -3.6263 -3.4719 -3.6264 -3.6891 
2 82.1136 83.8987 83.9797 83.9417 83.9417 
3 -117.9622 -120.4087 -120.7616 -120.4729 -120.5353 

Table 5. Standard Deviations in Heat Flux for the Diagonal-Dominated View-Factor Variance Case. 

Nonnegative 
Least-Sguares 

Surface Unweighted Weighted Leersum Naive 

1 1.7256 0.0468 3.5462 0.1029 
2 2.3167 0.0623 5.1518 0.1584 
3 3.3123 0.0912 6.4956 0.2284 

nos-avg 2.5374 0.0693 5.2061 0.1711 

The rectification schemes are the unweighted and weighted nonnegative least-squares projection 
methods, Leersum's method, and the Naive method. Figure 3 shows histograms for the heat-flux 
distributions for surface 3. 

For this case study, Leersum's rectification is seen to be the least effective at reducing errors in 
the heat flux. The unweighted nonnegative least-squares projection is about twice as effective as 
Leersum's scheme, but the weighted nonnegative least-squares projection is an order of magnitude 
more effective. For this case, the Naive rectification is almost as good as the weighted least-squares 
projection. 

Recall that the Naive rectification scheme lumps all of the corrections into the diagonal elements 
for closure enforcement while Leersum's scheme evenly distributes the corrections over all of the 
nonzero values. Therefore, when the view factor variance is mostly along the diagonal, we expect 
the Naive scheme to perform well and Leersum's to not perform well. When the variances are all 
equal, Leersum's is expected to perform well, as it did in the previous case study. 
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Figure 3. Histograms of Surface-3 Heat Flux [watts/m2] for the Diagonal-Dominated Case. 

Figure 3 shows that there is a considerable skew to the heat flux distributions for the nonnegative 
least-squares cases. It is believed that this is caused by the nonnegativity constraints. The diagonal 
elements of the view-factor matrix have nominal values which are zero; therefore, the Monte-Carlo 
procedure will produce many negative diagonal view factors that are then set to zero. 

For the area uncertainties, a random perturbation is added to the view-factor matrix using a 
gaussian random-number generator with the standard deviations given above. The F-matrix is then 
frozen and the Monte-Carlo analysis is performed for the area uncertainties using a gaussian random
number generator and area standard deviations equal to 1 % of each area. Table 6 shows the standard 
deviations for the resulting heat-flux calculations. 
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Table 6. Standard Deviations in Heat Flux for Area Variance with Diagonal-Dominated View-Factor 
Error. 

Nonnegative 
Least-Sguares 

Surface Unweighted Weighted Leersum Naive 

1 0.4462 0.3718 0.4197 0.2298 
2 0.5079 0.5679 0.3978 0.4840 
3 0.3160 0.4742 0.5208 0.8534 

rms-avg 0.4309 0.4781 0.4493 0.5818 

As seen above, all of the rectification schemes have about the same effect on sensitivity to area 
uncertainty. 

The same procedure is followed for the other unequal variance case studies. For all of the cases 
with regional dominance, the base view-factor standard deviation is 0.001, and the value in the 
dominate region is 0.1. For the counter-diagonal-dominated case, the larger values of standard 
deviation are obviously along the counter diagonal. For the row-dominated and column-dominated 
cases, the larger values are on the second row and second column respectively. For the upper
triangle-dominated case, the six elements in the upper-right corner have the larger values. For the 
random-variance case, the standard deviations were assigned randomly in the range 0-0.1. 

Table 7 shows the mean heat flux values, and Table 8 shows the standard deviations of the heat 
fluxes for the various 1000 trial Monte-Carlo studies. The tables reveal that the weighted nonnegative 

Table 7. Mean Heat-Flux Values for the Other Unequal View-Factor Variance Cases. 
Nonnegative 
Least -Sguares 

Surface Unweighted Weighted Leersum Naive Exact 

Counter-Diagonal-Dominated View-Factor Variance 
1 -3.5645 -3.6229 -3.4449 -3.1886 -3.6891 
2 82.2329 83.9206 83.0833 83.8364 83.8721 
3 -119.5026 -120.4466 -120.4577 -120.4717 -120.5353 

1 
2 
3 

1 
2 
3 

Row-Dominated View-Factor Variance 
-2.7005 -3.6096 -2.6789 -1.7829 
82.0741 83.9014 81.9244 79.4481 

-119.0604 -120.4378 -118.8689 -116.4979 

Column-Dominated View-Factor Variance 
-2.6462 -3.6033 -3.7737 -3.5184 
81.8186 83.8880 83.7971 83.8305 

-118.7586 -120.4271 -120.0350 -120.4682 

-3.6891 
83.8721 

-120.5353 

-3.6891 
83.8721 

-120.5353 

Upper-Triangle-Dominated View-Factor Variance 
1 -3.5754 -3.6222 -3.3351 -3.3087 -3.6891 
2 83.6157 83.9198 82.6190 80.2599 83.8721 
3 -120.0605 -120.4450 -118.9259 -115.4267 -120.5353 

1 
2 
3 

-3.2880 
82.4014 

-118.6701 

Random View-Factor Variance 
-3.2593 -3.3021 -2.0925 
82.7955 82.8567 80.3335 

-119.3044 -119.3318 -117.3613 
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least-squares projection scheme is vastly superior to the others. Overall its mean heat fluxes most 
closely agree with the exact values, and with the exception of the random-variance case, its standard 
deviation is one to four orders of magnitude smaller than those for the other schemes. For the 
random-variance case, the weighted least-squares scheme gives the best results, but the unweighted 
least-squares and Leersum's schemes also give good results since the uncertainties are more-or-less 
evenly distributed. 

For some cases, the naive rectification scheme fails completely. Table 9 gives the range of 
computed heat fluxes for the naive rectification with the upper-triangle-dominated view-factor 
uncertainties. Clearly, any single heat-flux computation from this set is meaningless. 

It should be noted that this is a terribly damaged view-factor matrix. For this case, the 95%
confidence uncertainty in view factor is approximately 0.1, or the view factors are considered to have 
approximately 1 digit accuracy. This would correspond to very crudely computed view factors. 
However, properly rectified cases yield very meaningful heat flux computations. 

Table 10 gives the rms averaged heat flux standard deviations for the area uncertainty Monte
Carlo analysis. As seen before, all of the rectification schemes seem equally good at reducing the 
sensitivity of the heat flux calculations to the uncertainties in the areas for this case study. 

Table 8. Standard Deviations in Heat Flux for the Other Unequal View-Factor Variance Cases. 

Nonnegative 
Least-Squares 

Surface Unweighted Weighted Leersum Naive 

Counter-Diagonal-Dominated View-Factor Variance 
1 0.5277 0.0368 1.4061 3.4348 
2 0.6197 0.0460 2.0133 5.2123 
3 0.8957 0.0563 1.6163 6.2030 

rms-avg 0.6988 0.0470 1.6973 5.0810 

Row-Dominated View-Factor Variance 
1 1. 7794 0.0477 3.6299 
2 2.7123 0.0630 7.0196 
3 2.5028 0.0618 5.8428 

rms-avg 2.3655 0.0579 5.6742 

Column-Dominated View-Factor Variance 
1 1.9819 0.0550 3.9047 
2 3.5176 0.0819 4.8266 
3 3.4125 0.0701 3.9496 

rms-avg 3.0521 0.0699 4.2482 

Upper-Triangle-Dominated View-Factor Variance 
1 0.2454 0.0353 2.0937 
2 0.3273 0.0438 1.9262 
3 0.4017 0.0535 2.2979 

rms-avg 0.3310 0.0448 2.1114 

Random View-Factor Variance 
1 2.6444 2.0461 
2 2.6682 2.0091 
3 2.4439 1.7696 

rms-avg 2.5875 1.9454 
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6.1736 
5.3161 
5.4521 

5.4372 
16.1912 
19.2367 
14.8523 

5.1064 
5.2548 
0.3175 
4.2343 

11.0725 
22.9427 
43.0558 
28.8835 

14.7834 
17.8497 
15.3694 
16.0560 



-------------------------------------

Table 9. Range of Naive Heat-Flux Values for the Upper-Triangle-Dominated Variance Case. 

Surface 

max 
mean 
min 

1 

38.9123 
-3.3087 

-281.7724 

2 

106.9031 
80.2599 

-389.7757 

3 

991.5615 
-115.4267 
-205.6421 

Table 10. Root-Mean-Square Averaged Standard Deviations in Heat Flux for Area Variance Cases 
with Other Unequal View-Factor Variance. 

Nonnegative 
Least-Squares 

View-Factor Variance Case Unweighted Weighted 

Counter-Diagonal 
Row-Dominated 
Column-Dominated 
Upper-Triangle 
Random 

0.4397 
0.3916 
0.4071 
0.4386 
0.4243 

0.4395 
0.4721 
0.4461 
0.4432 
0.4565 

CONCLUSIONS 

Leersum Naive 

0.4605 0.5556 
0.3570 0.4075 
0.4417 0.5859 
0.4748 0.5556 
0.4355 0.5734 

Several view-factor rectification schemes have been compared. Figure 4 summarizes the rms
averaged standard deviation results for heat flux when view-factor uncertainty is considered. The 
Naive scheme, where all of the corrections are placed in the diagonal elements of the view-factor 
matrix, has proven to be erratic and sometimes results in meaningless calculations. Leersum's 
iterative scheme is also erratic but, on average gives considerably better results than the Naive 
scheme. Leersum's scheme is most viable when the view factors have equal variance. The 
unweighted version of the nonnegative least-squares projection scheme is better behaved than either 
the Naive or Leersum's scheme; however, when the view-factor variance is not equally distributed, 
the unweighted nonnegative least-squares projection is consistently superior for all cases. In the cases 
where the variances were not equally distributed the weighted nonnegative least-squares projection 
gives heat-flux results which were orders of magnitude better than the other schemes. 

The Naive scheme is not recommended. If no knowledge on the relative sizes of the view-factor 
variances is available, either Leersum's scheme or the unweighted nonnegative least-squares 
projection will take fairly crudely calculated view factors and compute meaningful heat transfer 
results. The least-squares projection is recommended since the computational tasks are roughly 
equivalent and it is about twice as effective. If information is available on the relative variance of the 
view factors (which is always the case for Monte-Carlo integrations), the weighted nonnegative least
squares projection should be used. 

The weighted nonnegative least-squares projection can be thought of as a numerical filter for 
noisy view-factor data. In the examples given here, very good heat transfer calculations were made 
for cases with very crudely defined view-factor data (roughly 1 digit accuracy). View-factor 
calculations are the most computationally intensive part of many radiation enclosure problems. There 
is the possibility of considerable improvement in computational efficiency by combining this excellent 
filter with relatively crude computations of the view factor values. To properly make such a 
compromise, sensitivity estimates [5] of the heat transfer calculations would be required. 

129 



30~----------------------------------------------' 

Unweighted Weighted leersum Naive 
View Factor Rectification Scheme 

Figure 4. Summary of Surface-3 Standard Deviation Results for View-Factor Variance. 

All of the schemes were roughly equal with regards to the propagation of uncertainties in the 
surface areas. When the view factors were rectified in this case study, the heat flux uncertainties 
were roughly an order of magnitude less than the case when no rectification was applied. The proper 
weighting procedure for the enforcement of reciprocity with uncertain areas is a topic of current 
research. 
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SUMMARY 

/ 

Aerospace electronic boards require special attention to thermal management due 
to constraints such as their need to be light, small, and maintain high power densities. Also, 
cooling is mainly through conductive and radiative modes with minor or negligible 
convective cooling. Due to these particular requirements, thermal design has become an 
integrated part of the electronic design process in order to avoid expensive repeat 
prototyping and to ensure high reliability. 

To achieve high speed simulations, the BETAsoft code uses semi-empirical 
formulations and an advanced finite difference scheme that incorporates local adaptive 
grids. Detailed conduction, convection and radiation heat transfer is considered. Various 
benchmark verifications of the software simulation compared to infrared images typically 
prove to be within 10% of each other. 

The thermal analysis of a sample avionic card in a natural convection environment 
is shown. Then, the individual effects of attaching metal screws to the casing, increasing 
radiative emissivities of the casing, increasing the conductance of the wedge lock, adding 
an aluminum core to the board, adding metal strips in board layers, inserting conduction 
pads under components, and adding heat sinks to components are demonstrated. 

INTRODUCTION 

With the trend of higher clock speeds and decreasing package sizes, the power 
density of electronic boards have increased continuously in the last two decades (1). Higher 
board power densities lead to higher component junction temperatures. Since the failure 
rates of junctions generally increase exponentially with their temperatures (2), thermal 
control thus becomes critical in achieving acceptable product reliability. Presently, more 
than half of electronic failures are due to thermal problems. Thermal management has 
has become an ever increasing concern of today's electronic designs. 

Compared to the majority of electronic applications, those of the aerospace industry 
present unique thermal concerns due to their environment and resulting modes of heat 
transfer. Lower pressure leads to decreased convective flow and an increased need to 
effectively use conductive and radiative cooling. Furthermore, testing aerospace boards is 
usually difficult in terms of simulating the environment at reduced atmospheric pressures. 

Due to the advances in numerical computations, thermal analysis software has 
become the best solution for electronic designers. Thermal software lowers design cost by 
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reducing the load of laborious proto typing tests. The thermal analysis results also provide 
far more detailed technical information than the tests which are limited by the 
instrumentation. Typically, software results include a temperature map and gradient of the 
entire board as well as the individual casing and junction temperatures of every part. Due 
to the speed software simulation, a significant amount of time is saved. This allows for 
further examination of alternatives and shortens the time to market. As a result, thermal 
analysis software is generally regarded as an integrated CAE tool with electronic CAD 
software today. 

Among the thermal analysis tools, two types of software are available: general and 
specialized. Any general purposed heat transfer or CFD program can be used to simulate 
the thermal performance of electronic boards. This general software, however, suffers on 
the aspect of user friendliness. It is time consuming to set up a board or move a 
component using any general purpose finite element program. This, in tum, prohibits the 
effective analysis of a real board containing more than 20 components. 

Specialized thermal software imports the board layout directly from CAD systems. 
User-friendly menus to allow for modifications of the board with only a couple key strokes 
and for quick and easy variation of the thermal environment. This allows for the setup time 
to shorten to a couple hours and with alternative results obtained in a only few minutes. 
Since thermal design generally requires an iterative process, this specialized software is the 
standard tool used in electronic designs today. 

The objective of this paper is to describe a unique semi-empirical approach to 
thermal analysis which provides fast computation and high accuracy. This thermal software, 
BETAsoft-Board, is used to illustrate the applications of a typical aerospace board in terms 
of various parametric effects of design solutions and alternatives. Comparative advantages 
of these alternatives are discussed and the results of their combined used as design solutions 
are presented. 

NUMERICAL MODEUNG 

A straight forward approach of thermal analysis is to use the finite element scheme 
for conduction and the Navier-Stokes equations for convection. Although this is the 
approach used by many heat transfer programs, the obvious draw-back is the large memory 
requirement and substantial computational time involved. This excludes the use of PCs for 
sophisticated thermal designs. 

A unique approach developed by Dynamic Soft Analysis, Inc. is the use of a modified 
finite difference scheme for conduction and semi-empirical based equations for convection. 
Significant effort has been devoted to this development. The end result is a fast yet 
accurate thermal analysis. Since the equations involved are numerous, only a brief summary 
of the modeling approach is described below. 

Conduction: 

Standard heat conduction equations are used in the computation (3). Finite 
difference grids with local properties are applied to the board. Along the board edges, heat 
transfer to wedge locks is implemented. Up to three physical board layers can be 
considered. The components interact with the board through the individual leads as well 
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as through the gap beneath a component. The board layers can be nonhomogeneous by 
specifying local regions of varying volumetric fractions of metal. Furthermore, the 
conductivities along the x and y directions of the board can be altered in localized regions 
of each layer. 

Since the components can be set on either side and any location on the board, the 
modeling of conduction to the board is implemented through the use of locally refined 
adaptive grids. Only at the locations where grid refinement is needed, further grids are 
automatically generated. This scheme enhances the accuracy significantly while only slightly 
increasing the computational burden. 

Convection: 

Three dimensional flow effects and thermal fields are considered in the convective 
modeling. Although the experimental results and data correlations are well reported for 
2 dimensional configurations (4), the consideration of detailed three dimensional effects 
takes substantial effort. Vast amounts of literature on various data and correlations were 
reviewed. It was found that frequent discrepancies appeared. As a result, a large amount 
of in-house wind tunnel tests using various boards from regular arrays to irregular arrays 
of components were conducted. Infrared results of components and boards were obtained 
to check with the existing correlations and to create a new set of correlations. To cover a 
large number of variations, more than 40 equations are employed. 

For each component, the different heat transfer from each exposed side is calculated 
based upon its local flow and thermal environment. The convective heat loss from the 
leads is modelled. The effects of flow diversion, thermal boundary layer, heat sink fins, and 
adjacent boards or casings are also considered. Natural convection can be calculated. 
When there is forced convection, the combined convection is considered. 

Radiation: 

Radiation is very important in aerospace applications. The surface emissivities of 
individual components and of the boards can be assigned. The radiation between the 
components and the board underneath is precisely modeled in the computation. The 
radiation between a component and the opposite board is closely simulated. Lastly, the 
minor radiative interaction with adjacent components is approximated. 

Integration: 

Both the geometric configuration and thermal environment of the board are tightly 
integrated with other CAD and CAE programs. The BETAsoft-Board program interfaces 
with more than 20 different CAD placement programs to transfer the board layout directly 
into the board thermal analysis, saving a significant amount of set up time. The thermal 
environment of the board can be transferred from the BETAsoft-System program which 
determines the incoming air velocity and temperature as well as the spacing and conditions 
of adjacent boards. BETAsoft-Board solves for the detailed thermal environment of each 
individual component. This information can be transferred to the BETAsoft-Component 
program for an in-depth component packaging analysis. 

Furthermore, the junction temperatures from the Board thermal analysis interface 
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to popular reliability analysis programs. This later allows for a very accurate reliability 
report. 

RESULTS AND DISCUSSION 

The BETAsoft-Board program has been in existence and under constant 
improvement for more than 7 years. Hundreds of leading companies worldwide use 
BETAsoft as an integral part of their design process. From the large number of 
comparisons with in-house and users' tests, an error range of within 10% has been generally 
observed. This includes computer mother boards, military backpacks, avionic boards, 
satellite boards, industrial control boards, etc. for a wide range of operational conditions. 
A typical infrared comparison is shown in Fig. 1 and data comparison in Table 1. 

To illustrate thermal management techniques, an avionic board case is considered. 
The board layout has been automatically transferred from PCAD. As shown in Fig. 2, the 
transformer has a power of 3 watts; and the components along top edge of board and one 
near the bottom middle are 1 watt each. All of the remaining components are low power. 

For this case, the environment conditions were an ambient temperature of 3erC and 
natural convection at .9 atmospheres of pressure. The objective of the present thermal 
design is to make sure all component casing temperatures are under 9SoC to achieve the 
overall reliability requirements. . 

For this board in a natural convective environment, the casing temperatures of the 
transformer and 3rd component in at top are 184.6°C and 139.6°C, respectively. The 
computation time for this board is only 3 minutes on the PC platform and less than 1 
minute on the workstation. The temperature contour is shown in Fig. 3 and the component 
temperatures are shown in Fig. 4. Some thermal design considerations to reduce the 
component casings in excess of 9SoC are exercised in the following parametric studies: 

Screws Attached to the Case: 

A very common situation is the attachment of the board to the cold casing with 
screws. Five screws are used, each has a thermal resistance of 6erC/Watt. The sink 
temperature is at 3ere. The resulting temperature of the two components are 172.9 and 
133.7°C respectively for the transformer and component CR2S. 

Surface Emissivities: 

Since the board is hot and the case is cool (at 3erC), it is possible that the radiative 
heat loss can be increased by changing the inner casing emissivity from O.OS (a bright metal) 
to 0.8 by applying an organic coating. The resulting temperature reduction is from 172.9°C 
to 12S.erC for the transformer and from 133.7 to 112.~C for CR2S. 

As expected, surface emissivity plays an important role, especially for a hot board 
in a naturally convective environment. Plus, the change from .OS to .8 is a large magnitude 
for emissivity. 
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Wedge Lock Resistance: 

The thermal resistance of the wedge lock can be varied. Changing the thermal 
resistance from 1 to .2 eC inch/Watt) reduces the temperatures- of the transformer from 
125.0 to 123.7°C and CR25 from 112.9 to lOS.5°C. There are some minor effects but they 
are not substantial for this range of resistance. Whether a wedge lock exists or not would 
have substantial effects. 

Metal Core: 

A very common approach is to add a metal core to the board. An aluminum metal 
core of .01" thickness has been applied to bring the heat from the hot components to the 
wedge lock. The results (with the new wedge lock resistance) show reduction of the 
temperatures of the transformer from 123.7 to 93.1°C and CR25 from 10S.5 to 75.6°C. This 
appears to be a very effective means to cool the board. 

Local Metal Strips: 

For space applications, the weight of the board is very important. The aluminum 
core is effective but adds a lot of weight. An alternative is to use only strips of metal core 
to bring heat from the high power components to the wedge lock. The is done as shown 
in Fig. 5. The resulting temperature increases slightly from 93.1 to 99.9°C for the 
transformer and from 75.6 to 76.9"C for CR25. However, the weight of the strips are only 
12% of the metal core. 

Conduction pads: 

Although the local board temperature has been reduced, the temperature of the hot 
components are still much higher than the board. This is because the high thermal 
resistance between the component and the board. This usually occurs when the component 
leads are few and thin while a gap exists underneath the component. This gap serves as 
a thermal resistance. To reduce this resistance, conduction pads (with conductivity .22 
W JOC m) have been installed between the high power components and the board. 

The resulting temperatures of the transformer and the CR25 are 84.7 and 61.2°C, 
respectively. Thus the addition of conduction pads have resulted in a significant 
temperature drop. 

Heat Sink on Component: 

The top row of 1 watt parts and the transformer are now within the desired range. 
However, the 1 watt part at the bottom edge is still well above the allowed value. A final 
resolution is the addition of a heat sink on top of this hot IC component. Since this part 
is located at the lower edge where it would be hard to be cooled with a metal strip to the 
top edge, a pin-fin heat sink is added to its top. As indicated by the manufacturer's catalog, 
this sink has a thermal resistance, Theta-sa, of value 6°C/Watt at 3 ft/s air velocity and 3 
°C/Watt at 10 ft/s velocity. The resulting temperature of this component is reduced from 
107.6 to 69.9°C. 
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The overall temperature profile of the board is shown in Fig. 6. The resulting 
component temperatures are shown in Fig. 7. There are no parts beyond the desired 
values in the component map. The thermal design is now successful. 

I 

CONCLUSION 

Aerospace electronic boards present special needs for thermal management. 
Although "general purpose" heat transfer programs may be used for thermal design, they 
typically are not user friendly and efficient since thermal is not their main function. 
"Specialized" thermal analysis software is effective because it is designed exactly for that one 
function. Also, the available integration to board layout, system thermal analysis, 
component thermal analysis, and reliability analysis software is an important consideration 
for concurrent engineering. 

An unique approach using finite difference and semi-empirical formulations are 
demonstrated through the BETAsoft-Board program. This approach provides a fast 
computation while maintaining accurate solutions. 

For aerospace thermal designs, the combined use of emissivities, wedge lock 
resistance, metal strips, conduction pads etc. allows for an effective thermal control which 
leads to high reliability of the products. 
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a. Infrared Figure 1 b. BETAsoft 

Table I 

Component # Infrared BETAsofi 

I 54.6 56.3 

2 49 48 .5 

3 52.5 51 .5 

4 50.5 48 .9 

5 47 .5 46.6 

6 46 .0 46.9 

7 48.9 46.2 

8 47 .5 48.3 

9 47 .5 49.2 

10 48.9 48 .7 

11 47.5 45.1 

12 50 .5 50.5 

Figure 2 Figure 3 
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The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a 
comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket en
gines. The input to the code consists of the composition of fuel! oxidant mixture and flow rates, 
chamber pressure, coolant temperature and pressure, dimensions of the engine, materials and 
the number of nodes in different parts of the engine. The code allows for temperature variation 
in axial, radial and circumferential directions. By implementing an iterative scheme, it pro
vides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and 
transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. 
This feature allows the user to incorporate a non-equilibrium model or an energy release model 
for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and 
directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer 
module for the hot-gas-side heat flux calculations. 

INTRODUCTION 

Thermal analysis is an essential and integral part in the design of rocket engines. The 
need for thermal analysis is especially important in the reusable engines where an effective 
and efficient cooling system becomes a crucial factor in extending the engine life. In the 
new high pressure engines, such as chemical transfer vehicle engines, hot-gas temperature is 
very high (can reach 7000R at the throat). It is therefore essential to be able to estimate 
the wall temperature and ensure that the material can withstand such high temperature. 
Furthermore, an accurate thermal model enables an engine designer to modify the cooling 
channel configuration for the maximum cooling at high temperature areas. 

The thermal phenomena in rocket engines involve interactions among a number of processes. 
including, combustion in the thrust chamber, expansion of hot-gases through the nozzle, heat 
transfer from hot-gases to the nozzle wall via convection and radiation, conduction in the 
wall, and convection to the cooling channel. Further complexities of the thermal analysis 
in rocket engines are due to three-dimensional geometry, coolant and hot gas heat transfer 
coefficient dependence on the pressure and wall temperature, unknown coolant pressure drop 
and properties, axial conduction of heat within the wall. and radiative heat transfer between 
gases and surfaces of the engine. A comprehensive thermal model must account for all of these 
items. 

RTE [1] is a comprehensive rocket thermal analysis code that uses a number of existing 
codes and allows interaction among them via some iterative procedures. The code is based 
on the geometry of a typical regeneratively-cooled engine similar to that shown in Figure 
L It uses CET (Chemical Equilibrium with Transport Properties) [2] and GASP [3] for the 
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evaluation of hot-gas and coolant properties. The inputs to this code consist of the composition 
of fuel/oxidant mixtures and flow rates, chamber pressure. coolant entrance temperature and 
pressure, dimensions of the engine and materials in different parts of the engine, as well as 
the mesh generation data. This program allows temperature variations in axial, radial and 
circumferential directions, and by implementing an iterative scheme it provides temperature 
distributions, rates of heat transfer, and hot-gas and coolant thermal and transport properties. 
The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the 
user to incorporate a nonequilibrium model or an energy release model for the hot-gas-side. The 
mixture ratio along the thrust chamber is calculated using ROCCID [4] (ROCket Combustor 
Interactive Design and Analysis Computer Program). ROCCID has been modified to take RTE 
input and make the mixture ratio variable along the thrust chamber. The user has the option 
of bypassing the hot-gas-side calculations and directly inputting gas side fluxes. This feature 
is used to link RTE to a boundary layer program for the hot-gas-side heat flux calculation. 
The procedure for linking RTE to a hot-gas side program. TDK [5] (Two-Dimensional Kinetics 
Nozzle Performance Computer Program) is described here. 
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SECTION A-A 

Figure 1. A Rocket Thrust Chamber and Nozzle 

NUMERlCAL MODEL 

The numerical model of the RTE is based on the geometry of a typical regeneratively
cooled thrust chamber (shown in Figure 1). The wall can consist of three layers: a coating, the 
channel, and the closeout. These three layers can be different materials or the same material. 
The number of cooling channels in the wall are also specified by the user. For the numerical 
procedure, the rocket thrust chamber and nozzle are subdivided into a number of stations 
along the longitudinal direction, as shown in Figure 2. The thermodynamic and transport 
properties of the combustion gases are evaluated using the chemical equilibrium composition 
computer program developed by Gordon and !\lcBride [2. 6] (CET, Chemical Equilibrium 
with Transport properties). The GASP (GAS Properties) [3] or WASP (Water And Steam 
Properties) [7] programs are implemented to obtain coolant thermodynamic and transport 
properties. Since the heat transfer coefficients of the hot-gas and coolant sides are related to 
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surface temperatures, an iterative procedure is used to evaluate heat transfer coefficients and 
adiabatic wall temperatures. 

STATION NUMBERS 
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Figure 2. A Rocket Thrust Chamber Subdivided into a Number of Stations 

The temperature distribution within the wall is determined via a three-dimensional finite 
difference scheme. In this method, finite difference grids are superimposed throughout the wall 
at different stations. The temperature of each node is then written in terms of temperatures of 
neighboring nodes (the four closest nodes at the same station and two nodes at the neighboring 
stations). The program marches axially from one station to another. At each station the Gauss
Siedel iterative method is used to obtain convergence for the temperature distribution along 
the radial and circumferential directions. When the axial march is completed, comparison 
is made between the results of the present march and that of the previous one to see if the 
convergence criteria in the axial direction has been met. If it is not meL the code starts again 
at the first station and makes another axial march. The process continues until convergence 
is achieved. A detailed description of this numerical model is outlined below. 

First, the static pressures, temperatures, enthalpies and Mach numbers for the combustion 
gases are evaluated using the ROCKET subroutine from [2]. It should be noted that these 
properties are independent of wall temperature and only depend on the cross-sectional area 
of the nozzle, the propellant used and chamber pressure. Indeed, the heat transfer from hot 
gases to the chamber and nozzle wall will cause very little change in the gas temperature (the 
thermodynamic process dominates the transport process). 

On the coolant side. the stagnation enthalpy and density at the entrance to the cooling 
channel are evaluated as functions of the coolant stagnation pressure and temperature (ico = 
ieo(Peo, Teo) and peo = peo(Peo, Teo)) using the GASP or WASP programs. 

The model now begins its axial marches (passes) starting from the first station. At the 
first axial march an initial guess for the wall temperature distribution is made. For the next 
march, however, the results of temperature distribution for the previous march can be used as 
an initial guess. The hot gas and coolant adiabatic wall temperatures and wall properties can 
be evaluated at a given station based on the assumed wall temperature distribution using the 
properties computer codes [2, 6, 3, 7] for the combustion gases and the coolant. The reference 
enthalpy of the gas side. iex n is given by [8] 
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(1 ) 

where icw n is a function of gas static pressure Pcsn and gas-side wall temperature Tcw nand 
is evaluated using the program given in [2]. The gas-side adiabatic wall enthalpy, iCAWn is 
calculated using the following equation [8, 9] 

iCAWn = icsn + (PrcXn)1/3(icon - icsn ) 

where the gas reference Prandtl number PrCXn is 

(2) 

(3) 

GpGXn ' J1CX n and kcx n are functions of PCSn and icxn • Once the gas-side adiabatic wall 
temperature is determined, the wall adiabatic temperature is calculated via 

(4) 

and using the combustion codes 12, 6]. The hot-gas side heat transfer coefficient. hCn is given 
by [8] 

(5) 

where GC
n 

is the gas-side correlation coefficient given as input and the Reynolds number is 
defined by 

(6) 

(7) 

(8) 

Once the hot-gas-side heat trall;:;ler coefficient is determined the wall heat flux can be 
evaluated via 

(9) 

or 

(10) 

The adiabatic wall temperature and gas-side heat transfer coefficient. calculated from equa
tions (4) and (5), or wall heat flux calculated using equations (9) and (10) will be used in the 
conduction module to evaluate a revised wall temperature distribution. It should be noted 
that the formulation given by equations (5-10) yields an approximate value for the wall heat 
flux. To obtain a more accurate value for the wall heat flux a boundary layer model should be 
implemented. The procedure for interfacing a boundary layer module to the present model will 
be described later. Next, attention will be focused on calculating the coolant-side properties 
and heat transfer coefficient. 
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For the first station the coolant stagnation enthalpy, static pressure and static density 
are set equal to the stagnation enthalpy, pressure, and density at the entrance to the cooling 
channel (i.e., ico! =. ico, pcs! = Pco and PCS! = pco)· For the other stations, the coolant 
stagnation enthalpy is calculated via 

(ll) 

where ~Sn-l,n is the distance between two neighboring stations n - 1 and n and q~-l is the 
heat transferred per unit length of the cooling channel from the hot gases to the coolant at 
station n (calculated from the conduction subroutine at iteration j - 1). For the first iteration 
at station n, q~-l in equation (ll) is not known; therefore the following equation is used to 
evalua te the stagnation enthalpy 

. . qn-1b.Sn-l,n 
lCOn = lCOn _! + Wc (12) 

Note that qn-l in equations (ll) and (12) are the heat transfer per unit length of cooling 
channel at the previous station. 

The coolant velocity is calculated from the following equation: 

Wc 
Vcs = (13) 

n pcsnAcnNn 

Note that PCSn, is set equal to PCOn for the first station, and for the other stations is evaluated 
using the GASP or WASP programs [3, 7] based on the static pressure and enthalpy at the 
previous iteration, i.e., 

j (pj-1 .j-l) 
Pcsn = P CSn' lCSn (14) 

At the first iteration, however, it is set equal to the static density of the previous station 

(pbsn = PCSn-l ). 

Once the coolant velocity is determined, the static enthalpy can be calculated using the 
following equation: 

v: 2 
. . CSn ( ) tcsn = lCOn - -2 - 15 

geJ 

The coolant static and reference Reynolds numbers. respectively, are given by: 

WCdcn ReCSn = (16) 
AcnNnll-CSn 

and 

R R (
PCWn) (Il-CSn) eCXn = eCSn -- --
PCSn PCWn 

(17) 

where PCSn is a function of Pcsn and icsn and is calculated using the GASP program [3], or 
the \\',\SP program [7] if the coolant is water. );ote also that dCn is the coolant hydraulic 
diameter at station n. To employ a better value for the Reynolds number, an average Reynolds 
number between the entrance and exit to each station is e\'aluated, i.e., 

ReCSAvg. = O.5(ReCSn + ReCSn_l) (18) 
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ReCXAvg. = 0.5(Recxn + ReCXn_l) ( 19) 

The Reynolds number in the cooling channel is within the turbulent flow range; hence, the 
Colebrook equation [10J is used to calculate the friction factor. This equation is given by: 

1 201 (e 2.5226) - - - og + ------= ../1 -. 3.7065D ReCXAvg . ../1 (20) 

This implicit equation has been shown to be very closely approximated by the explicit formula 
[11] 

1 [e 5.0452 (1 ( e ) 1.1098 5.8506)] 
../1 = -2.0 log 3.7065D - ReCXAvg. log 2.8257 D + Re~~!:g. (21) 

The correlation given by equation (21) is only valid for straight channels. To include the 
curvature effect, the friction factor obtained from equation (21) must be multiplied by the 
curvature factor given by Ito's correlation [12]: 

[ 

2]1/20 
</>CUT. = ReCXAvg. (R

rCn 
) 

CUT.n 
(22) 

where TCn is the hydraulic radius of cooling channeL RCUT.n is the radius of curvature. The 
curvature factor given by equation (22) is valid when RecxAv9. (R~~~.n )2 > 6, otherwise, <PCUT. = 

l. 
Once the friction factors are determined, the viscous pressure drop between stations n - 1 

and n is calculated using Darcy's law [13] which is given by: 

(A) In (PCSn + PCSn-l) ( )2 uPCSn-l,n / = 8 d + d VCSn + VCSn_l .!lSn-1,n 
9c Cn Cn-l 

(23) 

and the momentum pressure drop is calculated via 

(24) 

An average value of variables between stations nand n - 1 are used to improve the accuracy. 
The static pressure at each station is calculated based on the viscous and momentum pressure 
drops and is given by: 

(25) 

Once the coolant static pressure is determined, the coolant wall properties which are functions 
of the static coolant pressure Pcsn and wall temperature, i.e., 

(26) 

are evaluated using the GASP or WASP programs. It should be noted that the wall temper
ature is not constant at a given station; hence, three coolant wall properties which are based 
on the lower, upper and side wall temperatures are determined. The reference and adiabatic 
wall enthalpies at the station are, respectively, calculated from the following equations [81 
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(27) 

and 

(28) 

The adiabatic wall temperature is a function of the coolant static pressure and the adiabatic 
wall enthalpy and is evaluated using the GASP program [3J. Note that the Prandtl number in 
equation (26) is expressed by: 

where 

PrCX = CpcxJ-LCX 
kcx 

Cpcx ' J-LCX, kcx = f(Pcs, icx) 

(29) 

Three correlations may be used to evaluate the heat transfer coefficients m the cooling 
channels. The simplest one is given by the following correlation (see [8. 9J): 

Nu - C ReO.8 Pr°.4 - Cn CX CX (30) 

:\1ost recently, a new correlation is presented in [14, 15J. In this correlation the Nusselt 
number is given by: 

(31) 

where 

NUr = 'IjJ-O.55 

w = 1 + ,(Tw - Ts) 

and 

\
1 8p I 1 (~)p ,= p8T p = P(fj;)T 

Properties for the above correlation are based on the coolant static temperature Tcs, and 
static pressure Pcs. Correlations described by equations (30) and (31) give inaccurate results 
when the coolant is liquid oxygen. A correlation, specifically for oxygen has been proposed 
[16J. This correlation is given by: 

Nu = CCnReCSPr0.4 ( cp )2/3 (Pcri) 0.2 
cpcs Pcs ( kCS) (Pcw) 

kcw PCS 
(32) 

where PCri = 731.4 psia is the critical pressure and 

_ iCW - iCS 
Cp = 

Tcw-Tcs 

147 



The properties in the above correlations are calculated using the GASP program [3], or the 
WASP program [7] if the coolant is water. It should also be noted that there are three 
coolant heat transfer coefficients and adiabatic wall temperatures. They are for the top, side. 
and bottom walls of the cooling channel. The variable heat transfer coefficient is due to the 
variable wall temperature in the cooling channel. The coolant reference and adiabatic wall 
enthalpies are also functions of wall temperature and are larger for the surface nodes closer 
to the bottom of the cooling channel. The correlation factors for the heat transfer coefficient, 
Gcn , in equations (30) and (31) are usually equal to 0.023 for most coolants. When the coolant 
is liquid oxygen, however, a factor of 0.0025 is used in equation (32). 

The correlations given by equations (30)-(32) are for fully developed turbulent flow in a 
smooth and straight tube (channel). To include the effect of the entrance region, they are 
multiplied by the following coefficient [17]: 

(
"n /:l.S ) -0.325 

.I. = 2.88 L...i=l i,i+l 
'f'Ent. d 

Cn 

(33) 

Other entrance effect factors for different types of cooling channel entrances reported in [17] 
are given by: 

,pEnt. = [1 + (Li=ld~:i'i+l) -0.7 (TwITb)O.l] 

for a 90° bend entrance. Taylor [18J suggested the following correction factors: 

for straight tube and 

<PEnt. = (TwITb)[1.59/(L~=1 ~Si.i+l/dcn)J [1 + 51 (L~ld~:i'i+l )] 

for a 90° bend entrance. The correction factor for the curvature effect is given by [19]: 

[ 

2] ±1/20 

<PCUT. = ReCXA"g. (R
rCn 

) 
CUT. n 

(34) 

(35) 

(36) 

(37) 

where rCn is the hydraulic radius of cooling channel, RCUT.n is the radius of curvature, the sign 
(+) denotes the concave curvature and the sign (-) denotes the convex one. To incorporate 
the effect of surface roughness on the heat transfer coefficient, a simple empirical correlation 
is suggested by Norris [20J: 

Nu 
(38) 

.Vusmooth 

where n = 0.68PrO.215. For f I fsmooth > 4.0 Norris finds that the Nusselt number no longer 
increases with increasing roughness. 

Once the heat transfer coefficients and adiabatic wall temperatures for the hot gas and 
coolant are evaluated, a finite difference model is used to re-evaluate the wall temperature 
distribution. This model has been specifically developed for three-dimensional conduction in 
a rocket thrust chamber and nozzle, as shown in Figure 1. Because of the symmetry of the 
configuration, computations are performed for only one cell (see Figure 3). Since no heat is 
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transferred to the two sides of the cell, they are assumed to be insulated. A finite difference 
grid is superimposed on the aforementioned cell as shown in Figure 4. In this program the 
number of nodes in the radial direction for different layers and in the circumferential direction 
for the land and channel area must be specified. Thus, the grid size can vary from one layer 
to another. Each node is connected to four neighboring nodes at the same station. It also 
exchanges heat with its counterpoints at two neighboring stations (i.e., stations n + 1 and 
n - 1). The finite difference equation for a node located in the middle of a material is given by 

where 

and 

T;~l,j,n/ RI + T;:;:l,n/ R2 + Tr~l,j,n/ R3 + Tf:;~l,n/ R4 + Ti,j,n+l/ R5 + Ti,j,n-d R6 

1/RI + 1/R2 + 1/R3 + 1/R4 + 1/R5 + 1/R6 
(39) 

R I = -.1.-r-(.,.....1.-s-n--:--~-,~~:-~-s-n-,n--.--I.,...) (-kl-~-l + -k""'l--~-) 
Z,) z,J i,j,n i+l,j,n 

R2 = (r + t:.r).1.d> (.1.:':- I ,n + ~Sn.n~l) (-kl-~-l + -k.,....~--.~-) 
2 Z,) I.) l,),n Z,) l,n 

R3 = -.1.-r-('7"".1.-S-~--:--:'~-'~-:-.1.-s-~-,.n-+-:'I""') (-k~-~-l + kl-~. ) 
Z,) Z,J Z,),n z-l,),n 

(-k!-;,-~ + -kz-.,)-.~-+-J 

(r~¢~r)n + (r~¢~r)n-l 
Ai,j,n-l = 2 

and I is the Gauss-Siedel iteration index. Note that the above equation is a three-dimensional 
finite difference equation. The Gauss-Siedel iteration, however, is only performed for the 
nodes on the n-th station and Ti,j,n-.-l and Ti,j,n-l are kept constant during this iteration. 
The value of Ti,j,n-l in equation (39) is from the recent march and Ti,j,n+l from the previous 
march. The conductivity in equation (39) is a function of temperature, i.e., k = k(T). Similar 
equations are derived for other nodes (boundary nodes and nodes at the interface between two 
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different materials). It should be noted that at the boundary nodes, depending on the boundary 

I r .\. -
Ll.8 n,n-l 68 ~,~+l 

(i,j+l,n) 

i,j l,J 

Figure 5. Resistances between a typical interior node and its adjoining nodes. 

conditions, convective and radiative terms also appear in the nodal balance of energy equation. 
For example, for a node at the inner surface of the nozzle the finite difference equation is given 
by 

where 

T;+f,j,n/ Rl + T;,j~l,n/ R2 + Ttf,j,n/ R3 + Tg / R4 + Ti,j,n+l/ R5 + Ti,j,n-l/ R6 + Qr 

l/RI + 1/R2 + 1/R3 + 1/R4 + 1/R5 + 1/R6 
( 40) 

Rl = -~-r-(""'~-s-n--:--:-~r_,~_+_(J)-~-s-n-,.n-+-:-l') (-kl-~-l + -kl'--:;-~-) 
t,} t,J i,j,n i+l,j,n 

R2 = -(r-+-a-2r-)-~-o--;(~-:-:--:--:-I,-n-+-~-s-n-,n-+-:l') (-k~-~-l + kl-: ~ ) 
t,} t,} t,},n t,}-l,n 
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Ai,j,n = 
[(ro + =¥) ~¢¥L+l + [(ro + =¥) ~¢¥L 

2 

Ai,j,n-l = 
[(ro +~) ~¢¥L + [(ro +~) ~¢¥L-l 

2 

Note that equation (40) is used when hot-gas-side heat transfer coefficient is known and wall 
heat flux is evaluated based on the temperature difference, i.e., equation (9). When wall heat 
flux (qn) is known, equation (40) becomes 

Tf,j,n = [Tf~l,j,nl Rl + Tf:j~l,nl R2 + Ttl,j,nl R3 + Ti,j,n+li R5 + Ti,j,n-li R6+ 

qn~¢(~S~j-Ln + ~S;jn+l)/2 + Qr] 1(11 Rl + II R2 + II R3 + II R5 + II R6) (41) 

where qn is wall heat flux which can be an input of the program or evaluated using equation 
(10). Qr is the radiative heat transfer term which is evaluated based on the Discrete Exchange 
Factor (DEF) method [21, 22, 23, 24] and is given by: 

(42) 

Esn and Egn are surface and gas emissive powers at stations n and are related to their tem
peratures via 

2rrr 4 
Es = HT--T 

" sin f3n s" 

E g, = 4Kt,(1 - WO)U7rr2T~ 

DS[Sn and DG[Sn are total exchange factors between differential surface and gas elements at 
station l to a surface element at station n. The total exchange factor between two elements 
is defined as the fraction of the radiative energy that is emitted from one element and is 
absorbed by the other element via direct radiation and multiple reflections and scatterings 
from surfaces and gas. Procedures for calculating direct and total exchange factors in rocket 
thrust chambers and nozzles are presented in [23] and [24]. The radiative heat transfer term, 
given by equation (42), evaluates the radiative energy coming to a surface node from all parts of 
the engine. This is done by numerical integration of the radiative energy incident on the surface 
at station n that is originated (emitted) from station l. The weight factors Ws and Wg are used 
for numerical integration of surface and gas radiation along axial direction. If the stations 
are equally spaced then the weight factors are the same as those of trapezoidal or Simpson 
methods. In the present application, however, the stations are more concentrated at the throat 
area and are unevenly spaced. The rectangular numerical integration method is suitable when 
stations are not equally spaced and the weight factors are equal to the width of each station, i.e., 
(~s~t,n + ~S;Jn+l)/2. It should be noted that the evaluation of exchange factors DSkSn and 

DGicSn involves multiple integration (see [23] and [24]) and requires significant computer time. 
Values of these exchange factors depend on the geometry of engine and radiative properties 
of combustion gases. Hence, they can be evaluated using external modules and the resulting 
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exchange factors stored in files for different engines. These files can then be used as inputs to the 
RTE. A separate computer program, namely RTE-DEF (Rocket Thermal Evaluation-Discrete 
Exchange Factor), has been developed for evaluation of the total exchange factors. ~ote 

that the combustion properties code given by Gordon and McBride [2] does not provide the 
radiative properties of combustion gases. These properties may be obtained from [25] and [26]. 
For example, if the fuel is RP-1, the combustion gas species mole fractions are obtained from 
the combustion code [5], containing 17%C02, 30%CO, 33%H20. 6%OH, 2.5%02, 3%H, 7%H2 
and 1.5%0. Using an integrated average value of the absorption coefficients of these species. 
the overall absorption coefficient is found to be Ka = 2.5in- l

. 

Based on the revised wall temperature, new hot-gas and coolant wall properties, heat 
transfer coefficients and adiabatic wall temperatures are calculated using equations (1) through 
(42). Again, a new wall temperature distribution based on the most recent heat transfer 
coefficients and adiabatic wall temperatures is calculated using the finite difference subroutine 
for heat conduction within the wall. This procedure is repeated until the relative difference 
between the temperature distribution of two consecutive iterations becomes negligibly small. 
After the results for station n converge, the coolant :\lach number and entropy as functions 
of static pressure and enthalpy (Mcn, SCn = f(Pcs n , icsn ) ) are evaluated using the GASP 
or \VASP programs. Next. the coolant stagnation pressure is e\'aluated based on the coolant 
entropy and stagnation enthalpy, i.e., PCOn = P(icon, sCn)' The GASP and WASP programs 
do not have explicit expressions for pressure in terms of entropy and enthalpy. Thus, an 
implicit relation for stagnation pressure (i.e., SCn = s(Pcon , icn )) with the secant method for 
solving nonlinear equations is used to determine Pcon· In the secant method, two initial guesses 
for the stagnation pressures were made (PI = PCOn-l + 20 and P2 = PCOn-l - 20) and the 
corresponding entropies Sl and S2 were determined. The secant method's iterative equation is 
given by: 

Pk-l - Pk 
Pk+l = Pk - sk----

Sk-l - Sk 
( 43) 

where k is the iteration index. When equation (43) converges (the convergence criterion is 
15k - SCn I < 0.0001), the coolant stagnation is set equal to the latest value of Pk. Finally, the 
coolant stagnation temperature is determined based on the coolant stagnation pressure and 
enthalpy (Tcon = T(Pcon, iCOn))' 

The program then marches axially and performs similar calculations (i.e., equations (1) 
through (43)) for all stations. Once the results of the last station (station m) converged, the 
results of this march are compared to those of the previous march. If the relative differences 
between the results of two consecutive marches is less than the axial convergence criterion the 
program stops, otherwise it continues its axial marches until convergence is achieved. The 
effect of axial conduction can be eliminated by setting the axial convergence criterion greater 
than one or setting the maximum number of passes equal to one. A complete flow chart of 
RTE is presented in [1]. 

The method described here, i.e., axial marches along axial direction, has several advan
tages over the direct solution of a three-dimensional finite difference formulation. First, it 
converges very quickly. Second, it requires less memory. Third. it allows the user to control 
the importance of axial conduction by allowing for different convergence criterion between 
the axial and radial and circumferential directions. For example. in analysis of a thin-walled. 
radiatively-cooled, low-pressure engine, axial conduction is negligible. In this case one might 
set the convergence accuracy to 5% in the axial direction and 0.1 % in the other directions. In 
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the case of a thick-walled, regeneratively-cooled, high-pressure engine, axial conduction may 
be significant. Thus, the accuracy in the axial direction may be set to 0.1% and 0.1% in the 
other directions. 

Results of a Typical Run 

RTE is used to determine the temperature distribution and heat transfer characteristics of 
a Liquid Oxygen/ Liquid Hydrogen rocket engine. The engine has the following specifications: 

Fuel 
Oxidant 
Coolant 
Chamber stagnation pressure Pea 
Coolant stagnation pressure Pea 
Fuel flow rate 
Coolant flow rate 
Fuel/Oxidant Mixture ratio 
Coolant stagnation temperature 
N umber of cooling channels 

LH2 
L02 
LH2 
1600 psi 
2400 psi 
35.412 Ib/sec 
5.059 lb/sec 
5.9957 
nOR 
100 

The engine is subdivided into 29 stations. Table 1 shows dimensions of the engine and 
some thermal characteristics at each station (see Figure 3 for notation). Note that dimensions 
given in Table 1 are in inches. Also, DC I N = 0.035 in. remains constant along the engine. 
The outer surface radiates to space and its emissivity is 0.9. The thermal conductivities of 
wall materials, i.e., nickel and copper are functions of temperature. 

The resulting wall temperature distributions for stations 1, 9, 16 and 29 are shown in 
Figure 6. A close examination of the temperature distributions reveals that the temperature 
gradient is relatively large in radial direction, especially for station 9. This may also be true 
for any other high pressure thrust chamber. Also, the results shown in Figure 6 can be used 
to optimize the cooling channel aspect ratio. For example, there is no temperature gradient at 
the upper section of the cooling channel in Figure 6a (station 9, throat). Hence, the cooling 
channel can be shorten slightly without changing the overall heat transfer to the coolant. 

HOT-GAS-SIDE BOUNDARY LAYER ANALYSIS INTERFACE 

The convective heat transfer coefficients and heat fluxes for the hot-gas-side of the RTE are 
evaluated based on a tube-like correlation [8], see equation (7). To obtain more accurate results. 
RTE can be linked to a nozzle flow and boundary layer analysis program. The procedure for 
linking RTE to TDK (Two-Dimensional Kinetics Nozzle Performance Computer Program [5]) 
is described in this section. A similar approach may be implemented to link RTE to other 
nozzle boundary layer analysis programs. 

The flowchart for the iterative procedure for linking RTE to TDK is shown in Figure 7. In 
this approach, initially, the wall fluxes and temperatures are evaluated by running RTE under 
an unknown wall heat flux condition. In this run, RTE uses it internal hot-gas-side routines. 
The wall temperatures calculated by RTE are then used in the inputs of TDK. Using one 
of TDK's boundary layer modules (BLM or MABL)[5], a new wall heat flux distribution is 
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Figure 6. Temperature distribution at stations a) 1, b) 9, c) 16 and d ) 29. 

155 



evaluated. The wall heat flux distribution is inserted into the RTE inputs. This time, since 
the hot-gas-side heat fluxes are known, RTE bypasses all hot-gas-side calculations (e.g., its 
CET subroutine and hot-gas-side heat transfer coefficient correlations) and calculates the wall 
temperature distribution. The new wall temperature distribution along the axial direction is 
then input to TDK and a new heat flux distribution is calculated. This iterative procedure 
continues until convergence is reached. 

UTE inpllt (RTE.INP) 

t1ukuowu wall fluxes 
l From (J·shell nrgumellL) 

TDK RTE.f 
Check Convergence 

TDK input 
Withollt wall temperalures 
(From C·shell argumenl) 

Figure 7. Flowchart of RTE-TDK Interface. 

,[,OJ( olllpul 

TDKJ 

The RTE-TDK model is used to predict wall heat fluxes and temperatures of the LO jLH 
engine presented in the previous section. The resulting wall heat flux and temperature distri
butions for both RTE and RTE-TDK calculations are shown in Figures 8 and 9. As shown 
in these figures, the heat flux and temperature distribution when the boundary layer module 
is used are consistently below those calculated via hot-gas-side heat transfer coefficient, i.e., 
equation (5). The reduction of heat flux and temperature is due to the relaminarization of 
accelerating flow. 
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Figure 8. Wall heat fluxes for a H2 cooled engine based on RTE and RTE- TDK models. 

1200 

RTE 
RTE·TOK 

1000 , 
g 

, , , 
~ , 
::J ----- , 
"§ 800 ------ , 
Q) , 
Q. 

E 
~ 
ra 600 
3: 

, , 
400 

·5 o 
X (in.) 
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Table 1: Parameters of thrust chamber and nozzle at different stations. 

Station X DC CCW CCH THKNS 

1 3.55 6.978 0.05 0.133 0.368 
2 2.75 5.898 0.05 0.123 0.358 
3 2.0 4.886 0.05 0.113 0.348 
4 1.4 4.076 0.05 0.104 0.339 
5 0.9 3.402 0.05 0.1 0.335 
6 0.559 2.942 0.04 0.1 0.335 
7 0.3 2.692 0.04 0.1 0.335 
8 0.1 2.610 0.04 0.1 0.335 

9 O. 2.6 0.04 0.1 0.335 

10 -0.1 2.608 0.04 0.1 0.335 

11 -0.274 2.656 0.04 0.1 0.335 
12 -0.506 2.746 0.04 0.1 0.335 
13 -0.906 3.924 0.05 0.1 0.335 

14 -1.306 3.092 0.05 0.1 0.335 

15 -1. 706 3.264 0.05 0.104 0.339 
16 -1.906 3.344 0.05 0.113 0.348 
17 -2.106 3.432 0.05 0.123 0.358 
18 -2.306 3.516 0.05 0.125 0.36 
19 -2.506 3.602 0.05 0.125 0.36 
20 -2.906 3.77 0.05 0.125 0.36 
21 -3.306 3.94 0.05 0.125 0.36 
22 -4.106 4.236 0.05 0.125 0.36 
23 -4.506 4.358 0.05 0.125 0.36 
24 -5.506 4.6 0.05 0.125 0.36 
25 -6.506 4.744 0.05 0.125 0.36 
26 -7.572 4.8 0.05 0.125 0.36 
27 -8.35 4.8 0.05 0.125 0.36 
28 -9.0 4.8 0.05 0.125 0.36 
29 -9.875 4.8 0.05 0.125 0.36 

CONCLUDING REMARKS 

The numerical model for a rocket thermal analysis code (RTE) has been discussed. This 
model allows temperature variation along three directions: axial, radial and circumferential. 
The numerical results presented show that there is a large temperature gradient in the axial 
direction for engines with a high chamber pressure. The resulting wall temperature distribution 
can be used to optimize the cooling channel aspect ratios 

The RTE needs to be modified further to incorporate a wide range of cooling channel shapes 
and a CFD model for the cooling channel flow analysis. Efforts are presently under way to 
include these items in the RTE. 
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NOMENCLATURE 

area 
correlation factor for heat transfer coefficient 
specific heat 
diameter 
total exchange factor between gas and surface differential elements 
total exchange factor between two surface differential elements 
cooling channel surface roughness 
surface and gas emissive power 
friction factor 
gravitational constant. 32.2 ft.lbm /lb f .s2 

heat transfer coefficient 
enthalpy 
work/heat proportionality factor 
conductivity 
total extinction coefficient 
total number of axial stations 
total number of cooling channels 
pressure 
Prandtl number 
heat flux 
radiative heat transfer at inner surface 
radius 
radius of curvature 
thermal resistance 
Reynolds number 
entropy 
temperature 
velocity 
weight flow 
weight factor for discrete exchange factor method 
station position in longitudinal direction 

Greek Symbols 

angle between a vector normal to the nozzle surface and axial direction 
length of cooling channel between two stations 
pressure drop 
radial mesh size 
circumferential mesh size 
convergence criteria or error limit 
dynamic viscosity 
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p 

Subscripts 

A 
Avg. 
C 
CUT. 

I 
G 

j 
k 

M 
n 

r 

s 
s 

w 
X 
o 

Superscripts 

J 
1 
n 

density 
Stefan-Boltzmann coefficient 
entrance and curvature effect correction factors 

adiabatic 
average 
coolant 
curvature 
viscous or friction 
gas 
node i 
node j 
secant method iteration number 
momentum 
related to station n 
radiation 
static 
surface 
wall 
reference 
stagnation 

iteration number 
iteration number for conduction model 
related to station n 
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The critical state of vortex cores downstream of vortex breakdown has been studied. Base vortical 
flows were computed using the Reynolds-averaged, axisymmetric Navier-Stokes equations. Stan
dard K - £, RNG and second-order Reynolds stress models were employed. Results indicate that 
the return to supercriticality is highly dependent on the turbulence model. The K - £ model pre
dicted a rapid return of the vortex to supercritical conditions, the location of which showed little 
sensitivity to changes in the swirl ratio. The Reynolds stress model predicted that the vortex 
remains subcritical to the end of the domain for each of the swirl ratios employed, and provided 
results in qualitative agreement with experimental work. The RNG model produced intermediate 
results, with a downstream movement in the critical location with increasing swirl. Calculations 
for which area reductions were introduced at the exit in a subcritical flow were also performed 
using the Reynolds stress model. The structure of the resulting recirculation zone was altered sig
nificantly. However, when area reductions were employed within supercritical flows as predicted 
using the two-equation models, no significant influence on the recirculation zone was noted. 

INTRODUCTION 

Over the past 30 years, considerable effort has been expended toward an understanding of the 
mechanisms inherent in the development and evolution of longitudinal vortices. This has been 
motivated, in part, by the desire to control and/or disable these vortices in applications such as the 
aircraft-wake-vortex hazard and submaririe non-acoustic stealth. Perhaps in no application are the 
properties of swirling flows exploited to a greater extent than in the operation of gas turbine and 
industrial furnace combustion chambers. Here, a region of high swirl is induced at an entrance to 
the combustor liner, typically through a set of swirler vanes, resulting in a region of recirculating 
flow. This region acts as a fluid dynamic flameholder, providing a region of low velocity within 
which combustion may be sustained, and recirculating hot, unburned gases to the base of the 
flame. 
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This recirculating region is known as a vortex breakdown. Although several theories have 
been put forth to explain the breakdown phenomena, perhaps none are more widely recognized 
than the early works of Squire [1] and Benjamin [2]. By choosing certain functional forms for the 
base vortex flow, Squire reduced the nonlinear equations of motion (inviscid, steady) to a linear 
disturbance equation. He subsequently solved the equation to determine conditions under which a 
steady perturbation to the flow could exist. This condition, in terms of a swirl ratio, was taken as a 
limiting condition for which breakdown could occur. Benjamin examined this phenomena from a 
different perspective. He considered vortex breakdown to be a finite transition between two 
dynamically conjugate states of flow, similar to the occurrence of a hydraulic jump in open chan
nel flow. The two states were a subcritical state, which was defined as a flow which could support 
standing waves, and a supercritical state, unable to support standing waves. In this context, the 
work of Squire defined a critical condition marking the interface between the two states. 

The criticality condition has not received much attention from those computing numerical 
solutions to swirling flows, and flows containing vortex breakdown in particular. Of special inter
est is the region downstream of the breakdown. Immediately downstream, the flow is most assur
edly subcritical (c.f. Tsai and Widnall [3]). However, as the axial velocity recovers and the swirl 
velocity decays, the flow may return to a supercritical state at some downstream location. The 
consequences of the failure of a swirling flow to return to supercriticality has been discussed by 
Escudier and Keller [4]. In that experimental study, it was shown that the upstream influence of an 
exit contraction on vortex breakdown was substantially greater when the flow remained subcriti
cal compared to a flow that reverted to supercritical (upstream of the contraction). Escudier and 
Keller suggest that this phenomena might have significant consequences in the imposition of 
accurate outflow boundary conditions. 

Most swirling flows of practical interest, such as the flow within a combustor, are turbu
lent. For numerical calculations of turbulent swirling flows, the choice of turbulence model is of 
vital importance. It is well known that the standard K - £ model does a poor job of predicting 
strongly swirling flows (c.f. Jones and Pascau [5]). One of the consequences of choosing the 
K - £ model is that the wake region near the vortex centerline (downstream of breakdown) recov
ers much more rapidly than has been shown to occur in experiments. On the other hand, second
order closure models contain the physics necessary to model strongly swirling flows, and tend to 
do a better job of predicting the recovery of the axial velocity component (c.f. Jones and 
Pascau [5]). 

These varying predictive capabilities have consequences in terms of the criticality of the 
flow. That is, one would expect the K - £ model to predict a return to criticality upstream of the 
position predicted by second-order Reynolds stress models. This behavior has been investigated 
to some extent by Hogg and Leschziner [6]. However, in that work swirl ratios were such that no 
recirculation zone was formed when the Reynolds stress model was employed. In addition, no 
direct calculations of the critical condition of the flow were made. However, the critical state 
(based on an inviscid analysis, c.f. Hall [7]) is not difficult to compute and thus the purpose of 
this research is to further investigate the criticality conditions of swirling flows downstream of 
turbulent vortex breakdown as predicted using several different turbulence models (K - £, RNG 
(c.f. Yakhot et a1. [8]) and differential Reynolds stress). Geometries both with and without an exit 
restriction are employed. The relationship and consequences (if any) of the state of the flow (in 
terms of criticality) to the outflow restriction and turbulence model employed will be determined. 
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NUMERICAL PROCEDURE 

The incompressible, axisymmetric Reynolds-averaged Navier-Stokes equations are solved for the 
swirling flow within a combustor-type geometry. Although the governing equations are solved in 
general curvilinear coordinates, for purposes of brevity they are presented below in cartesian ten
sor form. The continuity and momentum equations are given as: 

au· 
_' - 0 (1) ax. 

I 

au. au. 1 an J.l 2 Uti}· 
_'+U._' _ ---Y-+-v u.-
at JaXj P aXi p I aXj 

(2) 

respectively, where u· is the mean velocity, p is the density, J.l is the viscosity, p is the mean pres-__ I 

sure and 't.. .. U',.U'. are the Reynolds stresses. 
IJ J 

Turbulence Models 

Although the turbulence models utilized in the present study are well documented in the litera
ture, the equations are included for completeness. When the K - £ or RNG models are employed, 
the Boussinesq hypothesis provides an expression for the Reynolds stresses is terms of the gradi
ents of the mean flow as: 

2 
-'t .. - - -b . .K + 2v S .. 

'J 3 IJ I IJ 
(3) 

where VI is the turbulent viscosity, K is the turbulent kinetic energy and Sij is the strain rate. The 
turbulent viscosity is expressed in terms of K and the dissipation rate £ as: 
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Transport equations for K and £, respectively, are written as: 
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In the case of the standard K - £ equation Ii -
C,,11 3 (1-11 / 11o) £2 

O. For the RNG model (see Yakhot et at. [8]): 

Ii - 1 + (:\TJ3 K 
(7) 

where TJ .. SKI£ and S .. (2S il ij ) 112. 

It remains to specify the constants in the above equations. For the K - £ model the stan
dard values for boundary layer flows (C" .. 0.09, C El - 1.44, C

E2 
- 1.92, Ok .. 1.0 and 
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OF. ... 1.3) have been taken. For the RNG model, theoretical analysis yields that C£2 - 1.68, 
C£l ... 1.42, ok - o£ - 0.72, 110 - 4.38 and ~ - 0.012. 

The Reynolds stress model ipvolves the solution of transport equations for the individual 
Reynolds stresses u' jU'j' The following equations, employing the closure assumptions of Gibson 
and Launder [9], and Launder [10], are solved: 

(8) 

The production term is computed as: 

__ au
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The pressure/strain and dissipation terms are modeled as: 

£ -- 2 2 
<I>ij - -C3K (u'jU'j- 3bjjK) -C4 (Pij- 3bjjP) (10) 
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with values C 3 - 1.8 and C 4 - 0.06 assigned to the constants. 
For each model wall functions based upon the assumption of a fully developed equilib

rium turbulent boundary layer are utilized in the near wall region. This approach is deemed suit
able since the physics of the problem are not dominated by near wall phenomena. 

Solution Procedure 

The above equations were solved using the commercial code FLUENT [11]. FLUENT uti
lizes a pressure-based control volume technique. Second-order upwind interpolation is used to 
provide values of variables on cell faces. Pressure-velocity coupling is implemented using the 
SIMPLEC algorithm [12]. Convergence of the solution is assumed when the sum of the normal
ized residuals for the conservation equations is decreased to a minimum of 1.0 x 10-3 . (The resid
ual for a given equation consists of the summation of the unbalance in the equation for each cell in 
the domain.) Comparisons revealed that solutions converged by an additional factor of two were 
virtually indistinguishable. Since the above techniques are well known and widely discussed in 
the literature, they will not be elaborated upon here. 

Geometry and Boundary Conditions 

The geometric configuration is that of a prototypical combustor. The geometry near the expan
sionlbreakdown region is shown with the computational grid superimposed in Figure 1. The 
domain was discretized using 170 (axial) and 40 (radial) grid points. Grid points were clustered 
near the breakdown region. The length of the domain is 40h, where h is the radius at inflow. The 
expansion of area ratio 4:1 takes place over a length of 3h. Note that the i=constant lines in the 
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physical grid occur at constant x - this is to facilitate calculation of the flow criticality. Addi
tional calculations were made utilizing a 114 x 27 grid. No significant changes in the solutions 
were noted. 

At inflow, a solid body rotation of the form w - Or has been specified (where w repre
sents the circumferential velocity). The value of 0 was assigned values ranging form 0.75 to 1.5. 
The axial velocity has been taken as uniform, that is u - 1.0, and the turbulence intensity was set 
at 10%. At the outflow boundary, zero streamwise gradient conditions were enforced. The appro
priateness of these conditions is confirmed by examining the distribution of the velocity contours 
(as shown in the Results section) near the outflow boundary. In addition, for each calculation the 
Reynolds number, based on the axial velocity and duct radius at inflow, was 100,000. 

Criticality Calculations 

Determination of the criticality of the flow is based the solution of the following ordinary differ
ential equation (c.f. Benjamin [2] or Hall [7]): 

o2pe l oFe [102U lou 1 OK2] 
or2 - ror + - Uor2 + ruor + r3u2or Fe - 0 (12) 

where K - rw is the circulation and Fe is a quasi-cylindrical perturbation shape function. 
Assumptions inherent in the above equation are that the fluid is inviscid, and that the flow is 
steady and axisymmetric. Thus, the criticality condition, as defined by Benjamin or Hall, is con
cerned only with the propagation or existence of axisymmetric waves on inviscid cores. However, 
we shall utilize the theory to predict the ability of high Reynolds number turbulent cores to sup
port axisymmetric waves. 

The radial distributions for u and K are available at any axial location from the mean flow 
~ulations. The above equation is solved subject to the boundary conditions Fe - 0 and 
iJ e - constant at r - o. The flow is subcritical if the solution curve passes through zero in the 
lriterval 0 < r < 2h, supercritical if the solution does not pass through zero, and critical if the solu
tion is zero at both r - 0 and r - 2h (where 2h is the duct radius). The above equation is 
solved utilizing a second-order accurate modified Euler technique. 

RESULTS 

The behavior of each of the turbulence models in predicting the location of the return to criticality 
of the vortex is presented first. Following this, contours of constant axial velocity are examined, 
and the effects of outlet restrictions on the flow are discussed. 

Mean flow calculations were performed for 0=0.75, 1.125 and 1.5, utilizing the K - E, 

RNG and Reynolds stress turbulence models. The axial location at which the vortex returned to a 
supercritical state was computed by solving an ordinary differential equation, as described earlier. 
In each case, the vortex was supercritical upstream and subcritical immediately downstream of 
the breakdown location. The results for return to supercriticality are summarized in Figure 2. The 
K - E model predicted a return to supercritical conditions at locations considerably upstream of 
that predicted by the other models. In addition, and contrary to what one would expect, theK - E 

model predicted that the location at which the vortex returned to a supercritical state was not 
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affected by changes in the swirl level at inflow. Conversely, the RNG model showed an expected 
sensitivity to increases in swirl. That is, as the swirl level at inflow was increased, the critical 
location moved downstream. In the case of the Reynolds stress model, the vortex remained sub
critical to the exit for all swirl levels. We note that 0 - 0.75 represented the approximate mini
mum swirl level for which a recirculation zone was formed using the Reynolds stress model. 
Consequently, calculations of vortex breakdown flows using Reynolds stress models will likely 
involve outflow boundary conditions imposed on subcritical flows (due to practical limitations on 
the length of the computational domain). Howevet; this need not be the case for the two-equation 
models. 

Escudier and Keller [4] have shown that the shape and internal structure of the recircula
tion region is strongly influenced by outlet restrictions if the restriction is imposed within a sub
critical flow. To examine whether or not these effects are observed in numerical calculations, 
results have been computed using the Reynolds stress model for area reductions of 19% and 36% 
with 0 - 1.5. The reductions extended over 33.67 h ~ x ~ 40h. Results are presented in terms of 
axial velocity contours in Figures 3a-c for the unrestricted case, the 19% reduction, and the 36% 
reduction, respectively. (For purposes of clarity, the contour plots have been scaled by a factor of 
3 in the radial direction. In addition, the inner-most contour levels within the bubble structure rep
resent the level u - -0.1.) It is clear that the 36% area reduction has a large effect on the shape 
of the aft portion of the bubble near the vortex centerline. The zero axial velocity contour under
cuts this portion of the bubble, in effect lifting the recirculation zone off the axis. Note however, 
that the forward portion of the bubble remains virtuall y unaffected. In addition, a strong jet-like 
vortex core exists downstream of the breakdown. These features are in very good agreement with 
those observed by Escudier and Keller [4] in their experimental work. For the 19% area reduction 
case, the primary effects concern the rate of recovery of the axial velocity downstream of the 
breakdown. The shape and internal structure of the bubble remains similar to that of the unre
stricted case. This result is also consistent with the results of Escudier and Keller. We do note that 
the geometry of Escudier and Keller was somewhat different than that employed in this study. In 
their study, a solid inner cylinder was included at the inflow plane, and a step expansion rather 
than a gradual expansion was used. Numerical convergence problems prevented our use of that 
geometry. However, the structure of the recirculation region for confined flows undergoing vortex 
breakdown does not appear to be overly sensitive to the inlet geometry. 

It is of interest that the downstream measurements by Escudier and Keller were 0.39L 
upstream of the area reduction (where L was the distance between the inlet and the reduction). 
Thus, it is quite possible that for their cases in which the area reductions were very large, the flow 
actually returned to a supercritical state upstream of the restriction (but downstream of their last 
data point). That is, due to continuity the mean axial flow velocity increases with the square of the 
area reduction; however conservation of angular momentum dictates that the swirl velocity 
increase in a linear manner. Thus, the ratio of swirl to axial velocity generally decreases, resulting 
in a possible return to supercritical conditions. In fact, the authors found that for the low swirl 
case (0 - 0.75) area reductions on the order of20% did result in the flow returning to a super
critical state slightly upstream of the area reduction. However, for the high swirl cases shown in 
Figures 3b-c, the vortex remained in a subcritical state to the exit. 

Contours of constant axial velocity for the K - E and RNG models (without exit restric
tions) are shown in Figures 4a-b, respective 1 y for the case 0 - 1.5. The differences in the axial 
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velocity distributions downstream of the breakdown region as predicted by these models and the 
Reynolds stress model are quite large. The rapid increases in the axial velocity for the K - £ and 
RNG models (accompanied by equally rapid decreases in the swirl velocity) account for the rapid 
return to supercriticality. In addition, the internal structures of the bubbles predicted by these two
equation models differ considerably amongst themselves, and with that produced by the Reynolds 
stress model. Calculations were also made for the K - £ and RNG models 36% area reductions. 
For the sake of brevity, we show only the results from the RNG model in Figure 4c. (Recall that 
for the two-equation models the vortex was supercritical upstream of the restriction.) As the fig
ure reveals, virtually no difference in the axial extent or shape of the recirculation region resulted 
(when compared with the case in which no restriction was employed). This further confirms the 
experimental results of Escudier and Keller, and highlights the extreme sensitivity of strongly 
swirling flows to the turbulence model employed. 

CONCLUSIONS 

It is clear from the results of this study that wide differences exist in the predictions of two-equa
tion and Reynolds stress turbulence models for return to supercriticality of swirling flows down
stream of vortex breakdown. The results of the Reynolds stress model are in better agreement 
with experimental results for swirling flows (in similar geometries) as described by Escudier and 
Keller [4] than results predicted using two-equation models. Thus, the study further highlights the 
inappropriateness of using two-equation models to predict strongly swirling flows. The sugges
tion by Escudier and Keller that outflow restrictions might have a drastic effect on the structure of 
the breakdown as predicted through numerical solutions to the equations of motion was con
firmed. Results revealed that for relatively large area reductions (on the order of 36%), the struc
ture of the recirculation region may be greatly affected. However, for lesser reductions, the shape 
of the recirculation zone may be very similar to that resulting from the unrestricted geometry. 
Consequently, it does not appear that the requirements for the specification of outflow boundary 
conditions need be significantly more stringent for subcritical swirling flows than for supercritical 
flows, or for flows without swirl. This is fortunate-the persistent nature of the subcritical flow as 
revealed by the experiments of Escudier and Keller [4], and as predicted by the Reynolds stress 
model would severely restrict the predictive capability of many engineering-type calculations. 

The authors plan future work in the area of combusting flows. For these calculations, 
accelerations in the axial velocity due to decreases in density should considerably alter the critical 
state of the flow. 

REFERENCES 

1. Squire, H.B. "Analysis of the Vortex Breakdown Phenomenon. Part I.," Aero Dept. Imperial 
Coli. London, Rep. 102, 1960. 

2. Benjamin, T.B., ''Theory of the Vortex Breakdown Phenomena," Journal of Fluid Mechanics, 
Vol. 14, 1962, pp. 593-629. 

3. Tsai, C-Y. and Widnall, S.E., "Examination of Group-Velocity Criterion for Breakdown of 
Vortex Flow in a Diverging Duct," Physics of Fluids, Vol. 23, 1980, pp. 864-870. 

4. Escudier, M.P. and Keller, J.J., "Recirculation in Swirling Flow: A Manifestation of Vortex 

169 



Breakdown," AIAA Journal, Vol. 23, January 1985, pp. 111-116. 

5. Jones, W.P. and Pascau, A., "Calculation of Confined Swirling Flows with a Second Moment 
Closure," ASME Journal of Fluids Engineering, Vol. 111, September 1989, pp. 248-255. 

6. Hogg, S. and Leschziner, M.A., "Computation of Highly Swirling Confined Flow with a Rey
nolds Stress Turbulence Model," AIAA Journal, Vol. 27, January 1989, pp. 57-63. 

7. Hall, M.G., "Vortex Breakdown," Annual Review of Fluid Mechanics, Vol. 4, 1972, pp. 195-
218. 

8. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, C.G., "Development of Tur
bulence Models for Shear Flows by a Double Expansion Technique," Physics of Fluids A, Vol. 4, 
No.7, 1992,pp. 1510-1520. 

9. Gibson, M.M. and Launder, B.E., "Ground Effects on Pressure Fluctuations in the Atmo
spheric Boundary Layer," Journal of Fluid Mechanics, Vol. 86, 1978, pp. 491-511. 

10. Launder, B.E. "Second-Moment Closure: Present... and Future?," International Journal of 
Heat and Fluid Flow, Vol. 10, No.4, 1989, pp. 282-300. 

11. Fluent, Inc., Lebanon, NH, Fluent Users Guide. 

12. Patankar, S.V. Numerical Heat Transfer and Fluid Flow, Washington, DC: Hemisphere Pub
lishing Corp., 1980. 

ACKNOWLEDGMENTS 

One of us (RES) would like to acknowledge support from the NASA JoVE program. 

170 



1. Computational grid in the region of vortex breakdown. 
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3. Contours of constant axial velocity; Reynolds stress model, 0 - 1.5; contour levels from - 0.1 
to 1.0 in intervals of 0.1 (geometry scaled by a factor of 3 in the radial direction) . 

. a) No outlet restriction 
b) 19% area reduction 
c) 36% area reduction 
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4. Contours of constant axial velocity; Q - 1.5 (geometry scaled by a factor of 3 in the radial 

direction). 
a) K - E model; contour levels from -0.2 to 1.0 in intervals of 0.1. 
b) RNG model; contour levels from -0.4 to 1.0 in intervals of 0.1. 
c) RNG model; 36% area reduction; contour levels from -0.4 to 1.0 in intervals of 0.1. 
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NUMERICAL SOLUTION OF FLUID FLOW AND HEAT TRANSFER PROBLEMS ? 
WITH SURFACE RADIATION _ ~dfll 
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SUMMARY 

. j - ---:)1~ ~ 
"'-'. -

? 
This paper presents a numerical scheme, based on the finite element method. to solve strongly coupled 

fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is 

considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The 

overall solution strategy is verified by comparing the available results with those obtained using this 

approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is 

clearly explained. 

INTRODUCTION 

There are many engineering applications in which a coupled analysis of fluid flow and heat transfer 

is desired. Among a large list of such examples, a few important ones are design of heat exchangers, cooling 

of electronic components, climate control and underhood analyses in automobiles, performance of industrial 

furnaces, heat transfer analysis in confined cavities, and, cooling and heating of buildings, etc. The fluid flow 

analysis generally requires solution of conservation equations of mass and momentum. Several numerical 

approaches are available (refs. ) to 4) under a variety of boundary conditions. In heat transfer studies usually 

energy conservation involving all three modes (namely, conduction, convection and radiation) is expected. 

However. until recently, conduction and convection heat transfer modes were accurately accounted for while 

approximations were made for including the radiation analysis (ref. 5). The high nonlinearity involved in the 

basic theory precluded from obtaining analytical solutions and a use of ordinary numerical methods for 

practical problems. The availability of cheaper computer resources has caught the attention of researchers 

I wanting to include accurate radiation analyses in their studies. This is reflected in a collection of papers 

included in (ref. 6) published recently. 

The aim of this paper is to present a numerical methodology for analyzing fluid flow and heat transfer 

problems (including all three modes). A brief account of numerical solution ofNavier-Stokes and continuity 

equations using the finite element method is presented. The assumptions involving the heat transfer via 

radiation include non-participating fluids and gray, diffuse surfaces based on enclosure theory (ref. 8). 

Solution of strongly coupled (heat transfer and fluid flow) phenomenon with natural convection is 

demonstrated through a couple of examples. To benchmark the developed code. a comparison with the 

already reported results is made. This is followed by a discussion of results in an analysis involving a study of 

thermosyphon (ref. 9). a passive system used for cooling of electronic components. 
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GOVERNING EQUATIONS 

In this section. the basic equations associated with the fluid flow and heat transfer are discussed. 

Generally, it suffices to consider the conservation of mass, momentum, and energy in the given domain of 

interest. In the presence of surface radiation. additional equation representing the conservation of radiative 

energy must also be considered. The effect of radiative fluxes on the relevant surfaces must be reflected in the 

overall energy balance. In summary, the following equations must be solved to conserve mass, momentum, 

energy, and radiative energy: 

conservation of mass: 

(I) 

conservation of momentum: 

[ ~Ui ~Ui 1 ;m C (OUi au.) 
P -+Uk- =--=-+-~-[~ -+~ ]+pgi [1-13 (T-Tn)] at aXk Oxi OXi Oxj aXi f' 

(2) 

conservation of energy: 

[
OT aT ] a aT pC -+Uk- = -(k-)+Q 
at Oxk Oxj Cxj 

(3) 

For explanation of the symbols employed, refer to the section titled Nomenclature. It should be noted that 

Equations (1) through (3) are used for incompressible fluid flow with Boussinesq approximations invoked to 

model the natural convection phenomenon. 

conservation of surface radiative energy: 

N N [ N Oi' I -E' L (-; -7 Fij) qrj = L (Oij - Fij)crTj - I - L 
. I I I . I . I J= ., J= .1= 

In deriving Equation (4), it is assumed that the surfaces are gray, diffuse and isothermal (ref. 8). The view 

factors, Fij, between surfaces i and j, appearing in Equation (4) must be computed when attempting the 

solution of this equation. In the next section. a discussion on view factor calculations is undertaken. 
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COMPUTATION OF VIEW FACTORS 

In order to compute qr's (in Equation (4», view factors Fij, between all radiating surfaces must be 

available. In this section, the physical meaning of viewfactor and its calculation will be discussed. For a 

better understanding, iJ in the above equation can be replaced with 1 and 2. Thus, view factor. FI-2, between 

two arbitrary surfaces (see Figure 1), '1' and '2' is defined as a fraction of diffuse radiant energy leaving 

surface '1 ' that arrives at surface' 2'. Mathematically, 

FI-2 = _1_ f J Cos 9) ~os 92 dAI dA2 
AI AI A2 1t rT2 

(5) 

where A I and A2 are the areas of surfaces 1 and 2, respectively, fJ2 is the distance between the two elemental 

areas dA I and dA2, 9 I is the angle between the position dependent normal vector itand the line connecting 

dA I and dA2. Angle 92 is defined in a similar way. It must be noted that Cos 91 and Cos 92 must be positive 

in order for the surface dA I and dA2 to 'see' each other. If either of the cosines has a negative value, the 

corresponding view factor, FdAI-dA2 should be set to zero. Such cases, in which the inactive side of the 

radiating face acts as an obstructer, will be termed as 'self-obstruction' cases. Also, view factor FI-2 should 

be set to zero, if a third surface obstructs the view between surfaces I and 2. 

In order to calculate view factors internally, the user must specify the radiation surfaces in terms of the 

finite element faces of a discretized domain. The user must also specify which of the two sides is a radiatively 

active side. These pieces of information can be supplied very easily via the already existing card in the NISA 

file ofNISA/3D-FLUID. Each radiating face is taken as one radiation surface. View factors between the 

radiating surfaces are automatically generated by NISA/3D-FLUID taking into account self-obstruction and 

obstructions due to a third surface. 

As can be assessed from the preceding discussion. computing view factors can result in usage of 

excessive computer time. To economize this computation. different techniques are used depending on 

whether the geometry being analyzed is 20, 3D or axisymmetric. For example, double area integration 
method (ref. 8) is employed in comparison with contour integration method (ref. 8) when a 3D geometry, with 

, radiation surfaces, is being analyzed. No special directives are required when computing view factors for 

axisymmetric geometries. NISA/3D-FLUID internally generates a complete 3D model (with the axis of 

symmetry as the X-axis [NISA/3D-FLUID)) to calculate the required view factors. Furthermore. for 2D 

problems, a completely different approach, called Hottel's crossed-string method (ref. 8) is employed for its 

computational efficiency and accuracy. Reference 8 provides more details for evaluating view factors for 

interested readers. 

FE FORMULATION & SOLUTION PROCEDURE 

The partial differential equations (Equations 1 through 3) and the radiative balance equation (Equation 

4) are to be solved simultaneously to account for the fluid flow and heat transfer analyses in a given domain 

with specified boundary conditions. The convective terms appearing in Equations (2) and (3). simultaneous 
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solution of Equations (3) and (4), and arbitrary geometries encountered in most practical problems would 

require numerical tools for obtaining solution to coupled Equations I through 4. The Galerkin method in 

conjunction with the finite element method (ref. 8) form the basis of discretizing Equations I through 3. The 

penalty approach (ref. 3) is employed to eliminate the pressure from Equation (2) making use of Equation (1). 

For further details, refer to (refs. 3 and 10). The discretized form of Equations (2) and (3) can be written in 

matrix form as follows 

[KJ {X} = {f1 (6) 

where Kij is the "stiffness" matrix, consisting of contributions from acceleration. diffusion and pressure 

gradient terms of Equation (2) and acceleration and diffusion terms of Equation (3). Xj represent [U, V, W] 

for momentum equations and [T] in the case of energy equation. The vector fj is discussed more at length as 

this contains coupling terms in Equations (2), (3), and (4). For example, the vector {f} for the momentum 

equations is 

(7) 

Equation (7) indicates the influence of temperature distribution on the momentum equations while convective 

terms (included in Kij for Equation (3» represent a dependence of the temperature field on the velocity 

distribution. 

Furthermore fj for the energy equation consists of the following term: 

fj = f. N1 
Q d n + f N

1 
q d r 

n r 

where 

q = qa + qc + qr 

In the above equality, qa, qc, and qr refer to the applied heat flux, effect due to convection boundary 

conditions, and that due to radiation on the boundary, respectively. The gray-body radiative effects can be 

considered via qr which is evaluated using Equation (4) for a "known" temperature distribution. It is thus 

evident that Equations (3) and (4) are coupled via qr and T. Far a complete enclosure, Equation (4) can be 

represented in the matrix as 

[R] {qr} = [S] {T} 
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where 

and 

N 

RiJ' = " (Oii -.!...=.§. h) L... E' E' J 
. 1.1 J 
J= 

N 

Sij = L (Oij-Fij)crT] 

j=1 

(11) 

(12) 

Ideally Equations (6) for momentum and energy equations together with the radiative balance Equation (10) 

must be solved simultaneously. For practical reasons (computer memory and time. and nonlinearity in 

Equations (6) and (10», a sequential approach is undertaken to solve these algebraic equations. Depending on 

the nature of coupling (strong for flows with free convective effects and weak for flows with forced 

convective effects), momentum. energy, and radiative balance equations are solved. For more details, refer to 

(ref. 10). It has been observed that qr (and hence T) solution may not converge or may do so slowly. An 

under relaxation of qr leads. to its stabilization. This is achieved as follows: 

i+1 i+1 (I ) i qr. = a qr + - a qr. (13) 

where a is a user-defined relaxation factor. During a calculation sequence convergence checks are performed 

for velocity, temperature and surface flux, qr, distributions by evaluating the L2 norms. The sequential 

calculations are performed until the L2 norms of all the nodal variables and surface radiation fluxes fall below 

a user-defined tolerance. 

Special Cases: 

There are a few special cases which require a slight modification to the above methodology for 

including the gray surface radiative effects in the heat transfer analysis. These are as follows: 

a) Domain with plane(s) of symmetry 

b) Exchange of radiative flux through "windows" in the domain 

c) Exchange of radiative flux between the domain and surroundings 

d) Radiative surfaces with no thickness. 

The details of these modifications are presented in (ref. 10). 
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ILLUSTRATIONS 

The aim of the pr~sent paper is to discuss an efficient solution strategy that must be undertaken to 
I 

solve coupled fluid flow and heat transfer problems in the presence of radiative energy exchange between 

gray surfaces in a domain of interest with specified boundary conditions. In the previous sections, the 

pertinent differential equations and their respective discretized forms (using the finite element method) are 

discussed. In this section, a discussion of the results obtained with the outlined procedure for a couple of 

problems is undertaken. 

Example I: Natural Convection with and without Surface Radiative Effects in a Cavity. 

The validation of the developed procedure is established by solving a problem studied by Behnia et al. 

(ref. II). The fluid flow due to natural convective effects in a square cavity with radiating surfaces is 

considered. Figure 2 shows this cavity of a characteristic dimension, L and the specified boundary conditions. 

The top and bottom walls are adiabatic. The left wall is maintained at a uniform hot temperature, Th. The 

right wall has convective and/or radiative boundary condition. The convective heat transfer coefficient is h. 

The temperature of the surroundings and the ambient temperature are taken to be Toc. All the internal surfaces 
of the cavity have an emissivity of 0.9 and the fluid in the cavity is air. The cavity size, L, can be chosen to 

get a Rayleigh number of 3x I 05
. Table I shows a summary of conditions under which each case is analyzed 

with an aim of obtaining steady state temperature and fluid flow distributions in the cavity. Due to the 

presence of natural convective effects, strong coupling between the fluid flow and temperature fields is 

expected. The cavity is discretized into a graded mesh of 44 x 36 linear quadrilateral elements. The steady 

state algorithm of the code is invoked. Table 2 shows the relaxation parameters employed for each of the run 

detailed in Table I and the corresponding numbers of iterations required to obtain converged solutions. 

Figure 3 shows the isotherms obtained for the cases denoted as R300, EC300, and REC300. A 

comparison of isotherms for these cases clearly indicates the effect of surface radiation on the adiabatic walls 

(top and bottom), the isotherms are no longer normal to these walls. Figure 4 shows the streamlines for the 

cases R300, EC300, and REC300 respectively. Table 3 shows a comparison of the maximum value of stream 

functions obtained for these runs with those listed in Behnia et al (ref. II). A good quantitative agreement 

between the results is evident. Figure 5 shows the horizontal velocity along the vertical center line for these 

cases. The velocity profiles shown in the figure compare well with those in Figure 7 of ref. II. 

Example 2: Analysis of a Planar Thermosyphon. 

In this example, the fluid flow and temperature distributions are studied in a thermosyphon including 

the surface radiative effects. A thermosyphon is a device used for cooling of electronic components, heat 

removal systems for nuclear reactors, and having applications in solar systems (ref. 9). Since thermosyphons 

involve no blowing or pumping of fluids, they are less expensive and more durable (termed as passive 

systems) as these do not require external signals for operation. A schematic of planar thermosyphon and the 

assigned boundary conditions is shown in Figure 6. An analysis of fluid flow and heat transfer in a 

thermosyphon is presented in (ref. 9) without the surface radiation effects. These effects have been included 
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in the study here. All the walls are black and are considered to be radiating. By observing the radiation 

surfaces in Figure 6, it is evident that all the surfaces cannot "see" each other. In other words, the view 

factor computation, in thtr presence of third surface obstructions, is invoked. These computations are more 

complex and handled efficiently in NISA/3D-FLUID (ref. 10). 

First, the results are presented for the case in which only the convective effects (due to natural 

convection) are considered. The same analysis is performed in (ref. 9), in which the effects of varying the 

Rayleigh no. and a ratio of thermal conductivities of solid to fluid are considered. Therefore for the sake of 

comparison, results are presented for a Rayleigh no. of 104 and a ratio of thermal conductivities of 1 (see (ref. 

9) for more details). Figure 7 shows the stream function distribution for this case and the corresponding 

isotherms are shown in Figure 8. A good agreement between these results and those presented in (ref. 9) is 

observed. 

Now, the surface radiation effects due to the surfaces shown in Figure 6 is considered. The results 

for this case are not presented in (ref. 9). Figures 9 and 10 show distributions of stream functions and 

isotherms. A comparison of isotherms shown in Figures 8 and 10 indicate a considerable difference in their 

distributions. A further comparison of the velocity distributions, Figure II, at "inlet" and "outlet" of the 

I thermosyphon show marked differences. The difference in these velocity distributions amounts to a 

difference of 25% in flow rate. This analysis clearly indicates that if the surface radiation heat transfer is not 

accounted for, inaccurate distributions of temperatures and velocities may result. 

CONCLUSIONS 

A numerical scheme based on the finite element method is presented for solving coupled fluid flow 

and heat transfer problems in the presence of surface radiation. A sequential solution of momentum, energy 

and, radiative energy equations is considered for efficient computer memory management and disk usage. 

The computed results validated the numerical procedure adopted for an analysis of coupled fluid flow and 

heat transfer phenomena. The results presented compared well with those reported in literature. It is shown 
via the results discussed in this paper that the surface radiative effects must be considered for a complete heat 

transfer analysis. More research is underway to extend this work to consider non-gray surfaces and eventually 

participating fluids. 
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NOMENCLATURE 

C Specific Heat q = Heat Flux 

g Gravity Force r = Spatial Coordinate 

k = Thermal Conductivity F = View Factor 

p = Pressure t = Time 
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Volumetric Source a, y, <p = Relaxation Parameters 
Radiation Matrix, LHS p = Density 

= Radiation Matrix, RHS 13 = Coefficient of Volume Expansion 

= Temperature E: = Surface Emissivity 

= Velocity 8 = Kronecker Delta 
Forcing Function 0- = Stefan-Boltzmamn Constant 

= Generalized Vector Nodal Unknown n = Domain 
Shape Functions r = Boundary of the Domain 

Stream Function 't = Fluid Stress 

Subscripts 

= Reference Temperature r = Radiative 

= Spatial Index, Surface No. = Spatial Index, Surface No. 

Applied Externally s = Surround ings 

Convective 

Superscripts 

= Nodal Index = Iteration No. 
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Figure 3 Isotherms for Runs REC300, 

EC300 and R300 
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Figure 7 Streamlines for Thermosyphon 

(without Radiation) 
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Table I Summary of Three Different Runs 

Run Ra B.C. on the right wall Surface Radiation 

REC300 300,000 Convective + radiative included 

EC300 300,000 Convective not included 

R300 300,000 Radiative included 

Ra=GrPr= 
p! g ~ (Th-T.,) LJ ill 

112 k 

Table 2 Relaxation Parameters and Number of Iterations 

Run Relaxation Parameter I No. of iterations 

Velocity Temperature Radiative heat 
a y flux 

ct> 

REC300 0.04 1.0 0.1 64 

EC300 0.04 1.0 0.1 40 

R300 0.04 1.0 0.1 68 

Table 3 Values of 1'I"lmax for Different Runs 

Run 1'I"lmaxa 1'I'I ... x • a = _k_ 
a pCp 

Behnia et at. NISAl3D-FLUID 

(ref. II) (ref. 10) 

REC300 \3.04 12.94 

EC300 10.93 11.01 

R300 11.93 11.79 , 
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SINGLE-DROP REACTIVE EXTRACTION/EXTRACTIVE REACTION WITH FORCED 

CONVECTIVE DIFFUSION AND INTERPHASE MASS TRANSFER 

Leonid S. Kleinman and X.B. Reed, Jr. 
University of Missouri-Rolla 

Rolla, Missouri 

SUMMARY 

~tJ~9?-~

<~/3 ~3 Y 
~J5 f-

An algorithm has been developed for the forced convective diffusion-reaction problem for 
convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the 
droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The 
concentration field inside the droplet is likewise coupled with that outside by boundary conditions 
at the interface. A chemical reaction can take place either inside or outside the droplet or reactions 
can take place in both phases. 

The algorithm has been implemented and results are shown here for the case of no reaction 
and for the case of an external first order reaction, both for unsteady behaviour. For pure interphase 
mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet 
concentrations have been obtained as a function of the physical properties and external flow field. 
For mass transfer enhanced by an external reaction, in addition to the above forms of results, we 
present the enhancement factor, with the results now also depending upon the (dimensionless) rate 
of reaction. 

INTRODUCTION 

There are many industrial and environmental processes in which two-phase fluid-liquid 
systems are in use. Gases may be dispersed as bubbles in liquid phases, such as occurs in bubble 
columns and sparged vessels. Liquids may be dispersed in gases, such as occurs in scrubbers. And 
a liquid that is immiscible or partially miscible in another liquid may be dispersed in a liquid-liquid 
spray column extractor or reactor. The design of such systems may involve heat transfer, either 
intentionally or incidentally, but the widest range of applications involves mass transfer. Interphase 
mass transfer may proceed into or out of the dispersed phase. One (or more) chemical reaction(s) 
may take place in either the dispersed or the continuous phase in order to enhance the rate of mass 
transfer. In two-phase reactions, certain of the reactants may be transferred from one phase into 
the other, where the reaction takes place, and the reaction products may then be transferred back 
into the first phase. Reactions may also occur in both phases. 

Because ofthe finite, generally small volume of each drop or bubble, interphase mass transfer 
unaccompanied by chemical reaction is inherently unsteady, regardless of the direction of mass 
transfer. Even if there is a reaction that admits of a steady state in the drop or bubble, unsteady 
behavior may nevertheless be of practical even primary importance. 

The continuous phase is inevitably in motion relative to the dispersed phase, and for clean 
systems (containing no surface active agents), the motion in the two phases will be hydrodynami
cally coupled. 
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We undertake here for concreteness a liquid-liquid system in which a chemical reaction may 
take place in either or both phases. The dispersed phase is sufficiently dilute that the droplets 
which sediment (either falling under their weight or rising because of buoyancy) may be assumed 
isolated in an infinite medium, both with regard to fluid mechanics and to diffusion and reaction. 
The droplets are taken small enough that interfacial tension dominates shape effects and they are 
spherical. Although the approach we take and the methods we use do not require that that viscosity 
dominates flow effects and that the velocity fields have low Reynolds numbers, we consider the 
hydrodynamically coupled Hadamard - Rybczinsky profile for circulation within the droplet driven 
by an external velocity field that becomes a uniform streaming flow far from the droplet. Physi
cal and chemical properties are assumed constant, which would be the case for dilute isothermal 
systems, and we thus analyze interphase mass transfer for the forced convective diffusion-reaction 
single-drop system. We investigate, specifically the roles of the reaction rates, as measured by 
appropriate Damkohler numbers, the solubility of the solute in the phases, as expressed by the 
linear distribution coefficient (Henry's law), the ratio of convection to diffusion, as measured by the 
Peclet number, and the ratio of the viscosities and that of molecular diffusivities of the two phases. 

GOVERNING EQUATIONS 

The dimensionless forced convective diffusion-reaction equations governing the solute con
centrations in the drop (0 ~ r ~ 1) and the continuous (1 ~ r < 00) phases, i = 1,2, respectively, 
can be represented in the form 

(1) 

where i = 1 corresponds to the internal domain 0 ~ r ~ 1, and i = 2 to the external one 1 ~ r < 00. 

The dimensional partial parabolic differential equations have been rendered dimensionless 
using the droplet radius R as the characteristic length scale. The concentrations are measured in 
units of initial driving force, 

( ") H(i) c(i) - H Coo 
c' = i=I,2, 

Co - Hcoo 
(2) 

in which 

H(i) = { 1, 

H, 

i = 1 
(3) 

i = 2, 

with H the Henry's "law" distribution coefficient. 
The characteristic time scale can be selected, for example, on the basis of the fastest physical 

or chemical process, occurring in the system, viz., 

. ( (i) (i) 
'r. = IIlln 'reoDv , 'r cliff , (i) . 1 2) 

'rrxn' t = , , (4) 

in which 

(i) _ R (i) R2 (i) __ 1_ 
'reoDv - l(i)(J.I.) U

oo
' 'rdiff = D(i)' 1"rxD - k(i)' i = 1,2. (5) 
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The diffusivities and rate constants for the first order chemical reactions are denoted by D(i) and 
k(i), respectively, and the K's represent different combinations of standard dimensionless parameters 
for different choices of T., as indicated in Table 1. 

Although our numerical implementation of the algorithm requires only that the velocity 
fields in the two phases be separable, for concreteness we have used the Hadamard - Rybczinsky 
solution for the convecting velocities in the dispersed and continuous phases. In this instance, the 
characteristic velocity in each phase, with Uoo the freestreaming uniform flow at infinity, is taken 
as 

U(i) f(i)() U . 1 2 • = J.I. 00, t= , , (6) 

in which 

(7) 

with the viscosity ratio 

(8) 

The equations (9) are the ones used in the sequel, reflecting the selection of T~J as the unit 
of time: 

-- + --. v(a) ___ -J1 _ ).2 __ 
8C(i) Pe(2) ( . 8c(i) vii) 8C(i)) 

8T 2 r ar r 8), 

(9) 

(i) D(i) (i) H Coo ) • 
-DaIl -(2)' C + _ H- , t= 1,2, 

D Co - Coo 

with), = cos -a, subject to the boundary conditions at the droplet interface, 

r = 1: (10) 

and at the limits of the overall domain, 

r = 0: (11) 

(12) 

Periodic boundary conditions in angle variable 

8C(i) I -
8-a - 0, 

"=0,"11" 
i = 1,2, (13) 

after introduction of the new independent variable). are satisfied automatically. 
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The concentrations are subject to the initial conditions: 

t = 0 : C(I) = 1, c(2) = 0 (14) 

The actual direction of mass transfer may be out of or into the drop, depending upon the 
driving force (co - Hcoo ), even though the formulation of the problem suggests transfer from the 
droplet. 

The opposite direction of mass transfer in the actual problem would lead to the appearance 
ofthe inhomogeneous part in the reaction terms in (9) (but only when the corresponding K~i) :f. 0). 

THE ALGORITHM 

The problem is linear, and we use the Galerkin spectral method for the spatial discretization. 
The advantages of this method are well known [1, 2]. 

We express the unknown functions c( i) ( r, A, r) in a customary manner, 

M 

c(i)(r,A,r) = L c~(r,r)Pm(A), i = 1,2, (15) 
m=O 

in which the Pm(A) are the Legendre polynomials of order m and the coefficient functions c!!)(r, r) 
are termed "radial functions" for brevity in the sequel. 

The discretization in the radial direction is performed in somewhat different ways for the 
internal and external domains. 

Using Equation (9) for mass transfer inside the droplet (i = 1), it is a simple matter to 
show that functions c~)( r, r) obey the following restrictions: 

a (1) 
l. 

ar r=O 

1:f.0 

= 0, 

c~~ ( r, r) - even function of r } 

c~~+1 ( r, r) - odd function of r 

(16) 

(17) 

k = 0,1 ... (18) 

On the basis of these restrictions, the radial functions inside the droplet were approximated 
by a series in even Chebyshev polynomials: 

N(l} 

ci!)(r, r) = om.O· oo(r) + r""'· L 4>i!~n(r) T2n- 2(r), m = 0,1, ... , M (19) 
n=1 

in which the T,,(r) are Chebyshev polynomials of the first kind of order p, and 

""2; = 2, j = 0,1, ... (20) 

""1 = 1, ""2;+1 = 3, j = 1,2, ... (21) 
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Using (19) we automatically satisfy boundary condition (11), avoid the singularity at the 
origin of the drop, and the function ao( 'T) represents the value of the concentration at the origin. 

Such an expansion on the interval 0 ~ T ~ 1 is valid as the even Chebyshev polynomials 
form a complete set for the type of functions considered [10]. 

The use of half the commonly used interval [-1,1] permits us to double the highest order 
of the polynomials used, leaving the number of terms in the series unaltered. 

The nonuniformity of the distribution of nodes in the spectral method (their number in 
close proximity to the surface is higher than near the origin) matches the physics of the problem 
as the concentration gradient near the interface is much bigger. 

For the semi-infinite external domain we implement the widely used procedure of truncating 
it at an appropriately large radius Too, far enough from the interface to make the disturbance 
introduced negligible. The boundary condition at infinity (12) is now imposed on this artificial 
boundary. It could be imposed as "hard", "soft" [12] or "behavioral" [1, 13]. We use the "hard" 
one, 

T = Too : (22) 

because it immediately results in original boundary condition (12) if Too -+ 00. 

It is necessary to realize that by doing this we are changing the physical sense of the problem. 
The decrease of the concentration to zero infinitely far from its source is caused physically by the 
spreading the species over an infinite spatial volume. After introduction of the boundary sphere 
at T = Too, we model this decrease by imposing what amounts to an infinitely fast heterogeneous 
reaction on the artificial boundary Too. The only justification for this is an a posteriori one, viz., 
by checking that the increase of Too does not alter the solution in the vicinity ofthe droplet and in 
particular the interphase mass transfer. 

Our computations have confirmed this and show that when Too is chosen sufficiently large 
the choice of the particular type of boundary conditions mentioned above does not influence the 
resultant concentration distribution in regions where its value differs significantly from zero. 

The domain 1 ~ T ~ Too is mapped onto the interval -1 ~ z ~ 1 in such a way that the 
point z = 1 matches T = 1 and the point z = -1 matches T = Too. Among the wide variety of 
possible mappings two are used more often than others, the exponential and rational ones ([1, 2]). 
A comparison by Grosch and Orszag [11] has shown that the latter mapping has some advantages 
over the former. 

Specifically, we use 

z = ( 28) , (1 - T) 1 - Too _ 1 - 8 

T - (1 + 8) 
(23) 

where 8 is the parameter representing the distance between the droplet surface and point mapped 
into z = o. It is worth mentioning that we have also implemented the exponential mapping and 
could find no advantages for the rational mapping over it. 

The radial functions in the external domain are expanded as 

N(2) 

c~)('T, z) = L ¢~~n('T) Zn(z), m = 0,1, ... , M, (24) 
n=l 

where the Zn(z), n = 1,2, ... , N(2) are linear combinations of Chebyshev polynomials, each satis
fying the boundary condition following from (12): 
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Zft(z=-I)=O, n=I,2, ... ,N(2). (25) 

We take 

(26) 

Thus, we reduce the system of partial differential equations for two initially unknown func
tions C(I)( T, >., r) and c(2)( T, >., r) to a larger system of ordinary differential equations in T, for 

( ) .J.(I) .J.(2) 
00 T , Y'm,ftl' Y'm,ft2' m = O,I, ... ,M, (27) 

nl = 1,2, ... ,N(I), n2 = 1,2, ... ,N(2). 

The total number of these unknown functions is 1 + (M + 1) (N(1) + N(2»). 
In order to obtain equations for these functions we use the conventional Petrov - Galerkin 

method, i.e., the basis functions are taken as the test functions [2]. We define two inner products: 

(J,g)(I) = d)" f·g , 11 lol dr 
-1 0 ~ 

(/,g)(2) = 11 d>' 11 f.g dz . 
-1 -1 ~ 

Forming by (28) the inner product of (9) for i = 1 with the test functions 

and by (29) the inner product of (9) for i = 2 with the test functions 

Pm (>.) Zft2(Z), m = 0,1, ... , M, n2 = 1,2, ... , N(2) - 1, 

we obtain two vector equations 

A (i) dq,(i) = (_K(i) B(i,c) + K(i) B(i,d) _ K(i) B(i,r») . .J.(i) + K(i) b(i) . 1 2 
dT c . d r .", r , t = , . 

(28) 

(29) 

(31) 

(32) 

Here A(i), B(i,c), B(i,d), B(i,r) are {I + (M + l)(N(i) - 1), 1 + (M + l)N(i)} matrices, 
b(i) - {I + (M + I)N(i)} are the vectors of inhomogeneous terms, and q,(i)(T) - {I + (M + I)N(i)} 

are the unknown vectors, 

(33) 

(34) 

The remaining 2 (M + 1) equations are derived from the boundary conditions (10) which 
are implemented by the Lanczos tau-method [1, 2, 14]. 
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Upon substituting (19) and (24) into (10), multiplying by Pm ().), m = O,I, ... ,M and 
integrating). from -1 to 1, we obtain two sets of M+l linear algebraic equations: 

(35) 

(36) 

where Q(i), SCi) are {(M + 1), (M + 1)(1 + N(i))} matrices, i = 1,2. 

By expressing q}1)N(l} and qP)N(2)1 m = 0,1, ... , M, using the system (35)-( 36) and 
m , m t 

substituting in the system (32), we arrive finally at the system of 1 + (M + 1)(N(1) + N(2) - 2) 
linear 0 D Es: 

(37) 

The constant matrices B(e), B(d) and B(r) correspond respectively to the convective, 
diffusive and reactive terms in the original equation (9), b is an {I + (M + 1)(N(1) + N(2) - 2)} 
constant vector and q, (r) is the vector of unknown functions 

_ ( (1) ,/,(1) ,/,(2) ,/,(2) ,/,(1) ,/,(1) ,/,(2) (2) )T ( ) 
q, = Qo, ¢0,1"" '+'O,N(1)-l' '+'0,1"" '+'0,N(2)-1' .•• '+'M,l' ... '+'M,N(l)-l' '+'M,l"" ¢M,N(2)-1 38 

and not simply a concatenation of vectors q, (1) and q, (2). 

The matrices A, B(d) and B(r) are block-diagonal. They all have M+l nonzero square 
{N(1)+N(2)-2, N(1)+N(2)-2)} matrices on their main diagonals and their first 1+(N(1)+N(2)-2) 
elements in the first row and the first column are nonzero. 

The matrices B(e) that result from transforming the convective terms also have block struc
ture with the same block sizes. However, they are no longer block-diagonal and the amount of 
nonzero block-diagonals depends on the velocity fields v(i), i = 1,2. The higher the degree of 
). that is involved in the velocity field expressions, the greater the coupling between the radial 
functions of different orders will be. And the increase of the order of this coupling leads to the 
corresponding increase of the number of nonzero block diagonals in B(e). 

For the Hadamard - Rybczinsky field, for example, these matrices will be block-tridiagonal, 
and for the velocity field in [15] valid for higher Reynolds numbers, block-pentadiagonal. 

The discontinuous initial conditions (14) are not appropriate for computations. Instead 
we used the analytical solution for the pure diffusion case (no convection, no chemical reaction) 
derived in [16]. The concentration distributions for very small time values were expanded over our 
basis functions T2n- 2( r) and Zn, n = 1,2, ... to initialize the computations, and the coefficients 

obtained were used as initial conditions for Qo( r), ¢~~nl , and ¢~~n2' m = 0,1, ... , M, n1 = 
1,2, ... ,N(l) -1, n2 = 1,2, ... ,N(2)-l. 

For time discretization of the system (37) we use the first-order backward Euler method. 
Defining q,n as vector q, at the n-th time step of magnitude I::!r and 

(39) 

system (37) can be rewritten as 

( 40) 

where 
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( 41) 

Every time step system of linear equations (40) was solved by regular Gauss elimination 
(preceded by LU decomposition) with the following iterative refinement [3]. The matrix on the 
left side of (40) has the same structure as matrix Bj as mentioned above, it is block-tridiagonal 
for the Hadamard-Rybczinsky velocity field. Our attempts to apply block-elimination methods (in 
particular, block Thomas algorithm [4]) failed presumably because block LU factorization does not 
involve pivoting which is essential when diagonal dominance does not occur (which is the case for 
high Peclet numbers). 

We considered the matrix on the left side of (40) as a banded one with bandwidth 1 + 
3 (N(l) + N(2) - 2). 

As long as this matrix depends on the time step and its factorization is a time-consuming 
process, only two values of the time step were used for each run. A smaller one was used for an 
initial time period and an another one for the subsequent time range. 

The numbers of terms in series (15), (19), and (24) depend on the steepness of the con
centration gradients and were different for different values of Peclet and Damkohler numbers. The 
maximum numbers used were M = 87, N(l) = 25, N(2) = 97. 

As is well known [1, 2], an increase .in the number of terms in a spectral series (especially 
in the series in Chebyshev polynomials) leads to very high condition numbers for the resulting 
system of linear equations. This was alleviated by using double precision in all computations and, 
as mentioned above by application of the iterative refinement to the solution obtained with the 
Gauss elimination procedure. 

QUANTITIES OF INTEREST 

The most practically interesting quantity in extraction problems is the amount of material ex
tracted by particular instant in time. For the problem under consideration (Le. when species are 
extracted from the droplet) this can be conveniently characterized by the time-dependent average 
dimensionless concentration of species remaining in the drop: 

(42) 

This quantity changes in time as a result of mass transfer out of the droplet. The local and 
surface average rates of this transfer are characterized by corresponding mass transfer coefficient, 
the quantities which when multiplied by the driving force give respective mass :flux rate. The 
nondimensional mass transfer coefficient is usually referred to as the "Sherwood number" which is 
analogous to the Nusselt number in heat transfer problems. 

Different kinds of Sherwood number can be introduced, depending on the driving force upon 
which it is based and the domain to which it is related. 

For the problem of single-drop extraction, the instantaneous driving force for mass transfer 
is the difference between the concentration of the transferring species in the droplet and that far 
away from it, taking into account the step change of the concentration at the interface due to 
solubility, 

F(dr) - :(1) _ H-
- C Coo, (43) 

where ~l) is the dimensional average concentration of species in the droplet. 
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Often the Sherwood number is based on the maximum possible (or in our case, initial) 
driving force: 

F,(dr) - - H-o - Co - coo· (44) 

Here we consider only the external Sherwood number, i.e., the nondimensional rate of 
transfer of species from the external side of droplet surface into the external flow. 

The local and average Sherwood numbers defined on the basis of maximal driving force are 
respectively: 

and 

ac(2) I 
Shloc,O = -2H·D 8r 

r=1 

Sho = -H·D 11 aa
c
(2) I d)'. 

-1 r r=1 

Corresponding values based on instantaneous driving force are: 

Sh 
_ Shloc,O 

loc - (dr) , 
c(1) + cocH / FO 

Sh _ Sho 
- c(1) + cooH / FJdr) . 

(45) 

(46) 

(47) 

(48) 

Obviously, the chemical reaction in the external region increases the rate of the extraction, 
and this increase is characterized by the enhancement factor, which is the ratio ofthe corresponding 
mass transfer rates [5]: 

(2) 
E = Sh(Dall i= 0) 

Sh(DaW = 0) 

COMPUTATIONAL RESULTS AND DISCUSSION 

The results of the computations presented cover the following ranges of parameters: 

0.25 ~ D ~ 4, 

o ~ Pe(2) ~ 500 , 

o ~ DaW ~ 1000 , 

H=p.=l. 

The characteristic time scale was chosen as 

(49) 

(50) 

which is just the Fourier number based on the diffusion coefficient of the external fluid. The times 
appearing on the plots are expressed in these units. The values of Peclet number Pe and Damkohler 
number Da presented on the plots correspond to Pe(2) and Da}~) , respectively. 
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To illustrate qualitively the process of pure mass transfer (no reaction) from the droplet we 
present in Figures 1-3 the curves of constant species concentration at different times for various 
levels of external convection (Pe(2) = 10, 200, 500 respectively). 

The well known and intuitively expected increase of mass transfer with increasing convection 
is apparent. 

The influence of internal circulation on the development of the mass transfer process is 
illustrated in Figures 4-5 where we present the isoconcentration curves for the same external Peclet 
number (Pe(2) = 500) and different ratios of internal and external diffusivities (D = 0.25 and 
D = 4.0). 

For D = 0.25 the internal convection is much stronger in the sense that the value of Pe(l} 

is larger. As a consequence the isoconcentration curves inside the droplet lie close to the internal 
streamlines, a result already obtained numerically by Johns and Beckmann [7], for the special case 
of mass transfer resistance solely inside the droplet. The coincidence of internal isocontours with 
internal streamlines also constituted the basic assumption of Kronig and Brink's model of mass 
transfer in a circulating drop [6]. From a simple comparison of the isocontour levels in Figures 4 
and 5 alone one infers that the mass transfer from a droplet for D=4 is much more intensive than 
for D=0.25. The reason that the internal Peclet number Pe(l) is greater for D = 0.25 is not that 
the internal circulation is greater, for it is not (Jl = 1), but that the internal diffusivity is smaller. 
Nonetheless, it is customary for brevity to describe an increase in Peclet number as an increase 
in convection, rather than the more lengthy but more accurate increase of the ratio of convection 
to diffusion. In this usage, one may phrase the conclusion drawn from Figures 1-5 as follows: 
convection outside the droplet increases the rate of extraction but inside convection supresses the 
rate of transfer. 

The influence of the external reaction rate on the concentration distribution is shown on 
Figures 2, 6 and 7. As could have easily been anticipated, an increase in Da}~) results in faster 
extraction and an almost immediate disappearence of extracted species outside the droplet (almost 

no species here for DaW = 100 in Figure 7). 
Figures 8 and 9 show the effect of reaction rate on the local Sherwood number. The values 

of Shlo~,O go to zero with time for all values of angle variable fJ, although the distribution of 
Sherwood number based on the instantaneous driving force approaches a nonvanishing asymptote. 
An increase in the reaction rate thus results in a general increase of mass transfer and of values of 
the Sherwood numbers, but the temporal variation of values oflocal Sherwood numbers at different 
locations is less transparent, warranting further investigation. 

Figure 10 reflects the behavior of average Sherwood number Sh in time for different values of 
external Peclet number Pe(2} for the no reaction case. The oscillations of Sh were computationally 
obtained by different investigators including mentioned above Johns and Beckmann's article [7] 
and Oliver and Chung in [9], who were solving conjugate unsteady heat trasfer problem which 
is mathematically analogous to the mass tranfer problem under consideration when there is no 
chemical reaction involved. These oscillations are caused by the internal circulation with the most 
detailed physical explanation given by Brignell in [8]. Consequently the period of these oscillations 
is smaller and the amplitute greater the higher the Peclet number is. The stronger convection also 
leads to a higher mass transfer rate as it creates the thinner diffusion boundary layers on the both 
sides of the droplet surface. 

Figure 11 illustrates the influence of the rate of external chemical reaction on the average 
Sherwood number. The plots here confirm the made above conclusions of the increase of the rate 
of extraction with the increasing external convection and rate of external chemical reaction. 

In more evident way this is reflected in Figure 12, where the decrease of average droplet 
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concentration with time is presented. From this picture we can also deduce a very important 
conclusion that an increase in the reaction rate over some value will not benefit the extraction 
results (the diffences between the average droplet concentration for Da}~) values of 300 and 1000 
are pretty small). 

Figure 13 shows the effect of reaction rates on the values and time behavior of the enhance
ment factor E. The oscillations here are the consequeces of the internal circulation, the same as 
for corresponding average Sherwood number on Figure 10. The values of E corresponding to the 
same reaction rate are higher for smaller Pe(2) (lower convection). The possible explanation for 

that could be that the corresponding values of Da}2) which are just the ratios of DaW and Pe(2) 
are smaller for higher Pe(2). 

Finally, we wanted to underline that the purpose of this article was to present the developed 
numerical algorithm and to show what kind of results can be obtained. Our further articles will 
include additional results and more detailed analysis of those results as well as of the results 
presented in this article. 
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NOMENCLATURE 

-dimensional value of the concentration in the origin of the droplet at t = 0 
-dimensional value of the concentration at the infinity 
-dimensional concentration in the i-th domain, i = 1,2 
-dimensionless concentration in the i-th domain, i = 1,2 
-molecular diffusivity of the solute in the fluid in the i-th domain, i = 1,2 
-molecular diffusivities ratio, D(l) / D(2) 

-first Damkohler number in the i-th domain, I(i~t\~oo' i = 1,2 

-second Damkohler number in the i-th domain, k1c~2, i = 1,2 

-enhancement factor 
-factor showing the leading viscosity ratio dependence of the 
velocity scale in the i-th domain, i = 1,2 
-distribution coefficient 
-chemical reaction rate constant in the i-th domain, i = 1,2 
-highest order of the Legendre polynomials used in the expansion 
in the angular direction 
-number of terms in the expansion of radial functions in the i-th domain, i = 1,2 

-Peclet number in the i-th domain, 2 ~~)R, i = 1,2 

-dimensionless radial coordinate 
-droplet radius 
-dimensional time 

-characteristic velocity scale in the i-th domain, i = 1,2 
-velocity of the flow at the infinity 
-velocity field in the i-th domain nondimensionalized 

by the corresponding velocity scale uii ), i = 1,2 
-polar angle in spherical coordinate system 
= cos {) 
-molecular viscosities ratio, J-L(l)/ J-L(2) 

-molecular viscosity of the fluid in the i-th domain, i = 1,2 
-dimensionless time 

-convection time scale in the i-th domain, (") (R ,i = 1, 2 
I' J-L)Uoo 

-diffusion time scale in the i-th domain, :-r.:), i = 1,2 

-chemical reaction time scale in the i-th domain, kti) , i = 1,2 
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Ta.ble 1: Coefficients in eq.(1) depending on the choice ofr. (i,j = 1,2) 

II 
r(;) Pe(i) D(i) D(i) D (i) D(i) 

clift' ~'D(;) D(;) alI' D(;) 

(;) (i) 
2 ~ (i)~ r eoDv fo;)~p~ Pe(i) . f i (1-£) 

Da .. 
I f' (1-£) 

T~ ~ k(i) 1 k(i) k(i) 
Da i . k(;) Da(i) . k(i) k(i) 

I 11 
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ABSTRACT 

This paper presents a probabilistic one-dimensional finite element model 
for heat transfer processes in porous heat exchangers. The Galerkin approach is 
used to develop the finite element matrices. Some of the submatrices are asymmet
ric due to the presence of the flow term. The Neumann expansion is used to write 
the temperature distribution as a series of random variables, and the expectation 
operator is applied to obtain the mean and deviation statistics. To demonstrate the 
feasibility of the formulation, a one-dimensional model of heat transfer phenomenon 
in superfluid flow through a porous media is considered. Results of this formulation 
agree well with the Monte-Carlo simulations and the analytical solutions. Although 
the numerical experiments are confined to parametric random variables, a formula
tion is presented to account for the random spatial variations. 

INTRODUCTION 

Porous heat exchangers are key components in many engineering systems 
such as high performance regenerative heat exchangers, thermal ene~gy storage sys
tems, cryocoolers, and packed beds. Several techniques have been developed to 
analyze these systems. These techniques include, among others, analytical tech
niques, such as separation of variables [1,2], Riemann method [3] and similarity 
transformation [4]; ·semi-analytical techniques such as orthogonal collocation [5] 
and collocatiol!-perturbation [6,7]; and numerical methods such as numerical inte
gration [8], shooting and Runge-Kutta integration [9], and finite element methods 
[10]. In these techniques the above systems are considered as deterministic. That 
is, the problems are formulated in terms of mean-values of the properties neglecting 
variations in the mean values. Experimental measurements, however, show that 
the properties of the systems may vary significantly in a random fashion, especially 
near a low temperature. Given the stringent demand on the design of modern heat 
exchangers, these deterministic models may not be adequate. 

Random properties can be incorporated in the above techniques using the prob
ability theories and the theories of differential equations [11-14]. In many applica
tions, it is difficult to solve the resulting differential equations in closed form even 
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when the randomness is not considered [15]. In the last 30 years, Finite Element 
Methods (FE:Vls) have successfully been applied to solve a large class of determinis
tic systems, and more recently, probabilistic systems. Current trends for analyzing 
random systems in engineering are given by Iyengar and Dash [16], Ibrahim [17], 
Shinozuka [18], and Benaroya and Rehak [19]. Chamis and coworkers [20, 21] have 
developed a general purpose finite element computer code called PICAN for prob
abilistic analysis of composite materials. 

The numerical techniques available to solve problems consisting of random vari
ables and functions may be broadly classified into two categories; statistical and 
nonstatistical. Most statistical techniques rely on numerical simulations among 
which Monte Carlo simulation has been widely used [22]. The nonstatistical tech
niques include perturbation methods [23-26]' spectral decomposition methods [15, 
27], and basis random variable methods [28, 29]. 

In addition to the FEMs, several investigators have used the Boundary Element 
Methods (BE?vls). The random operator problems were analyzed by Ettouney et 
al. [30-32]' and more recently by Manolis and Shaw [33]. Burczynski [34] employed 
the direct boundary element method to develop two distinct procedures for the 
treatment of random potential problems. Cheng and Lafe [35] employed the indi
rect boundary element method to obtain stochastic integral equations for boundary 
potentials and fluxes in terms of fictitious boundary sources. Other applications of 
the boundary element method include the first order perturbation method devel
oped by Drewniak [36] for the analysis of heat conduction problems with random 
heat transfer and random heat conduction coefficient. respectively, and a procedure 
for the analysis of time dependent problems in the frequency domain developed by 
Burczynski and John [37]. 

The probabilistic methods discussed here, however. are largely confined to struc
tural systems. and very little effort has been made to de,'elop methods for porous 
heat exchangers. In this paper. a probabilistic one-dimensional finite element model 
for heat transfer process in porous heat exchangers is presented. The formulation 
is based on the Galerkin method, the spectral decomposition of random processes, 
and the Neumann expansion. 

MATHEMATICAL FORMULATIOX 

This section is divided into three parts: deterministic finite element model, prob
abilistic finite element models for parametric randomness and stochastic processes. 
and Monte-Carlo models. These models are considered next. 

Deterministic Finite Element Model.- In order to develop a deterministic 
analytical model for the heat transfer process in fluid flow through porous media, 
consider the schematic of a one dimensional heat exchanger as shown in Figure 1. 
It is assumed that the system is stationary; that is. the system parameters are not 
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changing with time. Using energy balance, one can derive the following differential 
equations 

d2T dT 
k j - + hs(t - T) = c-

dx 2 dx 
(1) 

~t 
ks dx 2 + hs(T - t) = 0 (2) 

where k j and ks are the thermal conductivity coefficients of the fluid and the solid, 
h is the convective heat transfer coefficient, s is the porosity coefficient, T and t 

are the temperature distributions in the fluid and the solid, and the coefficient c 
accounts for the energy transfer due to fluid flow. In addition to these equations, the 
boundary conditions are also required. The formulation presented here is applicable 
to various boundary conditions. However, for simplicity, it is assumed that the 
terminal temperatures of the fluid and the solid at the two ends are prescribed. 
These conditions are written as 

T(x=O)=To, t(x=O)=to T(x=L)=TL' and t(X=L)=tL (3) 

where L is the length of the heat exchanger which is discretized into several finite 
elements. If N is the vector of the shape functions defined over the elements, then 
the temperatures T and t may be approximated as 

and (4) 

where Tn and tn represent the vector of the nodal temperatures of the fluid and 
the solid, and the superscript T represents the transpose. Observe that both solid 
and fluid regions have been discretized into an equal number of elements, and the 
same shape functions have been used for both temperature distributions. This is 
not necessary and a formulation that considers different numb ern ~f elements and 
different shape functions is possible. Using the Galerkin approach~ equations (1) 
and (2) may be written as 

LL [ ~T n] N k j - + hs( t - T) - c- dx = 0 
o dx2 dx 

(5) 

(6) 

Performing integration by parts on some terms of equations (5) and (6), and rear
ranging the terms, one obtains 

(7) 
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where E is the global coefficient matrix defined as 

E = [ -kjA - hsB - cC 

hsB 
hsB 1 

-ksA - hsB 
(8) 

and vector b appears due to partial integration of some terms in Eq. (3) and the 
boundary conditions. Matrices A, B, and C in equation (8) are defined as 

A = (\ dN ) ( dN ) T dx 
Jo dx dx 

(9) 

(10) 

(11) 

Equation (7) provides the desired deterministic finite element model. Obsen'e that 
matrices A and B are symmetric positive definite finite element matrices~ whereas 
matrix C is an asymmetric matrix. This makes matrix E asymmetric. Therefore. 
one should not use a symmetric simultaneous equation solver to solve equation (7). 

Probabilistic Finite Element Model.- As stated earlier. two types of ran
dom behavior may appear in the system; parametric and spatial. These two random 
processes will be considered separately. 

Parametric Randomness.- For simplicity, only ks is considered as a random 
parameter. If other parameters also vary randomly, then the formulation can be 
extended appropriately. The random parameter ks may be written as ks = kso + £, 

where kso is the mean value of k" and £ represents the random variations with mean 
zero and standard deviation (7 (i.e. < £ >= O~ and < £2 >= (72). Substituting the 
expression for ks into Eq. (7), one obtains 

[E, + ,E,] [ ~: 1 = b (12) 

where matrix ~1 is the same as matrix E in equation (8) except that ks is replaced 
by kso and matrix E2 is given as 

(13) 

Observe that Tn and tn are now vectors of random ,·ariables. "[sing the Xeumann 
expansion, the temperature vector can be written as 
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- ------ -----------------------

provided that II 1:( Ell E2 ) II < 1 is satisfied~ which is reasonable for most practical 
systems. From equation (14), the expected value of the temperature vector is 

< [ ~: 1 >= [I - < , > (E;-l E,)+ < " > (E;-l E,)'- < " > (E;-l E,l' + ···1 E;-l! 

(15) 
where <> is the expectation operator. Observe that Ell E2 is constant. Further
more~ given the probability distribution, < €i > (i = 1,2"" ,) can be computed 
numerically and in some cases analytically. Substituting these values in equation 
(15), the expected values of the temperatures can be obtained. Similarly, the second 
order characteristics of Tn and tn can be obtained as follows: 

Once again, the matrices containing I: in equation (16) can be expanded in Neumann 
series to obtain the covariance matrix for temperature distribution. 

Equations (15) and (16) provide a probabilistic model for parametric randomness 
in ks . A similar approach can be used for other random parameters. 

Spatial Randomness.- Consider that ks varies randomly from point to 
point along the length of the heat exchanger and that other properties are constant. 
ks can be written as ks = ksm + ksr' where ksm represents the mean function and ksr 
represents the stationary Gaussian process with zero mean functions and specified 
correlation function R(x, u), which is symmetric and positive definite. Using the 
Karhunen-Loeve (KL) expansion, ksr can be represented as [38] 

(17) 

where {<Pili = 1,2, ... } is a set of orthogonal eigenfunctions of certain differential 
equations and I:i (i = 1,2, ... ) are uncorrelated random variables. These eigenfunc
tions satisfy the following integral equation 

(18) 

where Ai is an eigenvalue associated with <Pi ( x). Furthermore, the coefficients I:i 

(i = 1. ... ,00) satisfy the following identity 

(19) 

where < €7 >= Ai gives measure of randomness along the ¢i(X) coordinate. One of 
the advantages of the series expansion is that it provides a second moment charac
terization of ksr in terms of un correlated random variables. 
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Using Eqs. (5), (6), and (17), and following the approach presented above, one 
obtains 

[ 
-kJA - hsB - cC hsB 1 [T: 1 [ ] 

hsB - L €iDi - hsB t: = b 
(20) 

where matrix Di is defined as 

(21) 

Equation (20) is very similar to Eq. (12). Therefore~ the statistical characteristics 

of the temperature vector [T'! t;] T can be obtained using the Neumann expan

sion and the procedure discussed for parametric randomness. 
The above discussion provides a probabilistic model when ks represents a stochas

tic process. A similar approach can be used for other stochastic processes. 
Monte-Carlo Method.- Monte-Carlo simulations rely on equations (12) 

and (20). In this technique, a random number generator is used to obtain a large 
set of random numbers that represent the desired probability distribution curve of 
the random variables. This process is repeated for each random variable. Depend
ing on parametric or spatial randomness, equation (12) or (20) is used to obtain 
an equal number of sets of nodal temperatures, which are then used to obtain the 
statistics for the nodal temperatures. For an accurate answer, this scheme requires 
a large number of nwnerical tests. This number can be reduced using the following 
approach: (1) grouping the random data, (2) performing only one test for each 
group, and (3) using the probability information to account for other data in the 
group. This approach can significantly reduce the number of nwnerical runs for 
accurate results. 

NUMERICAL RESULTS AND DISCUSSIONS 

To validate the formulation developed here, a dilution refrigerator heat ex
changer consisting of supecliuid Helium II as fluid and the sintered copper as 
the solid was considered. The system response was obtained using this scheme 
and an analytical scheme. For numerical simulations, the following parameters 
were considered: 1<J = 7XI04W/(m.1<), 1<s = 500vV/(m.1<), h = 1200W/(m21<), 
c = 11.75W/(m.1<), and s = 0.2792m which are typical of this system. The value 
of L was taken as 10 m. For convenience, the non-dimensional temperatures of 
the fluid TJ and the solid ts were defined as follows: TJ = (T - To)/(TL - To) and 
ts = (t - To)/(TL - To). The following boundary conditions were taken: TJ(O) = 0.0, 
ts(O) = 0.8, and TJ(L) = ts(L) = 1.0. The values of ks and h were varied to 
study the effects of these parameters on the temperature distribution. To study the 
probabilistic effects, the system statistical response was obtained using Monte-Carlo 
simulations, the analytical schemes, and the proposed scheme. Results of this study 
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are shown below. 
Figure 2 compares the temperature distributions obtained using the analytical 

and the proposed schemes. The two results agree very well. The fluid temperature 
changes almost linearly due to the large conductivity of superfluid Hell. The solid 
media temperature decreases faster near the inlet point than inside the exchanger 
because of the strong convection near the inlet. Since the outlet point tempera
ture is higher than the inlet temperature, the temperature of both fluid and solid 
increases after some distance. Once the temperature of the fluid and the solid be
come equal, convection stops and the temperature of both media increases at the 

same rate. 
Figure 3 shows the temperature profiles of the solid and the fluid for k. = 250, 

500, 1000, 1500~ and 2000 W j(m.K). It is clear that an increase in solid thermal 
conductivity causes the temperature of the solid to increase. This is because con
vection becomes less dominant at higher values of k$. Due to large fluid thermal 
conductivity, the fluid temperature profile remains unchanged. 

The temperature profiles for h = 600, 1200~ 2400, and 12,000 W(m2.K) are 
shown in figure 4. As expected, increase in convective heat transfer coefficient 
causes the solid temperature to decrease rapidly and merge with the fluid temper
ature sooner. 

In this investigation, parameter h was considered as a random variable, and all 
other parameters were kept the same. Using a random number generator, 20,000 
random sample points having 10 % variations of mean convective heat transfer co
efficient with 90 % confidence were generated. These data were used in the Monte
Carlo method~ the exact solution, and this scheme to predict the mean response 
of the temperature profile. All three schemes gave the same results. To compare 
the relative accuracy of the current scheme with the Monte-Carlo sci?-eme, the per
centage errors for the two schemes were computed. Results are shown in Figure 5. 
It can be observed that both schemes overpredict fluid temperature while they un
derpredict solid temperature, and the difference between the two schemes is small. 
However, from the formulation, it is clear that this scheme requires fewer number 
of computations th~ the Monte-Carlo scheme. 

CONCLUSION 

A deterministic and a probabilistic one-dimensional finite element model for heat 
transfer processes in porous heat exchangers has been presented. A set of numeri
cal experiments have been performed to validate the model. This formulation leads 
to an asymmetric global coefficient matrix. Numerical experiments show that this 
scheme agrees well with the analytical and the lvlonte-Carlo methods. However~ for 
mean and standard deviations, this scheme requires fewer number of computations 
in comparison to the Monte-Carlo scheme. 
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Figure 1. One dimensional porous heat exchanger 
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A two dimensional finite volume method Is used to predict the film coefficients In the transitional 
flow region (laminar to turbulent) for the radiator panel tubes. The code used to perform this analysis Is 
CAST (Computer ~Ided ~Imulatlon of !urbulent Flows). The Information gathered from this code Is 
then used to augment a Sinda85 model that predicts overall performance of the radiator. A final 
comparison Is drawn between the results generated with a SInda85 model using the SInda85 provided 
transition region heat transfer correlations and the SInda85 model using the CAST generated data. 

INTRODUCTION 

Plans for the radiator for Space Station Freedom were to have several panels connected by fluid 
manifolds. The manifolds on either side of the radiator are connected by 12 thin tubes (1/8",3.175 
mm) per panel. (see Fig. I). Flow through the tubes Is not a constant rate. It varies as a function of 
the position of the station as It relates to the sun. The flow in the thin radiator tubes can go from a low 
flow rate (laminar) to a high flow rate (turbulent). Accurate prediction of the radiator's thermal 
performance depends on several aspects, Including the ability to predict the film coefficients of the fluid 
in the panel tubes. A grey area In this prediction Is in the area of transition flow (2300 < Re < 10,000), 
especially In thin tubes. Small changes In the film coefficient can effect predictions of the radiator 
performance and freezing of the working fluid. 

SYSTEM DESCRIPTION 

A radiator panel tube has an inner diameter of 1/8", and the tube is 12' long (3.175 mm, 3.658 m). 
This translates to an LID of 1150. The SInda85 model (see Ref. I) took the entire tube into account, 
along with the thermal connections to the heat sink (the space environment). This allowed the model to 
predict the tube's fluid exit temperature. 

The CAST model (see Ref. II) only modeled the tube to an LID of 70. This allowed the flow to 
become fully developed and predict accurate film coefficients. A complied table of these coefficients 
was then Input into a second SInda85 model. This model Is an exact duplicate of the above mentioned 
SInda85 model except for the differing film coefficients. 

THE CAST CODE 

It Is assumed that the reader is familiar with the basic structure of Slnda85. No discussion will be 
held on the development of that model. The cast model does need some discussion. CAST is a two 
dimensional, finite volume fluid analysis code. After generating a grid that used an LID of 70, the 
model was run for three known scenarios. The first was a laminar (Re - 2300) case. The predicted 
film coefficients were within 5% of the classic Nu - 3.66 correlation (see Table I and Ref. III). 

Next, the geometry was changed by Increasing the diameter by a factor of 10. The flow was 
increased to obtain a Reynold's Number of 10,000. Here, the predicted value of the film coefficient was 
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Table I: Laminar and Turbulent Control Cases 

Re 
2300 

10,000 (100) 
10,000 

UA (Ref 1/1) 
11.9 Ibtu/hrfF] 
4.25 
24.0 

UA (CAST) 
11.4 
3.57 
23.5 

within 10% of the classic Dittus/Boelter correlation (Nu - 0.023 ,.. ReA.S ,.. Pr A.3, see Ref. 1/1). 
Finally, the diameter of the tube was brought down to the actual value (0.125") and the model was 

run again at a Reynold's Number of 10,000. This time the model prediction was within 3% of the 
Dittus/Boelter correlation. These three results give a good deal of confidence to the ability of CAST to 
accuratly predict the transition flow film coefficients. 

The CAST code Input was now modified to run In the transition region. One point of Interest was to 
determine that If acceleration and deceleration of the flow would effect the onset of turbulence (see Ref. 
IV). When the acceleration parameter K (defined beow) reached a value of 2.0e-06, lamlnarlzallon 
becomes significant and and the heat transfer capabilities of the fluid are altered. In the case of the 
radiator flows, the change In the velocity rates was not great enough to have any impact. (K < 1.0e-09) 
In other words, the flow accelerated and decelerated at slow enough rates so as not to effect the heat 
transfer. 

K - u (dU/dx) / U
A

2 
where u 

U 
- kinematic viscosity 
- stream velocity 

Another area of concern was the effect of the transient conditions would have upon the system. 
SindaS5 uses an Implicit (backward) differencing scheme to handle Its transient fluid calculations. An 
Ideal fluid analysis code will have a long term history of each fluid element, as this may have an effect 
on the performance of the fluid. The CAST model was run In steady state form for a series of 
Reynold's numbers (see table II). A set of transient runs spanning the same range as the steady state 
runs was also completed. The end result being, once again, the flow rates changed slowly enough that 
steady state runs were accurate enough to be used to predict the transient cases. This allowed the film 
coefficients obtained for the transient CAST runs to be Implemented in the SindaS5 model with 
confidence. 

Table II: Reynold's Number vs. CAST Film Coefficient Calculations 

Re 
3000 
4000 
5000 
6000 
7000 
SOOO 
9000 

10000 

UA 
15.2 [btu/hr,'OF) 
20.S 
21.4 
21.5 
23.3 
23.4 
23.5 
23.6 

RESULTS 

Figure II shows the results of the CAST model over the range 3000 < Re < 10,000. Film 
coefficients versus LID and Re are presented. Film coefficients were sampled over the length of the 
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tube for each flow rate. The film coefficients were calculated in the following manner: 

~T - (~TI UI) / Uave - Tw 
q - (T1 - Tw) k / ~y 
htc - q I ~T 

Where TI 
UI 
Uave 
Tw 
q 
T1 
k 
htc 

- Incremental Axial Temperature 
- Incremental Axial Velocity 
- Mean velocity 
- Wall (boundary) temperature 
- Heat flux 
- Temperature of Increment next to the wall 
- Thermal Conductivity 
- Film Coefficient 

Table III shows the fully developed film coefficients obtained from CAST versus the SInda85 film 
coefficients for the range of Reynold's numbers. SindaS5 uses two correlations over the area of 
concern, Over the range 1960 < Re 6420, SInda85 uses Hausen's correlation: 

And over the range Re > 6420, Sinda85 used the Dittus/Boelter equation. 
Table III was generated using the mean values for each flow rate of the film coefficients from an 

L/D of 50 out to an LID of 70. 
Table IV Is a the final table that lists the radiator panel tube exit temperatures generated by the two 

SInda85 models. 

Table III: SInda85 and CAST Film Coefficients 

Re 
3000 
4000 
5000 
6000 
7000 
SOOO 
9000 

10000 

UA (Slnda85) 
6.0 I btu/hrfF) 
9.5 

12.5 
15.5 
18.0 
20.0 
22.0 
24.0 

UA (CAST) 
15.2 
20.8 
21.5 
21.5 
23.3 
23.4 
23.5 
23.6 

I Table IV: SindaS5 and CAST Radiator Tube Exit Temperatures 

Re 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10000 

Temp (Slnda85) 
-35.81°F) 
-28.9 
-29.2 
-20.8 
-18.2 
-16.2 
-14.6 
-13.3 

Temp (CAST) 
-36.S 
-29.5 
-24.5 
-20.9 
-18.3 
-16.3 
-14.6 
-13.2 

CONCLUSIONS 
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A review of Table III shows that higher film coefficients are obtained using the CAST code Instead 
of Hausen's correlation (which Is empirically derived at low Reynold's numbers). The reason for the 
Increased heat transfer can be explained by the effect of the thin tubes. Turbulent mixing boundary 
layers take up a larger percentage of the axial flow. This leads to more fluid mixing and enhances heat 
transfer. 

The higher film coefficients lead to lower fluid exit temperatures, Ie, the radiator becomes more 
effective. However, the film coefficients are only one part of the thermal network of the radiator. The 
overall effect Is small and well within any margin of uncertainty so as not to change any conclusions of 
the radiator performance made by the original SInda85 model. 

A side note to the conclusions must be considered here. Had the radiator tubes been much 
shorter, the entry region effects would have been much greater. Figure" shows the Increased UA's for 
at the Inlet conditions and as the flow starts to develope. It Is clear that there is enhanced heat transfer 
in this area. The overall length of the radiator panel tubes makes this insignificant but for shorter tubes, 
this augmented heat transfer would have had to have been considered. 

RECOMENDATIONS 

The particular version of the CAST code used Is refered to as a High Reynold's Number (HRN) 
version. It is best suited for flows well above the laminar region and into turbulent. For the lower 
Reynold's number cases (the ones close to Re - 2300) the Low Reynold's Number (LRN) version, also 
known as the k-G model could be used. The LRN could be used to verify, or mOdify, the HRN values. 
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SUMMARY 

~/~-~ 

l siug global interpolation functio ns (C Irs ). boundary elem ent solutions are 

obtailled for t.\Vo-dimens ional laminar flo\\' s. T\\'o schemes are proposed for 

handling the cOIl\'ecti \'e t.erms . The first treats con\'ect ion as a forcing func

tion. and conyerts the flo,,' equat ions to pseudo-Poisson equations. In the 

second schellle. some cOll\ 'ect iH' effect i~ incorporated int.o t he fundamental 

solutioIl used in constructing the pertinellt illtegral equations, The lid-driven 
ca\'ity flo\\' is selected as the benchma.rk prob lem, 

INTRODUCTION 

The boullda.ry elemellt method ( B E~ I ) has t rad it iOllall.\' been applied to prob

lems gO\'{'l'Iwd by linear differf'ntial equations .. -\ t the core of t.he basic B EM 

computational procf'SS is t lw fun damen tal so lut ion (also referred to as t he 

free-space C; reen' s function) defi ned as t he impulse response of the governing 

equation to a unit actioll, This fundamental solution i. either too difficult 
or impossible to deriyf' for practical 1J 0niinear probl f' ms , Recently. with the 
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introduction of the so-called Dual Reciprori/., · tecliniques (see f .g. ) Nardini 
& BreiJ/)ia [1982]: Brebi>ia cI al .. [1991]: Partridge fi al. . [199:2]: Cheng et 
rd . . [ 19n : ~] : Lafe [19!:J:3]: Lafe L\: Ch ellf5' [199--1]). the m ethod is being proposed 
for certain classes of nonlinear problf'll1s. 

r s ing tb e Dual Reciprocit .,· approach. a g iH'1l problem is typically decom
posed int.o t\\'o part.s - the lin ear and nOlllill ea r portions. The solution to the 
linear portion is represented by a boundary integral whose kernel consists 
of the fundamental solution to the linear gow' rnillg equation. The nonlin
ea.r pa rt is represented by ei t.her 1) local bases fun ctions (Brebbia et al. ) 
[1991]): or :2 ) global interp olation fUllctioll s (GlfS ) (Lare [199:3]). In either 
case, the boundary integral C:'xpressions and int erpolation function s contain 
coefficiellt s I\, hose \'a I ues an" to be detC'rllli Il ed by f'llforci ng t he boundary 
conditiolls . \ \'hell the "direcT BE~I" approiich is followed the ullkno\vn coef

ficients arc in essC:'llce the llnkno\\'I1 pll .\·sical \'a rial)l es ( \'e loc it y components , 
pressure. te1l1pE'l'a.t ure ) of the probklll. On the ot her hand. using the "indi
rect BE\1" approach, the unknO\\'Il are the ",eight s/s trengths of the boundary 
sources / dipoles and the local/global interpolatillg function s. The computa
tional intensity of the indirect approach is Illuch less than for the direct. 

In this paper. \\'f' de\'elop a GIF-ba:'ecl iudirect BE;\I code for two- di
mensional s teady-st.ate incomprcss ible :\a\' i('r-~t okes equation. Test results 
are shown for the lid-clri\'cn cavity problem. 

GOVERNING EQUATIONS 

The gon'ming ('quat iOlls are: 

011 0 l' 
-+-O.r (Jy 

all au 
11-.- + {'-.-

d.r dy 

(JI' (JI' 
1I- + 1' -

O.r {).11 

o (1 ) 

(2) 

(3) 

\\'iler(' (11.1') arC' the ye locit y components ill tlw .1' and y directions respec
ti\'el\'. jI is tl_le press ure. (I i~ the clens it .\·. aud I' is the \·iscosity. Let 

x = .I'/ L 
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)' .iI/L 
r' 11/1' 

" ' 1'/1' 

P II / (pTl) 

\\"i th these thC' gOH'l'llillg ('(Il lat io ll s bC'(()Il](, : 

a ( 4) 

(.5) 

( G) 

B OUNDARY INTEGRAL EQUATIONS 
In ord(,r to COllH'rt t he aboYE' int o bo unclan' illt egral equa tions two ap
proacil('" haH' lwell ful lowed, III tile first approach, the ent ire system of equa
tiolls is cOIl H'rtpd into all elli ptic S\'s t ell l. with th e COIlH'cti\'e term wholly 
embedded ill t he right-hand-side for cill g fUllct iOIl, There is concern about 
the sllitabilit\, of th e e llipti c s,\'st.em to adequately represellt the convective 
forccs <1t lllodC'r<1tC' to high RC'\"1lO ld 's 111I1111)('r reg iIll e'S, The second <1pproach 
rf'ct iril'" t hi" t I lr<HI c,h <1 1l1orf' direct pertllr l)at iOIl-l)a sC'd ana.l\ 'sis \\'hich is more 
suited tu ca pt urill!!, cO II\'ecti\"(J efff'cts as t hf' ReY lIol (r s 111ll1lber increases, 

Approach I 

The ilboW' eq ll ations arf' cOllH'rt ed into all elliptic s\'stem: 

V 2{ ' Fl 
v 2 \ ' Fl 
v l p FI 
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(10) 

Boundary Integral Equations 

The associated indirect boundary integral equat iolls are: 

i u·d X'.} ")g( X',} ": .Y .l ') df + L "lk WdX. Y) (11) 
r k 

Ir U·2( X'.} " )9(X' . } " : X, } 'j df + L Ju,Wd X. Y) (12) 
, r k 

r u'3(X', l ")g(X', l " : X . }' ) dr + L }li.- WdX. Y) (1 3) 
Jr k 

ill which 
g = In [eY - X' )2 + (1 ' - ) ")1] 

L dil.- .\h(X. l ') = F,(.Y,} ') 
k 

-V1W dX. }') = Jld X, }') 

(14) 

The fUllctions -'h (X . } ' ) are the int erpolat ion functions used in represent
ing the cOll\'ectin~ terms. If \\'E' choosf' 

-'h = CO,~( III I.- X )cV ,~(/I ~J ') 

it is easi ly showll (Lafe [lSl9 :3]) tha.t 

C08( III kX )co ,~ ( 1I ~. ) ') 
WI.- = (1 ~ . 

11 k + 111 1..) 

Approach II 

(15) 

(1 6) 

. Our ailll here is to ha\'e a better incorporati on of the convective effects in 
t he dri\'iug different ial operator. Let 

C { 'u + { 'I 

" ' 0+ ", 
P Pu + PI 
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where ({ 'u. ' 0' Po) denote solut ioll;; to a cOI1\'(>c t ioll -free flo\\' held. whi le (U1 ) Vi , PI) 
represent the COl1\'ecti\'e effect " Hence 

,\,1 [ '0 = 0 (17) 

,\,1 , ~) 0 (18) 

\ 2PO 
:2 [m 'o ()\ 0 _ j) { '0 0\ 01 

oX iJ) ' iJ)' oX ( 19) 

I 
n \ 2[ ' 1 - odeu, \0·c1. \ 'I.PIl fd Cu· \ U. Po ) + "d h. \:j ) ( 20) 

F 

I ,- 2\ ' [' \ ' ( ' \ ' IJ R, \ 1 - Ol( O· u· I· 1 · I ) 

1 v 1 PI - 01 ( Cu. 1 O. ( ' J. \ 'I . PI ) 

\\'here 

0 1 

0 ,1 

T he extt'rnal !Jou lldan' condit iOll s a rf' illlposed (I ll ({ '0. \ O. Pu). T herefore t he 

\'ariables ({ 'J. \ 'I ' PI ) art" allo\\,f'd to (, ll jO" II OIIlOg:Pll ('O US bo u ndary cond itions , 
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Boundary Integral Equations 

The \'elocity components (Cu. ' ~) . which arC' governed by Laplace's equa
tions. can be represented by 'pure' boundary i!lt egral equation using the 
fundall1ental solution for potf'lltial flo\\". HO\\'e \'f'r thf' pressttre term, because 
of the !lOll-zero forcing function. will includf' global interpolat.ion functions. 

Therefore. the indirect boundary integral f'quations for the convection
free \'ariables are: 

1r (VOl (X'. J ")9(X'. Y': X. }' ) dr (23) 

' o(X. Y) 1r 1l·02(X'. )")9(X'. Y': X.) ') dr (24) 

r ll'03(X'. ) ")y(X'. )"': X,} ') dr + L JokWdX. Y) (25) 
ir k 

where (leal ' (('02. tl '03) are fictitious sources while \IJ k are the GIFS. 
The cOll\'ectin' effects (C I . '~,PI ) are reprf'se!ltf'd by GIFS, For flows in 

simple geometries it is possible t.o select. CIFS \\·ltich automatically satisfy 
the requi red homogeneolls bOllnda r.\' cOlld i t iou!";, 

Hence 

CdX. } ') L .1H·wdX. Y) (26) 
k 

'~ (X.Y) L ;3u·Wd X . Y ) (27) 
k 

PdX. ) ' ) L a3k W d X. ) ') (28) 
I.-

in which (.311.-, J2h 33d are the pertinent cOf'fficif'ut.s for the GIFS. These 
paraillet ers are ca kula t ed by f' llforci ng 

1. Eqllations (20-2::!l at self'cted collocation points within the flow region 
auel 

2 . Homogeneous couditions at selected boundan' points. 

The chid acl\'alltage of t he first. a pproach is t he simp lici ty and size of 
the global coeffic ient matrices. deri\ 'ed frol1l t lw La.place equation solver. 
This translates into a compact. fast. alld llighly f'fficient Ilumerical imple
mentation. The drawback is its iterati,'e charactf>r since tlw forcing function 

-1 
I 
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de pe nds on t he ~ol lltio n be in g so u g h t . ( 'oIlH' rge ll ce is difficul t t o a chieve for 

large Heynolcl"s n ll lll ber because t he gOH' rllill g pllipt if system beco m es s ingu

lar. a nd can llot adeq uat e l.'· r(' p re se ll t t h(' ll ndcrh' ill g phys ics of the p roblem. 

The second app roach . w h ich ill eSSf.' ll Ce' spp a ra t('~ t he cOll w'ct ion -free flow 

from I h(' 111 a i Il f1 0 \\·. a 1I 0 \\'s fo r a mO I"f' cI i re ct rrp r (-, ~ (, Il t a t iOIl of t he asymp toti c 

li mit !; o f th e R e \"l lOlc\" s Ilu ml)e r. Furt l)(,1"I11 0 rf'. b.\· prod uct s of hig h e r-orde r 

t erI1lS ( i .f. . set.tin g h I = h2 = /,:3 = O. t lIP ~olu t i oll s ca ll be obt ained w ithou t 

i te r a t ion. II o\\·e \·er. t he codfi cie ll t m at ri x is I,uge r and t.he a p proach involves 

a great e r 1(,\,('1 o f compu tat iolla l int f' ll si t .\". 

NUMERICAL IMPLEMENTATION 

Approach I 

\Ye s ubdi \· ide t h(' b o ulldary int.o II I) f' l eme ll t~. Le I .Yd x ) (/.' = 1, 2, ·· · 7/.b) 
represell t t he ba~f'~ fU ll Ct i O Il ~ descr i bi ng ( II(' d is l ri b u t ion o f U ' o n r. In the 

examples bein g report e d ill t hi s paper. cons lallt bases fUll c tio n s are being 

used fo r the fictit io ll s st re n g Th s 1/ ' i Oil th e bo unclan·. By selec t ing each of the 

I1 b bOlln d ar.\" po illt s as s u ccess iu " o ri g in s or int eg rat ion. t he pe rtinen t int egra l 

e q uations ca n bf' assem b led into t he s.' · ~tel1l : 

(I ,k 

hi 

"h 

L (l i l; ll · ~. = hi i = 1. 2.· .. . III, 
/;=1 

{ 
J~ , .Yd x ').u( x ' . x , ) dx' X i E r <I> 

Ir k . \" ;.( x' )iJ.u / ;) /1 (x '. X, ) dx' X i E r Q 

{ <f> ( X i ) - L .'/~ I . -Ii ~fJ i.l X i E r <f> 

iJ <f> / () /I ( X i ) - L .;';:' 1 J./J IJ! i,;/ iJll X i E r Q 

(29) 

(30 ) 

(31) 

where <f> = ({ '. \ '. Pl. Therefo re . \\"(' han' /II, eq ua ti o n s t o d etermine 10k 

(k = 1. 2.· · · /I I, ) . ~\"ll1bolicalh ' equ a ti o n ( 2 ~» call i)f' \\T itte ll in the al ternati ve 

form : 
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TIle \\"1101e process boib dO\\'n to tIl<"' ite ratin' solut.ion of equat ions ( 14) 
and (:33). wit.h repealed updatill g of Fusi ng ( 10). Th e iteralive steps a re : 

l. Start. wi t. h a tri a l F (i.I .. F, "a lues for i = 1. 2. · ·· n r/) . 

1. Obt.ain .J from equatioJJ ( l~ ). 

:3. Obt.aiu )IV using equat.ion (:n). 

-f. l."se discretiz<:'d forms of the (1 ppropr ialP il1legral equations to compute 
<1> . v<1> at all 1I r/ points. This prO\'ides a b('ttc>r es t ima.t e for F . 

·1. Go back to Step 1 if conn'r.O('n("(' ("ollditiull is still unsat isfied. 

\ ote th(1t the matrix illYersioll s ill eqllat iolls (I I ) alld (:3:3) need on ly be per
fo rmed OIlCt:'. fo r fixed bounda r\' prol>l(,111s. The \N ·tors )1\;' a.nd .:3 are the 
quant it ies whost:' "alu es change dmi ll g Ilw iterat in' process. Once conver
geu ce> is reached. t Ilf' d isCl"f.'t izecl illt e>g ral ('quat iOlls can be usc,d routinely to 

obt aiu <1> = (C ' ·. P ) or the gradi ent at a m ' poi llt (x J of int.erest. 

Approach II 

The nU l1lerica l implel1lentation for the CO Il,'ectiOIl - fr('e qU(1l1tities (Co , "'0, Pol 
is s imila r to the 0 11 (' followed ill Approa ch I. " ' it h I h(' coeffic iellt s for the GIFS 
!jet to zero for the yelocit.ies. \ 0 itcrat iOIl is req uirC'd. 

The conw'cti" e- flo\\" quanl it ies arC' calcl1lated through t. lw coeffic ient s (.'31/; , 321.-.331.- ) 
whose \'alues arc obI ailled by so h 'ing Il lf' fo llo \\' ill g, coeffic ient matrices: 

"T liT /'T 

L .111. . .-1 I iI. + L 311. Alik + L .11 ~ . -I:~/1. FI / 1= 1.1 . ·· ' lId (34) 
k=1 k=1 1.=1 
liT liT liT 

L .J2/,·B 1,J, + L -'2k B li/.' + L 1.2/.. B :I/1. FI1 1 = 1.2, · ·· nd (3.5) 
k=1 k=1 1.=1 
nT nT /IT 

L .3:I /" ('I /I.+ L ·b· C,li/.' + L f H C ·:~i l. l~l 1= 1. 2 . . . . nd (36 l 
1.= 1 k=1 k=1 

liT 

L 311. /:'I ./ k = 0 .I 1 . '2 . . . . 11 /, (3i) 
1.=1 
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L 

nT 

L I,J1k E2Jk = n j = 1.2.'" n" 
1.-= 1 

"T 

L JlkE3Jk = a j = 1. 2 .... /II, 

1.- =1 

where (if tllf' higher order terlllS <lrP Ileglf'ct('d ) 

,41" , 

A Zlk = 

A:l "" = 

lJ l lk = 

B21k· = 

B3'k 

('I ik 

( "M 

C':llk = 

,m-I) _ (j{ '() ;) Po 
FJ I = ( u(x, ) dX (X i ) + \ ()( x ii d) ' ( X , ) + OX ( X ,) 

_ mil . m il OPn 
}~, { 0 ( X , ) () x ( X i ) + \ 0 ( X ,) in ' ( X , ) + ()) - ( X , ) 

F11 a 
£ './1, Wk ( X , ) if x , E r ~/ 

;-) \II ~, 
E"k On (x i ) if x , E r Q, 

(38) 

(39) 

In t he a!Jon' <P == U-. L P): Q == (i} l )iJlI.m -; iJII . iJp/ un): liT = :3(nb+ nd), 
ane! X , == (_, -, ) ') fo r 2D flo \\'~, 
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TEST RESULTS 

vVe eXalllilH'd the lid - drin~ll co\-ity f10\\- problplll df'picteci in Fig_ 1. A unit 
horizontal \-elocity i ~ imposecl on t il e lid (at } - = 1). while t he no-slip bound
ary cOlldit ion l - = , - = 0 is imposed on a ll so lid \\"all ~_ The boundary 
conditioll for the press ure 011 all walls is ( Flet cher [1991 J): 

() P 1 () ( ()[ - m--) 
an = R

f 
ds in -- - dX 

A typical CO ll\·ergel1ce profile. using Approach I. is _ hown (R, = 15) in Fig_ 
2. The horizontal yelocity at the H'rti ca l ("f' lll er- line is sho\\-n in Fig. 3. 
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CONCLUSIONS 

A boundary ('le ll1 E' llt code . based 0 11 t he' use of g lobal interpolation fun c
tions . for soh' ing the \"a\' ie r Stokes equat io ll s ha\'e been proposed in this 
paper. The C\\'oidall ce of allY cioIlla ill i Ilt f'g ra t iOIl sho\\'s th e (-'!1ormous power 

o f t.he t. f:' c1111ique . . -\ s 10llg as th e ullderlyillg pln'sics of t h(' problem is ade
qua.(.C'ly represent ed ill th e fUllciaIl]('nta l so lut.ioll s IIsed as t he kernel of the in

tegral equ a tions . accurate simul at ion s can Iw ca rried out fo r moderate to high 

Reynold 's llumber fl o \\· s . Ollh· t ri goIlOIllPtric bases haw' been used t.o repre
sent. th e IlOlllill f:'ar COllw'ctive terms . Ill vestiga t.ions are currently underway 

for el1lplo\'ill g ot lI er bases ill c lu diIlg t lIose de ri\'eci fr011l orthogonal funct ions 

such ('!tebn'he\' po h-llol1lia ls . \\'a\'e let s. a ile! ('('Ilt tlar a utomata transforms . 

Three- dimell s io Il a l e l f-ba sed BE '\1 code for illt c rIlal fl o \\'" <Ire a lso being 

de n >lopeci. 
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TURBULENCE BOUNDARY CONDITIONS FOR SHEAR FLOW ANALYSIS, . 

USING THE DTNS FLOW SOLVER £/-6 f?c;7' I 
M. Mizukami 

NASA Lewis Research Center 
Oeveland, Ohio 

SUMMARY 

'-:>/' 3/ 
-4 SIlO 

It? 

The effects of different turbulence boundary conditions were examined for two classical 
flows: a turbulent plane free shear layer and a flat plate turbulent boundary layer with zero pressure 
gradient. The flow solver used was DTNS, an incompressible Reynolds averaged Navier-Stokes 
solver with k-e turbulence modeling, developed at the U.S. Navy David Taylor Research Center. 
Six different combinations of turbulence boundary conditions at the inflow boundary were 
investigated: In case 1, 'exact' k and e profiles were used; in case 2, the 'exact' k profile was 
used, and e was extrapolated upstream; in case 3, both k and e were extrapolated; in case 4, the 
turbulence intensity (l) was 1 %, and the turbulent viscosity (J1,) was equal to the laminar viscosity; 
in case 5, the 'exact' k profile was used and J1, was equal to the laminar viscosity; in case 6, the I 
was I %, and e was extrapolated. Comparisons were made with experimental data, direct 
numerical simulation results, or theoretical predictions, as applicable. Results obtained with DTNS 
showed that turbulence boundary conditions can have significant impacts on the solutions, 
especially for the free shear layer. 

INTRODUCTION 

Turbulent shear flows play a major role in many aerospace and fluid dynamics 
applications. Wall bounded turbulent shear flows, i.e. turbulent boundary layers (TBL), are 
present in nearly all moderate to high speed external and internal flows. Turbulent free shear 
layers (FSL) are important for many applications such as flow mixers and thrust producing 
nozzles. 

In computational fluid dynamic (CFD) analyses, the use of an appropriate boundary 
condition (BC) is a critical element in assuring convergence to an accurate solution. Use of 
inappropriate boundary conditions may cause anyone or more of the following: inaccurate 
solutions, poor convergence, nonphysical effects, or divergence. 

For turbulent flows, the k-e turbulence model introduces two new flow properties, 
turbulent kinetic energy (k) and turbulent dissipation (e), each with its corresponding transport 
equation which must be solved numerically by the flow solver. As for any other flow property, it 
would seem to be essential to assign the proper boundary conditions for k and e, especially on the 
inflow boundary, where the flow enters the computational domain. However, the use of 
appropriate turbulence BC's is frequently underemphasized or neglected. 

Ideally, the exact profiles of k and e would be known, and they would be applied as the 
inflow BC, but thatis usually not feasible. Experimental k profiles are sometimes available, but 
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often with inadequate resolution for use as a CFD BC, especially near the wall. Measurement of k 
requires an unsteady measurement of flow velocity, with a response time fast enough to capture 
the smallest turbulence time scales, preferably in 3 components to take into account turbulence 
anisotropy. e is almost impossible to measure experimentally, as it is calculated from the second 
derivatives of mean flow properties, requiring exceedingly accurate measurements on a very fme 
survey grid. 

Many flow solvers simply extrapolate k and e on non-wall boundaries of the solution 
domain. But upstream extrapolation of turbulence properties at the inflow boundary is counter 
intuitive, and it has been shown to produce inaccurate results (Georgiadis and Yoder 1994). In 
particular, extrapolation of k and e at the inflow appeared to inhibit the production of k near the 
inflow plane, resulting in locally lower turbulent viscosity. Furthennore, the eigenvalues of both 
k and e transport equations are equal to the mean flow velocity, indicating that at the inflow 
boundary, k and e values should be specified (Hirsch 1990). 

Alternately, some turbulence properties could be assigned unifonn values over the entire 
inflow boundary. Unifonn turbulence intensity (l) and turbulent viscosity (Jlt) could be specified; 
k and e values, which will vary across the boundary depending on the mean flow properties, can 
be derived from I and J1.r Another possibility is to specify unifonn I and turbulent length scale 
(L), and from these derive k and e. However, the specified values of I and J1.t are typically 
arbitrary estimates. Georgiadis, Chitsomboon and Zhu (1994) examined a 2-D ejector nozzle, 
which includes both wall bounded and free shear flows. Specifying unifonn I and J1.t at the inflow 
was found to match the data better than specifying I and L, or extrapolating k and E. 

In the present work, the effects of different CFD turbulence BC's are examined for two 
classical flows: a turbulent plane free shear layer and a flat plate turbulent boundary layer with zero 
pressure gradient. The flow solver used is DTNS, an incompressible Reynolds averaged Navier
Stokes solver with k-E turbulence modeling. Different combinations of the following boundary 
conditions are used: 'exact' k profiles, 'exact' e profiles, extrapolated k, extrapolated e, unifonn I, 
and unifonn J1.t Comparisons are made with experimental data, direct numerical simulation 
results, and theoretical predictions, as applicable. 

METIIODS 

Flow Solver 

DTNS is an incompressible Reynolds averaged Navier-Stokes flow solver with k-e 
turbulence modeling, developed at the U.S. Navy David Taylor Research Center, primarily by 
Gorski (1988a, 1988b). The three versions of the code are designed to solve two dimensional 
(DTNS2D), axisymmetric (DT AXI) and three dimensional (DTNS3D) flows, respectively. 
Although the flows examined herein are two-dimensional, the three dimensional flow solver 
(DTNS3D) was used here, on a three dimensional grid with 5 identical grid planes in the cross 
stream direction, so that in the future, methods developed here could be be directly applied to 
three-dimensional problems of interest 

DTNS was selected for this study for two reasons. First, it is a relatively well established, 
general-purpose code, with a number of documented test cases with experimental comparisons, 
such as: cascades (Gorski 1988b), flow over a cylinder (Gorski 1988a), an NACA 0012 airfoil 
(Gorski 1988a), flow over a backward facing step (Gorski 1988a, Steffen 1992 & 1993) and 
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laminar boundary layers (Steffen 1992). This allows the present study to focus on the fluid 
dynamics, instead of the code development and validation. Second, it is an 'open' code, with the 
source code available. This allows the specialized turbulence BC's to be implemented by 
modifying the code. In addition, study of the source code leads to a deeper understanding of the 
computational procedure and the relevance of the resulting solution, which are essential to a 
fundamental study such as this. 

The method of pseudo compressibility is used in the governing equations, so that state of 
the art schemes developed for compressible flows may be applied to incompressible flows. The 
total variation diminishing (TVD) scheme of Chakravarthy and Osher is used to discretize the 
convective terms of the governing equations. The discretized equations are solved implicitly using 
an approximate factorization method. Gorski (1988a) provides further details on the solution 
procedure. 

The Launder and Spalding (1974) turbulence model is implemented, which is generally 
considered the standard high Reynolds (Re) number k-e turbulence model. A wall function model 
is used, which does not require boundary layers to be resolved using large numbers of packed grid 
points, thus allowing complex wall bounded flows to be solved with a reasonable number of grid 
points, and in a reasonable amount of time .. Although the proflle of an attached turbulent boundary 
layer is assumed at the wall, the solutions have been found to be accurate even for some drastically 
separated flows (Steffen 1993). Even low Re k-e models which resolve the boundary layer in 
detail on a fine grid, make certain empirical assumptions about the wall bounded flow 
characteristics. Furthermore, low Re k-e models models are often highly grid sensitive, and can 
require extremely finely resolved grids packed very close to the wall to produce an accurate 
solution (Avva et al. 1990). 

The boundary condition routines were modified to allow for different inflow conditions as 
follows. Mean flow velocities (u) are read in from a data file. k and e may be independently 
specified at the boundary in two different ways: the profile may be read in from a data file, or it 
may be zeroeth-order extrapolated. J1.t is calculated from k and e. 

For both the wall bounded and free shear flow cases, six different combinations of k and e 
BC's at the inflow boundary were investigated, as shown in table 1. In case 1, 'exact' k and e 
profiles are used. In case 2, the 'exact' k profile is used, and e is extrapolated upstream. In case 
3, both k and e are extrapolated; this is the default case for DTNS. In case 4, the / is uniformly 
1 %, and J1.t is equal to the laminar viscosity; k and e values are derived from these using the 
following expressions. k and I are related by: 

k = ~ /2 11u1l2 
(1) 

In this turbulence model £ and J1.t are related by: 

Il, = CJl P k2 
/ e (2) 

where CJl=O.09, and the damping terms are neglected. In case 5, the 'exact' k profile is used, Ilt 
is equal to the laminar viscosity, and e is calculated from (2). In case 6, the / is 1%, k is derived 
from / as in (1), and eis extrapolated. 

The amount of detailed turbulence information required at the inflow boundary varies from 
case to case. Case I requires both k and e profiles; this is the most ideal case, but as discussed 
before, e profiles are almost never available. Cases 2 and 5 require only k profiles; this is typically 
more feasible than case 1, because turbulence levels, and thus k, are often measured 
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experimentally. Cases 3, 4 and 6 require no detailed turbulence information at all. 

Hat Plate Turbulent Boundary Layer 

The flat plate TBL with zero pressure gradient is a fundamental fluid dynamic problem that 
has been extensively studied. Initial boundary layer flow property profiles are applied at the 
inflow boundary of the computational domain, the flow is propagated downstream, and the flow at 
a downstream station is compared with benchmark results. (figure I) 

The direct numerical simulation (DNS, not to be confused with DTNS) results of Spalart 
(1988) are used to provide the 'exact' inflow conditions at Ree = 300, and the benchmark 
downstream solution at Ree = 1410, where Ree is the Reynolds number based on the momentum 
thickness of the boundary layer and freestream velocity. When properly used, DNS is thought to 
be as accurate as experimental results, and it provides completely detailed information of the 
flowfield, including information needed to calculate k and e, which are difficult to measure 
experimentally. 

The grid dimensions are 100 in the stream wise direction, 40 in the vertical direction, and 5 
identical planes in the cross flow direction to accommodate the 3D flow solver. The grid is packed 
to the wall such that at the inflow boundary y+ is about 20. The bottom wall has a no slip 
boundary condition, the top 'far' wall is a slip wall, the sides are slip walls, and the outflow has a 
constant pressure. Convergence was typically obtained in several thousand iterations, depending 
on the particular case. 

Turbulent Plane Free Shear Layer 

The turbulent plane FSL is one of the simplest free shear layers, and it too has been 
extensively studied. The computational domain consists of the free shear layer mixing region 
only, with the upstream boundary at the trailing edge (TE) of the splitter plate (figure 6). As in the 
TBL, the initial profiles are applied at the upstream BC of the computational domain, the flow is 
propagated downstream, and the flow at a downstream station is compared with exact results. 

The plane free shear layer in the McCormick's (1993) experiment is simulated, and 
comparisons are made with data from the extensive flow diagnostics in the mixing region. 
McCormick's facility consists of a fan driven wind tunnel, a contoured splitter plate, screens on 
one side to slow the flow, and a square test section. The flow velocity on the slower, upper side 
(Uj ) is 4.88 mis, and the velocity on the faster, lower side (U2) is 8.53 mis, giving a velocity ratio 
of 1 : 1.75. Just upstream splitterTE, the momentum thickness (8) is 1.237mm on the upper I 
low speed side, and 8 = 1.107mm on the lower I high speed side. Extensive measurements were 
made with triple sensor hot film probes of all three velocity components, including turbulence 
properties. The flow was visualized using smoke injection and laser light sheets. 

The 'exact' u, k and e profiles at the upstream boundary of the computational domain (Le. 
at the splitterTE) were obtained from a separate DTNS solution to a flat plate TBL, because k and 
e profiles at the splitter trailing edge were not measured experimentally. Certainly, the resulting 
solution of the FSL will be affected by the accuracy of the DTNS TBL solutions, but they should 
be sufficiently accurate for purposes of comparing with other substantially different k and e BC' s. 
The DNS TBL solutions discussed above could not be used for this purpose, because the Ree 
values do not correspond to those at the splitter TE. 

The grid dimensions are 60 in the stream wise direction, 39 across the shear layer, and 5 
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identical planes in the cross flow direction to accommodate the 3D flow solver. The grid is packed 
such that y+ is between 20 and 30 at the inflow boundary. The sides are slip walls, and the 
outflow has a constant pressure. Convergence was again typically obtained in several thousand 
iterations, depending on the particular case. 

RESULTS 

Flat Plate Turbulent Boundary Layer 

Figure 2. shows the downstream development of the boundary layer momentum 
thicknesses (8) for the six cases, and the TBL 1I5th power law approximate theory predictions 
(Kuethe & Chow 1986). Downstream distance is nondimensionalized as the Reynolds number 
based on the distance from the upstream plane (L1Rex )' Cases 2 and 3 show good agreement with 
theory. In cases 4, 5 and 6, boundary layer development near the inflow boundary is suppressed. 
Surprisingly, case 1, the ideal case with all turbulence properties exactly specified, also shows 
slightly suppressed boundary layer development near the inflow boundary. However, 
downstream of the initial discrepancies, all 6 cases quickly approach the same theoretical slope. 

At the inflow boundary, L1Rex = 0 and L1Reo = 300. Comparisons of u, k and e profiles 
are made downstream at the L1Rex = 551000 plane, where the approximate theory predicts that 
L1Reo = 1410. 

Figure 3a shows the 'exact' u profile, specified at the inflow boundary in all 6 cases. 
Figure 3b shows the u profile at the downstream plane. Although the profiles have slightly 
different in thicknesses, all have the about the same shape as the DNS solution. 

Figure 4a show: the 'exact' inflow k profile used in cases 1,2 and 5; the k profile for 1= 1 % 
used in cases 4 and 6, which is barely visible next to the vertical axis; and the k profile resulting 
from upstream extrapolation in case 3. Clearly, 1= 1 % specifies k to be much lower than it should 
be, and upstream extrapolation results in a k that is too high. Figure 4b shows the downstream k 
profiles. Despite the drastically different initial conditions, all 6 cases match the DNS solution 
shape surprisingly well, but again with slightly different thicknesses. 

Figure Sa shows the exact E profile used in case 1, the profiles specified in cases 4 and 5, 
and the profiles resulting from upstream extrapolation in cases 2, 3 and 6. Case 3, with both k 
and e extrapolated upstream, gives the best prediction of the initial e profile after case 1, but this is 
most likely a fortunate coincidence. Cases 2 and 6 results in e profiles that are too low. Case 5 
specifies an e profile that is too high. The case 4 profile is not visible on the graph, because, the £ 

values are all near zero. Figure 5b shows the downstream e profiles. All 6 cases fall on 
approximately the same curve, and overpredict e. 

Turbulent Plane Free Shear Layer 

Figure 7. shows the downstream development of the shear layer momentum thicknesses 
(8) for the six cases. 8 is indicative of the amount of mixing taken place between the high and low 
speed flows, and is defined as: 
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J ( u - V2 ) ( V1 - II ) 

8= dy 
( Vr V1 ) 2 (3) 

where V 1 is the mean velocity of the upper / low speed side. and V 2 is the velocity of the bottom / 
high speed side. 

Downstream distance is nondimensionalizedas the Reynolds number based on VJ and the 
axial distance from the computational inflow plane (Rex)' which coincides with the trailing edge 
(TE) of the splitter plate. Note that near the splitter TE. 8 is actually negative. due to the low 
speed flow from the splitter boundary layers. Cases 1. 2 and 4 show good agreement with the 
experimental results of McCormick & Bennett. In cases 5 and 6. shear layer development near the 
inflow boundary is suppressed. In case 3. the shear layer expands at an unrealistically high rate. 
However, the initial discrepancies in all cases except 6 do not persist far downstream, and the 
curves shortly approach the same slope. 

Profiles of u, k and e are plotted at three stations: Rex = 0, at the splitterTE and inflow 
boundary; Rex = 28244, and Rex = 290510. The experimental data for U and k are available and 
plotted for the two downstream stations for comparisons. 

Figure 8a shows the 'exact' u profile, used as the inflow BC in all 6 cases. Figure 8b 
shows the u profiles at the two downstream stations. AtRex = 28244, cases 4, 5 and 6 appearto 
give the best agreement with data; at Rex = 290510, cases 1 and 2 appear better. In case 3, the 
shear layer is far too thick. 

Figure 9a show: the 'exact' inflow k profiles used in cases 1, 2 and 5; the k profile for 1 = 
1 % used in cases 4 and 6 which is too low to be visible on the plot; and the k profile that results 
from upstream extrapolation in case 3. Again, 1=1 % specifies k to be much lower than it should 
be, and upstream extrapolation results in k that is much too high. Figure 9b shows the 
downstream k profiles. At both stations, cases 1 and 2 give the best agreement with data, cases 
4,5 and 6 underpredict k to varying extents, and case 3 drastically overpredicts k. 

Figure lOa shows the 'exact' inflow e profile used in case 1, the profiles specified in cases 
4 and 5, and the profiles resulting from upstream extrapolation in cases 2, 3 and 6. Case 2 
underpredicts Eo case 3 creates an unrealistically wide profile. cases 4 and 6 are close to zero and 
not visible on the plot. and case 5 specifies an unreasonably high spike. Downstream, since no 
experimental data is available for e, it is difficult to tell which results are the most accurate. but 
clearly, the case 3 profile is too wide. 

CONCLUSIONS 

The effects of different turbulence property CFD boundary conditions were examined 
using the DTNS flow solver for two classical flows: a turbulent plane free shear layer (FSL) and a 
flat plate turbulent boundary layer (TBL) with zero pressure gradient. Six different combinations 
of turbulence property boundary conditions at the inflow boundary were investigated. The major 
observations and conclusions of the study were as follows: 

1. Wall bounded turbulent shear flows appeared to be relatively insensitive to the turbulence 
inflow Be. Despite drastically different k and e profiles at the inflow boundary, the mean 
velocity (u), k and e profiles downstream were nearly identical, and all cases approached 
the same correct slope for momentum thickness development. In the near field of the 
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inflow boundary, cases 1, 4, 5 and 6 suppressed the boundary layer development to 
varying extents. Cases 2 and 3 gave the best results. Discrepancies in the initial boundary 
layer development slightly affected the thicknesses at downstream stations. 

2. Turbulent free shear flows appear to be more sensitive to turbulence inflow BCs than the 
wall bounded flows. For free shear flows, all cases except 3 gave reasonably good 
results, but with more discrepancies between the cases than for wall bounded flows. 
Cases 1 and 2 gave the best results. Case 5 inhibited the initial shear layer growth, and 
created an unrealistic spike in the £ profile at the inflow. 

3. For free shear flows, case 3 (upstream extrapolation of k and e at the inflow boundary) 
gave a drastically high shear layer growth rate. Note that this is the default case for many 
flow solvers. 

4. Overall, when both 'exact' k and e profiles were used, cases 1 and 2 gave the best results. 
When only k profiles were used, case 2 was best. When no 'exact' turbulence profiles 
were used, cases 4 and 6 gave reasonable results. 

5. Some additional factors not considered in this study were: compressibility, specifying 
different levels of uniform turbulence intensity, specifying different levels of uniform 
turbulent viscosity, and more complex flowfields. 

6. The particulars of these findings may vary for different k -e turbulence models and 
numerical schemes. However, it is conjectured that overall 'lessons learned' from this 
study are probably applicable to other flow solvers as well. 
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Table 1. Turbulence property boundary conditions 

Case # k e I 
Ilt 

exact exact 

2 exact extrapolated 

3 extrapolated extrapolated 

4 calc. from I. u calc. from k. Ilt 
1% 

Jl.lamin 

5 exact calc. from k. Ilt Jl.lamin 

6 calc. from I. u extrapolated 1% 
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Figure 1. schematic of flat plate turbulent boundary layer (TBL) flow, and computational domain 
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Figure 2. TBL momentum thickness development 
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Figure 3a. TBL mean axial velocity profile at inflow boundary (Ree = 300, ~Rex = 0 ) 
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Figure 3b. TBL mean axial velocity profiles at ~Rex = 551000 

256 



12000 

10000 

8000 

>. 
II) 6000 a: 

I· 

I 

4000 

2000 

0 

0 

. 

0.005 

DNS. CASES 1, 2, 5 
CASE 3 
CASES 4,6 

0.01 

k/U2 

. "' ..... "' .. 

0.015 0.02 

Figure 4a. TBL turbulent kinetic energy profiles at inflow boundary (ARex = 0 ) 
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Figure 4b. TBL turbulent kinetic energy protiles at ARex = 551000 
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Figure 5a. TBL dissipation profiles at inflow boundary ( L\Rex = 0 ) 
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Figure 6. schematic of turbulent plane free shear layer (FSL) flow and computational domain 
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Figure 8a. FSL mean axial velocity profile at inflow boundary ( Rex = 0 ) 

Rex = 28244 

1.5 2 

o McCORMICK 
& BENNETT 

CASE 1 
~ - - - - - CASE 2 
,~ 9 _' , , . " . . " CASE 3 
',~:~ O. - . - - - CASE 4 
~\Q _ .. "- CASE 5 

. ·~o _' ._""_""_. '_" _C_A_S_E _6_ 

, ,,,'0 
" ,,\ 

Rex =290510 ••·· .. 1 
1.5 2 

Figure 8b. FSL mean axial velocity protiles at downstream stations 

260 



, 

20000 

10000 

~ 0 a: 

·10000 

·20000 

20000 

10000 

~ 0 a: 

·10000 

·20000 

o 

o 

0.04 0.08 0.12 

kl U1
2 

DNS, CASES 1, 2, 5 
CASE 3 
CASES 4, 6 

0.16 

Figure 9a. FSL turbulent kinetic energy profiles at inflow boundary (Rex = 0 ) 
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The exchange of models is one of the most serious problems currently encountered in the practice 
of spacecraft thermal analysis. Essentially, the problem originates in the diversity of computing 
environments that are used across different sites, and the consequent proliferation of native tool formats. 

Furthermore, increasing pressure to reduce the development's life cycle time has originated a 
growing interest in the so-called spacecraft concurrent engineering. In this context, the realisation of the 
interdependencies between different disciplines and the proper communication between them become 
critical issues. 

The use of a neutral format represents a step forward in addressing these problems. Such a means 
of communication is adopted by consensus. A neutral format is not directly tied to any specific tool and it 
is kept under stringent change control. Currently, most of the groups promoting exchange formats are 
contributing with their experience to STEP, the Standard for Exchange of Product Model Data, which is 
being developed under the auspices of the International Standards Organization (ISO 10303). 

This paper presents the different efforts made in Europe to provide the spacecraft thermal analysis 
community with a Thermal Neutral Format (TNF) based on STEP. Following an introduction with some 
background information, the paper presents the characteristics of the STEP standard. Later, the first efforts 
to produce a STEP Spacecraft The~al Application Protocol are described. Finally, the paper presents the 
currently harmonised European activities that follow up and extend earlier work on the area. 
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ANSI 

AP 

ASCII 

ABBREVIA nONS AND TERMS 

Application Activity Model 

Application Interpreted Model 

Application Reference Model 

American National Standards Institute 

Application Protocol 

American Standard Code for Information Interchange 
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CAD 

CAE 

CNES 

Application Thermique Spatiale 

Computer Aided Design 
I 

Computer Aided Engineering 

Centre National d'Etudes Spatiales 

ECLS Environmental Control and Life Support 

ESA European Space Agency 

-- ESARAD ESA's radiative analysis software 
ESA TAN ESA's thermal network analyser 

ESTEC ESA' s European Research and Technological Centre 

FE Finite Elements 

FHTS Fluid loop extension to ESA T AN 

FLUOR CNES' Radiative Analysis Software 

ICET AS Integrated Communication Environment for Thermal Analysis 

IGES Initial Graphics Exchange System 

IR 

ISO 

SDAI 
SET 

TAS 

STEP 

TMM 

TNF 

Integrated Resources 

International Standards Organization 

Standard Data Access Interface 
Standard d'Exchange et Transfert 

Thermal Analysis for Space AP 

ISO's Standard for Exchange of Product Model Data 

Thermal Matl-Jematical Model 

Thermal Neutral Format 

VDA-FS Verband Deutschen Automobil, Flaechen Schnittstelle 

YC ESTEC's Thermal Control and Life Support Division 

YCV YC's Analysis and Verification Section 

TIiE TIiERMAL NEUTRAL FORMAT 

Standardisation of the analysis tools 

The standardisation of analysis procedures has become an essential requirement for the 
organisations operating in the European Space sector, due to the complexity found in large space projects 
involving international consortia of companies. This standardisation has most obviously materialised in the 
availability of a set of de facto standard tools which facilitate the interaction between the different parties 
involved in a project. Examples are the ESABASE (ref. [1]), ESATAN (ref. [2]), FHTS (ref. [2]), 
THERMICA (ref. [3]) and the recently released ESARAD (ref. [4]) tools. 

An important consequence of this situation is that the tool's native formats have also been adopted 
as the de facto standards for exchange and archive of thermal models. This seemed quite convenient at a 
time when the number of tools was small and no obvious alternative was available. However, this approach 
is not satisfactory any longer. In fact, the use of native formats has serious and long reaching implications, 
which will be reviewed in the following sections. 
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The problem of exchange 

The exchange of thermal models is currently posing a number of serious problems to the day-to
day practice of the spacecraft thermal analysis. Essentially, the problem originates in the diversity of 
computing environments adopted by different organisations. and the consequent proliferation of native tool 
formats. The situation can be even more troublesome for those organisations needing to maintain several 
environments to serve different requirements or customers. 

Furthermore, the organisations often invest in the development of proprietary software, which is 
normally intended to serve purposes not adequately covered by the standard tools. These developments 
contribute to enhance the companies' competitiveness, by taking advantage of in-house expertise and skills. 
However, most of these tools introduce new exchangeability requirements, aggravating further the problem. 

The concurrent engineering issue 

A state-of-the-art analysis environment cannot overlook the need to provide proper communication 
means between the different teams involved in the spacecraft development. Indeed, spacecraft engineering 
is a true multidisciplinary process, in which the information follows complicated paths and different 
disciplines interact in non-trivial manners. 

Traditionally, each discipline's analysis has been performed in an uncoupled way, in an attempt to 
isolate their particularities and thus to simplify the assumptions and methods used for each of them. 
However, two main developments have radically changed in the last years the context in which the analysis 
takes place: 

• the advances made in terms of computing power have allowed to perform more and more complex 
analysis in a shoner time. Furthermore, this evolution has enabled the development of tools that model 
and analyse the physical problems with fewer simplifications and restrictions. 

• more and more complex missions impose requirements which cannot be achieved by performing 
uncoupled disciplinary analysis. 

With these ideas in mind, there is an increasing trend to acknowledge the interdependencies 
between design and analysis and to integrate them within a tightly coupled process. This approach also 
encourages the concurrent analysis of several physical problems through the use of common models, 
procedures and tools. The final objectives are those of streamlining the flow of information and of 
increasing the efficiency and the capabilities of the design and analysis processes, while rationalising the 
resources used. 

Two issues are particularly imponant in this context. Firstly, a good communication between the 
CAD world and the analysis environment has become an essential requirement. Indeed, although the flow 
of information between disciplines depends on several organisational issues, the initial stage is typically the 
acquisition of configurational data from the project source, which in general is a CAD system. Secondly, 
proper communication to commercial finite element (FE) packages is more and more imponant. The 
continuous evolution of these tools in the last years makes them very attractive to both managers and 
engineers. FE packages provide a framework which can be used to integrate individual diScipline tools to 
yield the desired multidisciplinary analysis capability. Although finite differences remains the method of 
choice in spacecraft thermal analysis, the drive towards concurrent engineering is likely to foster the use of 
FE tools in the future. 
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The problem of archive 

The exchangeability requirements can be extended quite naturally to the archive and retrieval of 
analysis models and results. After all. one can consider archiving as an exchange across time. Indeed. an 
archived model might not run properly when retrieved because of the evolution of the tool and the 
incompatibility between different versions. An extreme case. but not unlikely given the typically long 
duration of the space projects. would arise when the tools once used in a project are not available (or 
supported) any more. 

A further reason making the case for stable archive means is the need to perform occasional 
emergency analysis campaigns to cope with spacecraft operation modes that follow unexpected events or 
failures. Under the urgency of these situations, costly modifications to the archived models are simply not 
acceptable. 

The need for a neutral format 

It is clear that the use of native formats as a means of exchange brings about serious problems. For 
instance: 
• their use encourages the proliferation of tool-to-tool interfaces. Obviously this is not the most efficient 

way to exchange data between a given number of software packages. 
• native formats are intrinsically unstable, i. e. they evolve with time. Therefore, the software interfaces 

that read/write native formats have to be constantly updated in order to keep up with new versions of 
the tools. 

• the interface developers need to have a complete, updated description of the two formats being inter
faced. This might be a problem if, as usual, the interface developers are not in control (at least one) of 
the formats. This fact increases the chances of software interfaces lagging behind the evolution of the 
tools, or simply being obsolete. 

• organisations may have to develop different interfaces to satisfy each major customer's requirements. 
The extra costs incurred by this practice are frequently absorbed by the customer. 

The use of a neutral format overcomes these serious problems. Such an approach is adopted by 
consensus as a means of exchange and archive. A neutral format does not depend on any specific tool and 
it is kept under stringent change control. The neutral format system consists not only of the description of 
the data intended to be exchanged or archived. but also of a formalism describing the means for exchange 
or archive and of the interfaces to other formats. 

According to ref. [5], a Thermal Neutral Format (lNF) shall fulfil the following requirements: 
• the TNF shall ultimately support the domain relevant to all the software tools used to perform thermal 

analysis. 
• the interfaces in both directions (TNF to native format and vice versa) shall preserve the integrity of the 

information being exchanged or archived. 
• the TNF shall be flexible enough to allow its extension without modification of the existing features. 
• the TNF shall allow the selective treatment of the data. That is, each interface shall be able to process 

only the data relevant to the interface. 

• the TNF shall be portable across systems and sites. 
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A TNF should also benefit of a large scope. Indeed. a widely spread standard formalism should be 
used to support the data exchanged or archived. simply because commercial CAD/CAE and FE tools are 
more likely to include built-in interfaces to internationally accepted standard formats. The development of 
a specific formalism for the TNF would not only waste efforts but also limit its immediate scope of 
application. 

Finally, it is important to notice that were a TNF available, the development of interfaces to and 
from the TNF would normally be left to the tool developers themselves. This would likely give better 
chances to have interfaces up-to-date to the last tool versions. 

Initiatives in the field of Thermal Model exchange and archive 

Although the problems described in the previous sections have been around for a long time, the 
development of a TNF, based on a broad consensus within the European Space Industry, has not been 
attempted until recently. However. a number of initiatives were born with the intention to address the 
problems in one way or another. 

As previously commented. native formats were typically exchanged between sites. The Thermal 
Mathematical Models (TMM) exchanged by means of ESA T AN input decks are a clear example of this 
approach. As the need to exchange geometry-based models grew. the requirement for a new format became 
obvious. For that purpose, the ESABASE[4] language started to be used. Although ESABASE is basically 
a system engineering package, its input language provides a means to define analysis-tool-independent 
models. Furthermore, the ESABASE framework includes translators to several radiative and thermal 
packages. However, the ESABASE language depends itself on the evolution of the ESABASE software. 
and it has a rather limited scope. 

Another ESA's initiative, ICETAS (ref. [6)[7]). was not originally an effort to provide solutions to 
the problems of exchange and archive. Rather, it addressed the issue of integration of thermal software tools. 
Nevertheless, as work on ICETAS progressed these aspects became very relevant. Furthermore, the project 
produced a description of the complete set of data required to perform Spacecraft Thermal Analysis, as well 
as their interrelationships. This information is clearly very relevant to the development of a TNF. 

The SET-ATS protocol 

An important initiative has recently been undertaken by CNES, the French Space Agency, in order 
to provide a TNF based on the French standard SET. CNES have developed the "Application Thermique 
Spatiale" (ATS) Application Protocol to address the spacecraft thermal analysis exchange and archive 
requirements. 

The first version of the protocol (ref. [8]) provided support for three major categories of entities: 

• geometrical entities extracted from a set of primitive shapes, which are meshed and have thermo-opti
cal properties attached to their faces. These entities can be assembled to build hierarchical models con
taining multiple occurrences of sub-models. 

• results of calculations (processing) associated to geometric or thermal nodes. 

• ·an entity containing the data needed to characterise the orbit. 
In addition to these categories. the "neutral file header" and "neutral file summary" entities define 

the required additional information (origin, date of issue ... ) for exchange and archive purposes. 
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Following a ftrst implementation and test, a second version (ref. [9]) has extended the original 
protocol to improve the support for: 

• orbit and kinematic extensions. Orbital data locate the satellite, considering it as a point in space (its 
centre of mass). Kinematics data give the attitude of the satellite and its moving parts with respect to 
the planet and the Sun. 

~ • geometrical features. The set of elementary surfaces has been extended to take into account boolean 
operations and high-level shapes. The boolean operations (union and difference) can be used to gener
ate complex geometry by combining elementary surfaces. High-level shapes, which have an associated 
type (e. g., box, cylinder ... ), allow the easy manipulation of collections of elementary surfaces. 

• language features such as comments, numbering and labelling, mainly introduced for man-machine 
interface purposes. 

With this extended support, the new version aims to cover the main capabilities of the FLUOR, 
THERMICA ESABASE and ESARAD radiative analysis software. 

The A TS protocol is based in the data and mechanisms deftned in the SET Z68-300 standard, which 
is implemented in a large number of CAD/CAE software packages and used extensively in the European 
Aircraft Industry. The protocol, which covers some domain specific requirements, makes use of a subset of 
the generic entities available in the SET language. Moreover, some items of information, not covered by the 
SET standard, required the addition of new blocks and sub-blocks which can only be used by an interface 
that recognizes their format and semantics. Consequently, a correct SET-ATS interface will generate a SET 
physical me syntactically compliant to the SET standard. A standard SET interface will read these mes, 
although it will be unable to interpret the parts of the information specific to the A TS protocol. 

THE STEP STANDARD 

Description of the standard 

Work on communication standards between CAD/CAE systems has been under way since the 
beginning of the eighties, resulting in the development of several exchange formats like IGES, VDA-FS or 
the above mentioned SET. Currently, most of the groups promoting these exchange formats are contributing 
with their experience to STEP[10], the Standard for Exchange of Product Model Data, which is being 
developed under the auspices of the International Standards Organization (ISO 10303). 

STEP was ftrst proposed in 1984, with the intention to provide a worldwide standard supporting the 
complete representation of a product throughout its life cycle. STEP is different to other exchange formats 
in that rather than only providing rules to format a deft ned set of data, it is also supplying a methodology to 
formally describe the data and to implement the format. Furthermore, conformance testing to the standard 
is an integral part of STEP. From this point of view. STEP goes beyond the concept standing behind other 
exchange standards, by providing a standardised methodology to deftne application-speciftc product data 
standards. Other advantages with respect to existing standards are: 

• because of the broad international consensus built around it, STEP is likely to meet the requirements set 
by many different applications. 

• STEP establishes a separation between the logical design of the data and the physical implementation. 

• the use of a formal language removes ambiguity and enables a rigorous conformance testing. Further
more, automatic software generation from the EXPRESS specification becomes possible. 
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STEP consists basically of a series of components (called parts in the STEP terminology). Each of 
the parts are published separately, to help coping with their different degree of maturity. The main parts are: 

• the EXPRESS[ 11] language, developed on purpose for STEP. EXPRESS is a formal information mod
elling language used when describing the STEP entities. with the intention to ensure consistency and 
avoid ambiguity. 

• resource information models defining the basis for the development of application standards. The so-
1( called Integrated Resources (lR) are in fact the basic building blocks used to define the application 

standards. They provide a unique representation of each element of information used within STEP. 
These resources can be either Generic Resources. i.e. of potential use for any type of application, or 
Application Resources. valid only for specific applications. The EXPRESS language is used to define 
the IR. 

• Application Protocols (AP). which are the actual application-oriented standards that end-users will take 
for their exchange and integration needs. The APs are logically self-contained and complete. 

• implementation methods supporting the data models provided by STEP. 

• strict conformance testing procedures and tools to control and to certify compliance to STEP APs. 

Therefore, the EXPRESS language is used in the definition of the Integrated Resources. from which 
the Application Protocols are derived (these can also use directly EXPRESS). A STEP implementation is 
produced when an Implementation Form is chosen. This implementation can be tested for conformance to 
the standard using the STEP-supplied methodology. 

STEP is also to play a role in the issue of integration. Indeed. there are several possible 
implementation forms of the STEP standard. Today. the only implementation in place is the physical 

I transfer file, but work is progressing in the definition of the Standard Data Access Interface (SDAI), which 
will introduce a software layer representing an abstract. "EXPRESS'" view of the data to be transferred or 
stored. The SDAI will provide in practice interfaces to both relational and object STEP databases. 

STEP Application Protocols 

As mentioned previously. STEP provides a standardised methodology to develop protocols 
oriented to specific fields of application. The development of a particular AP stems from the specification 
of the scope and the information requirements of the AP. This is achieved by means of the Application 
Activity Model (AAM). which describes the processes, information flows and functional requirements of 
the application. The AAM helps to understand the nature of the activities and the role of the product data in 
the field of application. The AAM is included as an informative annex to the AP. 

A more detailed Application Reference Model (ARM) specifies the information requirements and 
constraints of the AP. in terms of the so-called Units of Functionality. These units contain information about 
the entities. attributes and relationships that determine a given concept within the ARM. Although the ARM 
is defined by means of a formal data description language, application-specific terminology is used in this 
model. The ARM is also appended as an informative annex to the AP. 

After the ARM is defined. the Application Interpreted Model (AIM) specify the manner in which 
the Integrated Resources can be used to satisfy the AP requirements. The resource constructs can be used 
directly. or refined depending on the application requirements. 

Finally. the APs shall include the conformance requirements to be satisfied by any implementation 
claiming to support the AP. Such an implementation is tested by performing a conformance test based on a 
set of abstract test cases. 
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STEP and the TNF 

Several fundamental STEP parts are already available either as International Standard or Draft 
International Standard. These parts include the EXPRESS language, the Physical File Exchange Structure, 
the conformance testing methodology, some Integrated Resources and some Application Protocols. A 
significant number of other IR and AP are being developed, with many of them close to achieve a stable 
state. 

Certainly, the transition from current exchange standards to STEP will take some time. 
Nevertheless, enough progress has been achieved to appreciate the relevance of the STEP technology to the 
development of a TNF. Indeed, STEP is an obvious candidate for the TNF, because in addition to its 
intrinsic advantages as product data standard, it fulfils the basic requirements for a TNF: 

• it is a neutral format that satisfies the needs for stability and tool-independence. 

• its broad scope will allow immediate communication to the CAD and FE worlds. 
In summary, STEP provides an excellent methodology to develop a Spacecraft Thermal 

Application Protocol. For the first time ever, the thermal analysis community might have the possibility to 
use a TNF tailored to its needs, but at the same time enjoying the character of full international standard. 

DEVELOPMENT OF TIlE STEP TIlERMAL AP 

CNES' STEP-ATS Application Protocol 

Based on the experience gained in the production ofSET-ATS, CNES undertook the development 
of an application protocol using the technology and methods developed for STEP (ref. [12]). 

This application protocol was developed in conformance to the rules put forward in the "Guidelines 
document for development of STEP protocols". However, the complete process of Integration and 
Qualification imposed by ISO on the 10303 Parts was not followed. In particular, the Application Activity 
Model was not produced. On the other hand, the application protocol was developed by using, as far as 
possible. resources defined in ISO 10303. However, due to the fact that STEP is still in evolution, some of 
the required resources are not yet available in the standard. Therefore, these specific resources had to be 
produced in order to meet the application requirements. With these limitations in mind, the STEP protocol 
was defined to match the user requirements associated to the first version of the SET -A TS protocol. 

The first stage of the development consisted in the specification of the information requirements in 
terms of units of functionality, application objects and application assertions. This stage defines the product 
data as viewed by the application users. The models are specified to have a tree structure including 
occurrences of sub-models. Any sub-model can also contain surface data representing a part of the 
geometry. Information related to the meshing and to the physical properties of each face is attached to the 
surfaces. Moreover. the protocol supports the transfer of the data needed for the orbit determination and the 
results of the thermal analysis. Finally, it includes the information related to the management of the 
exchanged models (designer, creation date, entity labels. colour for possible graphical display, grouping of 
entities into cells ... ) 

The information requirements are specified in terms of: 
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• Units of Functionality that allow the classification of the application objects into coherent groups such 
as geometry, thermo-optical properties or model structure. 

• application objects; such as surface type, mesh characteristics and orbit parameters. These objects are 
atomic elements that embody a unique application concept and contain attributes specifying the data 
elements of the object. 

• application assertions that specify the relationships among application objects. For instance, "meshing 
of a Thermal_face is defined by one Mesh_characteristics", "a Mesh_characteristics applies to one 
Thermal_face" or "a Thermal_face has at most one Mesh_characteristics" 

A graphical representation, using the EXPRESS-G notation, describes the structure and constraints 
of these application requirements (see Figure 1). 

Following the definition of the infonnation requirements, the Application Interpreted Model was 
then produced to specify the references to the STEP Integrated Resources. For each Unit of Functionality 
and application object, the so-called Mapping Table shows the correspondence between the information 
requirements and one or several AIM resource constructs. 

Finally, the AIM's EXPRESS annotated listing was produced to present the complete listing of the 
I types, entities and rules necessary to fully specify the AP. 

It is important to note that the move from SET to STEP does not only represent a change in the 
neutral file physical fonnat but also demands the evolution of the requirements (or at least of the way to take 
them into account). As a matter of fact, STEP promotes the concept of product whereas SET deals mainly 
with geometrical models. Although the STEP AP development process is more complex, the possible scope 
of the AP is much broader. Furthennore, it encourages an approach which is consistent with data 

I representation requirements appearing in other stages of the spacecraft design. 

q.OOInpofWll 

r..CorrIDOner" 
S.oompol'Je"1 

FIGURE 1. EXPRESS-G diagram presenting the information related to the 
Model_structure unit of functionality 
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Thermal Analysis for Space AP 

The independent efforts undertaken by CNES and ESA in 1993 had similar timing and objectives, 
since both intended to produce a SlEP Application Protocol for Spacecraft Thermal Analysis. Thus, it 
seemed reasonable to start a harmonisation process in order to reduce the chances of duplicating work. 
Furthermore, it seemed sensible to rationalise the efforts by making an efficient use of the knowledge gained 
by both CNES and ESA in the matter. 

This harmonisation was fully achieved in early 1994 in the form of an activity to develop an 
Application Protocol on Thermal Analysis for Space (SlEP-TAS). Previous experience coming from the 
SlEP-ATS and the ICETAS projects was directly fed into the new project. 

The harmonised work set off with the fundamental objectives of: 

• merging the domain information models developed independently by CNES and ESA. Consensus in 
the Application Activity and Application Reference Models will result from this merge. 

• extending the AIM developed by CNES to suppon a subset of the domain information requirements 
mentioned above. 

• demonstrating the exchange of thermal models via SlEP files. For that purpose a prototype facility is 
being developed to communicate FLUOR and ESARAD. 

Results produced in the first stage of the harmonised effort are expected towards the end of 1994. 

CONCLUSIONS 

The concept of neutral file contributes in a very significant way to streamline the exchange of 
information, as proved by the development and use of the SET-ATS protocol. Modern product data 
technology, commonly associated to SlEP, ensures the development of non-ambiguous domain-specific 
protocols which provide solutions not only to the information exchange problems but also to the integration 
of applications. However, the matter of successfully introducing a TNF in the spacecraft thermal analysis 
community remains largely a problem of consensus. Currently. a harmonised effort CNESIESA is under 
way to provide a unique description of the information requirements in this domain. If an agreement is 
reached on the suitability of this logical description. the SlEP technology is ready to produce an 
implementation of the TNF. 
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The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic 
stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation 
formulation is described. The performance of the spectral scheme is compared with that of a 2nd order 
finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the 
performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude 
smaller than finite difference error for a grid resolution ofN = 15 (number of points used). The 
performance of the spectral formulation far exceeded the performance of the fmite difference formulation 
for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order fmite 
difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher 
order finite difference schemes. 

1.0 Introduction 

The theory of hydrodynamic stability has helped to explain and predict a variety of fluid 
flow phenomena. Recently it is being used to guide the modem computational fluid 
dynamicist in choosing the appropriate parameter values which are needed to simulate 
fluid flow behavior of interest (NASA TM-4569, 1994). Many current applications of 
hydrodynamic stability theory are possible because the field has benefitted greatly from 
the development and refinement of computational tools in addition to the existence of 
increasingly powerful computers. Spectral methods is one such set of tools that has been 
successfully applied to obtain high accuracy hydrodynamic stability results to previously 
intractable problems. 

The purpose of this paper is to show, by example, the use of a spectral collocation 
formulation to solve hydrodynamic stability problems. Our discussion will be confined to 
the linear stability analysis which is the foundation of hydrodynamic stability theory (Lin, 
1945). The linear stability problem ultimately reduces to a matrix eigenvalue problem, 
and the peril of the eigenvalue problem is that it requires O(N3) operations to obtain the 
eigenvalues where the matrix is N x N. As shown herein, the high accuracy of spectral 
methods results in small N, therefore considerably less CPU time is required to solve for 
the eigenvalues when compared to finite difference methods. 
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The Benard problem is used to illustrate the implementation and performance of the 
spectral scheme. The problem is also solved using a 2nd order finite difference scheme 
which required slightly less time to implement. Results of the two numerical schemes are 
compared to the exact solution ofthe Marangoni-Benard problem (Pearson, 1959). 

The Benard problem is described, and the governing equations and boundary conditions 
are developed in the following section. After a brief description of the finite difference 
scheme, the spectral collocation formulation is discussed. Results from both numerical 
schemes are then compared to an exact solution of the Marangoni-Benard problem. The 
spectral scheme yields results with considerably better accuracy using an order of 
magnitude less points than the finite difference scheme. 

2.0 Description of Benard Problem & Development of Equations 

A temperature difference is imposed normal to the free surface of a thin liquid layer of 
fluid of infinite horizontal extent and finite thickness, d, as shown in Figure 1. The initial 
steadv state or base state of the system is one of no fluid motion, with a linear 
temperature profile across the layer. The velocity and temperature profiles illustrated in 
Figure 1 can immediately be expressed as, U~ = 0 and T: = T:o - pz·. Using the notation 
of Pearson (1958) and Chandrasehkar (1981), U~ and T: are respectively, the base flow 
velocity and temperature. The temperature gradient of the base state, p is defined as 

p = - dT: / dz' or p = ~ T; / d where ~ T; = T:o - T:s. The asterisk, ""''' denotes dimensional 
quantities. The lower surface is rigid and is held at a constant temperature. The upper 
surface is free and exchanges heat with the environment . The free surface is assumed flat 
which is physically justified for many terrestrial problems. We first give the 
nondimensional form of the governing equations and in the next section we linearize 
about the base state just described in order to determine whether small disturbances to the 
base state will grow or decay. Specifically we are interested in the critical values of the 
nondimensional parameters where the change of stability occurs. 

z * .. 
0* 

T * 
s 

U b""O d 
--"----x* 

~ ~~ =-p 

Figure 1 Base State For Thin Liquid Layer Of Infinite Extent 

Nondimensional forms of mass, momentum, and energy equations for an incompressible 
fluid with the Boussinesq approximation are given in equations (1) through (3). The 
derivation of these equations with the Boussinesq approximation and constant viscosity 
and their subsequent nondimensionalization are well known and we refer the interested 
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reader to Chandrasekar (1981), and Drazin & Reid (1982) for details. All 
thennophysical properties are assumed constant apart from density and surface tension. 

(1) 

(2) 

(3) 

0, T, P, t are the velocity vector, temperature, pressure, and time respectively. The 
reference values used to nondimensionalize the variable; length, velocity, temperature, 

pressure, and time are d, K~ / d, pd, p~K~/ d2
, d2 /K~, respectively. p~ is the fluid 

density and K~ is the fluid thennal diffusivity. The subscript 0 indicates that the 
properties are chosen at the lower surface temperature, TbO. The characteristic value of 

the dynamic viscosity of the fluid, J.l, is denoted as J.l~. These reference values are 
consistent with those used in the buoyancy instability studies presented in Chandrasekhar 
(1981) and Drazin and Reid (1982), and the surface tension instability investigations of 
Pearson (1958) and Scriven and Stemling (1964). Two dimensionless groups appear in 
the momentum equation, the Prandtl number, Pr, and the Rayleigh number, Ra, which 
are defined as follows: 

Pr = ~o. Ra = p~p~4~.~gz . 
PoKo KoJ.lo 

~~ is the volumetric thennal expansion coefficient and gz is gravitational acceleration in 

the negative z-direction. The dot product of the unit vector in the z direction, k, and the 
buoyancy (RaPr) tenn in equation (2) indicates that buoyancy only acts in the vertical 
direction. Therefore the Rayleigh number only occurs in the z-momentum equation. 

The nondimensional boundary conditions are given by equations (4) and (5). Equations 
(4a,b,c), represent the no-slip conditions and impenetrable wall condition at z=O. 
Equation (4d) is the constant temperature condition along the wall. The nonnal stress 
boundary condition reduces to (5a) when the free surface at z=1 is assumed to be flat. 
Boundary condition (5b) is the heat flux balance at the free surface, where Q* is the 

dimensional surface heat flux to the environment and k~ is the fluid thennal conductivity. 
Equations (5c and 5d) are the tangential force balances along the free surface, in the x and 
y directions, respectively. 

At z= 0; 

At z = 1; 
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The operator, V II' is the surface gradient defined as i ~ + J ~ where, i and j are unit 
Ox Oy 

vectors in the x and y directions respectively. The Marangoni number, Ma, which occurs 

in equations (5c,d) is defined as: Ma = p ~2~ ~ • The parameter, y~, is defined as _ acr *1 ' 
Kollo aT * TIIs 

and is often referred to as the temperature variation of surface tension (Nield 1964 and 
Adamson 1967) or differential coefficient of surface tension change with temperature 

(Scriven and Sternling 1964). The surface tension, cr· , does not appear in our equations or 
boundary conditions since we have assumed a flat interface. Further discussion of the 
nondimensionalization of the free surface boundary conditions is found in Scriven and 
Sternling (1964), and Koschmeider (1993). 

The surface heat flux, Q*, has to be expressed in a form that is suitable for linearizing the 
heat flux boundary condition, equation (5). This is accomplished by expanding Q* about 

the base state surface temperature, T~. The first order expansion is given by equation 

(6). As previously noted, the base state varies only in the z-direction. Therefore, Q. (Tbs ) 
can be re-expressed as equation (7), using Fourier's law. 

Q. = Q·(T:s)+ ~: (T· - T:J 
T;, 

(6) 

Q·(T:J = k~ aTa : = k~P 
z z'-d 

(7) 

Substituting equation (6) into equation (5b), using k~P in place of Q·(T:J and defining 

h' = ao'! . the heat flux boundary condition becomes: 
or' . 

T •• 

aT + 1 + Bi(Ts - TbJ = 0 az 5 

(8) 

The dimensionless group, Bis, is defined as Bis = h·~ and is referred to as either the 
ko 

surface Biot number (Pearson, 1958 and Nield, 1964) or the surface Nusselt number 
(Scriven and Sternling, 1964). 

We note that the three-dimensional mass, momentum, and energy equations are given in 
equations (1-3), yet the boundary conditions are only specified in the z-direction, After 
linearizing the problem and applying some vector operations, it is shown in the next 
section, that the governing equations and boundary equations in the x and y directions do 
.not affect the stability of the base state. Equations (1, 2,3,4. and 5a,c,d and 8) make up 
the system which we will linearize in the next section. 
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2.1 Linearization of The Governing Equations 

The dependent variables are written in terms of the following base flow and perturbation 

variables: 0 = G, T = Tb + e, ~P = ~Pb + ~p 

After substituting for Tb and VTb, the disturbance equations become: 

au - ~ -, - = -V'p+ k· RaPre+ PrV'-G 
at 
as -2 
--u =V' e at : 

(9) 

(10) 

k is the unit vector in the z-direction shown in Figure 1. The curl operator is applied 
twice to the momentum equation, equation (9), which yields equation (11 ). 

(11) 

The first curl operation yields the vorticity equation and eliminates the pressure terms. 
The second curl operation decouples the momentum equations from each other. The x 
and y momentum equations become uncoupled from the z-momentum and the energy 
equations. The z-momentum and energy equations remain coupled through the buoyancy 
term in equation (11), the convective term in equation (10), and the tangential boundary 
condition (discussed below). Furthermore, the relevant stability parameters, Ma and Ra, 
do not appear in either the x or y momentum equation or their associated boundary 
conditions. Given these considerations, equation (11) reduces to the scalar equation in uz, 
equation (12). 

(12) 

The boundary conditions for the perturbed variables associated with equations (10 and 
12) are given by equations (13) through (14). 

At z= 0, (13a,b,c) 

At z = 1, (14a,b) 

(14c) 
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2.2 Normal Mode Analysis 

Since equations (10) and (12) are linear, we assume solutions for Uz and cp are of the 
form: 

( ) 
i(a,x+a,.y)+A.t d e .h() i(a,x+a,y)+I.t 

U z = W z e .. an = 't' Z e 
a.x and a.y are the dimensionless wavenumbers in the x and y directions, and 'A is the 

dimensionless frequency. Substituting these into equations (10) and (12) results in the 
following ordinary differential equations. 

'Acp(z) - D2cp(Z) +a.2cp(z) - w(z) = 0 

'A{D2w - a.2w(z») = RaPr{D2cp _a.2cp) + Pr{D4w - 2a. 2D2w + a. 4w(z») 

d 2? 2 
Where D = - and a. = a.~ +a. y • 

dz 

The boundary conditions at z = 0 become: 

w(O) = 0, Dw(O) = 0, cp(O) = O. 

(15) 

(16) 

(l7a,b,c) 

At z= 1, the flat interface condition, heat flux condition, and tangential stress boundary 
condition are: 

weI) = 0, (I8a,b,c) 

Equations (15 through 18) are solved to determine whether the velocity and temperature 
disturbances grow or decay for given combinations of the relevant parameters. The 
relevant parameters are Ma, Ra, and a.. Our problem is also referred to as a temporally 
developing flow problem since the disturbance growth or decay is in time. For temporally 
developing flows, a.x and a.y are real and the eigenvalue. 'A, is complex. If the real part of 
'A is positive the disturbance grows, if the real part of 'A is negative the disturbance decays 
in time and if 'A is zero, the disturbance persists unchanged in time. 

3.0 Discrete Formulations 

Two discrete formulations will be applied to the Benard problem, a 2nd order finite 
difference scheme, and a spectral collocation scheme. Irrespective of the discrete 
formulation the goal is construct a set of linear equations in form of the general 
eigenvalue problem, Ax = 'ABx. Once the eigenvalue problem is setup, solution 
mechanics are identical. If B is cheaply invertible, it usually pays to reduce the problem 
to a regular eigenvalue problem of the form Cx ='Ax, where C = B-1 A. In this study we 
used standard QR and QZ eigenvalue subroutines from the IMSL library to solve for the 
eigenvalues. 
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3.1 2nd Order Finite Difference Scheme 

Equations (15 through 18) were discretized using a standard central difference scheme. 
Boundary conditions result in solving 2N-l equations for this formulation. The 
discretized governing equations, equations (19) and (20), were arranged in the form 
Az = ABz, which is the generalized eigenvalue problem. Coefficients, a through g, and r 
are constants. 

aW j_1 +bwj_1 +CWj +dwj+1 +ewj+2 +r~j = A(fwj_1 +gWj +fwj+l ) 

f~j_1 +g~j +f~j+1 +Wj = A(~J 

Here the boundary conditions for Eq (15) are applied only to the i = 0, 1, N-l, N 
equations and for Eq (16) only to i = 0 and i = N. 

(19) 

(20) 

B is a nonsingular matrix so it is possible to reduce the system to a regular eigenvalue 

problem of the form Cz = B-1 A = AZ. Assuming a flat interface ensures that B is a 
tridiagonal matrix which can efficiently be inverted using a tridiagonal solver. The 
problem was discretized in terms of one fourth order equation, and one second order 
equation, which yields A and B matrices of rank 2N+2. Three of the six boundary 
conditions are Dirichlet boundary conditions which reduce the A and B matrices to rank 
2N-1. 

3.2 Chebyshev Collocation Spectral Scheme 

The key to all spectral techniques lies in the possibility of expanding smooth functions in 
terms of rapidly converging sums of certain orthogonal basis functions. For example, 
consider any reasonable function f( x) defined in the domain -1 5 x 5 1 ( see Canuto et. 
al. for a precise definition of "reasonable"). The function can be represented as a sum of 
Chebyshev polynomials. Tn(x), of the form: 

(21) 
nzO 

The crucial thing is that the sum converges very rapidly if f( x) is smooth so one can 
truncate it at N terms and accurately represent the function with a minimal set of numbers 
{(,: n = 0 .... , N}. Such an expansion can be viewed as a very efficient and only slightly lossy 

compression technique for functions. 

Pure spectral methods proceed by expanding the unknowns in terms of truncated sums of 
certain polynomials having excellent convergence properties (often simple combinations 
of Chebyshev polynomials that automatically account for any boundary conditions that 
must be satisfied by the function). The sums are then substituted into the differential 
equation and the coefficients are picked to minimize the residual. The fundamental 
quantities of interest in this procedure are the coefficients in the expansions of the 
dependent variables. 
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Spectral collocation methods on the other hand, concentrate directly on the physical space 
representation of the unknowns and as a consequence are more easily understood by the 
naive user. For example, in a collocation technique our hypothetical function, f(x) is not 
stored as {~: n=O, ... ,N}, but instead as {( == f{xJ: i =O, ... ,N}. The exact correspondence 

between the two representations is maintained by choosing the physical space grid {Xi} 
in an optimal fashion that is related to one of the Gaussian integration formulas. A typical 
formula of choice for Chebyshev expansions on the domain [-1,1] is the Gauss-Labatto 
grid, Xi = cos( iTt / N). The spectral space and physical space representations can be 
interchanged with essentially no error (except perhaps for aliasing errors). Moreover, if 
the expansion is in terms of Chebyshev polynomials or trigonometric functions, the 
transformations to and from spectral space can be carried out efficiently by using Fourier 
Transforms (FFT's). 

Solving differential equations obviously requires that the derivatives are evaluated. One 
method of evaluating {t;'== r(x;)} is to proceed as 

A A 

(~~~t;;~t;' 
That is, one first transforms to spectral space where a derivative is taken rapidly by using 
some simple properties of the basis functions. The new series produced in this fashion is 
then transformed back to a physical space representation. In the case of trigonometric or 
Chebyshev expansions, the procedure is dominated by the FFT's used in the 
transformations, so the total cost is O( N log N) operations. 

There is a mathematically equivalent approach which uses matrix-vector multiplies to 
express 

(22) 
j.O 

where the elements of the derivative matrix D can be found in spectral texts such as 
Canuto et. al. To evaluate the derivatives on the entire grid using this method will take 

O(N 2) operations. However, the matrix-vector multiply approach is the only one possible 

for eigenvalue problems where the aim is to turn the linear differential operator into the 
equivalent matrix operator on the discrete grid. Thus for example. the continuous 

equation, Af = f' , becomes the discrete equation, Af = D2f, so that in theory one simply 
fills and then squares the D matrix before feeding it to a standard matrix eigenvalue. In 
practice. the greatest programming labor is in the implementation the boundary 
conditions. 

For the Benard problem, it is convenient to define the matrix operator 

(23) 
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where I is the identity matrix. The continuous equations, (15) and (16) then become the 
discrete equations, (24) and (25) 

Pr(ew-a2RaI~J = ALw 

L~ +Iw = AI~ 
(24) 

(25) 

and these equations can be recast into the standard form Au = ABu given by equation 
(26). 

(26) 

This translation of a continuous problem into a discrete one is very natural and can be 
carried out even more rapidly than the corresponding process for a finite difference 
scheme. However, this matrix eigenvalue problem as it stands does not take the boundary 
conditions into account. Most of the coding complexity that is present in spectral 
techniques (which by nature are global approximations) arises because of the need to 
implement boundary data (which are local point conditions). 

The boundary conditions and governing equation are first mapped from the z variable in 
the domain [0,1] to x defined on [-1,1] by x = 2z-1. The mapped boundary conditions 
become: 

N 

At x = -1 (i=n): W = "DN·w. =,1... =0 n ~ I I '+'1 (27) 
;=0 

N N 

At x = +1 (i=O): Bis~o + L Do;~; = a2Ma~oLD~;w; =0 (28) 
;=0 ;d 

We immediately see that Wo = wN = ~N = O. The remaining equations can be used to 
simultaneously solve for wI' wN _ p and ~o in terms ofthe other w; 's and ~; 's as shown 
in equation (29). Equations (29) reveal that elements, WI and WN _I' are coupled to the 
~; 's through the last boundary condition in equation (28) while ~o remains uncoupled 
from the Wi'S. 

N-2 
WI = LC;W; +~o, 

;=2 

N-2 
W N _I = Ld;w; +~o, 

;=2 

N-I 
~o = Le;~; (29 ) 

;=1 

The boundary condition information is used to reduce the rank ofthe eigenvalue problem 
which is given by equation (30). 

2N+I 2N+I 

LA;juj = A LB;juj (30) 
j=O j.O 
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The first N+ 1 components of the vector u here corresponds to {Wi: i = 0, ... , N} and the 

last N+I components corresponds to {~i:i = O, ... ,N}. Applying the six boundary 
conditions, we can eliminate the rows corresponding to wo' WI' WN_I' wN' ~o' and ~N and 
expand equation (30) as given below. 

2N+1 
Ailul +AiN_IUN_1 +AiN+IUN+1 + LAijuj = 

j=2 j .. N-I.N.N+1 

where we have already used the data, Uo = UN = U2N+1 = ° (which corresponds to 

(31) 

Wo = wN = ~N = 0). Using the remaining boundary conditions, equations (29), take the 
form 

N-2 2N N-2 
ul = LCjUj = 

)=2 

LCjUJ , 

j=2 

UN_I = LdjUj = 

j .. N-I.N.N+1 
N-I 

UN+I = L ejuj = 
j=1 

& {
o 

e = ) e j-N-3 

The matrix eigenvalue problem can be rewritten as 

2N+1 
LAijuj = i" 
)=1 

j .. N-I.N.N+1 

ifj=2, ... ,N-2 

ifj = N +2, ... ,2N 

(32) 

(33) 

(34) 

where Aij = Aij + Ailcj + AiN_ldj + AiN+lej and Bij = Bij + Bilcj + BiN_ldj + BiN+lej . The 
global matrix problem is finally transformed to a reduced eigenvalue problem Au = ABu 
where the matrices are (2N - 4) x (2N - 4) and all six boundary conditions have been 
incorporated into the problem. 

The principle difficulty in using spectral collocation techniques for solving stability 
problems is the implementation of derivative boundary conditions. A condition such as 
'w(l) = ° is not a problem as all that is required is the reduction of the global matrices by 
eliminating one row and one column. Derivative data on the other hand, results in altering 
all the elements of the matrices due to the global nature of the underlying series 
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approximation. All data contributes to the value of the derivative at each point 
Nevertheless, for the Benard problem, the spectral collocation technique is only slightly 
more difficult to code than a second order finite difference scheme. As is observed in the 
subsequent results, the additional coding effort is amply rewarded. 

4.0 Results 

Under certain conditions, exact solutions to equations (15) through (18) have been 
obtained. Pearson (1958) derived an exact solution to the Marangoni-Benard problem 
(Ra = 0) for the case of neutral stability, A = O. His solution reduces to equation (35) for 
an insulated free surface, Bi = O. The critical value of the Marangoni number, equation 
(35), versus the wavenumber is shown in Fig. 3 and is referred to as a neutral stability 
curve since A = 0 for all points along the curve. For values ofMa above this curve are 
unstable since infinitesimal disturbances. Our objective is to use the above exact result to 
investigate the accuracy of the aforementioned discrete formulations, so we do not 
consider alternative exact or approximate solutions which exist for the general problem. 
The physical interpretation of these results in addition to results from other exact or 
approximate solutions to the Benard problem are discussed in Pearson 1958. Scriven & 
Sternling 1964, Smith 1966, Chandrasekhar 1981, and most of the other references cited 
in section 6.0. We now compare the numerical results to the exact solution. 

co 
~ 

8a2 cosh( a)( a - sinh( a) cosh( a)) 
Ma = -----:~------:-----....:... 

c a 3 cosh(a) - sinh3(a) 

400 
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200 
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50 
0 

Marangoni-Benarct Neutral Stability Curve 
(Exact Solution) 

2 3 4 5 6 

a 

Figure 2 Marangoni-Benard Neutral Stability Curve, 
Exact Solution for Bi=O (Pearson, 1958) 
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Neutral stability curves for the Marangoni-Benard problem which were generated using a 
2nd order finite difference scheme and spectral scheme are shown in Figs. 3 and 4, 
respectively. The. number of points across the fluid depth, N, (in the z-direction) 
represents the spatial resolution used to generate a given curve. In Fig. 3 the neutral 
stability curve converges to the exact solution as the spatial resolution increases from 
N = 4 to N = 100. The N = 50 and N = 100 curves are visually indistinguishable from the 
exact solution. Fig. 4 reveals that the neutral stability curves computed using the spectral 

~ formulation also converge to the exact solution as the spatial resolution increases. The 
spectrally generated neutral stability curves shown in Fig. 4 are visually identical to the 
exact solution for spatial resolutions as low as N = 10. In both Figs. 3 and 4, the 
numerically generated neutral stability curves tend to diverge from the exact solution with 
increasing wavenumber. It is also observed that the finite difference solution converges 
from above the exact solution while the spectral solution converges from below exact 
neutral stability curve. 

400 400 

-- N=4 
-- N=5 -- N=4 
--. N=7 -- N=5 

300 ---'N=10 11/ 300 -_. N=7 
; 

N = 15 / I I! ---. N = 10 I . 
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III 
200 

N = 100 / / // ttl 200 If 
:=! ///i :E 

~ 

%{}/ / //' 
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100 -??/ 100 ::Y".d: 
~:;..-

o 2 3 4 5 6 7 o 23456 7 
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Figure 3 Marangoni-Benard Neutral Stability Curves 
Computed Using A 2nd Order Finite Difference Scheme. 

Figure 4 Marangoni Neutral Stability Curves 
Computed Using A Spectral Collocation Scheme. N 

The Number Points Through The Fluid Layer. N Is The Number Points Through The Fluid Layer. 

The error in the Marangoni number for the finite difference and spectral schemes is 
plotted as a function of wavenumber in Figs. 5 and 6, respectively. In both figures, error 
is plotted using a logarithmic scale while the wavenumber. a, is plotted with a linear 
scale on the abscissa. The error (ordinate) range differs between the two figures so that 
the error characteristics of each discrete scheme could be observed. The error is defined 
as Mas - Mac,"c! where MaN is the Marangoni number computed from a discrete 

MacUCl 

formulation for a given spatial resolution (N points) and Maexact is computed using 
equation (35). Both discrete schemes are observed in Figs. 1 through 4 to converge to the 
exact solution as the spatial resolution, N, increases. The finite difference errors for each 
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curve increase approximately an order of magnitude over the given wavenumber range as 
observed in Figure 5, while the spectral error shown in Figure 6 increases four to five 
orders of magnitude with wavenumber. For N greater than approximately seven. the 
spectral error remains considerably less than the finite difference error for the range of a. 
considered. 
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Figure 5 Marangoni Number Error vs. Wavenumber For The 2nd Order Finite Difference Solution. 
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Selected error values of the two schemes for wavenumbers of 2 and 5 are tabulated in 
Tables 1 and 2, respectively. The errors for, a = 2, the critical wavenumber were smaller 
than those of the larger wavenumber, a = 5. In Fig. 7, the Ma error is shown on a log-log 
plot as function of the spatial resolution (N grid points) for both discrete formulations. 
Comparing Ma error values at a wavenumber of 2 and N = 10, the error for the spectral 
scheme is seen to be five orders of magnitude smaller than the finite difference error. 
Furthermore, after increasing the spatial resolution of the finite difference scheme to 
N = 100, still gives a spectral error for N = 10 that is 3 orders of magnitude smaller. The 
reduction in error for the finite difference scheme is essentially proportional to N2, as 
expected since the scheme is 2nd order accurate. A slope of -2.02 was computed for the 
finite difference curve in Fig. 7 which is within 1 % of the expected value of 2. The slope 
was computed from a least squares fit ofthe finite difference data in Table 1. The error 
for the spectral formulation is expected to decrease exponentially with increasing N 
(Boyd, 1989, Canuto et. ai., 1987). However the error results in Table 2 show that the 
exponential rate of convergence is exceeded for this particular problem. Fig. 7 vividly 
illustrates that the spectral scheme results in a significant reduction in error with 
considerably fewer grid points than the central difference scheme for this particular 
problem. The spectral formulation has also been shown to out perform finite difference 
methods when applied to other hydrodynamic stability problems (Canuto et. aI., 1987, 
Boyd, 1989). The exceptional performance (greater than exponential convergence) of the 
spectral collocation scheme for this problem was not anticipated by the authors. 

Table 1 Selected Marangoni Number Errors 
For Wavenumber, a=2 

Spatial resolution Finite 

N Difference Spectral 

5 1.085xl0-1 2.920xl0-2 

10 2.600xI0-2 3.400xl0-7 

15 1.115x10-2 4.529xl0- 11 

50 1.025xl0-3 

100 2.561xlO-4 

Table 2 Selected Marangoni Number Errors 
For Wavenumber, a=5 

Spatial resolution Finite 

N Difference Spectral 

5 5.756xl0- 1 2.808xl0-1 

10 1.309xl0- 1 2.525xl0-4 

15 5.7IOxlO-2 6.434xl0-9 

50 5.075xl0-3 

100 1.268xlO-3 

As stated throughout, the ability to reduce the size ofN is crucial to the eigenvalue 
problem, Ax = ABx. Inverting B takes O(N3) operations; the matrix multiplication of 

C = B-1A requires 0(N3); and solving the regular eigenvalue problem, Cx = AX, requires 
O(N3) operations. Neglecting all other operations than those identified above. for a grid 
resolution ofN=10, it requires appropriately 3000 operations to compute the eigenvalues 
while it requires 0(3x 1 06) operations for N=1 00. The number of iterations required to 
converge to Mac at one wavenumber is 0(10), ie., the matrix eigenvalue problem is 
solved approximately ten times for each wavenumber. 
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5.0 Concluding Remarks 

A spectral scheme, the Chebyshev collocation formulation was used to perform a 
hydrodynamic (linear) stability analysis of the Benard problem. The problem reduces to a 
generalized eigenvalue problem, Ax = A.Bx, which can be reduced to a regular eigenvalue 
problem, ex = A.X by inverting B. Implementation of the spectral scheme was described. 
There is a bit of a learning curve that must initially be overcome to comfortably setup the 
spectral formulation if one has no previous experience with spectral methods. Afterwards, 
the spectral scheme requires only slightly more time to set up than the 2nd order finite 
difference scheme and is likely to be easier to program than higher order finite difference 
schemes. A comparison of the results from the spectral and finite difference scheme 
reveals that the spectral scheme out performs the finite difference scheme by a 
considerable margin. The error of the spectral scheme is at least three orders of magnitude 
smaller than the finite difference error for N = 10 and seven orders of magnitude smaller 
than finite difference error for N = 15. 
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SUMMARY 

An algorithm has been developed for time-dependent forced convective diffusion-reaction 
having convection by a recirculating flow field within the drop that is hydrodynamically coupled at 
the interface with a convective external flow field that at infinity becomes a uniform free-streaming 
flow. The concentration field inside the droplet is likewise coupled with that outside by boundary 
conditions at the interface. A chemical reaction can take place either inside or outside the droplet, 
or reactions can take place in both phases. 

The algorithm has been implemented, and for comparison results are shown here for the 
case of no reaction in either phase and for the case of an external first order reaction, both for 
unsteady behaviour. For pure interphase mass transfer, concentration isocontours, local and average 
Sherwood numbers, and average droplet concentrations have been obtained as a function of the 
physical properties and external flow field. For mass transfer enhanced by an external reaction, in 
addition to the above forms of results, we present the enhancement factor, with the results now 
also depending upon the (dimensionless) rate of reaction. 

INTRODUCTION 

There are many industrial and environmental processes in which two-phase fluid-liquid 
systems a.re in use. Gases may be dispersed as bubbles in liquid phases, such as occurs in bubble 
columns and sparged vessels. Liquids may be dispersed in gases, such as occurs in scrubbers and 
in the atmosphere. And a liquid that is immiscible or partially miscible in another liquid may 
be dispersed in a liquid-liquid spray column extractor or reactor. The design of such systems 
may involve heat transfer, either intentionally or incidentally, but the widest range of applications 
involves mass transfer. 

Interphase mass transfer may proceed into or out of the dispersed phase. One (or more) 
chemical reaction(s) may take place in either the dispersed or the continuous phase in order to en
hance the rate of mass transfer. In two-phase reactions, certain of the reactants may be transferred 
from one phase into the other, where the reaction takes place, and the reaction products may then 
be transferred back into the first phase. Reactions may also occur in both phases. 

Because of the finite, generally small volume of each drop or bubble, interphase mass transfer 
unaccompanied by chemical reaction is inherently unsteady, regardless of the direction of mass 
transfer. Even if there is a reaction that admits of a steady state in the drop or bubble, unsteady 
behavior may nevertheless be of practical even primary importance. 

The continuous phase is inevitably in motion relative to the dispersed phase, and for clean 
sys"tems (containing for instance no surface active agents) the motion in the two phases will be 
hydrodynamically coupled. 
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The general formulation could take into account either linear or nonlinear chemical reactions 
in either or both phases, and it could incorporate any velocity field that can be expressed as a 
function of r and ~. Neither are variable properties excluded. 

In order to (lemonstrate the utility of the algorithm, for concreteness we undertake the 
mathematical description of a liquid-liquid system in which a first order reaction takes place in 
the continuous phase. The dispersed phase is sufficiently dilute that the droplets which sediment 
(either falling under their weight or rising because of buoyancy) may be assumed isolated in an 
infinite medium, both with regard to fluid mechanics and to diffusion and reaction. The droplets 
are taken small enough that interfacial tension dominates shape effects and they are spherical. Al
though the approach we take and the methods we use do not require that that viscosity dominates 
flow effects and that the velocity fields have low Reynolds numbers, we nontheless consider the 
hydrodynamically coupled Hadamard - Rybczinsky profile for circulation within the droplet driven 
by an external velocity field that becomes a uniform streaming flow far from the droplet. Physi
cal and chemical properties are assumed constant, which would be the case for dilute isothermal 
systems, and we thus analyze interphase mass transfer for the forced convective diffusion-reaction 
single-drop system. We investigate specifically the role of the reaction rate, as measured by an 
appropriate Damkohler number, the solubility of the solute in the phases, as expressed by the lin
ear distribution coefficient (Henry's law), the ratio of convection to diffusion, as measured by the 
Peclet number, and the ratio of the viscosities and that of molecular diffusivities of the two phases. 

GOVERNING EQUATIONS 

The dimensionless forced convective diffusion-reaction equations governing the solute con
centrations in the drop (0 :$ r :$ 1) and the continuous (1 :$ r < 00) phases, i = 1,2, respectively, 
can be represented in the form 

(1) 

where i = 1 corresponds to the internal domain 0 :$ r :$ 1, and i = 2 to the external one 1 :$ r < 00. 
The dimensional parabolic partial differential equations have been rendered dimensionless 

using the droplet radius R as the characteristic length scale. The concentrations are measured in 
units of the initial driving force, 

(i) _ H(i) c(i) - Hcoc 
c - , i = 1,2, 

Co - Hcoc 
(2) 

in which 

H(i) = { 1, 

H, 

i = 1 
(3) 

i = 2, 

with H the Henry's "law" distribution coefficient, and 

(4) 

The characteristic time scale can be selected, for example, on the basis of the fastest physical 
or chemical process, occurring in the system, viz., 

(5) 
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in which 

R (i) R2 (i) __ 1_ 
T( i) - T - T i-I 2 
I cony - /(i)(I.£) U

oo
' cliff - D(i)' rxn - k(i)' -, . (6) 

I The diffusivities and rate constants for the first order chemical reactions are denoted by D(i) and 
k(i), respectively, and the K's represent different combinations of standard dimensionless parameters 
for different choices of T., as indicated in Table 1. 

Although our numerical implementation of the algorithm requires only that the velocity 
fields in the two phases be separable, we have selected the Hadamard - Rybczinsky solution for 
the convecting velocities in the dispersed and continuous phases to establish connections with 
earlier research [7, 8, 9]. In this instance, the characteristic velocity in each phase, with Uoo the 
freestreaming uniform flow at infinity, is taken as 

(7) 

in which 

(1)( _ 1 (2) 
/ p.) - 2(1 + p.)' / (p.) = 1 , (8) 

with the viscosity ratio 

(9) 

The equations (10) are the ones used in the sequel, reflecting the selection of TrJ as the 
unit of time: 

--+--. v ---- 1-).2--
ac(i) Pe(2) ( (i) ac(i) vii) J aC(i») 

aT 2 r ar r 8), 

(10) 

(i) D(i) (i) H Coo ) . 
- DaIl-(2)' e + - H- , ~ = 1,2, 

D Co - Coo 

with), = cos 17, subject to the boundary conditions at the droplet interface, 

r = 1: (11) 

and at the limits of the overall domain, 

r = 0: c(l) < 00 (12) 

r _ 00 : e(2) _ 0 (13) 

Periodic boundary conditions in the angle variable, 
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8C(i) I -
8~ - 0, 

"=0,11' 

i = 1,2, (14) 

are satisfied automatically after introduction of the new independent variable >.. 
The concentrations are subject to the initial conditions: 

t = 0 : c(l) = 1, c(2) = 0 (15) 

~ The actual direction of mass transfer may be out of or into the drop, depending upon the 
driving force (co - Hcoo ), even though the formulation of the problem suggests transfer from the 
droplet. 

The opposite direction of mass transfer in the actual problem would lead to the appearance 
ofthe inhomogeneous part in the reaction terms in (10) (but only when the corresponding K$i) =I- 0). 

THE ALGORITHM 

The problem is linear, and we use the Galerkin spectral method for the spatial discretization. 
The advantages of this method are well known [1, 2J. 

Boundary conditions at the origin ofthe droplet (12) and at infinity (13) and the symmetry 
boundary conditions (15) are implemented by the Lanczos tau-method [1, 2, 14]. 

We express the unknown functions c(i)(7',>.,r) in a customary manner, 

M 

c(i)(7', >., r) = L c~(7', r) P",(>.), i = 1,2, (16) 
",=0 

in which the P",(>.) are the Legendre polynomials of order m and the unknown coefficient functions 
c!!>( 7', r) are termed "radial functions" for brevity in the sequel. 

The discretization in the radial direction is performed in somewhat different ways for the 
internal and external domains. 

Using equation (10) for mass transfer inside the droplet (i = 1), it is a simple matter to 

show that functions c!.!) (7', r) obey the following restrictions : 

cp)(7',r = 0) = 0, 1 =I- 0, (17) 

8cP) I = 0 
8r r=O ' I =I- 1, (18) 

c~~)(7', r) - even function of r } 
k = 0,1 .... 

c~~+l (7', r) - odd function of r 
(19) 

On the basis of these restrictions, the radial functions inside the droplet were approximated 
by a series in even Chebyshev polynomials: 

N{l) 

c~)(7', r) = 5",,0' 00(7') + r""'· L ¢~~n(7') T2n-2(r), m = 0,1, ... , M, (20) 
n=l 

in which the Tp( r) are Chebyshev polynomials of the first kind of order p, and 
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K.2; = 2, j = 0,1, ... (21) 

K.1 = 1, K.2;+1 = 3, j = 1,2, ... (22) 

Using (20) we automatically satisfy boundary condition (12) and avoid the singularity at 
the origin of the drop; the function Qo( T) represents the value of the concentration at the origin. 

Such an expansion on the interval 0 $ r $ 1 is valid as the even Chebyshev polynomials 
form a complete set for the type offunctions considered [10]. 

The use of half the commonly used interval [-1,1] permits us to double the highest order 
of the polynomials used, leaving the number of terms in the series unaltered. 

The nonuniformity of the distribution of nodes in the spectral method (their number in 
close proximity to the surface is higher than near the origin) matches the physics of the problem 
as the concentration gradient near the interface is much larger. 

For the semi-infinite external domain we implement the widely used procedure of truncat
ing it at an appropriately large radius roo, far enough from the interface to make negligible the 
disturbance introduced by truncation. The boundary condition at infinity (13) is now imposed on 
this artificial boundary. It could be imposed as "hard", "soft" [12] or "behavioral" [1, 13]. We use 
the "hard" one, 

r = roo : (23) 

because it immediately results in the original boundary condition (13) if roo - 00. 

It is necessary to realize that by doing this we are changing the physical sense of the problem. 
The decrease to zero of the concentration infinitely far from its source is caused physically by the 
spreading of a finite amount of the species over an infinite spatial volume. After introduction of 
the boundary sphere at r = roo, we model this decrease by imposing what amounts to an infinitely 
fast heterogeneous reaction on the artificial boundary roo. The only justification for this is an a 
posteriori one, viz., by checking that the increase of roo does not alter the solution in the vicinity 
of the droplet and in particular the interphase mass transfer. 

Our computations have confirmed this and show that when roo is chosen sufficiently large 
the choice of the particular type of boundary conditions mentioned above does not influence the 
resultant concentration distribution in regions where its value differs significantly from zero. 

The domain 1 $ r $ roo is mapped onto the interval -1 $ z $ 1 in such a way that the 
point z = 1 matches r = 1 and the point z = -1 matches r = roo. Among the wide variety of 
possible mappings two are used more often than others, the exponential and rational ones [1, 2]. 
A comparison by Grosch and Orszag [11] has shown that the latter mapping has some advantages 
over the former. 

Specifically, we use 

z = ( 25) , (1- r) 1 - roo _ 1 - 5 

r-(1+5) 
(24) 

where 5 is the parameter representing the distance between the droplet surface and point mapped 
into z = O. It is worth mentioning that we have also implemented the exponential mapping and 
could find no advantages for it over the rational mapping. 

The radial functions in the external domain are expanded as 
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N(2) 

C~)(T, Z) = ~ ¢~~n(T) Zn(Z), m = 0,1, ... , M, (25) 
n=l 

where the Zn(z), n = 1,2, ... , N(2) are linear combinations of Chebyshev polynomials, each satis
fying the boundary condition following from (13): 

Zn(Z = -1) = 0, n = 1,2, ... ,N(2). (26) 

We take 

= T:u:(z) - 1 
(27) 

Thus, we reduce the system of partial differential equations for two initially unknown func
tions c(l)( T, )., r) and c(2)( T, )., r) to a larger system of ordinary differential equations in T, for 

( ) .1.(1) .1.(2) 
00 T , ~m,nl' ~m,n2' m=O,I, ... ,M, (28) 

nl = 1,2, ... ,N(1), n2 = 1,2, ... ,N(2). 

The total number of these unknown functions is 1 + (M + I)(N(1) + N(2»). 
In order to obtain equations for these functions we use the conventional Petrov - Galerkin 

method, i.e., the basis functions are taken as the test functions [2]. We define two inner products: 

(J,g)(1) == d)' f·g , 11 101 dr 
-1 0 ~ 

(29) 

(J,g)(2) == j1 d)' j1 f.g dz . 
-1 -1 ~ 

(30) 

Forming by (29) the inner product of (10) for i = 1 with the test functions 

Po().) To(r), Pm().)r"-"·T2nt-2(r), m= O,l, ... ,M, n1 = 1,2, ... ,N(l)-1, (31) 

and by (30) the inner product of (10) for i = 2 with the test functions 

Pm ().) Zn2(z), m = 0,1, ... , M, n2 = 1,2, ... , N(2) - 1, 

we obtain two vector equations 

(32) 

A(i) d:~i) = (_K~i) B(i,c) + K~i) B(i,d) - K~i) B(i,r») . q,(i) + K~i) b(i), i = 1,2. (33) 

Here A(i), B(i,c), B(i,d), B(i,r) are {I + (M + l)(N(i) - 1), 1 + (M + l)N(i)} matrices, 
b(i) - {I + (M + I)N(i)} are the vectors of inhomogeneous terms, and q,(i)(T) - {I + (M + I)N(i)} 

are the unknown vectors, 

(1)() ( .1.(1) .1.(1) (1) (1) T 
q, T = 00, ~0,1' ... ~0,N(t)' ... '¢M,1' ... '¢M,N(1)) , (34) 
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(2)() (2) (2) (2) (2»)T 
tP r = ¢O,l""¢O,N(2)""'¢M,l""'¢M,N<2) . (35) 

The remaining 2 (M + 1) equations are derived from the boundary conditions (11). 
Upon substituting (20) and (25) into (11), multiplying by Pm(A), m = 0,1, ... , M and 

integrating A from -1 to 1, we obtain two sets of M+1linear algebraic equations: 

(36) 

(37) 

where Q(i), SCi) are {(M + 1), (M + 1)(1 + N(i»)} matrices, i = 1,2. 

By expressing ¢(l)N{l) and ¢(2)N{2)' m = 0,1, ... , M, using the system (36)-( 37) and 
m. m. 

substituting in the system (33), we arrive finally at the system of 1 + (M + l)(N(l) + N(2) - 2) 
linear 0 D Es: 

(38) 

The constant matrices B(e), B(d) and B(r) correspond respectively to the convective, 
diffusive, and reactive terms in the original equation (10), b is an {1 + (M + l)(N(l) + N(2) - 2)} 
constant vector, and tP (r) is the vector of unknown functions 

_ (1) (1) A.(2) A.(2) A.(1) A.(1) A.(2) (2) )T ( ) 
tP = (ao, ¢O,l"" ¢O,N{l}-l' Y'O,l"" Y'O,N(2)-1' ... Y'M,l' ... Y'M,N(1)-l' Y'M,l"" ¢M,N(2)-1 39 

and not simply a concatenation of vectors tP (1) and tP (2). 

The matrices A, B(d) and B(r) are block-diagonal. They all have M+1 nonzero square 
I {N(1)+N(2)-2, N(1)+N(2)-2)} matrices on their main diagonals and their first 1+(N(1)+N(2L2) 

elements in the first row and the first column are nonzero. 
The matrices B(e) that result from transforming the convective terms also have block struc

ture with the same block sizes. However, they are no longer block-diagonal and the amount of 
I nonzero block-diagonals depends on the velocity fields v(i), i = 1,2. The higher the degree of A 

that is involved in the velocity field expressions, the greater will be the coupling between the radial 
functions of different orders. And the increase of the order of this coupling leads to a corresponding 
increase in the number of nonzero block diagonals in B(e). 

For the Hadamard - Rybczinsky field, for example, these matrices are block-tridiagonal, but 
for the velocity field in [15], valid for higher Reynolds numbers, it would be block-pentadiagonal. 

The discontinuous initial conditions (15) are not appropriate for computations. Instead, 
we used the analytical solution for the pure diffusion case (no convection, no chemical reaction) 
derived in [16]. The concentration distributions for very small time values were expanded over our 
basis functions T2n- 2( r) and Zn, n = 1,2, ... to initialize the computations, and the coefficients 

obtained were used as initial conditions for ao(r), ¢~~nl , and ¢~~n2' m = 0,1, ... , M, n1 = 
1,2, ... ,N(1)-1, n2 = 1,2, ... ,N(2)-1. 

For time discretization of the system (38) we used the first-order backward Euler method. 
Defining tP n as vector tP at the n-th time step of magnitude C:!.r and 

(40) 

i system (38) can be rewritten as 
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( 41) 

where 

(42) 

Every time step system of linear equations (41) was solved by regular Gauss elimination 
(preceded by LU decomposition) with the following iterative refinement [3]. The matrix on the 

, left side of (41) has the same structure as the matrix B; as mentioned, it is block-tridiagonal 
for the Hadamard-Rybczinsky velocity field. Our attempts to apply block-elimination methods (in 
particular, the block Thomas algorithm [4]) failed, presumably because block LU factorization does 
not involve pivoting, which is essential when diagonal dominance does not occur (which is the case 
for high Peclet numbers). 

We considered the matrix on the left side of (41) as a banded one with bandwidth 1 + 
3 (N(l) + N(2) - 2). 

As long as this matrix depends on the time step and its factorization is a time-consuming 
process, only two values of the time step were used for each run. A smaller one was used for an 
initial time period and an another one for the subsequent time range. 

The numbers of terms in series (16), (20), and (25) depend on the steepness of the con
centration gradients and were different for different values of Peclet and Damkohler numbers. The 
maximum numbers used were M = 87, N(l) = 25, N(2) = 97. 

As is well known [1, 21, an increase in the number of terms in a spectral series (especially 
in the series in Chebyshev polynomials) leads to very high condition numbers for the resulting 
system of linear equations. This was alleviated by using double precision in all computations and, 
as mentioned above by application of the iterative refinement to the solution obtained with the 
Gauss elimination procedure. 

QUANTITIES OF INTEREST 

The most practically interesting quantity in extraction problems is the amount of material ex
tracted by a particular instant in time. For the problem under consideration (Le., when species are 
extracted from the droplet) this can be conveniently characterized by the time-dependent average 
dimensionless concentration of species remaining in the drop: 

(43) 

This quantity changes in time as a result of mass transfer out of the droplet. The local and 
surface average rates of this transfer are characterized by corresponding mass transfer coefficients, 
the quantities which when multiplied by the driving force give the respective mass transfer rate. 
The nondimensional mass transfer coefficient is usually referred to as the Sherwood number S h, 
which is analogous to the Nusselt number in heat transfer problems. 

Different kinds of Sherwood number can be introduced, depending on the driving force on 
which they are based and the domain to which they are related. 

For the problem of single-drop extraction, the instantaneous driving force F(dr) for mass 
transfer is the difference between the concentration of the transferring species in the droplet and 
that far away from it, taking into account the step change of the concentration at the interface due 
to solubility, 
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P(dr) _ -;(1) _ H-
- C Coo , (44) 

where t 1
) is the dimensional average concentration of species in the droplet. 

Often the Sherwood number is based on the maximum possible (in our case, initial) driving 
force: 

F.(dr) - H-
o = Co - Coo· (45) 

Here we consider only the external Sherwood number, Le., the nondimensional rate of 
transfer of species from the external side of droplet surface into the external flow. 

The local and average external Sherwood numbers defined on the basis of the maximum 
driving force are respectively: 

and 

ac(l) I 
Shloc,O = -2H·D Tr 

r=l 

11 ac(1) I 
Sho = -H·D -1 Tr r=l d)". 

Corresponding values based on the instantaneous driving force are: 

Sh _. Shloc,O 
loc - c(1) 

Sho 
Sh = c(1) . 

(46) 

(47) 

(48) 

(49) 

The chemical reaction in the external region increases the rate of the extraction, and this 
increase is characterized by the enhancement factor, which is the ratio of the corresponding mass 
transfer rates [5]: 

( 
(2) 

E = Sh Dall # 0) 

Sh(Da~~) = 0) 
(50) 

COMPUTATIONAL RESULTS AND DISCUSSION 

The results of the computations to be presented cover the following ranges of parameters: 

0.25 :S D :S 4 , 

o :S Pe(2) :S 500 , 

o :S Da}~ :S 1000 , 

H=/1-=l. 

The characteristic time scale was chosen as 

(51) 
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, 

which is just the Fourier number based on the diffusion coefficient of the external fluid. The times 
appearing on the plots are expressed in these units. The values of Pec1et number Pe and Damkohler 
number Da presented on the plots correspond to Pe(2) and Da~~) , respectively. 

To illustrate qualitively the process of pure mass transfer (no reaction) from the droplet, 
we present in Figures 1-3 the isocontours of constant species concentration at different times for 
various levels of external convection (Pe(2) = 10, 200, 500, respectively). The well known and 
intuitively expected increase of mass transfer with increasing convection is apparent. 

The influence of internal circulation on the development of the mass transfer process is 
illustrated in Figures 4-5 where we present the isoconcentration contours for the same external 
Peclet number (Pe(2) = 500) ;:md different ratios of internal and external diffusivities (D = 0.25 
and D = 4.0). 

For D = 0.25 the internal convection is much stronger, in the sense that the value of Pe(l) 
is larger. As a consequence the concentration isocontours inside the droplet lie close to the internal 
streamlines, a result already obtained numerically by Johns and Beckmann [7] for the special case 
of mass transfer resistance solely inside the droplet. The coincidence of internal isocontours with 
internal streamlines also constituted the basic assumption of Kronig and Brink's model of mass 
transfer in a circulating drop [6]. From a simple comparison of the isocontour levels in Figures 4 
and 5 alone one infers that the mass transfer from a droplet for D=4 is much more intense than 
for D=0.25. The reason that the internal Peclet number Pe(l) is greater for D = 0.25 is not that 
the internal circulation is greater, for it is not (J.L = 1), but that the internal diffusivity is smaller. 
Nonetheless, it is customary for brevity to describe an increase in Peclet number as an increase 
in convection, rather than the more lengthy but more accurate increase of the ratio of convection 
to diffusion. In this usage, one may phrase the conclusion drawn from Figures 1-5 as follows: 
increased convection outside the droplet increases the rate of extraction, but increased convection 
inside suppresses mass transfer. 

The influence of the external reaction rate on the concentration distribution is shown in 
Figures 2, 6 and 7. As could have easily been anticipated, an increase in DaW results in faster 
extraction and an almost immediate disappearence of extracted species outside the droplet (almost 

no species present for DaW = 100 in Figure 7). 
Figures 8 and 9 show the effect of reaction rate on the local Sherwood number. The values of 

S hloc,O go to zero with time for all values of the angle variable {), although the surface distribution of 
Sherwood number based on the instantaneous driving force approaches a nonvanishing asymptote. 
An increase in the reaction rate thus results in a general increase of mass transfer and of values of 
the Sherwood numbers, but the temporal variation of values oflocal Sherwood numbers at different 
locations is less transparent, warranting further investigation. 

Figure 10 reflects the behavior of average Sherwood number Sh in time for different values 
of the external Peclet number Pe(2) for the no-reaction case. The oscillations of Sh were obtained 
computationally by different investigators including Johns and Beckmann [7] and Oliver and Chung 
[9], who solved the conjugate unsteady heat transfer problem, which is mathematically equivalent to 
the mass transfer problem under consideration when there is no chemical reaction involved. These 
oscillations are caused by the internal circulation, with the most detailed physical explanation being 
given by Brignell in [8]. Consequently, the period of these oscillations is smaller and the amplitute 
greater the higher the Peclet number is. The stronger convection also leads to a higher mass transfer 
rate as it creates the thinner diffusion boundary layers on the both sides of the droplet surface. 

Figure 11 illustrates the influence of the rate of external chemical reaction on the average 
Sherwood number. The plots confirm the conclusions made above on the increase of the rate of 
extraction with the increasing external convection and rate of external chemical reaction. 

300 



In a more apparent way, this is reflected in Figure 12, where the decrease of the average 
droplet concentration with time is shown. From this picture we can also deduce the very important 

I conclusion that an increase in the reaction rate beyond some specific value will not benefit the 
extraction results (the diffences between the average droplet concentration for DaW values of 300 
and 1000 are quite small). 

Figure 13 shows the effect of reaction rates on the values and temporal evolution of the 
enhancement factor E. The oscillations here are the consequences of internal circulation, the same 
as for the corresponding average Sherwood number on Figure 10. The values of E corresponding 
to the same reaction rate are higher for smaller Pe(2) (lower convection). A possible explanation 

could be that the corresponding values of Da}2), which are just the ratios of DaW and Pe(2), are 
smaller for higher Pe(2). 

In closing, we want to emphasize that the purpose of this article has been to present the 
numerical algorithm we have developed and to illustrate some of the kinds of results that can be 
obtained for this concrete situation. Our subsequent articles will include additional results for other 
classes of forced convective diffusion-reaction problems for single drops, as well as more detailed 
analyses of these and other results. 
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NOMENCLATURE 

-dimensional value of the uniform concentration in the origin of the droplet at t = 0 
-dimensional value of the concentration far from the drop 
-dimensional concentration in the i-th domain, i = 1,2 
-dimensionless concentration in the i-th domain, i = 1,2 
-molecular diffusivity of the solute in the fluid in the i-th domain, i = 1,2 
-molecular diffusivity ratio, D(l) / D(2) 

-first Damkohler number in the i-th domain, f(it~~)too' i = 1,2 

-second Damkohler number in the i-th domain, k~(~2, i = 1,2 

-enhancement factor, eq.(50) 
-factor showing the viscosity ratio dependence of the 
velocity scale in the i-th domain, i = 1,2 
-distribution coefficient (Henry "law" constant) 
-chemical reaction rate constant in the i-th domain, i = 1,2 
-highest order of the Legendre polynomials used in the expansion 
in the angular direction 
-number of terms in the expansion of radial functions in the i-th domain, i = 1,2 

-Peclet number in the i-th domain, 2 Uoo fXNfI.) R, i = 1,2 

-dimensionless radial coordinate 
-droplet radius 
-dimensional time 

-characteristic velocity scale in the i-th domain, i = 1,2 
-velocity of the flow at the infinity 
-velocity field in the i-th domain nondimensionalized 

by the corresponding velocity scale U~i), i = 1,2 
-polar angle in spherical coordinate system 
= cos~ 
-molecular viscosities ratio, p.(l)/ p.(2) 

-molecular viscosity of the fluid in the i-th domain, i = 1,2 
-dimensionless time 

-convection time scale in the i-th domain, feildf') U
oo

' i = 1,2 

-diffusion time scale in the i-th domain, ffi~), i = 1,2 

-chemical reaction time scale in the i-th domain, kfi) , i = 1,2 
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Table 1: Coefficients in eq.(1) depending on the choice ofr. (i,j = 1,2) 

K~i) II 
rei) Pe(i) D(i) D(i) D (i) D(i) 

diff ~·D(;) D(;) all· D{;) 

(i) ~ 2~ (i)~ rconv Ii (/-L) Pe(i) . I j (/-L) Da .. 
1 I] (/-L) 

".,(i) 1 k(i) 1 k(i) k(i) 
rxn Da(i) . k(i) Da(i) . k(i) k(i) 

1 II 
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