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Summary

The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic
stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation
formulation is described. The performance of the spectral scheme is compared with that of a 2nd order
finite difference scheme. An exact solution tothe Marangoni-Benard problem is used to evaluate the

performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude
smaller than finite difference error for a grid resolution of N = 15 (number of points used). The

performance of the spectral formulation far exceeded the performance of the f'mite difference formulation
for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order f'mite
difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher
order finite difference schemes.

1.0 Introduction

The theory of hydrodynamic stability has helped to explain and predict a variety of fluid

flow phenomena. Recently it is being used to guide the modem computational fluid

dynamicist in choosing the appropriate parameter values which are needed to simulate

fluid flow behavior of interest (NASA TM-4569, 1994). Many current applications of

hydrodynamic stability theory are possible because the field has benefitted greatly from

the development and refinement of computational tools in addition to the existence of

increasingly powerful computers. Spectral methods is one such set of tools that has been

successfully applied to obtain high accuracy hydrodynamic stability results to previously

intractable problems.

The purpose of this paper is to show, by example, the use of a spectral collocation

formulation to solve hydrodynamic stability problems. Our discussion will be confined to

the linear stability analysis which is the foundation of hydrodynamic stability theory (Lin,

1945). The linear stability problem ultiriaately reduces to a matrix eigenvalue problem,

and the peril of the eigenvalue problem is that it requires O(N 3) operations to obtain the

eigenvalues where the matrix is N x N. As shown herein, the high accuracy of spectral

methods results in small N, therefore considerably less CPU time is required to solve for

the eigenvalues when compared to finite difference methods.
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The Benard problem is used to illustrate the implementation and performance of the

spectral scheme. The problem is also solved using a 2nd order finite difference scheme

which required slightly less time to implement. Results of the two numerical schemes are

compared to the exact solution of the Marangoni-Benard problem (Pearson, 1959).

The Benard problem is described, and the governing equations and boundary conditions

are developed in the following section. After a brief description of the finite difference

scheme, the spectral collocation formulation is discussed. Results from both numerical

schemes are then compared to an exact solution of the Marangoni-Benard problem. The

spectral scheme yields results with considerably better accuracy using an order of

magnitude less points than the finite difference scheme.

2.0 Description of Benard Problem & Development of Equations

A temperature difference is imposed normal to the free surface of a thin liquid layer of

fluid of infinite horizontal extent and finite thickness, d, as shown in Figure 1.The initial

steady state or base state of the system is one of no fluid motion, with a linear

temperature profile across the layer. The velocity and temperature profiles illustrated in

Figure 1 can immediately be expressed as, U_ = 0 and T_ = T_0 -13z'. Using the notation

of Pearson (1958) and Chandrasehkar (1981), U_ and Tb are respectively, the base flow

velocity and temperature. The temperature gradient of the base state, 13is defined as

13=-dT_/dz'or 13= AT_/d where ATj = T_0- T_s. The asterisk, "*" denotes dimensional

quantities. The lower surface is rigid and is held at a constant temperature. The upper

surface is free and exchanges heat with the environment. The free surface is assumed flat

which is physically justified for many terrestrial problems. We first give the

nondimensional form of the governing equations and in the next section we linearize

about the base state just described in order to determine whether small disturbances to the

base state will grow or decay. Specifically we are interested in the critical values of the

nondimensional parameters where the change of stability occurs.

z*-
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T_
: = -13

too •-_X o

Figure 1 Base State For Thin Liquid Layer Of Infinite Extent

Nondimensional forms of mass, momentum, and energy equations for an incompressible

fluid with the Boussinesq approximation are given in equations (1) through (3). The

derivation of these equations with the Boussinesq approximation and constant viscosity

and their subsequent nondimensionalization are well known and we refer the interested
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readerto Chandrasekar(1981),andDrazin& Reid(1982)for details. All
thermophysicalpropertiesareassumedconstantapartfrom densityandsurfacetension.

V.O=0 (1)

DO = __p + f_. Ra Pr(T - Tb0) + Pr V20 (2)
Dt

DT _2 y (3)
Dt

0, T, P, t are the velocity vector, temperature, pressure, and time respectively. The

reference values used to nondimensionalize the variable; length, velocity, temperature,

p0_:0/d , d/K 0 , respectively. P0 is the fluidpressure, and time are d, K_ / d, 13d, • • / 2 z *

density and K 0 is the fluid thermal diffusivity. The subscript 0 indicates that the

properties are chosen at the lower surface temperature, Tb0" The characteristic value of

the dynamic viscosity of the fluid, p., is denoted as p._. These reference values are

consistent with those used in the buoyancy instability studies presented in Chandrasekhar

(1981) and Drazin and Reid (1982), and the surface tension instability investigations of

Pearson (1958) and Striven and Stemling (1964). Two dimensionless groups appear in

the momentum equation, the Prandtl number, Pr, and the Rayleigh number, Ra, which

are defined as follows:
• ¢'1S4_*

Pr = _to Ra = P°Po g0gz

_ is the volumetric thermal expansion coefficient and gz is gravitational acceleration in

the negative z-direction. The dot product of the unit vector in the z direction, 1_, and the

buoyancy (RaPr) term in equation (2) indicates that buoyancy only acts in the vertical

direction. Therefore the Rayleigh number only occurs in the z-momentum equation.

The nondimensional boundary conditions are given by equations (4) and (5). Equations

(4a,b,c), represent the no-slip conditions and impenetrable wall condition at z=0.

Equation (4d) is the constant temperature condition along the wall. The normal stress

boundary condition reduces to (5a) when the free surface at z=l is assumed to be fiat.

Boundary condition (5b) is the heat flux balance at the free surface, where Q* is the

dimensional surface heat flux to the environment and k_ is the fluid thermal conductivity.

Equations (5c and 5d) are the tangential force balances along the free surface, in the x and

y directions, respectively.

At z = 0; 0(0) = (U x,U:.,U,) = 0, T(0) = Tb0 (4a,b,c,d)

aT
At z = 1" Uz(1) = 0; m + = 0, (5a, b)

' az l%p

(5c,d)
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^C3 _. ^
The operator, V,, is the surface gradient defined as i m + j _ where, i and ] are unit

oy
vectors in the x and y directions respectively. The Marangoni number, Ma, which occurs

equations (So,d) Y0,in is defined as: Ma = 13dr2_ The parameter, is defined as
aT*_¢0_0 Tb,

and is often referred to as the temperature variation of surface tension (Nield 1964 and

Adamson 1967) or differential coefficient of surface tension change with temperature

(Scriven and Sternling 1964). The surface tension, or', does not appear in our equations or

boundary conditions since we have assumed a flat interface. Further discussion of the

nondimensionalization of the free surface boundary conditions is found in Scriven and

Stemling (1964), and Koschmeider (1993).

The surface heat flux, Q*, has to be expressed in a form that is suitable for linearizing the

heat flux boundary condition, equation (5). This is accomplished by expanding Q* about

the base state surface temperature, T_s. The first order expansion is given by equation

(6). As previously noted, the base state varies only in the z-direction. Therefore, Q" (Tbs)

can be re-expressed as equation (7), using Fourier's law.

a_TT'_
Q" = Q' (T_,) +-_-_. (T" - T_,)

.

Q'(T;,)=ko-_-z, .d=k;13

(6)

(7)

Substituting equation (6)into equation (5b), using k_fl in place of Q' (Tbs) and defining

h' = 0Q___T;, "the heat flux boundary condition becomes:

aT+ 1+ Bi(T_ - Tbs) = 0 (8)
az

h'd

The dimensionless group, Bi s, is defined as Bi_ = _ and is referred to as either the

surface Biot number (Pearson, 1958 and Nield, 1964) or the surface Nusselt number

(Scriven and Stemling, 1964).

We note that the three-dimensional mass, momentum, and energy equations are given in

equations (1-3), yet the boundary conditions are only specified in the z-direction. After

linearizing the problem and applying some vector operations, it is shown in the next

section, that the governing equations and boundary, equations in the x and y directions do

.not affect the stability of the base state. Equations (1, 2, 3, 4, and 5a,c,d and 8) make up

the system which we will linearize in the next section.
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2.1 Linearization of The Governing Equations

The dependent variables are written in terms of the following base flow and perturbation

variables: 0 = _, T = Tb + 0, AP = APb + Ap

After substituting for T b and VT b, the disturbance equations become:

= -Vp + 1<. Ra PrO + Pr _,2fi (9)
&

--- u. = V20 (10)
cOt

1_ is the unit vector in the z-direction shown in Figure 1. The curl operator is applied

twice to the momentum equation, equation (9), which yields equation (11 ).

_V2u:( ] - 1_.RaPr V20 + Pr V4_ (11)
0t 11

The first curl operation yields the vorticity equation and eliminates the pressure terms.

The second curl operation decouples the momentum equations from each other. The x

and y momentum equations become uncoupled from the z-momentum and the energy

equations. The z-momentum and energy equations remain coupled through the buoyancy

term in equation (11), the convective term in equation (10), and the tangential boundary

condition (discussed below). Furthermore, the relevant stability parameters, Ma and Ra,

do not appear in either the x or y momentum equation or their associated boundary.

conditions. Given these considerations, equation (11) reduces to the scalar equation in u z,

equation (12).

&
- Ra Pr V_0 + Pr V4uz (12)

The boundary conditions for the perturbed variables associated with equations (10 and

12) are given by equations (13) through (14).

At z = O,

Atz = 1,

u_=O; _=couz O; 0=0
_z

uz=0; _z + Bis0(1) = 0

-(v,:,u, O_Uz_ "" "-':"

(13a,b,c)

(14a,b)

(14c)
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2.2 Normal Mode Analysis

Since equations (10) and (12) are linear, we assume solutions for u z and _ are of the

form:

u z = w(z)e i('_x+"'y)÷x' and 0 = _b(z)e '(_'x÷_'y)÷_''

ct x and Oty are the dimensionless wavenumbers in the x and y directions, and 9_ is the

dimensionless frequency. Substituting these into equations (1 O) and (12 ) results in the

following ordinary differential equations.

_.d_(z) - D_d_(z) + ot2#(z) - w(z) = 0

)_(D2w- a2w(z)) = Ra Pr(D2_ - a2_) + er(D4w - 2c_2D2w +o_4w(z))

Where D = _d and ¢x2 = _2 +et2y.
dz

(15)

(16)

The boundary conditions at z = 0 become:

w(0) = 0, Dw(0) = 0, d_(0) = 0. (17a,b,c)

At z= 1, the flat interface condition, heat flux condition, and tangential stress boundary

condition are:

w(1) = 0, Dd?(1) + Bisd?(1) = 0, D2w = -ct2Ma#(1) (18a,b,c)

Equations (15 through 18) are solved to determine whether the velocity and temperature

disturbances grow or decay for given combinations of the relevant parameters. The

relevant parameters are Ma, Ra, and o_. Our problem is also referred to as a temporally

developing flow problem since the disturbance growth or decay is in time. For temporally

developing flows, o_x and Oty are real and the eigenvalue, L, is complex. If the real part of

is positive the disturbance grows, if the real part of _. is negative the disturbance decays

in time and if _. is zero, the disturbance persists unchanged in time.

3.0 Discrete Formulations

Two discrete formulations will be applied to the Benard problem, a 2nd order finite

difference scheme, and a spectral collocation scheme. Irrespective of the discrete

formulation the goal is construct a set of linear equations in form of the general

eigenvalue problem, Ax = _.Bx. Once the eigenvalue problem is setup, solution

mechanics are identical. If B is cheaply invertible, it usually pays to reduce the problem

to a regular eigenvalue problem of the form Cx =_.x, where C = B-1A. In this study we

used standard QR and QZ eigenvalue subroutines from the IMSL library to solve for the

eigenvalues.
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3.1 2nd Order Finite Difference Scheme

Equations (15 through 18) were discretized using a standard central difference scheme.

Boundary conditions result in solving 2N-1 equations for this formulation. The

discretized governing equations, equations (19) and (20), were arranged in the form

Az = LBz, which is the generalized eigenvalue problem. Coefficients, a through g, and r

are constants.

a w,__, +bwi_ 1+cw i +dwi. I +ewi+2 +r_i = X(fwi_l +gwi + fwi+l)

f(_i-I "1" gl_i 4" f_i+l q- Wi = _'(l_i)

(19)

(20)

Here the boundary conditions for Eq (15) are applied only to the i = 0, 1, N-I, N

equations and for Eq (16) only to i = 0 and i = N.

B is a nonsingular matrix so it is possible to reduce the system to a regular eigenvalue

problem of the form Cz = B-_A = Xz. Assuming a flat interface ensures that B is a

tridiagonal matrix which can efficiently be inverted using a tridiagonal solver. The

problem was discretized in terms of one fourth order equation, and one second order

equation, which yields A and B matrices of rank 2N+2. Three of the six boundary

conditions are Dirichlet boundary conditions which reduce the A and B matrices to rank

2N-1.

3.2 Chebyshev Collocation Spectral Scheme

The key to all spectral techniques lies in the possibility of expanding smooth functions in

terms of rapidly converging sums of certain orthogonal basis functions. For example,

consider any reasonable function f(x) defined in the domain -1 _<x _<1 ( see Canuto et.

al. for a precise definition of"reasonable"). The function can be represented as a sum of

Chebyshev polynomials, T, (x), of the form:

f(x) = £_T_(x) (21)
n=0

The crucial thing is that the sum converges very rapidly if f(x) is smooth so one can

truncate it at N terms and accurately represent the function with a minimal set of numbers

{_,: n = 0..... S}. Such an expansion can be viewed as a very efficient and only slightly lossy

compression technique for functions.

Pure spectral methods proceed by expanding the unknowns in terms of truncated sums of

certain polynomials having excellent convergence properties (often simple combinations

of Chebyshev polynomials that automatically account for any boundary conditions that

must be satisfied by the function). The sums are then substituted into the differential

equation and the coefficients are picked to minimize the residual. The fundamental

quantities of interest in this procedure are the coefficients in the expansions of the

dependent variables.
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Spectralcollocationmethodson the other hand, concentrate directly on the physical space

representation of the unknowns and as a consequence are more easily understood by the

naive user. For example, in a collocation technique our hypothetical function, f(x) is not

stored as {i;: n=0 ..... N}, but instead as {(_= f(x_): i--0 ..... N}. The exact correspondence

between the two representations is maintained by choosing the physical space grid {x_ }

in an optimal fashion that is related to one of the Gaussian integration formulas. A typical

formula of choice for Chebyshev expansions on the domain [-1,1 ] is the Gauss-Labatto

grid, x_ = cos(ire / N). The spectral space and physical space representations can be

interchanged with essentially no error (except perhaps for aliasing errors). Moreover, if

the expansion is in terms of Chebyshev polynomials or trigonometric functions, the

transformations to and from spectral space can be carried out efficiently by using Fourier

Transforms (FFT's).

Solving differential equations obviously requires that the derivatives are evaluated. One

method of evaluating {t?- f'(x_)} is to proceed as

That is, one first transforms to spectral space where a derivative is taken rapidly by using

some simple properties of the basis functions. The new series produced in this fashion is

then transformed back to a physical space representation. In the case of trigonometric or

Chebyshev expansions, the procedure is dominated by the FFT's used in the

transformations, so the total cost is O(N log N) operations.

There is a mathematically equivalent approach which uses matrix-vector multiplies to

express
N

= _ D,]fj (22)
j,,0

where the elements of the derivative matrix D can be found in spectral texts such as

Canuto et. al. To evaluate the derivatives on the entire grid using this method will take

O(N :) operations. However, the matrix-vector multiply approach is the only one possible

for eigenvalue problems where the aim is to turn the linear differential operator into the

equivalent matrix operator on the discrete grid. Thus for example, the continuous

equation, Kf= f", becomes the discrete equation, _,f= D2f, so that in theory one simply

fills and then squares the D matrix before feeding it to a standard matrix eigenvalue. In

practice, the greatest programming labor is in the implementation the boundary

conditions.

For the Benard problem, it is convenient to define the matrix operator

L = D 2 -ot2I (23)
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whereI is the identitymatrix.Thecontinuousequations,(15)and(16)thenbecomethe
discreteequations,(24)and(25)

Pr(L2w- ct2RaI_j)= _.Lw

L(I)+ Iw = _.I_

(24)
(25)

andtheseequationscanberecastinto thestandardform Au = _.Bugivenby equation
(26).

Eo]Iw]"Pr L2 -ot2Ra Pr I = _. L

I L 0 I d_
(26)

This translation of a continuous problem into a discrete one is very natural and can be

carried out even more rapidly than the corresponding process for a finite difference

scheme. However, this matrix eigenvalue problem as it stands does not take the boundary

conditions into account. Most of the coding complexity that is present in spectral

techniques (which by nature are global approximations) arises because of the need to

implement boundary data (which are local point conditions).

The boundary conditions and governing equation are first mapped from the z variable in

the domain [0,1 ] to x defined on [- 1,1 ] by x = 2z- 1. The mapped boundary conditions

become:

At x =-I (i=n): w. = _-'_D_iw i =d_ i =0 (27)
i_0

N N

Atx= +1 (i=0): Wo = Bi,Oo +_'_DoiO_ = a2MaOo_-".D2o, W_ =0 (28)
i=O i=O

We immediately see that w 0 = w N = _r_ = 0. The remaining equations can be used to

simultaneously solve for w_, wN_ _, and d_0in terms of the other wi's and _,'s as shown

in equation (29). Equations (29) reveal that elements, w I and wN_ t, are coupled to the

d_'s through the last boundary condition in equation (28) while _0 remains uncoupled

from the wi's.

N-2

Wl = ZCiWi'b_0,

i=2

N-2 N-I

WN-I = Z di w i "+" I_0' I_0 = Z ei_i ( 29 )
i=2 i=l

The boundary condition information is used to reduce the rank of the eigenvalue problem

which is given by equation (30).

2N+I 2N+I

Aijuj = _. _ Bijuj
j=O j=O

(30)
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Thefirst N+ 1componentsof the vector u here corresponds to {w_" i = 0,..., N } and the

last N+ 1 components corresponds to {d_" i = 0 ..... N}. Applying the six boundary

conditions, we can eliminate the rows corresponding to w 0, w t , WN__,W N , _b0, and _bN and

expand equation (30) as given below.

AilUl +AiN-IUN-1 +AiN+IUN+I

2N+I

+ Z Aijuj =

j=2

j)N-I.N.N+I

2N+I 1k SilU 1 +BiN_IUN_ I +BiN+IUN+ I + j._.2nijuj]

j.N -I'_N,N+ I )/

(31)

where we have already used the data, u 0 = u N = u.,s+ , = 0 (which corresponds to

w 0 = w N = d_s = 0). Using the remaining boundary conditions, equations (29), take the

form

N-2 2N

Ul = ZCjUj = ZCjUj'

S=2 j=2
j_N-,.N.N+'

N-' 2N

uN+,=Zeju --
j=l j=2

j_N-I.N.N+I

N-2 2N

US-' = Z djuj = _"_ajuj.
j=2 j=2

j_N-I,N,N+I

{cj {dj (0where _)= & d j= & _j=
ej_s_3 e j-N-3 e j-N-3

if j= 2,...,N-2

ifj = N + 2,...,2N

(32)

(33)

The matrix eigenvalue problem can be rewritten as

2N+I 2N+'

j=_ j=l
j*tN-I,N,N+I jtN-',N,N+I

(34)

where A0 = Aij + A,Ej + AiN_,d j + AiN÷,ej and B,j = Bij + Bi,c j + BiN_,d j + BiN÷,e j . The

global matrix problem is finally transformed to a reduced eigenvalue problem ._u = kl3u

where the matrices are (2N- 4)× (2N- 4) and all six boundary conditions have been

incorporated into the problem.

The principle difficulty in using spectral collocation techniques for solving stability

problems is the implementation of derivative boundary conditions. A condition such as

w(1) = 0 is not a problem as all that is required is the reduction of the global matrices by

eliminating one row and one column. Derivative data on the other hand, results in altering

all the elements of the matrices due to the global nature of the underlying series
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approximation.All datacontributesto thevalueof thederivativeat eachpoint
Nevertheless,for theBenardproblem,thespectralcollocationtechniqueis only slightly
moredifficult to codethanasecondorderfinitedifferencescheme.As is observedin the
subsequentresults,theadditionalcodingeffort is amplyrewarded.

4.0 Results

Under certain conditions, exact solutions to equations (I 5) through (18) have been

obtained. Pearson (1958) derived an exact solution to the Marangoni-Benard problem

(Ra = 0) for the case of neutral stability, _. = 0. His solution reduces to equation (35) for

an insulated free surface, Bi = 0. The critical value of the Marangoni number, equation

(35), versus the wavenumber is shown in Fig. 3 and is referred to as a neutral stability

curve since _. = 0 for all points along the curve. For values of Ma above this curve are

unstable since infinitesimal disturbances. Our objective is to use the above exact result to

investigate the accuracy of the aforementioned discrete formulations, so we do not

consider alternative exact or approximate solutions which exist for the general problem.

The physical interpretation of these results in addition to results from other exact or

approximate solutions to the Benard problem are discussed in Pearson 1958, Scriven&

Stemling 1964, Smith 1966, Chandrasekhar 198 l, and most of the other references cited

in section 6.0. We now compare the numerical results to the exact solution.

8et 2 cosh(t_)(a - sinh(a) cosh(a))

Mac = et 3 cosh(cz) - sinh 3(a) (35)

400

350

300

250

200

150

100

50

Figure 2

Marangoni-Benard Neutral Stability Curve

(Exact Solution)

[ I I I I ;

1 2 3 4 5 6

Ct

Marangoni-Benard Neutral Stability Curve,

Exact Solution for Bi=0 (Pearson, 1958)

285



Neutral stability curves for the Marangoni-Benard problem which were generated using a

2nd order finite difference scheme and spectral scheme are shown in Figs. 3 and 4,

respectively. The_ number of points across the fluid depth, N, (in the z-direction)

represents the spatial resolution used to generate a given curve. In Fig. 3 the neutral

stability curve converges to the exact solution as the spatial resolution increases from

N -- 4 to N -- 100. The N = 50 and N = 100 curves are visually indistinguishable from the

exact solution. Fig. 4 reveals that the neutral stability curves computed using the spectral

formulation also converge to the exact solution as the spatial resolution increases. The

spectrally generated neutral stability curves shown in Fig. 4 are visually identical to the

exact solution for spatial resolutions as low as N = 10. In both Figs. 3 and 4, the

numerically generated neutral stability curves tend to diverge from the exact solution with

increasing wavenumber. It is also observed that the finite difference solution converges

from above the exact solution while the spectral solution converges from below exact

neutral stability curve.

400

300 -

200-

100 -

N=4 /// /I

---- N=5 I/ //
----- N=7 / / / /.
.... N=10 / / ////

• N=15 // //../
.... N = 50 /,'/,/./

k .... N=IO0 ///_//

ZzY

400

300

200-

100 -

• N= 15 /Y

/

0 [ I I I i I 0 I I I l I I

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Figure 3 Marangoni-Benard Neutral Stability Curves

Computed Using A 2nd Order Finite Difference Scheme.
N Is The Number Points Through The Fluid Layer.

Figure 4 Marangoni Neutral Stability Curves

Computed Using A Spectral Collocation Scheme./_

The Number Points Through The Fluid Layer.

The error in the Marangoni number for the finite difference and spectral schemes is

plotted as a function of wavenumber in Figs. 5 and 6, respectively. In both figures, error

is plotted using a logarithmic scale while the wavenumber. (z, is plotted with a linear
scale on the abscissa. The error (ordinate) range differs between the two figures so that

the error characteristics of each discrete scheme could be observed. The error is defined

as Max - Ma .... where Ma N is the Marangoni number computed from a discrete
Ma_u=

formulation for a given spatial resolution (N points) and Maexac t is computed using

equation (35). Both discrete schemes are observed in Figs. 1 through 4 to converge to the

exact solution as the spatial resolution, N, increases. The finite difference errors for each
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curve increase approximately an order of magnitude over the given wavenumber range as

observed in Figure 5, while the spectral error shown in Figure 6 increases four to five

orders of magnitude with wavenumber. For N greater than approximately seven, the

spectral error remains considerably less than the finite difference error for the range of tx

considered.

Figure 5
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Figure 6 Marangoni Number Error vs. Wavenumber For The Spectral Collocation Scheme. N Is
The Number Of Points Through The Fluid Layer
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Selected error values of the two schemes for wavenumbers of 2 and 5 are tabulated in

Tables 1 and 2, respectively. The errors for, a = 2, the critical wavenumber were smaller

than those of the larger wavenumber, ot = 5. In Fig. 7, the Ma error is shown on a log-log

plot as function of the spatial resolution (N grid points) for both discrete formulations.

Comparing Ma error values at a wavenumber of 2 and N = 10, the error for the spectral

scheme is seen to be five orders of magnitude smaller than the finite difference error.

Furthermore, after increasing the spatial resolution of the finite difference scheme to

N = 100, still gives a spectral error for N = 10 that is 3 orders of magnitude smaller. The
reduction in error for the finite difference scheme is essentially proportional to N 2, as

expected since the scheme is 2 nd order accurate. A slope of-2.02 was computed for the

finite difference curve in Fig. 7 which is within 1% of the expected value of 2. The slope

was computed from a least squares fit of the finite difference data in Table 1. The error

for the spectral formulation is expected to decrease exponentially with increasing N

(Boyd, 1989, Canuto et. al., 1987). However the error results in Table 2 show that the

exponential rate of convergence is exceeded for this particular problem. Fig. 7 vividly

illustrates that the spectral scheme results in a significant reduction in error with

considerably fewer grid points than the central difference scheme for this particular

problem. The spectral formulation has also been shown to out perform finite difference

methods when applied to other hydrodynamic stability problems (Canuto et. al., 1987,

Boyd, 1989). The exceptional performance (greater than exponential convergence) of the

spectral collocation scheme for this problem was not anticipated by the authors.

Table 1

Spatial

Selected Marangoni Number Errors •

For Wavenumber, ct=2

resolution

N

5

Finite

Difference

1.085x10 -1

100

Spectral

2.920xi0 -2

10 2.600x10 "2 3.400x10 "7

15 l.l15x10 "2 4.529x10 "11

50 1.025x10 "3

2.561x10 -4

Table 2 Selected Marangoni Number Errors

For Wavenumber, _t--5

Spatial resolution

N

Finite

Difference

5.756x10 -1

Spectral

2.808x10 -15

10 1.309x10 "1 2.525x10 "4

15 6.434x10 "95.710x10 °2

5.075x10 -3

1.268x10 -3

50

I00

As stated throughout, the ability to reduce the size of N is crucial to the eigenvalue

problem, A_ = _.B_. Inverting B takes O(N 3) operations; the matrix multiplication of

C = B-_A requires O(N3); and solving the regular eigenvalue problem, C_ = _._, requires

O(N 3) operations. Neglecting all other operations than those identified above, for a grid

resolution of N=l 0, it requires appropriately 3000 operations to compute the eigenvalues

while it requires O(3x 106) operations for N=100. The number of iterations required to

converge to Ma c at one wavenumber is O(10), ie., the matrix eigenvalue problem is

solved approximately ten times for each wavenumber.
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Figure 7 Error in Mac ((z = 2) As A Function Of The Number of Points
Across The Fluid Layer, N

5.0 Concluding Remarks

A spectral scheme, the Chebyshev collocation formulation was used to perform a

hydrodynamic (linear) stability analysis of the Benard problem. The problem reduces to a

generalized eigenvalue problem, Ax = _,Bx, which can be reduced to a regular eigenvalue

problem, Cx = Ex by inverting B. Implementation of the spectral scheme was described.

There is a bit of a learning curve that must initially be overcome to comfortably setup the

spectral formulation if one has no previous experience with spectral methods. Afterwards,

the spectral scheme requires only slightly more time to set up than the 2nd order finite

difference scheme and is likely to be easier to program than higher order finite difference

schemes. A comparison of the results from the spectral and finite difference scheme

reveals that the spectral scheme out performs the finite difference scheme by a

considerable margin. The error of the spectral scheme is at least three orders of magnitude

smaller than the finite difference error for N = 10 and seven orders of magnitude smaller
than finite difference error for N = 15.
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