
Building an Adaptive Agent to Monitor and Repair the Electrical _.Power System of an Orbital Satellite /3"

Gheorghe Tecuci 1,2 Michael R. Hieb _ Tomasz Dybala t
{tecuci, hieb, tdybala} @gmu.edu

Department of Computer Science, George Mason University, Fairfax, Virginia, USA
2 Center for Artificial Intelligence, Romanian Academy, Bucharest, Romania

Abstract

Over several years we have developed a

multistrategy apprenticeship learning

methodology for building knowledge-based

systems. Recently we have developed and

applied our methodology to building

intelligent agents. This methodology allows a

subject matter expert to build an agent in the
r

same way in which the expert would teach a

_ human apprentice. The expert will give the

agent specific examples of problems and

solutions, explanations of these solutions, or

supervise the agent as it solves new problems.

During such interactions, the agent learns

general rules and concepts, continuously

extending and improving its knowledge base.

In this paper we present initial results on

applying this methodology to build an

intelligent adaptive agent for monitoring and

repair of the electrical power system of an

orbital satellite, stressing the interaction with

the expert during apprenticeship learning.

1. Introduction

Automating the process of building

knowledge bases has long been the goal of

both Knowledge Acquisition and Machine

Learning. The focus of knowledge acquisition

has been to improve and partially automate the

acquisition of knowledge from human experts

by a knowledge engineer. This approach has

had limited success, mostly because of the

communications problems between the subject

matter expert and the knowledge engineer,

which requires many iterations before

converging to an acceptable knowledge base.

In contrast, machine learning has focused on

mostly autonomous algorithms for acquiring

and improving the organization of knowledge.

However, because of the complexity of this

problem, the application of this approach

tends to be limited to very simple domains.

While knowledge acquisition research has

generally avoided using machine learning

techniques, relying on the knowledge

engineer, machine learning research has

generally avoided involving a human expert in

the learning loop. We think that neither

approach is sufficient, and that the automation

of knowledge acquisition should be based on

a direct interaction between a human subject

matter expert and a learning system (Tecuci,

Kedar, and Kodratoff, 1994).

A human expert and a learning system have

complementary strengths. Problems that are

extremely difficult for one may be easy for the

other. For instance, automated learning

systems have traditionally had difficulty

assigning credit or blame to individual

decisions that lead to overall results, but this

process is generally easy for a human expert.

Also, the "new terms" problem in the field of

Machine Learning (i.e. extending the

representation language with new terms when

these terms cannot represent the concept to be

learned), is very difficult for an autonomous

learner, but could be quite easy for a human

expert (Tecuci and Hieb, 1994). On the other

hand, there are many problems that are much

more difficult for a human expert than for a

learning system as, for instance, the

generation of general concepts or rules that

account for specific examples, and the

57

PRECEDING PAGE BLANK NOT FILMED
PAGE --_____ INTENTIONALLYI_.ANI_

https://ntrs.nasa.gov/search.jsp?R=19950020959 2020-06-16T07:14:49+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42781198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

updating of the knowledge base to

consistently integrate the learned knowledge.

Over several years we have developed a

multistrategy apprenticeship learning

methodology for building knowledge-based

systems (Tecuci, 1988, 1992; Tecuci and

Kodratoff, 1990; Tecuci and Hieb, 1994;

Tecuci et al, 1994). Recently we have

developed and applied our methodology to

building intelligent agents. This methodology

allows a subject matter expert to build an agent

in the same way in which the expert would

teach a human apprentice. The expert will give

the agent specific examples of problems and

solutions, explanations of these solutions, or

supervise the agent as it solves new problems.

During such interactions, the agent learns

general rules and concepts, continuously

extending and improving its knowledge base.

This process produces validated knowledge-

based agents, because it is based on an expert

interacting with, checking and correcting the

way the agent solve problems.

Successive versions of this methodology have

been implemented in several systems (e.g.

DISCIPLE (Tecuci, 1988; Tecuci and

Kodratoff, 1990) NeoDISCIPLE, (Tecuci,

1992; Tecuci and Hieb, 1994) and CAPTAIN

(Tecuci et al, 1994)), which have been applied

to a variety of domains: loudspeaker

manufacturing, reactions in inorganic

chemistry, high-level robot planning,

question-answering in geography and, more

recently, military command agents in
distributed interactive simulation

environments.

In this paper we present initial results on

updating and applying this methodology to

build an intelligent adaptive agent for

monitoring and repair of the electrical power

system of an orbital satellite. The system
DISCIPLE-OPS, which implements this

methodology, provides an integrated

framework that facilitates

1) building intelligent agents through

knowledge elicitation and interactive

apprenticeship learning from experts;
and

2) making these agents adapt and improve

during their normal use through

autonomous learning.

This paper is organized as follows. Secfi0n 2

presents the application domain. Section 3

describes a simulator of the electrical power

system to be monitored. Section 4 presents the

architecture of the . intelligent agent, together
with its decision-making and learning

methods. Section 5 presents the methodology

for building the agent. Finally, section 6

concludes the paper with a discussion of our

agent-building approach.

2. An Exemplary Problem

The main objective of the Electrical Power

System (EPS) is to provide an Orbital Satellite

with a steady supply of electrical power. The

EPS is capable of self-preservation in

emergencies, but it is not capable of

maintaining optimum productivity without

outside support. If not controlled, the power

production of the EPS will eventually fail,

leaving its users unsupported. Therefore_ the
EPS must be monitored at all times. This

function could be fulfilled by an intelligent

agent acting as a ground station that monitors

telemetry from sensors _in the so!a r powered
EPS for anomalous behavior, and generates

repairs by forming and upiin-king commandS

to the spacecraft. The agent itself is supervised

by a human operator who maY correct its
behavior. The basic interaction between the

spacecraft, the intelligent agent, and the

human operator is shown in Figure 1. During

such interactions, the agent learns from its

own actions and the commands issued by the

human operator, gradually acquiring the

expertise of the operator until it could operate

autonomously.

58

In the following sections we present a
methodology for building the intelligent agent

in Figure 1. However, instead of controlling

the EPS, the agent will control a simulator of

the EPS. This simulator is briefly described in
section 3.

Space Telescope

Command __

ry

Intelligent 91.__.._____1._
Adaptive

Agent

Operator

Figure 1. Basic interaction between the

spacecraft, the intelligent agent,
and the human operator.

3. A Simulator of the Electrical Power

System of an Orbital Satellite

A simulator of an Orbital Satellite Electrical

Power System has been developed by NASA

Goddard Code 522.3 (Silverman et al., 1989;

Hieb 1990; Hieb, Silverman & Mezher,

1992). The simulator was not designed to

duplicate the EPS of the actual orbital satellite,

but is a scaled down version which only
simulates selected basic functions and

problems. The goal of the design was to

capture the essence of EPS problems 'and

implement them in the simulator. Therefore,

this Software simulator provides a'challenge to

the intelligent agent which has close

similarities to the real problems encountered at

NASA control centers. Figure 2 is a diagram

of the EPS simulator. The following

components are represented in the simulator.

Solar arrays. There are two solar array panels

in the simulator, each with ten solar cells.

Power production takes place in the solar

arrays. Orientation and cell errors are

randomly generated with given certain limits

and probabilities. Cell errors are fixed by

resetting the appropriate solar array.

The network. The network is a set of power

lines equipped with switches and various
sensors. The network distributes and directs

the power generated by the solar arrays

through the system. In the entire network,

there are six switches for rerouting current

through the system. Switches may cause
malfunctions within the EPS. Switch errors

are fixed by cycling the specific switch. In this

simulation, switches errors are randomly

generated. Sensors measure the current at

various points on the network. In the entire
simulator there are four ammeters and a

voltmeter. Network losses are disregarded.

The battery. The battery stores the excess

electrical power generated by the solar arrays

during the day and then releases it in response

to nighttime power requirements.

The bus. The bus represents the load on the

EPS. In the simulator the bus power require-

ments can be adjusted depending on power

production or system mission schedule.

Time. A pass, or simulated earth orbit, is

always 90 minutes, with 60 minutes of it

spent in sunlight.

59

SOLAR [

ARRAY 2 I

AMMETER
1

AMMETER

HEATER I

BATTERY

GROUND

AMMETER
3

BUS

Figure 2. Orbital Satellite Electrical Power System Simulator

4. The Architecture of DISCIPLE-OPS

The intelligent agent, called DISCIPLE-OPS,

consists of three main components, the shared

knowledge base, the monitoring and repair

system, and the multistrategy apprentice

learning system, as indicated in Figure 3. The

monitoring system uses the shared knowledge
base to detect anomalous behaviors of the EPS

and to issue repair commands. The learning

system extends and corrects the knowledge
base as a result of the actions of the

monitoring system and the interactions with

the human operator.

4.1 The Shared Knowledge Base

The shared knowledge base contains three

types of knowledge:

• a hierarchical semantic network representing
the electrical power system;

• a set of situation-action rules which detects

faults in the EPS and issue repair
commands;

• a set of facts representing the current state of
the EPS.

A portion of the semantic network from the

knowledge base is represented in Figure 4. It

consists of a representation of the structure of

the EPS, and of the different components of

the EPS. This semantic network provides the

generalization language for learning.

The knowledge base contains rules of the
form:

IF <condition> THEN <action>

60

|

It

1 _

Intelligent Adaptive Agent

and Repair

System

Current State

KB

Simulation !

System

Operator

Multistrategy
Learning

System

Figure 3. The architecture of the intelligent agent

If the current state of the EPS matches

<condition> then the monitoring system will

issue the command to perform <action>.

The rules from the knowledge base are learned

by the multistrategy apprenticeship learning

system from the actions of the human

operator. During training many of the rules

may not have a single applicability condition,

but two conditions, called the plausible upper

bound and the plausible lower bound, as it is

shown in Figure 5.

The plausible upper bound is supposed to be

more general than the exact (but unknown)

condition of the rule, and the plausible lower

bound is supposed to be less general than the
exact condition. The two bounds define a

plausible version space [Tecuci, 1992] for the
exact condition of the rule.

power-source)

(solar-array)

(instrument)

I (batty-switch) / (voltmeter)

(sa-switch) (ammeter)

instance-of instance-of

ins n eof I \ \
] N_ connected-to "x connected-to x

/ (solar-array O m-(switchl) . D-(ammeterl)_

] _ \ connected-to

- / - connected to / connected to \ -''''__)"_ """

(,solar-array2) - P-(switch2) " D-(ammeter2_onnected-to

Figure 4. A hierarchical semantic network representing the electrical power system.

61

IF
plausible upper bound
(ammeter a (reading tow))
(clock c (time day))
(switch sw (connected-to a)

(position open))
(power-source sa (connected-to sw))

plausible lower bound
(ammeter
(clock
(sa-switch

(solar-array
THEN

CYCLE

a (reading low))
c (time day))
sw (connected-to a)

(position open))
sa (connected-to sw))

; the reading of ammeter 'a' is low
; during the day
; and the switch 'sw'
; between the ammeter 'a'
; and the power-source 'sa' is open

; the reading of ammeter 'a' is tow
; during the day
; and the sa-switch 'sw'
; between the ammeter 'a'
; and the solar-array 'sa' is open

sw ; cycle switch sw

Figure 5. A rule with partially leartied Conditions.

Each bound is a conjunction of expressions,

each expression describing a variable. For

instance,

(switch sw (connected-to a) (position closed))

describes 'sw' as being a switch connected to

'a', and being in the 'closed' position. The

variable 'a' is described'by a different

expression from the same bound.

The bounds and the version space are called

plausible because they have been initially

formed based on an incomplete explanation

and its over-generalization (see section 4.3.2).

Also, the learning process takes place in an

incomplete representation language that may

cause the lower bound to cover some negative

examples and the upper bound to fail to cover

some positive examples. During learning, the

two bounds progressively converge toward

the exact applicability condition of the rule.

However, due to the incompleteness of the

system's knowledge, there is no guarantee

that the two bounds will become identical, and

therefore equal to the exact applicability
condition of the rule. This is not a weakness

of the system because it can use the partially

learned rules to monitor the EPS system (see

section 4.2), and the rules will be

continuously improved.

Finally, the current state of the EPS is

represented by the readings of the ammeters

and the voltmeter, and the states of the

switches (open/closed).

4.2 The Monitoring System

The monitoring system is a situation-action

production system, in which each rule

recognizes a fault type in the EPS and issues

the appropriate corrective action.

If the exact condition of a rule matches the

current-fault state of the EPS then the action

from the right-hand side of the rule is called a

routine repair of the EPS.

Because many of the system's rules are

represented as plausible version spaces, the

matching process has to take into account the

lower and upper bounds of these spaces.

Let us consider, for instance, the following

state of the EPS in which the reading of

ammeterl is low during the day, and switchl

is open (see Figure 2).

62

The plausible lower bound of the rule in flexibility in problem solving, allowing it to

Figure 5 matches the current situation because perform not only deductive reasoning (based

the following expression is true: on matching exact or plausible lower bound

......... _ Conditions), but also plausible reasoning

(ammeter ammeter1 (reading low)) (based on ma!ch!n g plaus!b!e upper bound

(clock clock1 (time day)) conditions).

(sa-switch switch1 (connected-to ammeter1)

(position open)) Therefore, depending on which type of rule

(solar-array solar-array1 (connected-to

switch1))

Becatise the plausible lower bound of a rule is

less general than the exact (but unknown)

condition of the rule, the action indicated by

the rule (in this case to cycle switchl) is
correct. This action will be called a routine

repair of the EPS.

condition matches the current situation, the

monitoring system distinguishes between

three types of repairs of the EPS: routine

repair, innovative repair, and creative repair.

4.3 The Multistrategy Apprenticeship

Learning System

4.3.1 The learning method

Let us now consider the case in which the Multistrategy learning is a type of learning

plausible lower bound does not match the
current situation. Because this bound is less

general than the exact (but unknown)

condition of the rule it may still be the case
that the exact condition matches the current

situation. This can only happen if the plausible

upper bound matches the current situation,

because this bound is more general than the

exact condition. Therefore, if the plausible

upper bound of the rule matches the current

situation then it is still possible that cycling of

switch l is the appropriate action. This action

is an innovative repair of the EPS. This repair

must be confirmed by the human operator

because it is only a plausible solution to the
current fault state of the EPS.

Finally, if the plausible upper bound condition
of the rule does not match the current

situation, then the rule is not applicable, i

If no rule applies to the current fault state of

the EPS, then the human operator has to

indicate a repair action which we call a creative

repair of the EPS.

One could therefore notice that the plausible

version space concept increases system's

which integrates several complementary

learning strategies in order to solve more

complex learning problems [Michalski and

Tecuci, 1994]. Apprenticeship learning is a

type of learning from an expert by observing

and analyzing its problem solving actions

[Mitchell et al., 1985], and is usually based on

an interaction with the expert [Tecuci 1988].

DISCIPLE-OPS is both a multistrategy and an

apprenticeship learner. A general

representation of its learning method is given

in Figure 6.

From any creative repair performed by the

human operator, DISCIPLE-OPS learns a
new situation-action rule which would allow it

to make analogous repairs in the future.

First, DISCIPLE-OPS finds an explanation of

the creative repair which identifies the

important features of the situation. Then,

based on this explanation, it defines a

plausible version space of a new situation-

action rule. This rule is later applied to

analogous situations to propose innovative

repairs which are accepted or rejected by the

human operator.

63

ination-Based

g

Explanation

Creative

Repair

Analogical Learning

Plausible Version
Space

Examples of Repairs _.........

Proposed by the Agent i,_,_'_

Wrong Correct
Innovative Innovative

Repair Repair

Repair
Given

By Expert

Empirical Inductive Learning

Figure 6. The learning method of DISCIPLE-OPS.

In the case of an innovative repair confirmed

by the human operator, the system will

generalize the plausible lower bound of the

rule so as to cover this repair situation.

In the case of an innovative repair rejected by

the human operator, the system will attempt to

find an explanation of the failure, and will

specialize the plausible upper bound of the

rule to no longer cover that situation. In such a

situation, the human operator will also have to

specify a new creative repair from which the

system will learn a new situation-action rule.

The following sections illustrate the different

phases of this learning process.

4.3.2 Learning a new rule from a

creative repair

Let us consider a state of the EPS for which

the human operator proposes the following

creative repair:

CYCLE switch1

First, DISCIPLE-OPS asl_s the operator to

indicate the observations which led to this

repair, and receives the following answer:

(ammeter1 (reading low))

(clock1 (time day))

(switch1 (position open))

Next, DISCIPLE-OPS is trying to find

explanations of the fault's cause, in terms of

the features and the relationships between the

EPS components included in the above

observations. It will propose partial pieces of

explanations which will have to be accepted or

rejected by the operator, as indicated in the

following dialog:

64

Choose the relevant explanations of the current
failure:

(switch1
(switch1
(ammete_

yes

(ammeter1
(ammeter1

no

(solar-army
(switch_

yes ,,,

(position open)) &
(connected-to ammeter1)) &
(reading low)) ?

(reading low)) &
(connected-to node1)) ?

(connected-to switch1)) &
(position open)) ?

The purpose of these explanations is to

determine the relevant relationships between
the observations and the structure of the

network, which will allow the system to

recognize similar fault states in the future.

As a result of the above interactions, the

following description is identified as
characteristic to the current fault state:

(ammeter1
(clock1
(switch1

(solar-array1

(reading low))
(time day))
(position open)
(connected-to ammeter1))
(connected-to switch1))

Based on this explanation, DISCIPLE-OPS

generates a plausible version space for a new

situation-action rule Ri, as indicated in the

following.

The plausible lower bound of this rule is just a

reformulation of the above explanation, in

terms of the variables 'a', 'c', 'sw', and 'sa'.

Indeed, these variables can only take the

values ammeterl, clockl, switchl, and solar-

array l, respectively. Therefore, the lower

bound can only match the current fault state

(in which it is known that the correct repair is

to cycle switchl).

The plausible upper bound is an inductive

generalization of the plausible lower bound

obtained by turning all-the objects into the

most general object (called 'something'),

turning all the constants to variables, and

keeping the relationships between them.

The purpose of the plausible upper bound is to

allow the system to propose innovative repairs
in future fault states which are similar to the

current one. Examples of these cases are

presented in sections 4.3.3 and 4.3.4.

Ri: IF
plausible upper bound
(something a (reading x))
(something c (time y))
(something sw (connected-to a)

(position z))
(something sa (connected-tosw))

plausible lower bound
(ammeter1 a (reading low))
(clock1 c (time day))
(switch1 sw (connected-to a)

(position open))
(solar-array1 sa (connected-to sw))

THEN
CYCLE sw

4.3.3 Generalizing rules from good
innovative repairs

Let us consider a fault state generated by the

EPS simulator, characterized by:

(ammeter2 (reading low))
(clock1 (time day))
(switch2 (connected-to ammeter2)

(position open))
(solar-array2 (connected-to switch2))

The plausible upper bound of the rule Ri

matches this state with the following variable

bindings:

(a=ammeter2, c=clockl, sw=switch2,
sa=solar-array2, x=low, y=day, z=open)

Therefore the monitoring system proposes the

following innovative repair (since the variable
sw has been instantiated to switch2:

CYCLE switch2

Because this repair is accepted by the

operator, the plausible lower bound of the rule

Ri is generalized as little as possible so as to

65

cover the current situation and to remain less

general than the plausible upper bound. The

following generalizations are made, based on

the generalization hierarchies from Figure 3:

ammeter1, ammeter2 --> ammeter
switch1, switch2 --> switch
solar-array1, solar-array2 --> solar-army

Consequently, rule Ri becomes:

Ri: IF
plausible upper bound
(something a (reading x))
(something c (time y))
(something sw (connected-to a)

(position z))
(something sa (connected-to sw))

plausible lower bound
(ammeter a (reading low))
(clock1 c (time day))
(sa-switch sw (connected-to a)

(position open))
(solar-army sa (connected-to sw))

THEN
CYCLE sw

4.3.4 Specializing rules from bad
innovative repairs

Let us now consider a new fault state

generated by the EPS simulator, characterized

by:

(ammeter1
(clock1
(switch1

(solar-array1

(reading low))
(time day))
(connected-to ammeter1)
(position closed))
(connected-to switch1))

The plausible upper bound of the rule Ri

matches this state with the following variable

bindings:
(a=ammeterl, c=clockl, sw=switchl,
sa=solar-arrayl, x=low, y=day, z=closed)

Therefore the monitoring system proposes the

following innovative repair:

CYCLE swi} ;hl

However, this repair is rejected by the

operator. In this case, the plausible upper

bound of the rule Ri must be specialized as

little as possible so as to no longer cover the

current situation and to remain more genera!

than the plausible lower bound_

In this case, the only possible s_ializati0n of

the upper bound is to specialize the variable

'z' to the constant 'open'. In general,

however, there will be many different ways in

which the upper bound could be specialized,

and the system would need operator's

guidance, as illustrated by the following

dialogue:

Compare the fault statein which the Correct repair
is 'cycle switch1'

(ammeter1
(clock1
(switch1

(solar-army1

(reading low))
(time day))
(connected-to ammeter1)
(position open))
(connected-to switch 1))

with the current fault state in which the correct
repair is not 'cycle switch1'

(ammeter1 (reading low))
(clock1 (time day))
(switch1 (connected-to ammeter1)

(position closed))
(solar-army1 (connected-to switch1))

Which are the releVant differences between the
current state and the above one?

(switch1 (position open))

Therefore, rule Ri becomes:

Ri: IF
plausible upper bound
(something a (reading x))
(something c (time y))
(something sw (connected-to a)

(position open))
(something sa (connected-to sw))

plausible lower bound
(ammeter
(clock1
(sa-switch

(solar-army
THEN

CYCLE

a (reading low))
c (time day))
sw (connected-to a)

(position open))
sa (connected-to sw))

SW

|

l

1

66

The operator also indicates that the correct
repair-is

RESET solar-array1

Consequently, a new rule, Rj, is learned from
the current fault state and its repair, as
indicated in section 4.3.2:

Rj: IF :

plausible upper bound
(something
(something
(something

(something

a (reading x))
c (time y))
sw (connected-to a)

(position closed))
sa (connected-to sw))

plausible lower bound
(ammeter1 a
(clock1 c
(switch1 sw

(_la_arrayl
THEN

RESET

(reading low))
(time day))
(connected-to a)
(position closed))
(connected-to sw))

Rules are continuously improved in this

manner, based on positive and negative

examples, generated by the EPS simulator.

The learning process decreases the distance

between the two plausible bounds. The goal

of this process is to make the two bounds

identical - at this moment an exact rule is

learned. However, because the agent's

knowledge is incomplete and partially

incorrect, the agent may be unable to learn

exact rules and will need to rely on

incompletely learned rules, as the one in

Figure 5.

4.3.5 Dealing with exceptions

When the agent proposes a routine repair

which is rejected by the operator, the

corresponding situation-action pair is

explicitly associated with the rule, as a

covered negative example. Such covered

negative examples point to the incompleteness

of the agent's knowledge, and are used to

guide the elicitation of new concepts and

features, by using the knowledge elicitation

methods described in (Tecuci & Hieb 1994).

4.4 The monitoring and learning
procedure

The procedure in Table 1 summarizes the
operation of the intelligent agent.

Monitor:

Table 1. The monitoring and learning procedure.

Let S be the current fault state of the EPS simulator

IF the plausible lower bound of a rule Ri matches S
THEN issue a routine repair command
ELSE IF the plausible upper bound of a rule Ri matches S

THEN issue an innovative repair command
ELSE ask the operator to issue a creative repair command

Learn:

IF the operator agrees with the routine repair proposed
THEN {processing was successful }
ELSE record the current state as an exception of the rule Ri

ask the operator to issue a creative repair command
IF the operator agrees with the innovative repair proposed

THEN generalize the plausible lower bound of Ri to cover the current state of EPS
ELSE specialize the plausible upper bound of Ri to uncover the current state of EPS

ask the operator to issue a creative repair command
IF the operator issued a creative repair command

THEN learn a new rule for the state S and the repair command issued

67

5 The Methodology for Building
a DISCIPLE-OPS Agent

The process of building a DISCIPLE-

OPS agent consists of four stages,

Knowledge Elicitation, Apprenticeship

Learning, Autonomous Learning, and

Retraining, as shown in Figure 7.

These stages are briefly presented in the

following sections.

5.1 Knowledge Elicitation

In the first phase, Knowledge

Elicitation, the subject matter expert (the

human operator) works with a

knowledge engineer to define an initial
KB which will contain whatever

knowledge could be easily expressed by

the expert. In the case of the domain

considered in this paper, the initial

knowledge base consists of a semantic

network representing the objects from

the EPS (e.g. ammeters, solar-arrays,

switches), as well as the structure of the

EPS. It will also contain descriptions of

the correct states of the EPS, during the

day and during the night.

5.2 Apprenticeship Learning

In the second phase, Apprenticeship

Learning, the agent will learn

interactively from the subject matter

expert by employing apprenticeship

multistrategy learning (Tecuci 1988,

1992, Tecuci et al. 1994), as illustrated

in section 4.3. During this phase, the

agent's KB is extended and corrected

until it becomes complete and correct

enough to allow the agent to monitor the

EPS autonomously.

Knowledge
Engineer

Phase 1

Knowledge
Elicitation

Initial KB

Subject Matter
Expert Phase 2

Apprenticeship
Learning

Phase 4

Periodic

Retraining

Interactive

Agent KB

Phase 3

Autonomous

Learning

Figure 7. The main stages of building an intelligent
adaptive agent.

5.3 Autonomous Learning

When the agent has been trained with

examples of the typical problems it should be

able to solve, it enters a third phase,

Autonomous Learning, where it is used to

monitor the EPS without the assistance of the

subject matter expert. The training received

during the Apprenticeship Learning Phase will

allow the agent to solve most of the EPS

68

problems through routine repairs. However, it

will also be able to solve unanticipated

problems through innovative repairs, and to

learn from these experiences, in the same way

it learned from the expert. For instance, if the

agent issued a successful innovative repair

(e.g., applied a rule based on its plausible

upper bound condition), it will generalize the

lower bound of the rule's condition, to cover

the respective situation. If, on the other hand,

the agent issued an unsuccessful innovative

repair, it will need to specialize the plausible

upper bound of the rule. Therefore, the agents

developed using this approach will also have

the capability of continuously improving

themselves during their normal use.

5.4 Retraining

During autonomous learning, the agent

accumulates experience and continues to

improve its rules. In the same time, it will also

accumulate exceptions which correspond to

failed routine repairs. After a number of such

exceptions have been accumulated, the agent

will enter a retraining phase in which it elicits

additional knowledge from the operator.

Several elicitation procedures which are driven

by the goal of eliminating exceptions are

described in (Tecuci and Hieb, 1994).

6 Discussion and Future Research

Building intelligent agents is rapidly becoming

a major research topic in artificial intelligence

(Laird and Rosenbloom 1990; De Raedt et al.

1993; Gordon and Subramanian 1993; Minton

1993; Serge 1993; Van de Velde 1993;

Huffman, 1994), due to potential applications

of such agents in a variety of domains.

Recently we have been developing a

methodology for building intelligent adaptive

agents in the framework of our apprenticeship

multistrategy learning approach to automated

knowledge acquisition (Tecuci 1988; Tecuci

and Kodratoff, 1990; Tecuci and Hieb, 1994).

This methodology is currently being

implemented in the CAPTAIN system (Hille,

Hieb, Tecuci, 1994; Tecuci et al., 1994)

which is used to build military command

agents for distributed interactive simulations.

In this paper we have presented another

implementation of our methodology in the

DISCIPLE-OPS system which is used to

build operator agents. We have also presented

initial results on applying DISCIPLE-OPS to

build an intelligent adaptive agent to monitor

and repair an electrical power system of an
orbital satellite.

Our approach to building intelligent adaptive

agents which is illustrated by both CAPTAIN

and DISCIPLE-OPS has several advantages.

Rather than programming their behaviors in a

fixed set of procedures or rules, an expert can

train the agent as he would train an apprentice.

This will result in the agent acquiring a set of

rules that govern its behavior. These rules can

later be modified in the same manner as the

initial training. Another advantage of this

approach is that the expert will verify the

agent's behavior during training.

Training efficiency is achieved through the use

of simple plausible version spaces (Tecuci,

1992) and a human guided heuristic search of

these spaces. The plausible version spaces do
not suffer from the limitations of the version

spaces introduced by (Mitchell 1978). These
limitations are:

• the combinatorial explosion of the number

of alternative bounds of a version space

(there is only one upper bound and one

lower bound in the case of a plausible

version space);

the need to have many training examples

for the learning process to converge

(significantly fewer examples are needed
in the case of our method because the

expert's explanations identify the relevant

features of the examples);

69

• the use of an exhaustive search of the

version space (as opposed to the heuristic

search used with plausible version

spaces);

• the inability to learn when the

representation language is incomplete (as

opposed to our method which can learn

partially inconsistent rules).

As illustrated in this paper, the use of

plausible version spaces also allows a more

flexible type of rule matching. Indeed, the

agent may perform a limited type of plausible

reasoning to address situations that it has not

been specifically trained for.

Although this paper shows the potential

application of our approach to building an

intelligent adaptive agent for monitoring and

repair of the electrical power system of an

orbital satellite, much work remains to be

done until an effective agent is built. Some of

the necessary improvements to be performed

are the following:

• defining a better representation of the

electrical power system which should also

include deeper knowledge of the

functioning of the EPS;

• developing the explanation capabilities of

the agent, so that it can propose more

relevant explanations of a given fault

situation. Currently, DISCIPLE-OPS uses

only domain-independent heuristics for

proposing such explanations. There is

therefore a need for identifying domain-

dependent heuristics.

• developing a domain-dependent method

for generating plausible upper bounds of

version spaces from explanations of the

initial problem solving episodes. Currently
DISCIPLE-OPS uses a domain-

independent procedure of turning

everything except relationships into

variables.

70

However, that fact that DISCIPLE-OPS has

been able to efficiently learn rules relying only

on a very general representation of the

electrical power system and on domain-

independent heuristics, indicates that this

approach to agent building may be very

successful, if the agent will be provided with a

better representation of the domain, as well as

more specific heuristics for building plausible

version spaces.

Future research topics also include:

• development of additional forms of

consistency driven elicitation, in order to

reduce the burden of explanation of the

expert;

• development of more flexible methods of

instruction that allows the expert to

express whatever instruction is desired at

any point in the learning process

(Huffman, 1994);

• development of methods manipulating and

generalizing numbers since the current

implementation is based on a translation

between numeric parameters and symbolic

parameters;

• further development of the problem

solving method based on plausible version

spaces;

• integration of experience-based learning

into the autonomous portion of building

the agent.

References

De Raedt, L., Bleken, E, Coget, V., Ghil, C.,

Swennen, B. & Bruynooghe, M. (1993).
Learning to Survive. Proceedings of the
Second International Workshop on Mul-

tistrategy Learning. Harpers Ferry, West
Virginia. 92-106.

Gordon, D. and Subramanian, D. (1993)i A

Multistrategy Learning Scheme for Agent
Knowledge Acquisition. Informatica, 17(4),
331-346.

Hieb, M.R. (1990). Machine Discovery in
Large Scale Engineering Systems, M.S.
Thesis, George Washington University,
Washington, DC.

Hieb, M.R., Silverman, B.G. and Mezher, T.

(1992). Rule Acquisition for Dynamic
Engineering Environments. Heuristics- The
Journal of Knowledge Engineering, Winter,
72-82.

Hille D., Hieb, M.R. & Tecuci, G. (1994).
CAPTAIN: Building Agents that Plan and
Learn. In Proceedings of the Fourth
Conference on Computer Generated Forces
and Behavioral Representation., May. 411-
422.

Huffman, S.B., (1994). Instructable

Autonomous Agents. PhD Thesis. Department
of Computer Science and Engineering.
University of Michigan.

Laird J.E. & Rosenbloom P.S. (1990).
Integrating Execution Planning and Learning
in Soar for External Environments,
Proceedings of AAAI-90. Boston: AAAI/MIT
Press, 1022-1029.

Michalski R.S. and Tecuci G. (Eds). (1994).
Machine Learning: A Multistrategy Approach,
Vol. IV, Morgan Kaufmann, San Mateo.

Minton, S. (Ed) (1993). Machine Learning
Methods for Planning, Morgan Kaufmann::
San Mateo, CA.

Mitchell, T.M. (1978) Version Spaces: An
Approach to Concept Learning, PhD Thesis,
Stanford University.

Mitchell T.M., Mahadevan S. and Steinberg
L.I. (1985), LEAP: A Learning Apprentice
System for VLSI Design, in Proceedings of
IJCAI-85, Los Angeles, Morgan Kaufmann,
573 -580.

Serge, A. (1993). Learning how to plan. In
W. Van de Velde (Ed.), Towards Learning
Robots. MIT Press: Cambridge, Mass.

Silverman, B. G., Hieb, M. R., Yang, H. ,
Wu., L., Truszkowski, W. and Dominy, R.

(1989). Investigation of a Simulator-Trained

Machine Discovery System for Knowledge
Base Management Purposes. Proceedings of
IJCAI-89 Workshop on Knowledge
Discovery in Databases. Detroit, MI. 327-
342.

Tecuci, G. (1988). DISCIPLE: a theory,
methodology, and system for learning expert
knowledge. Ph.D. Thesis, University of
Paris-Sud.

Tecuci, G. and Kodratoff Y., (1990)
Apprenticeship Learning in Imperfect Theory
Domains. In Y. Kodratoff, and R.S.

Michalski (Eds), Machine Learning: An
Artificial Intelligence Approach, Volume III,
Morgan Kaufmann.

Tecuci G. (1992). Automating Knowledge

Acquisition as Extending, Updating, and
Improving a Knowledge Base. IEEE
Transactions on Systems, Man and
Cybernet&s. Vol. 22(6), 1444-1460.

Tecuci, G. (1994). An Inference-Based
Framework for Multistrategy Learning, In
R.S. Michalski & G. Tecuci (Eds), Machine
Learning: A Multistrategy Approach, Volume
4, Morgan Kaufmann.

Tecuci, G. & Hieb, M.R. (1994).
Consistency-driven Knowledge Elicitation:
Using a Machine Learning-oriented
Knowledge Representation to Integrate
Learning and Knowledge Elicitation in
NeoDISCIPLE. Knowledge Acquisition
Journal, Vol. 6(1), 23-46.

Tecuci G. , Kedar S. and Kodratoff, Y.,
Guest Editors. (1994). Knowledge
Acquisition Journal, Special Issue on the

Integration of Machine Learning and
Knowledge Acquisition. 6(2).

Tecuci G., Hieb M.R., Hille D. and Pullen
J.M. (1994). Building Adaptive Autonomous
Agents for Adversarial Domains. in
Proceedings of the AAAI Fall Symposium on
Planning and Learning, November.

Van de Velde, W. (Ed). (1993). Towards
Learning Robots. MIT Press: Cambridge,
Mass.

71

El

III

IZ

2 _

Planning, Scheduling,
and Control

PRECEDING PAGE BLANK NOT FILMED

?3
PA_m_,_ _'- INTENTIONALLYBLANK

