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ABSTRACT

Two mirror designs developed for space applications were flown along with a standard mid-infrared

design on the leading and trailing edges of the Long Duration Exposure Facility (LDEF). Preliminary
observations of induced changes in optical performance of ZnS-coated mirrors and impact-related
microstructural and microchemical effects are described in the proceedings of the First LDEF Post-

Retrieval Symposium. 1

In this paper, effects of the induced environment and meteoroid/debris impacts on mirror performance
are described in more detail. Also, an analysis of reflectance spectra using the results of Auger and

secondary ion mass spectroscopy (SIMS) profiling measurements are used to identify an optical-

degradation mechanism for the ZnS..coated mirrors.

Structural damage associated with a high-velocity impact on a (Si/A1203)-eoated mirror was imaged

optically and with scanning electron and atomic force microscopy (SEM and AFM). Scanning Auger and

SIMS analysis provided chemical mapping of selected impact sites. The impact data suggest design and
fabrication modifications for obtaining improved mechanical performance using a design variation

identified in preflight laboratory simulations. 2

Auger surface profile and SIMS imaging data verified the conclusion 1 that secondary impacts are the
source of contamination associated with the dendrites grown on the leading-edge ZnS-coated test samples.

It was also found that dendrites can be grown in the laboratory by irradiating contaminated sites on a

trailing-edge ZnS-coated sample with a rastered electron beam. These results suggest a mechanism for

dendrite growth.

* Financial support provided by DARPA, USAF Wright Laboratories, and NASA Langley Research Center.
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INTRODUCI'ION

Multilayer-coatedtestmirrorsandsingle-layerwitnesssampleswereflown onboth theleadingand
trailingedgesof LDEF. Thesampleswereprovidedfrom aDARPA-sponsoredprogramto develop
dielectrically-coatedhighreflectancemirrorsfor spaceapplications.Two typesof mirrorswereflown:
(1) anindustrialstandardmid-IR design;(2) two alternativedesignsthatpromisedimprovedstabilityin
laboratorysimulationsof thespaceenvironment.2 Themirrorswerecontainedin vacuumcassettesand
exposedfor timedperiodswhichvariedfrom 90to 270daysfrom thedeploymentof LDEF. Witness
samplesconsistingof half-wavelayersof materialsincludedin themultilayerstackswereexposedfor the
flight duration. SampledesignsandlocationsonLDEF alongwith exposuretimesandatomicoxygen
fluencesarelistedin Table1.

Table1. FlightSamples,Location on LDEF, Exposure Time, and Atomic Oxygen Fluence for

Experiment Number M0003-7

Atomic Oxygen

Sample ID a Design LDEF Exposure Fluence
location b (months) , (atoms/cm 2)

L6-VI-7-46-11 (Si/AI203)3Ag/Si D8 3 3. lxl 020

T6-VI-7-31-4 (Si/AI203)2Ag/Mo D4 3 9.9xl 03
L3-H-7-61-3 Si/fused silica D9 70 9.0x1021

T3-II-7-60-4 " " " D3 70 1.3x 1017

L6-VI-7-68-15 (ZnSFI"hF4)5Ag/Mo c
T6-VI-7-30-36 ,, ,, ,1 ,,

L3-II-7-65-10 ZnS/fused silica

T3-H-7-64-11 " " "

D8 6 6. lxl02°

D4 9 3.0x104

D9 70 9.0x1021

D3 70 1.3x1017

L6-VI-7-67-239 (ZnS/AI203)4AR/Mo D8 9 9.2x102°

a Sample ID provides the tray, module, sub-experiment, module location, and sample numbers

b Row numbers: leading edge (DS, D9); trailing edge (133, D4)

c Industrial-standard, mid-IR design

The post-flight optical, surface/profiling, and impact-related data on test mirrors and witness samples
listed in Table 1 are discussed in this paper along with an analysis of the factors found detrimental to

optical performance. These results along with laboratory simulation data are used to suggest an alternative

coating design and fabrication process for improved mirror performance.

(Si/Al203)nAg/Si MIRROR DESIGN RESULTS

The spectral reflectance of the leading-edge (Si/AI203)3Ag/Si test sample after 90 days exposure to the
effects of low-Earth orbit (LEO) is shown in Figure 1. As seen in the figure, the reflectance of the test

sample is reduced less than 0.1% at the design wavelength (Z8 _m) relative to the laboratory control. The
reflectance of the control was reduced by less than 0.1% after 10 years on the laboratory shelf.
Profilometer measurements showed that increases in optical scatter resulted from surface debris and not
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from changesin microstructureor topography. The scatter increase contributed to the small reflectance
loss relative to the control.

Auger profiles of the test sample are shown in Figures 2 and 3. The depth profile (Figure 2) reveals
the design; three Si/AI203 high/low index pairs, a Ag reflectance enhancing layer, and the silicon

substrate. Some charging occurred during sputter etching of the third silicon layer but the thicknesses are

fairly uniform. Note the small Ag peak at the outer Si/AI203 interface and a C contamination peak at the
ml203/mg interface.

An Auger surface profile is shown in Figure 3. The estimated sputter rate and time to when oxygen

reaches the background level indicates approximately 36/_ of surface oxide. This is within a factor of two

of what one would expect from a natural oxide layer on silicon. It is noted that the small growth rate

relates to the atomic oxygen (AO) flux at the deployment altitude (476 km) and the short exposure (3

months). This thickness will have little effect at the design wavelength but could account for a slight

increase in absorption at wavelengths greater than 3 lxm.

Rutherford backscattering spectrometry (RBS) measurements were made on two single-layer Si

witness samples that were exposed for the 70-month flight duration (AO fluence: D9 = 9.0x1021
atoms/cm2; D3 = 1.3x1017 atoms/cm2). An average of 20 atomic % O was found in the outer 900/_ on

the leading-edge witness (L3-11-7-61-3) and relates to the long exposure and significantly higher average

AO-flux levels than were experienced by the test mirror (L6-VI-7-46-11). In contrast, no surface

oxidation was detected by RBS on the trailing-edge witness (T3-II-7-60-4).

One impact site was observed on the test mirror. The 10-_m-diameter x 0.6-btm-deep impact crater is

shown in Figure 4a. The effective damage area was increased by the radial and spiral fractures shown in

Figure 4a and delamination in the crater vicinity as shown in a scanning atomic force micrograph (AFM) in

Figure 4b. An impacting particle of carbon was identified by scanning Auger microscopy; silver was

detected along the spiral fracture. The Auger profile in Figure 2 suggests the Ag migrated from the

reflectance-enhancing layer to the surface, thermally driven by the impact. The extended structural damage
severely limits the potential performance of the mirror.

A larger, 50-btm-diameter crater was found on the Si/fused silica witness, T3-II-7-60-4. The crater is

enriched in K, C1, O, (S02)', Si02, and (OH)'. Au and Au ÷ were also seen in the time-of-flight secondary

ion mass spectroscopy (SIMS) data. K was concentrated in the crater and probably originated from a less-
energetic, secondary impact. In this case, no extended structural damage was observed.

DISCUSSION OF (Si/A1203)nAg/Si MIRROR DESIGN RESULTS

The (Si/AI203)3Ag/Si design is optically stable in an ionizing-radiation environment as predicted by

extensive laboratory simulations 2 and confirmed by the LDEF flight. AO flux at the deployment altitude

and for a limited exposure period has little effect on mirror performance at the design wavelength.

Impacts, on the other hand, because of associated structural effects (delamination and fracture) can lead to

severe mirror degradation and failure.

The design can be improved by the elimination of Ag as a reflectance-enhancing layer and the

substitution of SiO2 for A1203 as the low-index component. Ag can melt and diffuse at temperatures

generated by particle impacts. Si/SiOx multilayers were shown to be stable in a combined solar-

UV/charged-particle environment in preflight laboratory simulations. 2 Si/SiO2 multilayers can be
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depositeddirectlyonsiliconusingareactivesputteringprocess.Thiswill resultin lowerstress,increased
adhesion,andareductionin thepossibilityof delaminationandfractureinducedby high-velocity
impactingparticles.

(ZnS/AI203)4AgMIRRORDESIGNRESULTS

Thepost-flightreflectanceof theleading-edge(ZnS/Al203)4Ag test sample compared to a laboratory
control is shown in Figure 5. The mirror was exposed for nine months beginning with the deployment of

LDEF. The test sample has an absorption band centered at 3 _tm which reduces the reflectance at the

design wavelength of 2.8 _tm. The control has no similar loss.

Surface profilometry measurements show an increase in roughness (and related scatter) compared with

preflight data. The increase is due to some degradation of the coating surface, debris, and the presence of
dendritic material. The scatter, degraded material, and areas of dendritic growth, however, do not account

for the spectral feature.

A depth profile of this sample taken by SIMS is shown in Figure 6. Sputter etching was accomplished

using O- primary ions to minimize charging effects. The layers are uniform in thickness and there are no

significant deviations from the quarter-wave design to account for the spectral band, suggesting the

absorption is due to water contamination. Unfortunately, an analysis of H and O couldn't be obtained by

sputtering with O- primary ions.

(ZnS/ThFn)5Ag MIRROR DESIGN RESULTS

Similar spectral bands, in this case centered at 2.9 _tm, are observed in the post-flight reflectance data
of both leading- and trailing-edgeZnS/ThF4 test samples. SIMS profiling data is shown in Figure 7 for

the leading-edge sample. Here, atomic concentration versus depth is plotted with sputter time converted to

depth with stylus profilometry using the assumption that ZnS and ThF4 sputter at equal rates. Sputter
etching was accomplished in this case with Cs + primary ions, which can be used to determine H and O.

Charging is somewhat of a problem with Cs +, but the data is in qualitative agreement With Auger profile

data 1 which also shows a relatively thin surface and thick base layers of ZnS.

SIMS depth profiles of O and H are shown in Figures 8 and 9, respectively, for this sample.
Calibration in terms of atomic concentration was done using data from float-zone-refined silicon. Note the

presence of H and O in the ThF4 layers with tendency of both materials to peak at high/low index
interfaces. Also, concentrations of O and particularly H tend to increase with depth into the coating. It is

possible that water contamination incorporated during fabrication was ionized in the radiation environment
of LDEF and moved to the film interfaces driven by a reduction in free-energy.

Thin-film design software 3 and literature values 4,5 for the optical constants of ZnS, ThF4, and Ag

were used to model the observed post-flight reflectance spectra. Two approaches were taken using the

SIMS and Auger data.

In the first approach, only the thicknesses of the ZnS and ThF 4 layers were varied in the reflectance
calculation. The thickness variations either were derived from experimental data (i.e., the SIMS depth

profiles) or were arbitrarily chosen to try to force the calculated curve to fit the observed reflectance
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spectra.With thisapproachit wasnotpossibleto reproduceeitherthespectralpositionor themagnitude
of theabsorptionbandcenteredat2.9_m.

The second approach used both the layer thickness variations and the water contamination observed at

the interfaces in the SIMS depth profiles. Optical constants for thin layers of water 6 were entered into the

reflectance calculation along with the layer thickness variations derived from the SIMS data. The optimum

water contamination (10 A/interface) was determined by iteration within the range of possible values
determined by SIMS.

The calculated spectral reflectance values are compared with post-flight reflectance data in Figure 10.

As seen in the figure, the SIMS data gives an excellent fit to the reflectance spectrum in the 2.9 to 4.0 lxm
region. This result validates preflight simulations of combined solar-UV/charged-particle radiation at the
Boeing Radiation Effects Laboratory 2 which showed that the irradiation of water-contaminated ZnS/I'hF4

multilayers increased the optical absorption about 1% at 2.9 lxm.

IMPACT DAMAGE, CONTAMINATION, AND EFFECTS OF THE
SOLAR UV/ATOMIC OXYGEN ENVIRONMENT

Two types of impact damage found on the ZnS-coated mirrors were described earlier; 1 craters formed

by high-velocity impacts and secondary impacts associated with copper contamination. Copper and other
contaminants have been found by Auger and SIMS analysis on the leading- and trailing-edge ZnS mirrors.

Cu is associated with dendrite growth on leading-edge test samples. 1 A third type of damage with crater-

like features was found in the raster-pattern areas that were sputter etched during SIMS depth-profiling
measurements.

Figure 11 shows one of two craters formed by high-velocity impact on leading-edge sample L6-VI-7-

68-15. This crater is about 70 lxm in diameter and about 3.5 _tm deep and was formed by a particle
approximately 10 _m in diameter. The multilayer structure is exposed, revealing melt and some

undercutting of the individual layers suggesting their vulnerability to attack by solar UV/atomic oxygen.
An analysis was not performed for possible residual material from the impacting particle.

Figures 12a and 12b show optical and AFM images of one of four sites found on trailing-edge sample

T6-VI-7-30-36. The crater is irregular in shape and about 1 _m deep. Melted material estimated by AFM

to be 2000 A thick is spewed in a radial fashion from the impact site. SIMS analysis in the region of two

other impact sites (smaller craters) on this sample identified Cu, AI, Na, K, and siloxane contaminants.

The Cu probably originated from diamond-turned Cu mirrors in the sample module.

A large number of dendrites were observed by optical microscopy during de-integration of the two

leading-edge ZnS test samples. 1 Figures 13a and 13b show optical images of dendrites grown in orbit on

samples L6-VI-7-68-15 and L6-VI-7-67-239. These and other dendrites are surface features that appear to
result from a thermal (melt/solidification) growth process. 7

A high-contrast SEM image and scanning Auger analysis of a dendrite described earlier I suggest a

reaction with Cu to form a CuZn or CuZnS alloy. An Auger depth profile (Figure 14) taken in a region of

dendrites gives a direct indication of a displacement reaction between Cu and ZnS. This profile also

shows that O has to some extent replaced S in the ZnS. The thickness of the "alloy" and oxide is
estimated from the sputter time to be about 400/_. A mass-resolved SIMS image of a dendrite at an A1-

contaminated site on the leading-edge ZnSfl'hF4 test sample is shown in Figure 15.
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No dendrites were found on the trailing-edge sample, but they could be grown in the laboratory by

rastering an electron beam in the vicinity of an impact site. The electron-stimulated growth of dendrites
was recorded on video tape. An SEM image of a dendrite grown by electron irradiation is shown in

Figure 16. The spherical particles, shown in the figure, appeared as a result of electron irradiation. The

depletion of these "clusters" in the vicinity of the dendrite suggests a diffusion-limited growth process.
Nucleation and growth possibly initiated at the small damage site in the upper left branch of the dendrite

shown in Figure 16.

ZnS is known to dissociate in a UV environment and react with oxygen 8 to form the oxide. Evidence

for the occurrence of this reaction in LEO is provided by RBS analysis and optical micrographs (Figure

17) of leading- and trailing-edge witness samples of ZnS exposed for the 70-month duration of LDEF.

The leading-edge sample is 15 atomic % O throughout as estimated by RBS. The coating has buckled

and, as seen in Figure 17a, annular features are observed at high magnification. The composition and

origin of these features has not been determined. The trailing-edge sample (Figure 17b) is mostly intact
but many blisters, perhaps related to locally poor adhesion, are observed at high magnification. This

sample is not oxidized. _

Finally, several crater'like featUres were found in the ion'raster patte_ during profiling-SIMS

measurements of sample L6-VI-7-68-15. A raster pattern with small crater-like features is shown in

Figure 18a. A profiiometer trace through one of the craters is shown in Figure 18b. The crater is 40 tam

in diameter and _fib6ut 2.4 tam deep. The "craters",which Were obse/ved afterprofiling, develo_ when a

14.5 kV, 0.1 to 0.7 mA Cs + primary ion beam was rastered over a square region 500 tam on a side.

7

DISCUSSION OF ZnS COATING RESULTS

All ZnS coatings had significant reflectance losses at the design wavelength. The reflectance losses,

based on modeling of sample L6-VI-7-68-15, are attributed to deviations from the quarter-wave design
thicknesses andabsorpfion _ncreases dUe tO(OH)- accumulation at interfaces between hi_ and i0w index

coating layers. It is suggested that water present as an impurity in the coatings was ionized in the charged

particle (e- and p+) environment and the mobile ions moved to film interfaces where a reduction in system

free energy can occur. Similar in-band absorption increases were observed in preflight laboratory
simulations. 2

Primary and secondary impact damage, surface contamination, oxidation, and extensive dendrite

formation also contributed directly to the optical degradation of these mirrors.
-_7 =_ -_-- _: _:;_7_7_ -:_. _-_'-_ i " ...... _......... _ " '_ .... -"

Dendrite formation, which..... occurred in or_bit on samples flown o n the leading edge of LDEF, is

attributed to displacement reactions of primarily Cu and A1 contamination with Zn to form alloys. A phase
chaffge _6m fa_ce-centdred-cubicio body-_hii_f_-cubic _is suggest&t _ a poSsible driving forcg for the

dlSp|a_riient reaciion; AO c,ouid provide thermal energy fortheCu diffusion and als0 react with _+_,

created by the UV dissociation of ZnS, to form the oxide.

The Cu and possibly A1 contamination originated from secondary impacts from other mirrors in the

sample modules. The electron-stimulated growth of dendrites observed in the laboratory on the trailing-

edge mirror (T6-VI-7-30-36) suggests a diffusion-rate-limited growth process. Growth was observed, in

the iaboratory, tO initiate (andpresumabiy riiMeati0n _urred) ais_rida_ _mpactsltes.
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The crater-like features that developed as the result of Cs + ion etching during SIMS profiling may

result from displacement damage, possibly of cosmic ray origin. Further study will be required to

understand the origin, extent, and effect of these features on mirror performance.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The LDEF flight established the validity of laboratory simulations in screening coated optics for

applications in the space environment. Preflight laboratory simulations predicted the optical stability of

silicon/oxide designs and identified a potential water-impurity problem in the ZnS designs. 2 Impact

damage, both primary and secondary, was identified as a serious degradation mechanism for both silicon

and zinc sulfide designs.

A reactively sputtered (Si/SiO2)n/si design is suggested as a low-stress, adherent alternative to the

optically-stable but impact-damage-susceptible-(Si/Al203)nAg/Si and chemically-unstable-ZnS designs
flown on LDEF.

The ZnS designs suffered reflectance losses, impact damage, surface contamination, oxidation, and

extensive dendrite growth, all of which contributed to degradation of the mirrors. Deviations from

quarter-wave thicknesses and water contamination identified in SIMS-depth profiles successfully accounts

for reflectance loss in the 3-_m-spectral region. The dendrites are associated with displacement reactions

of primarily Cu contamination with ZnS. It is suggested that the energy for the diffusion-limited-growth

process was supplied by energetic (5eV) AO impacting the leading-edge test mirrors.

Finally, crater-like features that developed deep in a ZnS/ThF 4 coating during SIMS-profiling analysis

should be studied in more detail to determine if they are impact related and of extraterrestrial origin.

Ultimately, the effect of these craters on mirror performance should be assessed.
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Figure 1. Post-flight reflectance of the leading-edge

(Si/A1203)3Ag/Si test sample compared to a laboratory control.

The reflectance loss of the test sample relative to the control is

less than 0.1% at the design wavelength (2.8 lam).
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Figure 2. Post-flight Auger depth profile of the leading-edge (Si/AI203)3Ag/Si test

sample showing uniform layer thicknesses. Distortion of the third Si layer peak is due

to surface charging.
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Figure 3. Post-flight Auger surface profile of the leading-edge (Si/AI203)3Ag/Si

test sample. The thin surface oxide layer indicates that Si is not significantly
degraded by the energetic AO encountered in LEO.
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10 p.m

Figure 4a. Scanning electron micrograph showing radial

and spiral fractures extending from the impact crater on the

leading-edge (Si/AI203)3Ag/Si test sample.

Figure 4b. Atomic force micrograph of impact site in Figure 4a showing the impact crater and film

delamination surrounding the crater.
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I0 _m

Figure 11. Scanning electron micrograph of impact crater on
leading-edge (ZnSFFhF4)SAg/Mo test sample revealing the

multilayer structure and melt of individual layers.
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....i 60-- m............
Figure 12a. Optical micrograph of secondary impact crater on trailing-edge
(ZnS/ThF4)SAg/Mo test sample. 0VIicrograph courtesy of S. Gyetvay,

Aerospace Corp0iation.)_ - - -:: ............

Figure i2b. Atomic f0r_ micrograph of seco.ndary impact site in Figure 12a. The melted material
around the impact site is an estimated 2000 A thick.
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100 lxm

Figure 13a. Nomarski micrograph of dendrites on leading-edge

(ZnS/ThF4)SAg/Mo test sample, L6-VI-7-68-15. (Note the grain

structure of the polished polycrystalline Mo substrate is revealed in

the phase-sensitive micrograph.)

50 _m

Figure 13b. Optical micrograph of dendrites on leading-edge

(ZnS/AI203)nAg/Mo test sample, L6-VI-7-67-239. (Micrograph courtesy

of S. Gyetvay, Aerospace Corporation.)
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Figure 14. Auger depth profile Showing Cu and O reaction with ZnS surface

layer in dendrite region of leading-edge test mirror, L6-VI-7-68-15. (Auger

depth profile courtesy of T. Beirling and R. Helms, Stanford University.)

Figure 15. Mass-resolved SIMS image of a dendrite on the

leading-edge ZnS-_ated test mirror, L6-VI-7-68-15. The

bright areas show high concentrations of AI contamination,
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Figure 16. Scanning electron micrograph of dendrite grown in the

laboratory on trailing-edge ZnS-coated test mirror, T6-VI-7-30-36.

Growth was stimulated by electron irradiation in the region of a

secondary impact.
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Hgure 17a, Optical micrograph ofiea_Tng-edge ZnS-wltnesssample (L3-

11-7-65-10) after 70-month exposure in LEO. The coating is buckled and

annular features are observed at this magnification (168X). (Micrograph

courtesy of S. Gyetvay, Aerospace Corporation.)

100 _tm

Figure 17b. Optical micrograph of trailing-edge ZnS-witness sample ('1'3-

11-7-64-11) after 70-month exposure in LEO. The coating is mostly intact

but many blisters, perhaps related to locally poor adhesion, are observed.

0Vlicrograph courtesy of S. Gyetvay, Aerospace Corporation.)
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Figure 18a. Optical micrograph of a SIMS raster

pattern on the leading-edge ZnS-coated test sample, L6-
VI-7-68-15. The small crater-like features located

within the raster pattern developed as the sample was

rastered with a Cs + primary ion beam. The source of
the crater-like features has not been identified.
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Figure 18b. Profilometer trace through one of the small crater-like features
in Figure 18a.
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