OVERVIEW OF TURBULENCE MODEL DEVELOPMENT AND APPLICATIONS AT ROCKETDYNE

N95-27891

A.H. Hadid, E.D. Lynch, and M.M. Sindir Rocketdyne Division Rockwell International Canoga Park, California

TURBULENCE MODELING REQUIREMENTS, DEVELOPMENT PHILOSOPHY AND APPROACH

REQUIREMENTS

- TURBULENCE MODELING IS A KEY ENABLING TECHNOLOGY FOR ALL PROPULSION RELATED CFD ACTIVITIES
- FACTORS TO CONSIDER INCLUDE ACCURACY, CONSISTENCY, COMPUTATIONAL COST, AND EASE OF USE
- TURBULENCE MODELS THAT CAN NOT BE INCLUDED IN PRODUCTION GRADE CFD CODES ARE OF LIMITED VALUE TO INDUSTRY

PHILOSOPHY

- BASIC MODEL DEVELOPMENT IS BEST LEFT TO SPECIALIZED
 "CENTERS OF EXCELLENCE"
- VARIOUS CLASSES OF MODELS NEED TO BE SUPPORTED SINCE NO SINGLE UNIVERSAL MODEL IS SHOWN TO EXIST
- ESTABLISHING THE RANGE OF APPLICABILITY, ACCURACY, AND THE COMPUTATIONAL COST OF THE MODELS IS ESSENTIAL

TURBULENCE MODELING REQUIREMENTS, DEVELOPMENT PHILOSOPHY AND APPROACH (Cont.)

• APPROACH

- IDENTIFY KEY "CENTERS OF EXCELLENCE" AND ESTABLISH COLLABORATIVE RELATIONSHIP
- ACQUIRE MODELS AND ASSESS PERFORMANCE FOR THE INTENDED CLASS OF APPLICATIONS
- DELINEATE MODEL DEFICIENCIES AND INITIATE EFFORT TO REDUCE THEM
- DEVELOP MODELS INTO STAND-ALONE MODULES
- INCLUDE MODULES IN PRODUCTION CODES AND ESTABLISH
 BASELINE FOR APPLICATIONS

PRECEDING PAGE BLANK NOT FILMED

TWO MAJOR AREAS OF CONCENTRATION

- HIGH SPEED TURBULENCE MODELING (LEAD DR. DOUG LYNCH)
 - FOCUSED ON HIGH SPEED (M>1) PROPULSION (ROCKET AND AIRBREATHING) AND AERODYNAMICS
 - EMPHASIS ON 2-EQUATION PHENOMENOLOGICAL MODELS
 WITH NASA ARC AND LARC AS KEY TECHNOLOGY PARTNERS
 - LES WORK IN PLANNING STAGES WITH CTR
- · LOW SPEED TURBULENCE MODELING (LEAD DR. ALI HADID)
 - FOCUSED ON LOW SPEED (M<1) AND ROTATING FLOW APPLICATIONS
 - EMPHASIS ON REYNOLDS STRESS PHENOMENOLOGICAL MODELS IN COLLABORATION WITH UMIST, ICOMP, CTR, AND UAH
 - LES WORK INITIATED WITH CTR

HIGH SPEED TURBULENCE MODELING

- EMPHASIS IS ON THE DEVELOPMENT OF ENGINEERING TURBULENCE MODELS FOR
 - HIGH SPEED AIRBREATHING PROPULSION SYSTEMS
 - THRUST CHAMBERS
 - VEHICLE AERODYNAMICS
- APPROACH TAKEN IS BASED ON 2-EQUATION MODELS
 - DIFFERENT CLASSES OF 2-EQUATION MODELS STUDIED
 - k-ε
 - k-w
 - · POINTWISE R
 - COMPRESSIBILITY EFFECTS AND TURBULENCE-CHEMISTRY INTERACTIONS MAJOR MODEL UPGRADE THRUSTS
 - COMPRESSIBILITY MODIFICATIONS FROM ARC
 - TURBULENCE-CHEMISTRY INTERACTION MODELS FROM LARC
 - USA AND GASP SERVE AS NUMERICAL PLATFORM
 - GASP CHIEN, LAM-BREMHORST k-ε, k-ω
 - USA VARIETY OF k-ε, k-ω

COMPRESSIBILITY EFFECTS

MIXING LAYER SPREADING REDUCED AT HIGH MACH NUMBERS

- INCREASE DISSIPATION RATE OF k
 - DEFINE Ck2AS A FUNCTION OF TURBULENT MACH NUMBER Vpk/yp
 - ZEMAN MODIFICATION (1990)
 SARKAR (1990, 1991) AND MIL COX
 - SARKAR (1990, 1991) AND WILCOX (1991) PROPOSALS
- MODIFICATIONS OF ZEMAN AND SARKAR NOT RECOMMENDED
- HEAT TRANSFER OVER PREDICTED NEAR SHOCK WAVES
 - LIMIT TURBULENT LENGTH SCALE L_t TO MIN $\left(\frac{k^{3/2}}{\epsilon}, \frac{Ky}{C\mu^{3/4}}\right)$
- SEPARATION UNDERPREDICTED IN RAPID COMPRESSION OR STRAIN REGIONS
 - INCREASE $\alpha_{\epsilon} OR \; \alpha_{\; \omega} UNDER RAPID COMPRESSION (VUONG AND COAKLEY)$
- + HEAT TRANSFER OVER PREDICTED FOR VERY COLD WALLS T $_{\rm W}$ T $_{\rm aw}$ <0.1 (COAKLEY)
 - CEBECI-SMITH ~ 60%, k-ω ~ 40%, q-ω ~ 10%, k-ε ~ 30%

TURBULENCE MODELS ADAPTED TO USA CODE

ALGEBRAIC				TRANSITION MODEL		COMPRESSIBILITY EFFECTS		
	DAMPING WALL LOCAL		BOUNDARY CONDITIONS	HIGH ORDER POLYNOMINAL	ARNAL	MIXING LAYER SPREADING	SEPARATION EXTENT	REATTACHMENT HEAT TRANSFER
Baldwin-Lomax	x	3 Versions		x	x			
<u>k-r</u> 1. Myong-Kasagi	x	x	k = 0 e = vyu²/18y²	x		1. Sarkar (1991) 2. Zaman (1990) 3. Wilcox (1991)	4. Yuong & Coakley (1987)	5. Vuong & Coakley (1987)
2. Chien (1982)	x	. x	k = 0 c = 0	x		1., 2., 3.	4.	5.
3. Jones-Launder /19773	x	x	k = 0 t = 0	x		1., 2., 3.	4.	5.
4. Launder-Sharma	x	x	k = 0 z = 0	x		1., 2., 3.	4.	5.
(1974) 5. Huang-Coakley (1992)	x	x	k = 0 t = 203kj/y ²	x		1., 2., 3.	4.	5.
6. Speziele-So-Zhang (1993)	x	x	k = 0 z = 2uşk _i /y ²	x		1., 2., 3.	4.	5.
7. Lam-Bremhorst (1981)	x	x	k = 0 zy = 0	x		1., 2., 3.	4.	5.
8. High Re	x	x	Well Function	x				
<u>k-m</u> 1. High Re Wilcox (1991a)	-	-	k = 0 ω ₀ = 10ω ₁	x		1., 2., 3.	4.	5.
2. Low Re Wilcox (1991b)	-	-	k = 0 ω = 7.2υg/y ²	×		1., 2., 3.	4.	5.
<u>a-a</u>				~				
Coakley (1987)			x = ∪ ω _y = 0	*				
One-Equation (Goldber Two-Time Scale 1992)	g		k=0				•	
One-Equation R _T (Goldberg 1993, 1994)		x	$\frac{d(\frac{y}{2})}{dy} = \frac{d(v_1 R_1)}{dy} =$	o X				

AXISYMMETRIC FLARE

WALL PRESSURE FOR AXISYMMETRIC FLARE

REF: M.I. KUSSOY AND C.C. HORSTMAN, "DOCUMENTATION OF TWO- AND THREE-DIMENSIONAL HYPERSONIC SHOCK-WAVE TURBULENT BOUNDARY LAYER INTERACTION FLOW," NASA TM 1-01075.

MACH 7.05 FLOW OVER AXISYMMETRIC FLARE CHIEN k-ω MODEL WITH RAPID COMPRESSION AND LENGTH SCALE COMPRESSIBILITY MODIFICATIONS

MACH 8.6 FLOW OVER COLD WALL WEDGE

THREE STUDIES

- 1. CHIEN k-ε MODEL WITH RAPID COMPRESSION AND LENGTH SCALE CORRECTIONS AND WITH AND WITHOUT MIXING LAYER TREATMENT
- 2. HIGH-Re k-ω MODEL WITH VARIOUS AIR CHEMISTRY MODELS
- 3. BALDWIN-LOMAX TURBULENCE MODEL USING WALL AND LOCAL DAMPING

MACH 8.6 FLOW OVER COLD WALL WEDGE CHIEN K-& MODEL WITH AND WITHOUT MIXING LAYER TREATMENT

HEAT FLUX CALCULATIONS

HEAT FLUX CALCULATIONS

MACH 8.6 FLOW OVER COLD WALL WEDGE

BALDWIN LOMAX, k-E, k-W MODEL COMPARISONS

LOW SPEED TURBULENCE MODELING

EMPHASIS IS ON THE DEVELOPMENT OF ENGINEERING TURBULENCE MODELS FOR

- ROTATING MACHINERY
- FLOW IN DUCTS AND MANIFOLDS
- REACTING FLOWS

APPROACH TAKEN IS TO

- 1. SYSTEMATICALLY ASSESS EXISTING PHENOMENOLOGICAL MODELS USING COMMON NAVIER-STOKES SOLVER
- 2. IDENTIFY, DEVELOP AND VALIDATE MODEL UPGRADES COMMENSURATE WITH OBSERVED FLOWPHYSICS
- 3. DEVELOP SELF-CONTAINED TURBULENCE MODEL DECKS (MODULES) THAT CAN BE INTEGRATED WITH NAVIER-STOKES SOLVERS
- 4. PROVIDE GUIDANCE TO EXPERIMENTAL AND THEORETICAL RESEARCH IN TURBULENCE MODELING FOR ENGINEERING APPLICATIONS

TURBULENCE MODELS BEING ASSESSED

NEAR-WALL TREATMENTS INCLUDE (WHERE APPROPRIATE) WALL FUNCTIONS, MULTILAYER MODELS, AND LOW-REYNOLDS NUMBER APPROXIMATIONS

TURBULENCE MODEL DECK STRUCTURE AND INTEGRATION WITH NAVIER-STOKES SOLVER

PROJECT WELL UNDERWAY

• TEAM

- MODELS PROVIDED BY UMIST, LERC/ICOMP, ARC/CTR
- MODULE DEVELOPMENT BY ROCKETDYNE
- MODULE TESTING BY ROCKETDYNE (REACT, USA) AND UAH (MAST)
- MODEL UPGRADES BY ROCKETDYNE, UMIST, ARC/CTR
- APPLICATION BY ROCKETDYNE TO TURBOPUMP COMPONENT (E.G. IMPELLER) ANALYSIS
- 2-D MODULES COMPLETED, TESTED, AND RELEASED
 - SINGLE SCALE k-ε
 - MULTI SCALE k-ε
 - ASM
 - RSM
- 3-D MODULE DEVELOPMENT IN PROGRESS

NONLINEAR ALGEBRAIC-STRESS MODEL VORTEX SHEDDING FROM RECTANGULAR CYLINDERS (DURAO, et al)

$\begin{array}{l} \textbf{ROTATION MODIFIED } k\text{-}\epsilon \textbf{ MODEL} \\ \textbf{BACKWARD FACING STEP} (DRIVER AND SEEGMILLER) \end{array}$

STREAMLINE CONTOURS

ALGEBRAIC STRESS MODEL CONFINED COAXIAL SWIRLING JET FLOW (ROBACK AND JOHNSON)

REYNOLDS STRESS MODEL (LRR – MODEL)

BACKWARD FACING STEP (DRIVER AND SEEGMILLER)

STREAMLINE CONTOURS

MEAN AXIAL VELOCITY AT X/H=4

AXIAL TURBULENT INTENSITY AT X/H=4

CONCLUDING REMARKS

- PROGRAMS (BOTH COMMERCIAL AND GOVERNMENT) EMPLOY NEW TECHNOLOGY ONLY WHEN IT PROVIDES "ADDED VALUE"
 - REDUCED DEVELOPMENT COST
 - INCREASED RELIABILITY AND PERFORMANCE
 - ENHANCED MANUFACTURABILITY
- THE NEW TECHNOLOGY WE OFFER IS THE COMPUTATIONAL ENGINEERING TOOLS FOR PRODUCT DESIGN AND ANALYSIS
- THESE TOOLS ARE THE END PRODUCT FOR ALL ENABLING TECHNOLOGY DEVELOPMENT
 - PRE- AND POST PROCESSING
 - ALGORITHMS AND NUMERICAL PLATFORMS
 - PHYSICAL MODELS (E.G. TURBULENCE AND CHEMISTRY)
- FAILURE OF ANY ENABLING TECHNOLOGY JEOPARDIZES THE PERFORMANCE (VALUE) OF THE TOOL

NOW MORE THAN EVER, THERE IS A NEED FOR CLOSER COLLABORATION AND COOPERATION BETWEEN GOVERNMENT, INDUSTRY, AND RESEARCH INSTITUTIONS TO ENSURE MAINTENANCE OF COUNTRY'S TECHNOLOGY BASE