RECENT ADVANCES IN PDF MODELING OF TURBULENT REACTING FLOWS

1121211

7

N95-27892

A.D. Leonard and F. Dai CFD Research Corporation Huntsville, Alabama

ACKNOWLEDGEMENTS

- NASA LeRC Phase II SBIR Technical Monitor: David Fricker
- Pratt & Whitney: Dr. Geoff Sturgess
- Wright Laboratories: Mr. Dale Shouse

MOTIVATION

Accurate and Efficient Prediction of Emissions

- 1. Accurate Prediction of Emissions From Combustion Devices Requires Treatment of Finite-Rate Kinetics
- 2. The Effect of Turbulent Fluctuations in Velocity, Energy, Composition, etc. on Finite-Rate Chemical Kinetics Must be Modeled

TURBULENCE/CHEMISTRY INTERACTIONS

Possible Approaches

- **Neglect Fluctuations** •
 - Simple +
 - Ignores Effect of Turbulence _
- Eddy Break Up .
 - Simple +

 - Assumes Fast Chemistry Mean Density, Temperature Must Still Be Modeled
- **Prescribed PDF**
 - Efficient + Limited to Fast Chemistry or Single Step Reaction
- **Composition PDF**
 - Finite-Rate Multi-Step Kinetics +
 - Expensive
 - Gradient Diffusion ----
 - **Velocity-Composition PDF**
 - More Accurate More Expensive +
 - _

PARTICLE REPRESENTATION

A Solution Method for a Large Number of **Independent Variables**

- Computational Requirements Increases Exponentially With Dimensions for Finite Difference Methods •
- **Computational Requirements Increase Linearly** ٠ With Dimensions for Monte Carlo Methods

COMPOSITION PDF SOLUTION

Stochastic Lagrangian Particle Simulation

Particle Composition and Position Changed to Model Transport of Joint PDF

Mean Convection **Move Particles Between Cells** ::

- **Chemical Reactions** ٠
 - Lookup Table Holds Composition Change •
 - **Turbulent Diffusion** Exchange Particles Between Cells -

I • • • • • •

Molecular Mixing • Particle Interaction Changes Composition

COUPLING

.

PDF Solution is Separate Module

CFD-ACEMonte Carlo
PDF
$$\tilde{u}, \tilde{v}, \tilde{w}, \tilde{w}, \tilde{k}, \epsilon$$
 $\tilde{u}, \tilde{v}, \tilde{w}, k, \epsilon$ $\tilde{u}, \tilde{v}, \tilde{w}, \tilde{w}, \tilde{k}, \epsilon$ $f(\Psi_1, ..., \Psi_n)$

CHEMICAL KINETICS

Reduced Mo	dels are Used
Hydrogen:	2H ₂ + O ₂ ⇔2H ₂ O
CO:	$CO + H_2O \Leftrightarrow CO_2 + H_2$ $2H_2 + O_2 \Leftrightarrow 2H_2O$
Methane:	$CH_4 + 2H + 2H_2O \rightarrow CO + 4H_2$ $CO + H_2O \Leftrightarrow CO_2 + H_2$ $2H_2 + O_2 \rightarrow 2H_2O$ $3H_2 + O_2 \Leftrightarrow 2H_2O + 2H$
Hydrocarbon	$\begin{array}{l} : C_n H_{2n+2} & + (\frac{n}{2})O_2 \rightarrow n \ CO + (n+1) \ H_2 \\ C_n H_{2n+2} + n \ H_2 O \rightarrow n \ CO + (2n+1) \ H_2 \\ CO + H_2 O \Leftrightarrow CO_2 + \ H_2 \\ 2H_2 + O_2 \Leftrightarrow 2H_2 \ O \end{array}$
Thermal NO:	N₂+O ⇔NO + N N +O₂⇔NO + O N +OH ⇔ NO + H

RESULTS TO BE PRESENTED

- Jet Diffusion Flame (Hydrogen with Helium Dilution)
- Bluff Body Stabilized Flame (H₂/CO)
- Piloted Jet Diffusion Flame (Methane)
- Generic Gas Turbine Combustor (Propane)

HYDROGEN JET DIFFUSION FLAME

Illustration of Experiment at Sandia National Lab

 $Re \approx 10^4$

<u>Fuel</u>

100% H₂ 80% H₂, 20% He 60% H₂, 40% He

60% HYDROGEN FLAME

Scatter Plots of Mixture Fraction and NO Mole Fraction

HYDROGEN DIFFUSION FLAME Dilution Effects on Emmisions Index

BLUFF BODY STABILIZED DIFFUSION FLAME Illustration of Experiment of Correa and Gulati

BLUFF BODY STABILIZED DIFFUSION FLAME Composition PDF Predicts Mean Values as well as Velocity-Composition PDF

PILOTED JET DIFFUSION FLAME

Illustration of Experiment of Masri et.al.

PILOTED JET DIFFUSION FLAME Good Agreement with Experimental Data

PILOTED JET DIFFUSION FLAME More Accurate Prediction with Monte Carlo PDF

Flame B at x = 20D

GENERIC GAS TURBINE COMBUSTOR

Pratt & Whitney Four-Nozzle Sector Combustor Tested at Wright Laboratory

67,840 Cells

MONTE CARLO PDF COMBUSTOR CALCULATION Stochastic Particle Traces

VERTICAL PLANE THROUGH CENTER OF FUEL INJECTOR Mean CO Mass Fraction Countours

RUN TIME AND MEMORY

3D Combustor Calculation (68,000 cells)

Conventional CFD				
CPU Time	20 hours			
Memory	80 MBytes			

Monte Carlo PDF

CPU Time	100 hours
Memory	120 MBytes

Parallel PDF (Projected)						
CPU Time	25 hours	25 hours	25 hours	25 hours		
Memory	30 MBytes	30 MBytes	30 MBytes	30 MBytes		

CPU Time for IBM RS/6000 Model 560

CONCLUSIONS

- Monte Carlo PDF Solution Successfully Coupled with ٠ **Existing Finite Volume Code**
 - Minor Changes to Finite-Volume Code Can be Coupled with Other Codes -
 - -
- PDF Solution Method Applied to Turbulent Reacting ٠ Flows
 - Good Agreement with Data for 2D Case Demonstration of 3D Elliptic Flow -
 - -
- PDF Methods Must be Run on Parallel Machines for **Practical Use**