SECOND-ORDER CLOSURES FOR COMPRESSIBLE TURBULENCE

J.L. Lumley, S. Savarese, and C.C. Volte Mechanical and Aerospace Engineering Department Cornell University Ithaca, New York N95-27898

OUTLINE

- I. Project Description
- II. Turbulence Modeling
- III. Computational Engine / Results

FUTURE WORK

I. PROJECT DESCRIPTION

- 1. Flows of Interest
- 2. Motivation
- 3. <u>Method</u>

Schlieren photograph of a shock-wave turbulent boundary-layer interaction M=0.90 Re=1,750,000 [Liepmann]

1.2.MOTIVATION

- Physics
 - Boundary Layer Separation & Wall Heat Transfer
 - Spreading rate
- <u>Modeling</u> Account for Compressibility Effects on Turbulence
- <u>Numerics</u> Compare 1-point Closures on Identical Solver

I.3. METHOD

- 1-Point Closures: from EVM to Second-Order Closures
- Dynamical Compressibility Effects
- 3D / Finite Volume Approach

.

II. TURBULENCE MODELING

- 1. Closure Levels
- 2. Compressibility Effects
- 3. Shock Wave Interactions

II.1. Closure Levels

- 1. EVM Mixing-Length (Baldwin-Lomax)
- EVM Multi-Equation (k-ε-S)
- Second-Order Closure (Shih and Lumley)

II.2. Compressibility Effects

- 1. New Physics & Averaging
- 2. Models

II.2.1. New Physics (Turbulent Kinetic Energy Sink)

$$- < au_{ij} u_{i,j} > = \Pi_d - arepsilon_d - arepsilon_s$$

•
$$\varepsilon_d = (\mu_B + \frac{4}{3}\mu) < d^2 >$$

• $\sqcap d = < pd >$

II.2.3. Turbulence Modeling (Zeman, Sarkar et al., Yoshizawa)

• dilatation dissipation:

$$\varepsilon_d = (\mu_B + \frac{4}{3}\mu) < d^2 >$$

- Sarkar et al. (asymptotic analysis)

Zeman
 (Shocklet model)

• pressure-dilatation correlation:

$$\Pi_d = \langle pd \rangle$$

- Zeman (acoustic model):
- Sarkar et al.
 (DNS & asymptotic analysis)

Response of turbulence kinetic energy to the passage through shock

II.3. Shock Wave Interactions

- 1. Experimental Observations
- 2. Physics
- 3. Modeling

II.3.1. Experimental Results

- Oscillation increases with Shock Strength (Dolling)
- Oscillation increases with Separation Region
- Normal Stresses Preferentially Amplified (Délery et al.)

II.3.2. Physics

Oscillation Caused by (?):

- "Breathing" of Separation Region
- Vortex Bursting in Incoming Boundary Layer (Dolling)

II.3.3. Shock Oscillation Modeling

- Parametrized Source Terms in Normal RS Evolution Equation (gradient activated)
- Separation region Extend

III. COMPUTATIONAL ENGINE

1. Numerical Method

2. Turbulence Models

3. Validation Procedure / Results

III.1. Numerical Method

Initial Code: flo103 (A Jameson L Martinelli,	Current Code: cyste (D.Caughey)	<u>Future</u>
Princeton)	1. Geometry	3D
1. Geometry	O- R-meshes	2. Turbulence Models
C-mesh	(EAGLEView MSU)	SOC
2D	2. PDE Solver	
spatial discretization: FV	consistent gradient comp.	
time integration: RK	3. Convergence Acceleration	
3. Convergence Acceleration: variable time step	Enhanced multigrid sequencing	
residual smoothing	Restart option	
artificial dissipation	Post-processing (DX, Tecplot,)	
multigrid preconditioning	convergence histories	
4. I/O PLOT3D format	5. Turbulence Models k-epsilon (-S)	
5. Turbulence Models Baldwin-Lomax	6. Software Engineering Dynamical mem. allocation (C) Vectorized data structure Unix Integration	

III.2.Turbulence Models: Incompressible / Compressible: an additive approach

- Baldwin-Lomax
- k-Epsilon / k-Epsilon-S: B.C's
- Second-Order Closures

Boundary Conditions: Wall-Functions

III.3. Validation Procedure / Results

- Calibration against simple well-documented flows (flat plate, jet)
- Results and Comparison of models

FUTURE WORK

- <u>Numerics</u>
 - $-2D \Rightarrow 3D$
 - More Complex Wall Functions
 - Realizability Conditions (SOC)
- Modeling
 - Refinement of Existing Models $(\varepsilon_d \ \text{,} < pd >)$
 - Shock Oscillation Model

Homogeneous Turbulence (R) / k-eps / Mach=0.045 Re=24357

Homogeneous Turbulence (R) / k-eps-S / Mach=0.045 Re=24357

Homogeneous Turbulence (R) / RSC / Mach=0.5

ORIGINAL PAGE IS OF POOR QUALITY

.

