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ABSTRACT

Aeroelastic stability analyses have been performed
for the MOD-5A blade/aileron system. Various
configurations having different aileron torsional
stiffness, mass unbalance, control

and system

damping have been investigated. The analysis was
conducted using a code recently developed by the
General Electric Company - AILSTAB. The code
extracts eigenvalues for a three degree of freedom
system, consisting of: (1) a blade flapwise mode,
(2) a blade torsional mode, and (3) an aileron
torsional mode. Mode shapes are supplied as input
and the aileron can be specified over an arbitrary
length of the blade span. Quasi-steady aerodynamic
strip theory is used to compute aerodynamic deriva-
tives of the wing-aileron combination as a function
of spanwise position. of motion

Equations are

summarized herein. The program provides rotating
blade stability boundaries for torsional divergence,
classical flutter (bending/torsion) and wing/aileron
flutter. It has been checked out against fixed-wing

results published by Theodorsen and Garrick.

The MOD-5A system is stable with respect to diver-
gence and classical flutter for all practical rotor
speeds. Aileron torsional stiffness must exceed a
minimum critical value to prevent aileron flutter.
The nominal control system stiffness greatly exceeds
this minimum during normal operation. The basic
system, however, is unstable for the case of a free
(or floating) aileron. The instability can be
removed either by the addition of torsional damping

or mass-balancing the ailerons.
The MOD-5A design was performed by the General

Electric Company, Advanced Energy Program Department
under Contract DEN3-153 with NASA Lewis Research
Center and sponsored by the Department of Energy.
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INTRODUCTION

Although aileron systems have widespread use on

f ixed-wing aircraft very few rotors have been
designed with aileron controls. Large wind
turbines, in particular, have used pitchable blade

sections for power regulation and to start-up and
shut-down. General Electric’s 400 ft. diameter,
7.3MW MOD-5A was originally designed with a pitch-
able tip spanning the outer 25% of blade radius. As
the design progressed, further studies determined
that substantial weight and cost savings could be
obtained by switching to an aileron control system.
This provided the impetus for the work described in

this work.

In this paper we first describe the development of
AILSTAB, a three degree of freedom stability
analysis program. The results of the MOD-5A rotor
blade stability analysis are then presented. Also
which

included are the results of investigations,

are parametric in nature and show trends which

shoula be similar for other WTG's.

NOMENCLATURE

a - distance, midchord to elastic axis, as
percent of chord

a - lift curve slope; Tift coefficient per
radian

b -  semichord

c - distance, midchord to aileron hinge, as
percent of chord

c(k) - Theodorsen's coefficient

Ca - elemental aerodynamic damping matrix

fh - integrateq aerodynamic damping matrix

s - elemental structural damping matrix
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integrated structural damping matrix

distance, midchord to leading edge of
aileron, as percent of chord

blade flap bending degree of freedom
torsional moment of inertia of blade, less
aileron, about elastic axis; per unit
length

torsfonal moment of inertia of aileron,
about hinge; per unit length

elemental aerodynamic stiffness matrix
integrated aerodynamic stiffness matrix
elemental centrifugal stiffness matrax
integrated centrifugal stiffness matrix
elemental structural stiffness matrix
integrated structural stiffness matrix
blade mass, less aileron; per unit length
aileron mass; per unit lTength

elemental aerodynamic mass matrix
integrated aerodynamic mass matrix

elemental structural mass matrix
integrated structural mass matrix

blade radial station, dimensional

Southwell coefficient, blade bending

Tocal velocity
blade torsion degree of freedom
aileron torsion degree of freedom

critical damping ratio, blade bend-
ing

critical damping ratio, blade torsion

critical ratio, aileron

torsion

damping

air mass density; per unit length

static moment of blade, less aileron,
about elastic axis; per unit Tength

static moment of aileron, about hinge;
per unit length

flapwise deflection mode shape
blade torsion mode shape
aileron torsion mode shape

flapwise rotation mode shape

Q - rotor speed, radians/second

Wf - flutter frequency, radians/second

wh - blade bending frequency, radians/
second

Wy - blade torsional frequency, radians/
second

wg - aileron torsional frequency, radians/

second

METHODS OF ANALYSIS

The AILSTAB rotor blade stability analysis program was
developed in a manner very similar to that which would

be used for a fixed wing. The differences between

‘rotor and fixed wing analyses are the variation of

local velocity with span on a rotor blade, and the
variation of stiffness with rotor rpm due to the
centrifugal forces. The AILSTAB computer code can be
used to predict divergence and classical blade bending/
aileron torsion/blade

torsion flutter, as well as

bending flutter.

SYSTEM DESCRIPTION

The three degrees of freedom (DOF) in the analysis are
blade flapwise bending (h), blade torsion (a), and
aileron torsion {B). Figure 1 depicts these DOF and
their sign conventions. The conventions are such that
h 1s negative for a bending deflection toward the
suction side of the airfoil. a is positive for a
"nose up" rotation, and B is positive for an “aileron
down" rotation and is measured relative to a.

Three other parameters required for the analysis are
depicted in this figure. A1l three are measured from
the airfoil's midchord, are positive toward the trail-
ing edge, and are expressed as a percentage of the
semichord. The distance to the elastic axis is
denoted "a", the distance to the aileron leading edge
and the distance to the aileron hinge fis
denoted "c".

15 "ell’

Figure 2 shows the three DOF (mode shapes) depicted in
three dimensions.

ASSUMPTIONS
The following set of assumptions, all of which are

believed to be reasonable, were made in developing the
computer code.



The equations of motion were 1inearized.

Three degrees of freedom at a time, one
flapwise, plus the blade and aileron torsion
modes, are sufficient to determine the
stability.

Aerodynamic strip theory with no stall was
used, i.e. the aerodynamic derivatives are
independent of a.

velocity 1is equal to Qr, the
velocity times the radial
j.e. the free wind velocity is

The local
rotational
distance,
neglected.

The Theodorsen coefficient, c(k), is equal
to 1.0, j.e. Quasi-steady aerodynamics are
used. This should give conservative results
for both blade-bending/torsion flutter and
blade-bending/aileron torsion flutter.

Aerodynamic derivatives for an unsealed gap
(ref. 1) are used if cge.

6.

EQUATIONS OF MOTION

The equations of motion
representative airfoil element of length "dr" and
integrated along the span of blade with weighting as
determined by the mode shapes. The aerodynamic
equations incorporated in this analysis were those
Inertial equations

were developed for a

of Smilg and Wasserman (ref. 1).
of motion were derived with centrifugal stiffening

terms added. The final form of the equations is:

v
-

h _{n
[Ms-Mp] G} + [Ts-Cal (&} + [KstKcp-Kplda} =0
8 B B

where the matrices subscripted S (structural) and A
(aerodynamic) composed of
damping, and stiffnes terms integrated along the
blade span with modal weighting.

are elemental mass,

)

h
i.e. [ﬁS] =§/ Lo, 2, QB] (M ] 2, dr
pan ﬂB
The stiffness contribution due to centrifugal

stiffening, KCF’ is formed similarly with a mode
shape of flapwise rotations substituted for the

flapwise deflection mode shape.

?
oh

i.e. [TsCF]=/ Loy, 9 2,1 [Ked ¢ B, p dr
span ﬂB
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A detailed description of the terms in the elemental
matrices is presented in the appendix.

SYSTEM STABILITY
In order to determine the blade's flutter stability,
the integrated mass, stiffness and damping matrices

are formed into a six by six dynamical matrix from

which complex eigenvalues and eigenvectors are
determined. The form of the dynamical matrix is:
M-lo -meIk
1 0
where
M = 'ﬁA + ﬁS
€ = -EK + Eé
K =-Ky + Ks + K
I = 3 x 3 unit matrix
The critical damping ratios (z), and the
frequencies in hz (ff), are determined from the
eigenvalue (R) as follows.
r = -REAL(R) , f¢ = ABS(R)
ABS(R} 2

The output of the AILSTAB stability analysis program
is eigenvalues, and eigenvectors if desired. The
program is organized so that a series of cases may
be run for a particular configuration, with rpm
varied. The critical damping ratio and coupled
frequencies are determined from the complex eigen-
values, and the damping in each mode can be plotted
vs. rpm to 1llustrate system stability. In the case
of blade bending/aileron tension flutter there is a
range of rpm between which the instability exists.
By plotting the range of unstable rpm vs. a design
parameter such as aileron control system stiffness,
aileron balance, a stability

damper, mass

boundary may be constructed.

or

DESCRIPTION OF ANALYZED SYSTEM

The MOD-5A is a 7.2MW wind turbine with a teetered
rotor. Ailerons on the outer 40% of the 200 ft.
radius blades are used to regulate power and to shut
down. The ailerons are hinged at their leading edge
and are 40% of the chord width.

Three blade flapwise mode shapes were used in the



analysis. They were 1) the teeter mode with a
frequency of 1 per rev, 2) the Ist collective with a
frequency of 7 radians/second, and 3) the Ist cyclic
with a fregquency of 13.8 radians/second. These mode
shapes were calculated for an isolated blade (i.e.,
not attached to the wind turbine). The collective
mode of the isolated blade is found by providing a
cantilevered root condition 1in the flapwise
direction. The cyclic mode 1is determined by
providing a pinned root condition in the flapwise
A plot of these three flapwise modes is

Southwell coefficients may

direction.
presented in Figure 3.
be input to the program so that both the collective
and cyclic frequencies may be varied with rpm to
account for the varying centrifugal stiffening. For
the MOD-5A analysis the important instability
occurred at a low enough rpm so that the centrifugal
stiffening was not important to the results.

The three aforementioned flapwise modes were each in
turn analyzed in combination with the blade torsion
mode shape and an aileron torsion mode. Higher
modes than these were also analyzed, but were not
found to be critical. The blade torsion mode had a
frequency of 51 radians/second, By comparison, the
ailerons are essentially rigid in torsion with

cantilevered frequencies above 400 radians/second.

For all practical purposes, the aileron natural
frequencies are dominated by the control system
stiffness and oscillate as a rigid body. Rather

than attempting to model the actual aileron tor-
sional natural mode, the frequency, or equivalently
the actuator stiffness was varied, to determine the
minimum requirements. In this way failure modes,
such as loss of actuator hydraulic stiffness, are
fall-outs of the analysis. In addition to aileron
frequency sweeps, variations in aileron torsional
damping, mass-balancing, and aileron spanwise length
were considered. The ailerons center of gravity is
aft of the 60% chord hinge line. The aft center of

gravity has a de-stabilizing effect.

ANALYSIS RESULTS

The most critical condition will be discussed first.

It occurs when the root torsional stiffness provided
by the actuators is lost and the aileron is free to
rotate about its hinges. This cannot happen under
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collective mode.

normal
failure.

circumstances, so it represents a

Stability boundaries are presented in
terms of control system stiffness, control system
damping, and the degree of mass-balance. A final
case considers the stability of an aileron spanning
only the outer 27.5% of the blade.

system

FREE AILERON

Figures 4a-c show damping vs. rotor speed for the
baseline blade with a free, unbalanced aileron (the
aileron torsion frequency of 1 per rev or 1P, is due
to centrifugal stiffening). Below each damping
curve, the natural frequencies are plotted vs. rpm.
Both coupled (dashed lines) and uncoupled (solid
lines} frequencies are shown. At rpm's
uncoupled frequencies coincide, a decrease in sta-

where

bility is noted in the corresponding damping curve.
The Figures 4a, b, and c, illustrate the stability
with the teeter, flap collective, and flap cyclic
modes, Aileron torsion coupling is
seen to cause an instability only with the flap
The ailerons are unstable in the
region of low rotor speed, 3-12 rpm, which is
typical of wing and aileron systems with an unbal-

respectively.

In particular, there is the possibility
of instability when the aileron torsional frequency

anced mass.

is less than the flapwise frequency.
Figure 4 becomes stable again at 12 rpm, because the

The system in

torsional aerodynamic spring increases the aileron
frequency beyond that of the first flapwise mode.
The in all
between 55 and 60 rpm, are classical bending-torsion
flutter of the blade.

instabilities, which are seen plots

STABILITY BOUNDARIES

the MOD-5A blade with
given in Figure 5. To
generate the boundary, the aileron root torsion
spring was increased increments to find the
stiffness at which the torsion mode became stable.
At any value of stiffness where an instability
occurred, the values of rpm between which the mode
was unstable were found and plotted. This figure
shows that an aileron torsional frequency of 7.5
radians/second is needed to provide neutral stabil-
ity. This same procedure was followed for the
addition of aileron torsional damping rather than a
The resulting flutter boundary is presented
in Figure 6.

A flutter boundary for
unbalanced aileron is

in

spring.



The comparison of stiffness and damping requirements
is an interesting sidelight to the stability problem.
If the damping rate is multiplied by the flutter
the effective impedance, in stiffness
units of the damper is found. Figure 7 contains
plots of impedance vs. flutter damping ratio at
6 rpm for both spring and damper systems. The

frequency,

system's stability is
aileron torsional impedance whether

largely a function of the
it be derived
from a spring or a damper. This conclusion 1is
further strengthened by Figure 8 which shows the
stability boundaries in terms of impedances. The
approximate equivalence of spring and damper
impedance effects is an important consideration
during dynamic conditions, such as pitch change in

which the hydraulic actuator impedance has both
spring and damper characteristics.

To prevent flutter without need for a mimimum
aileron torsional stiffness or damper, balance

weights would have to be added to the ailerons.
With the ailerons unbalanced, the minimum damping
ratio calculated in the AILSTAB rpm sweep was
approximately -12%, as can be discerned from Figure
4b., The variation of modal damping with RPM is
shown for a fully (100%) mass-balanced aileron in
Figure 9. The system is stable. The variation of
minimum damping in the aileron mode is shown for
varying degrees of mass-balance in Figure 10.
Neutral stability can be obtained with an 85%

mass-balanced system.

EFFECT OF AILERON LENGTH
Similar analyses to those discussed

above were

performed with the free aileron section extending'

from .725 radius to the tip, rather than from .60
In this configuration the different modal
instability of the
coupling with the blade cyclic bending mode.

radius.
weighting caused an aileron

Aileron

torsion coupling with the blade collective bending‘

mode also produced an instability, as it had with
the longer aileron.

Since the shorter aileron was unstable in coupling
with the higher frequency cyclic flapwise mode with
a flutter frequency of approximately 14 radians/
second, a higher dimensional damping coefficient was
required to stabilize it. The longer aileron had

unstable coupling only with the collective mode,
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which had a flutter frequency of approximately 7
radians/second.

The damping vs. rpm plots for the 27.5% span, free,
unbalanced aileron analysis are presented in Figure
11.

Stability boundaries of rpm vs. aileron frequency
are plotted in Figure 12 to show the effect of added
root torsional stiffness. Boundaries for the addi-
tion of torsional damping are shown in Figure 13.
To again demonstrate the similarity of results from
adding impedance, whether from stiffness or damping,
ypm vs. impedance stability boundaries are shown in
Figure 14.

CONCLUDING REMARKS

The free unbalanced aileron caused the system to
become unstable either with a length of 40% or of

27.5% of blade radius.

These instabilities can be removed with the addition
of 1impedance to the aileron torsion
freedom. The actuator stiffness normally supplies
an impedance well in excess of that required, but on
the MOD-5A torsional dampers have been added to
protect the system in the event of an actuator
These dampers are passive elements

degree of

system failure.
which will always be operative. The damper forces
far enough below those which are present due to the
aerodynamic forces in normal operation so that their

presence will not penalize control system design.

An alternate method of stabilizing the system would
be through the addition of balance weights to the

aileron. This method was deemed unwieldy and tor-
sional dampers chosen instead.
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APPENDIX

tEquations of Motion

STRUCTURAL (Left Hand Side)

h ' h h
[M3 ¢ @ b+ [Cg] (a b+ IKg] ¢a b+ [Keed (o

B B B B

Mg (1,1) = Mot M

Ms(},zi * o, + % + b (c-a) MB

MS(133 = UB

Ms(2,2) = Iu + I[3 + 2b (c-a) og * b2 (c-a)? MB

Ms(2,3) = I, +Ig+b(c-a) og

Mg(3,3) = I

Other structural mass terms are symmetric.

Cg (1,1) 2, M T,
Cs (2,2) a1,
Cg (3:3) = a5l ¢,

Other damping terms are zero.

Kg (1,1)
Kg (2,2) =
K¢ (3,3)

”hz Ma + Sy Q2 Mg (1,1)
wa: IU. + 92 MS (2,2)

2
wB IB +Q MS (393)

Other stiffness terms are zero.

The above structural mass, stiffness, and damping
matrices are all multiplied by mode shapes at each
radial station and integrated.

i.e.

N T
Ms = ) [8n 8, 93] [Ms] [@p @, 0g] Ar
0

Sh in the above stiffness equation, is the
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southwell coefficient for the flapwise mode. It is
an approximation used to relate the rotating and
non-rotating blade natural frequencies.

wror * “Non-rOT T Sh @
Ker (1,2) = a2 Mg (1,2)
Kep (1,3) = ra? Mg (1,3)
Ker (2,3) = a2 Mg (2,3)
Kep (1) = K (1,2)
Kep (3:1) = Kep (1,3)
Ker (3:2) = Kp (2,3)

Diagonal terms are zero.

This centrifugal stiffness matrix 1is multiplied by
mode shapes at each radial station and integrated.
Unlike the structural the first
row and column are multiplied by the modal rotation

stiffness matrix,
rather than deflection.
i.e
- N T
Ker = ) [Von 0 93] [Kcrl [@gn 0y 9] ar
0

Where, @gp = dby

dr

AERODYNAMIC (Right Hand Side)

h h
[MA] E + [CA] a + [KA] a
- B B B
MA (1,1) = -5 p b2
MA (1,2) = 7 p ab?
MA (]’3) = p (Tl + (C'e) Ds) b?
My (2,2) = -mp (2% +1/8) b*
Ma {2,3) = p [T, + {e-a) T, + 1/4 (c-e) @
- (a+ 1/2) (c-e) @3] b*
MA (3,3) =

L [Ts + (c-e) @s7 - (c-e)2 pu7] b*
m

Other mass terms are symmetric.

CAa(1,1) = paarbec (k)



Ca(1,2) = -1/2paarb?+pala-1/2) arb*c (k)

Ca(1,3) = /22 3Tagrb2+p a[(ce) d - 1/2Tuularbd*c (k)
L L

Ca (2,1) = pa(a+1/2)a rb?c (k)

Ca(2,2) = 1/2pafa-12)arb*+pa(l/4-2a)arb®c(k

Ca(2,3) = P 3[P-1/2(a-1/2) To +1/2 (c-e) @] @ r b?
n
+Paf(a+1/2) TEL - {a+ 1/2) (c-e) B ar b¥c (k)
L
Ca (3,1) = P a[(c-e) P2 - 1/2Taz] @ rb?c (k)
Tl’

Ca (3,2) = 1/2P a[(c-e) Psz - (P -Ti -1/2Te)]arb?
- w

+P F[12 (a-1/2) Tiz + (1/2 - a) (c-e) Pa] @ r b3 c (k)
w

Ca (3,3) = 1/2 19? I [1/2 Ts Tis + (c-e) (26 + Pro) - (c-e)2 Pas]qr b®
+ 1/2;2 2 [-1/2 Ti1 Taz + (c-e) (P2 Ps1 + 1 Ps)
-2 (c-e)2 1 Ps1]q r b3 c (k)
Ky (1,1) = 0
Ka (1,2) = -pafar)?c (k)
Ka (1.3)7) = -% a Tie (@ r)? c (k)
Ka(z,1) = 0

Ka (2,2) = p a (a+ 1/2) (@ r)*p? c (k)

Ky (2,3) = =1/2P 3 [Te + Tio] (@ F)2% + 2 3 (a+1/2) Tuo (a r)®? ¢ (k)
n 'n

Ky (3,1) = 0
KA (332) +E E ((C-e) ¢31 - ]/2 le) (Q r)ZbZ c (k)
Ll

Kp (3,3) 1/2 a [(c-e) g5 = (Ts - T Tio)] (n r)?%b2

L3
T2

+1/2P a2 (c-e) pr P31 - Tro Tiz] (@ r)2b2 c (k)
™
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-1/3 sin (cos~!C) {2+C2) + C COS-tC

+ 1/4 C SIN (COS"*C) COS"'C (7+2C2)

+ 2C SIN (COS!C) cos*C
1/8 C SIN (COS"3C) (7+2C%)

(C0s1C) C (1-2C) + SIN (COS:C) (2-C)

- CO0Ss"iC (2C+1)

+ SIN { COS"!(-e) )

+ SIN { COS-1(-e) )} (2-e)
SIN ( COS-{-e) ) e

+ SIN ( COS-i(-e) ) 2/3 (2+e) (1-2e)

+ SIN ( COS-1(-e) ) (2+e)

SIN ( COS~! (-e) )

m -C0S-t{-e) + SIN ( COS"1(-e) } (1+2e)

1, =
Ts = -(1/8+C?) (C0S-!C)?

Te = .C0S"1C + C SIN (COSIC)
Ts = -1+ (% -(COSIC)?

Ty = -(1/8+(2) COS:C +

Tiv = SIN (COS"tC) + COSiC
T2 =

Tiz = SIN (COS'C) (2+C)

P = -( SIN (COS!C) )2 1/3

2, = 7 - C0S!(-e)

9, = ( 5-C05-!(-e) ) (i-2e)

9s = 7 - (05 i{-e) -

Ps = SIN ( COS-!(-e) ) (1+e)

' = 2 ( n-COS"(-e) )

Bs = ( 7-C0S-i(-e) )} (-1-2e)
P31 = g -C05-!(-e) -

Pro = P s

9., = P,z + [SIN {COS-1(-e)]*
95, =

Pss = 2 [SIN ( COS-3(-e) )12

B = P32 By + 2 [SIN (COS-1(-e) )]*
Bas = 0 (P2 - 0s)

The aerodynamic mass, damping, and stiffness matrices
are all multiplied by their mode shapes at each
radial station and integrated.

_ N T
Ma = ) [0n 0y 03] [MA] [0n 9, 03] ar
0

DIVERGENCE

Torsional divergence, if present, will show up in
the roots of the stability equations. The following
has been added so that the divergence speed, which
often lies beyond the RPM range of interest, may be
computed directly.

To determine the blade's divergence speed the square
of the rotational rotor velocity, 92, must be
factored out of the lower-right-hand 2 x 2 partition
of the integrated aerodynamic stiffness matrix,
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is factored out of the
(the Southwell
ignored here). The two
resulting partitions are then set equal to each

EA. The same partition
structural stiffness
coefficient terms

matrix ES
were

other and the characteristic equation solved as
shown below.
Kp' = {EA (2,2) Ka (2,3) L
LE; (3,2)  Ka (3.3) | Q
Ks' = K5 (2,2) R (2,3)
R (3,2 Rs (3,3
ks (3,2) s ( )__J

Ks'(1,1) - Ka'(1,1) @°

Ks'(1,2) - Kp'(1,2) @° o
jKs'(2.1) - Ka'(2,1) qQ°

Ks'(2,2) - Ka'(2,2) @°

Ks.(zal) = KS'(],Z) = 0,



Expanded, the resulting equation is:
i
Q (kA.(],l) KA'(Z,Z) - KA'(],Z) KA'(Z:]) )
2
0 (K'(2,2) Ky '(1,0) + K '(1,1) Ky '(2,2) ) + K'g(1,1) K'g(2,2) = 0.

which is easily solved for Q, the flutter speed in radians/second.

o /_ MIDCHORD

<_ UNSEALED GAP
Y
B

T

© e

1
)

-1

LEADING EDGE TRATLING EDGE

<~ ¢ >

DISTANCE - MIDCHORD TO ELASTIC AXIS
DISTANCE - MIDCHORD TO AILERON L/E
DISTANCE - MIDCHORD TO AILERON HINGE
BLADE FLAPWISE DEFLECTION

BLADE TORSION ANGLE

= AILERON TORSION ANGLE w.r.t.

o >0 o o
"

L* = RUNNING LIFT FORCE

- POSITIVE POINTING FROM SUCTION
SIDE TOWARD PRESSURE SIDE AS DEFINED
IN REFERENCE 1
RUNNING MOMENT ABOUT ELASTIC AXIS
RUNNING AILERON HINGE MOMENT

M'y
My

Figure 1. Sign Conventions and Terminology
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L DEGREES OF FREEDOM

1 BLADE FLAP BENDING MODE
h{x)

1 BLADE TORSION MODE
& (x)

. 1 AILERON TORSION MODE
B(x)

Figure 2. AILSTAB Code Description

MODE SHAPE (¢)
+ .6

1st FLAP COLLECTIVE (7 r/s)

v — %rj-)v

AERODYNAMICS

. LINEAR CL, C M» Cy
. c{k} =1, QUASI-STEADY

. ARBITRARY TAPER, AILERON
LENGTH, HINGE AXIS LOCATION

. V=ar

1st FLAP CYCLIC (13.8 r/s)

TEETER (1 per rev) |

NON-DIMENSTONAL
RADIUS

Figure 3. MOD-5A Blade Flapwise Modes
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Figure 13. MOD-5A Flutter Boundaries
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Shown as a Function of Aileron
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