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TECHNICAL MEMORANDUM

BEARING DEFECT SIGNATURE ANALYSIS USING ADVANCED NONLINEAR

SIGNAL ANALYSIS IN A CONTROLLED ENVIRONMENT

CDDF FINAL REPORT (NO. 93-10)

I. INTRODUCTION

Accurate machinery fault detection and diagnosis have always been significant technical

challenges in the aeronautics and transportation industries. Within the aerospace industry, the reli-

able health monitoring of propulsion systems is a necessity in preventing catastrophic system

failures and costly engine down time due to false alarms. Since machines "talk" through their

sounds and vibrations, an analyst, given the appropriate set of tools, can listen to their complaints

and diagnose their ailments. The signs and symptoms of these ailments appear as subtle complex

dynamic signatures hidden deep within random signals sensed through high-frequency instrumenta-

tion mounted externally to the ;machine. However, these symptoms are often confused with other

responses emitted by the monitored machine such as rotor dynamic, structural, and environmental

operational elements, along with electronic line noise contributed by the sensor signal conditioning

equipment. Ultimately, the success of a machinery fault detection and isolation program relies on its
ability to first extract these complex dynamic signals from random data, then to form an accurate

interpretation and diagnosis consistent with these "complaints" from the machine.

During the development of the space shuttle main engine (SSME), significant progress has

been made within both NASA and the aerospace communities toward improving the machinery fault

diagnostic function through research in instrumentation, modeling, and dynamic signal analysis. This

research has significantly enhanced the safety of space shuttle operations. Within the Structures and

Dynamics Laboratory of Marshall Space Flight Center, major progress has been made through the

development of a hierarchy of advanced nonlinear signal spectral analysis techniques for mechanical

signature analysis. The research has progressively led to the introduction of new signal processing
techniques which can identify intelligent machine operating state information hidden deep within the
extraneous corruptive noise of dynamic measurements, information often unidentifiable using con-

ventional signal analysis methods. By providing additional insight into the monitored system

response, these "tools" allow better identification of well-hidden defect symptoms such as beating

flaws within SSME high-speed turbopumps. Moreover, by using phase information inherent in these

signals, the nonlinear analysis methods separate false-alarm, i.e., benign, signatures from true

defect signals allowing hardware integrity to be maintained.

This document summarizes a Center Director's Discretionary Fund (CDDF) research effort

that investigated rolling element bearing fault dynamic signatures. The sponsored research used

both traditional and state-of-the art (acoustic emission (AE)) sensors and signal-processing

techniques in the characterization of high-frequency data from a laboratory rotor system seeded
with bearing faults. The research concentrated on applying nonlinear signal analysis techniques

which identify hidden relationships between multiple spectral components within and across high-

frequency monitoring channels in diagnosing implanted bearing faults. The coupling of these nonlinear

signal analysis "tools" with AE sensor technology was the innovative focus of this research.



II. TEST SETUP

This research effort utilized a highly instrumented rotor assembly as a test article (fig. 1).

Since the commercially available rotor rig was not fitted with off-the-shelf rolling element beatings,

it was modified with a dual beating block which allowed for quick beating change-out to expedite the
bearing defect data gathering and analysis process. Due to this bearing retrofit process, a rotor

dynamic analysis was performed on the assembly to determine if any rotor modes would interfere

with the beating defect analysis. The analysis concluded that no rotor modes would be excited in the

operating range of the assembly (0 to 10,000 r/min) during testing.

test bearing block

(instrumented with accels, velocity transducers, AE probe)

drive motor

key pbaser out
X and Y-axis proximity out

side load application

cinder block/carpet isolation mount _

Figure 1. Rotor assembly test article for CDDF-sponsored research.

In this study, both ball and roller type rolling element beatings were tested. An 8-ball, deep-

groove, ball beating manufactured by SKF, model number 6202 JEM, and an 11-roller cylindrical

roller bearing also manufactured by SKF, model number NU 202 ECP, were chosen as test articles

for the research. The appendix contains calculations for the characteristic bearing frequencies, as

ratios to rotor speed, for the two test bearings. These frequencies, which include cage (ball/roller
train), outer rolling element passing, inner rolling element passing, and rolling element spin, are

calculated using simple well-documented formulas which are a function of ball/roller diameter, pitch

diameter, rolling element contact angle, and number of rolling elements. 1

Conventional vibration sensors including accelerometers, velocity probes, and proximitors

were mounted at various locations on the rotor/beating block assembly. Along with these traditional

high-frequency sensors, one AE probe was affixed to the test bearing block during all testing. Use of

AE technology for beating defect analysis is comparatively recent. 2 Use of an AE type sensor in

bearing fault detection is very promising since it provides immunity from structural, rotor dynamic,

and environmental noise that floods conventional sensors. Use of the AE sensor allows subsequent

analysis to focus on the bearing condition. AE sensors are designed to detect energy traveling as
Lamb waves from defect source to sensor, with the wave front passing through the structure at its

shear wave velocity. It is the elastic propagation of these waves in the material media that consti-

tutes the AE energy/signals. These bursts of emissions are typically sensed in the 100- to

1,000-kHz region. 3 These AE sensor response regions typically extend much higher in frequency

than conventional mechanical signature analysis bandwidths using traditional transducers, i.e.,

accelerometers, which seldom exceed 20 kHz. However, along with the expected benefits associated

with the AE sensor's higher-frequency response come challenging analog-to-digital (A/D)

2



conversionrequirements.In this CDDF analysis,a PhysicalAcousticsCorp. model $9208AE
sensorwasusedto collect emissionsfrom the bearingtestarticles through the bearingsupport
block. Sincethe AE probehad broadbandsensitivity extendingout past 1.25MHz, the channelwas
recordedin a direct recordingmodein parallelwith theremainingconventionalsensorchannelsin a
frequencymodulating(FM) recordingmode.Directmoderecordingof theAE channelallowedfor an
analogrecordingbandwidthof 400 Hz to 2 MHz, while theFM channelscapturedsignal input in the
rangefrom 0 Hz to 40kHz. This FM modewassufficient for theconventionallower-frequency
responseaccelerometers,velocity probes,andproximitors. Due to its high-frequencyresponse,the
AE channelwasdigitized separatelyduring MD processing. In fact, in order for the existing
laboratory A/D system to successfully sample and log the acquired data, the replay tape speed of the

analog recorder had to be reduced from 120 to 3.75 in/s, a factor of 32. In order to synchronize the AE

data with the conventional low-frequency data recorded on the FM channels, an IRIG time code

signal was concurrently digitized with all sensor data.

As previously mentioned, both roller and ball type rolling element beatings were used as test

articles during the investigation. In an effort to simulate early spalling damage, single-point seeded
faults were implanted in the bearings in the form of fine linear axial (relative rotor shaft) scratches in

the rolling elements themselves and their raceways. The bearings were then mounted on sleeves,

affixed to the rotor shaft, and placed into the bearing block with contact between the bearing outer

races and the block preventing rotation of their outer raceways. Several bearing defect scenarios

were tested during this CDDF study, however, only three are presented in this report:

• Single-roller type bearing with no imbedded faults

• Single-roller type bearing with small axially extending scratch imbedded in inner raceway

• Single-roller type bearing with small axially extending scratch imbedded in one rolling
element.

During each of the bearing tests, rotor speed was linearly increased from idle to 10,050 r/min

(168 Hz) where it dwelled for several seconds and then returned back to idle. Typically, test

durations were approximately 140 s. During testing, selected data channels were monitored on
dynamic signal analyzers and oscilloscope for test control.

III. BEARING FAULT PATTERNS AND ANALYSIS METHODS

A. Bearing Fault Patterns

Faults in bearings tend to generate characteristic frequencies which can be invaluable in

diagnosing their health. Even though the computation of fundamental characteristic bearing frequen-

cies is straightforward, other factors such as modulation effects can complicate the bearing defect
vibration signature. McFadden and Smith 4 5 give an excellent discussion of the vibration signatures

produced by both single- and multiple-point defects within rolling element beatings. In their analytic

model, the sensed bearing defect vibration waveform is primarily determined by bearing geometry

(which allows for calculation of impact rates), bearing load distribution, and the transmission charac-

teristics of the bearing defect energy from the point of impact to the sensing location. Figure 2 shows
the general form of the analytically predicted envelope spectrum for the vibration emitted by a bear-

ing with a single-point defect.
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Figure 2. Analytically predicted bearing defect vibration spectrum. 4 5

The term envelope indicates that the spectrum was recovered using a high-frequency
resonance, also referred to as envelope detection, technique. If the periodic impacts generated

by a defective beating surface making contact with another bearing surface excite, i.e., "ring,"

high-frequency beating/machine structural or transducer resonances, the character of the beating

vibration can be recovered from the excited resonant band of energy. Of interest in envelope analysis

is not what system or transducer resonance is excited (the carrier), but the impulse repetition

frequency (the envelope) which allows characterization of the bearing fault. Given optimal

transmissibility between source and sensor in the frequency band containing the characteristic
beating frequencies themselves, the spectral pattern shpwn in figure 2 could be recovered using

conventional signal analysis techniques without envelope-type analysis. However, in real-life
machinery monitoring situations, these beating defect components are frequently highly damped

since they are sensed externally on the machine housing. Moreover, if they are apparent in the low-

frequency region of the vibration signal, they are commonly confused with other rotor dynamic,
hydrodynamic, and environmental noise sources that tend to confound the signal spectrum. In this

CDDF study, nonlinear spectral analysis was applied to such confusing multiple source signals to

determine if bearing defect signatures could be separated from unrelated "noise" without relying on

envelope detection processing. Later, these results were compared to envelope spectral analysis

results using both accelerometer and AE-sensed signals. Finally, nonlinear spectral analysis was

applied to recovered envelope signals to further enhance bearing defect signature retrieval results

and to verify the analytically predicted nonlinear complex modulation sideband structures shown in
figure 2.

As previously mentioned, bearing defect vibration character is dictated by beating geometry,

bearing load, and defect energy transmission characteristics. The analytic bearing fault pattern of

figure 2 consists of clusters or groups of discrete frequencies with members in each successive group

separated by a frequency represented by 'f,," the modulating frequency, and the center-most peak

of each group spaced in frequency by '_fd," the carrier frequency. A beating with a single inner race

defect would exhibit a modulating frequency equal to shaft rotational speed and a carder frequency

corresponding to its inner race element passing frequency. On the other hand, a beating with a single
rolling element defect would exhibit a modulating frequency equivalent to its cage rotational

frequency and a carder frequency of rolling element spin frequency. The lobing character seen in the

progressive groups of spectral components in figure 2 is due to the bearing load cycle which

4



influencesthe bearingsurfaceimpactintensity.The largestcomponentin eachof the successive
clustersis the elementpassingor spin frequency.The generaldecayin amplitudeof the successive
groupsof frequenciesis attributedto thedampingof the defectimpulsesduring wavepropagation
from sourceto sensor.

B. Analysis Methods

1. Conventional Power Spectral Density Analy_i_. Conventional bearing diagnostic evalua-

tion is done by assessing the power spectral density (PSD) content of monitored high-frequency
bearing/machine instrumentation channels. Baseline response, i.e., PSD amplitude levels, at charac-

teristic bearing frequencies for given machine instrumentation locations are developed and archived

for trend analysis with newly acquired data. Such analysis is beneficial to a machinery health moni-
toring program but can be somewhat limited as a bearing health diagnostic tool in several instances.

For instance, in several machinery systems, externally sensed bearing vibrations are highly damped,

and, by the time bearing characteristic frequencies are sensed on the machine housing, significant

bearing degradation has already occurred. In other instances, complex spectral content due to

machinery rotor dynamic, hydrodynamic, or environmental responses resembles the bearing frequen-
cies (fault patterns) being monitored and confuses the bearing health diagnosis. The biggest short-

coming with linear spectral analysis anchored bearing health analysis is its oversight of pertinent

intra- and cross-channel phase relationships existing between the many spectral components asso-

ciated with complex bearing vibration waveforms. This limitation of the conventional PSD analysis is
what motivated the development of several advanced nonlinear signal analysis tools within the

Structures and Dynamics Laboratory over the past decade for propulsion system turbomachinery
analysis.

2. Nonlinear/Bispectral Analy_i_. Nonlinear spectral analysis techniques improve bearing

vibration signature analysis by exploiting hidden nonlinear phase relationships within the spectra of
acquired high-frequency diagnostic data. 6-8 As seen in the complex defective bearing spectrum

shown in figure 2, fundamental bearing signatures consist of key harmonic and modulation sideband

structures. However, these patterns are not always easily identifiable. Where PSD analysis relies
only on identification of the frequency spacings in such patterns, nonlinear analysis identifies the

inherent phase coupling existing between individual members of such complex frequency structures.

As the PSD function is a second moment statistic of a random signal, the auto-bispectrum

(ABS) represents the third joint moment among three different waves, spectral components, at fre-

quencies 091, ca2, and the sum frequency 091+0)2, and can be estimated by:

Bxxx (09,,092) = E[X(09,)X(092)X'(o), + co2 )] , (1)

where X(09) is the Fourier transform of the monitored instrumentation channel, x(t). The auto-
bicoherence (ABC), a normalized bispectrum, is defined as:

(col,co2)= I' x (col,o )12
E[I X (09_) X(092)12 ] E[IX (to_ + c02)12 ]

(2)

The ABS Bxxx (091,092) is a function of two independent frequencies, 091 and 092 (along with an implicit

third wave of frequency oh +o92), rather than a single-frequency argument as with a PSD. Therefore, a



three-dimensionalfigure would be required to display a bispectrum since it is a function of two fre-

quency arguments. However, to maximize the visualization effect, one of the bi-frequency argu-

ments, c01, can be fixed at some particular frequency of interest, such as a bearing characteristic

frequency, while the other frequency argument, c92, sweeps through the entire analysis frequency

range of the input signal.

Analytically, auto/cross bicoherence can be shown bounded by zero and unity. Since basic
bearing defect mechanisms produce amplitude modulated vibrations involving three basic spectral

components at frequencies oh, r.02, and their sum frequency, oh +a,_2, bicoherence is a perfect

candidate for beating diagnostic applications. Even though a simple PSD might be able to identify the

power distribution at these three particular bearing-related frequencies, the existence of modulation
can only be proven by identifying/extracting the coherent phase relationship among the three fre-

quency components. The phase information of the bispectrum in equation (1) provides a unique tool

for identifying such phase coupling. If the wave at frequency oh +a_2, is perfectly correlated to the

waves at frequencies COl and _ due to some nonlinear process, then a constant relative phase

relationship would exist and can be identified in the bispectral estimation, and, as a result, the asso-

ciated bicoherence will be equal to one. On the other hand, if the waves at frequency c01, r-02, and

COl+r.02, are totally independent of each other, then the phase of the bispectrum will remain random,

and the resulting bicoherence t stimation will be reduced to zero.

3. Envelooe Detection Analysis. The envelope detection method for bearing fault detection is

based on the observation that a bearing characteristic impact frequency (e.g., the rate of inner race

element passing) may modulate a bearing/machine structural or sensor resonant frequency. This

impacting will ring the particular resonant response at the characteristic repetition rate, or the modu-

lating frequency. Frequently, the harmonics of such beating impact excitations extend well into the

high-frequency region (10 to 100 kHz) to excite the structural or sensor resonant frequencies. The

resonant response of the monitored channel is then isolated and referred to as the carder frequency.
However, what is of interest in the bearing analysis is not the carder frequency, but, rather, the

modulating frequency of the carder, or impact repetition rate. Demodulation of the resonant signals

(isolated through appropriate bandpass filtering) through use of a recovery algorithm such as the
Hilbert transform 9 method retrieves the instantaneous envelope signals. Subsequent spectral

analysis of the recovered envelope, i.e., postenvelope analysis, displays the complex frequency pat-
tern related to the source bearing defect. Unlike the conventional vibration spectrum, the envelope

spectrum is void of rotor dynamic, hydrodynamic, and other sources of "noise" which tend to mask

the defect. This filtering of extraneous "noise" from pertinent distress signal content is accom-

plished through focusing analysis on variations in envelope intensity and not through the instan-

taneous signal intensity.

In this CDDF research, envelope analysis was applied to high-frequency data acquired from

both accelerometers and a single AE sensor. Envelope analysis using AE sensed input, although

more challenging in terms of digital acquisition and signal processing capability, offers several

potential advantages over the more traditional vibration sensing accelerometers. Since AE sensors

have extremely high-frequency response ranges (typically 200 kHz to 1.0 MHz), all conventional

low-frequency mechanical, hydrodynamic, and environmental responses along with electronic line

noise contributions are eliminated. Subsequent envelope analysis is thus allowed to focus on bearing

impact related energy which is captured at the AE sensor. Moreover, AE sensors are designed to

sense surface (Lamb) waves, which allows for better defect characterization at greater distances

from the impact source.
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4. Postenvelope Bispectral Analysis. Through this CDDF-sponsored research, a unique

technological advancement opportunity relating to bearing defect analysis was made available, i.e.,
the coupling of nonlinear bispectral signal analysis with AE-acquired bearing signatures recovered

from envelope analysis. The central innovativeness of this coupling of signal processing technologies

would be in its ability to effectively extract bearing fault patterns from the ultra-high-frequency

AE's. Success in this research would justify future efforts in applying the technology to more com-

plex machinery systems such as rocket engine high speed turbopumps. Hopefully, the postenvelope

application of nonlinear signal analysis to the AE-recovered bearing vibrations would increase

bearing fault detectability and allow identification of faults during their incipient stages.

In this CDDF research, bispectral analysis was successfully applied to AE-sensed bearing

signatures in a postenvelope mode, i.e., the nonlinear analysis was applied to recovered envelope

signals. Results were compared to those from conventional PSD analysis of low-frequency channels
(<5 kHz), bispectral analysis of low-frequency channels, and finally with bispectral analysis of post-

envelope accelerometer acquired bearing signatures.

IV. ANALYSIS RESULTS

In this section, the analysis results from three of the bearing defect tests performed during
this CDDF-sponsored research will be summarized. Several spectral and temporal data plots are

referenced extensively in describing research findings. Results from bearing defect signature recov-
ery efforts for the following three bearing conditions will be discussed:

• Single-roller type bearing with no imbedded faults

• Single-roller type bearing with single axially extending scratch imbedded in inner raceway

• Single-roller type bearing with single axially extending scratch imbedded in one rolling
element.

A. Conventional PSD Analysis Results

In this research, the analysis bandwidth used in the conventional PSD analysis was 0 to

5 kHz since the frequency range effectively encompassed all expected characteristic bearing fre-
quencies and modulation sideband families. Figure 3 is a compilation of 0- to 5-kHz PSD's com-

puted from the instantaneous signals acquired from two bearing block accelerometers for the three

bearing conditions of no imbedded flaw (figs. 3(a) and 3(d)), imbedded inner race defect (figs. 3(b)

and 3(e)), and imbedded rolling element defect (figs. 3(c) and 3(f)). As can be seen in the PSD's, all

spectra, including those from the clean bearing test, contain a multitude of frequency components

which makes identification of bearing defect signatures very challenging. Using best estimates of the

characteristic roller bearing frequencies (appendix), an attempt was made to identify analytically
predicted bearing defect vibration patterns as developed in figure 2. For the roller beating inner race

defect case (figs. 3(b). and 3(e)), definite families of sidebands (sum and difference frequencies)

spaced by synchronous (rotor) speed, N, centered around harmonics of the predicted inner race

defect passing frequency (IRP) can be identified. In an effort to help display this structure in figure

3(b), a template has been superimposed on top of the PSD. Each IRP multiple is identified as an
integer with two synchronous-spaced intervals extending to either side. As can be seen in

figures 3(b) and 3(e), the first family of synchronous sidebands centered around the fundamental

7



inner racedefectpassingfrequency,IRP, is very muchindistinguishablein the 0- to 5-kHz PSD's of
the two accelerometers.Also, theanalyticallypredictedlobing characterof the families of syn-
chronousdependentsidebandsrelatedto thebeatingloadcycle is not obvious.For theroller bearing
rolling elementdefectcase(figs. 3(c) and3(f)), neitherthe predictedfundamentalrolling element
spin frequency(RS), nor subsequentharmonicsarevisible in theconventionalvibration spectra.In
fact, whencomparingroller defectcasePSD'sof figures3(c) and3(f) to thecleanbearingPSD's of
figures 3(a) and3(d), the defectivebeatingspectracontainfar fewerdiscretecomponents,i.e., far
fewer candidatesfor bearingfrequencies.However,subsequentpostenvetopeanalysisprovides
more insight into the rolling elementdefecttest case.

Figure 4 showssampleinstantaneous acceleration waveforms over roughly 20 cycles of shaft

rotation (120-ms duration) which coincide with the PSD's of figure 3. The low-frequency (0- to

5-kHz) waveforms are dominated by rotor dynamic synchronous/synchronous harmonic reposes. No

evidence of impact type events related to the imbedded beating flaws can be seen in these low-

frequency characterizations.

B. Nonlinear/Bispectral Analysis Results, 0- to 5-kHz Data

In an attempt to better extract and confirm complex beating defect patterns in the conven-

tional low-frequency bearing spectra, nonlinear spectral analysis was applied. Specifically, bicoher-

ence spectra were generated for the defective beating test cases in an attempt to identify key har-
monic and modulation sideband signal structures predicted analytically (fig. 2). Figure 5(b) shows

the bicoherence estimation for the inner race defect test case with a bispectral reference frequency

corresponding to the predicted roller inner race passing rate. In actuality, a tricoherence 6 7 estimation

with the first reference frequency set to zero, equivalent to a bicoherence estimation, was made. In

this case, bispectral analysis successfully identifies the complex modulation sideband families seen

in the corresponding PSD shown in figure 5(a). The bispectral analysis accomplishes this characteri-

zation of the vibration data by identifying key nonlinear phase couplings between individual members

of the families of bearing frequencies. Similar analysis was also applied to high-frequency data from

the rolling element defect test. Figure 6(b) shows the bicoherence estimation for the rolling element
defect test case with the reference frequency set at the predicted roller spin frequency for the test

bearing. In the figure, no significant bicoherence peaks identifying nonlinear coupling between pre-

dicted bearing frequencies are apparent. In other words, unlike subsequent postenvelope analysis,

bispectral analysis of conventional vibration data was unsuccessful in diagnosing the bearing defect.

Apparently the roller defect vibration signature was much more subtle than originally anticipated.

C. Envelope Detection Analysis Results (Accelerometer Data)

Following the application of conventional PSD and nonlinear bispectral analysis to each

bearing test data set, envelope analysis of high-frequency accelerometer (10- to 80-kHz) and AE
(50- to 400-kHz) data was performed. For data from both types of transducers, the Hilbert trans-

form method was used in recovering the envelope of the acquired original wideband instantaneous

waveforms. Once recovered, the envelope signals, which are themselves instantaneous waveforms

of the envelopes of the original time signals, were subsampled to provide analysis bandwidths (of
the order) consistent with the conventional PSD and bispectral analyses previously discussed.



low.merge S+ 0.00
0 Ie+O .... 1 ' ' ' ' l ' I _ T I .... [ .... mG

c= 76 t .4 so
_ = -2.50 i

OlE+O0- .i . i i _ J i F . r , 1 _ i i _ _
• " m i t ..... - r r yCOMP= 2, 083 _ , ,, , I .11 ' , _ 1 I , _ • I , , ' bbgok_. ,_

COMP " 3.591 [ ]h. 1_ I_ I÷ I¢ .... bb_o_o %

NBW= _.50 %

COMP= 0 626 _ [ I bbZTO_,.

BW= 250 _1 ' ' /

0 IE-OI _- bb_?O ird

o_E-o6r _ _ _ _ I _ _ _ _ I _ _ _ _ I _ _ _ _ ] _ j _ _
o_c+oo_ ' l: _ ' ) .... ] ' ' ' ' I ' I , , i , ' , , _

I_<W _ 4z

0 1000 4000 5000

3(a)

3(b)

3{c;

3{d)

3 (e)

3(f)

2000 3000

FREQUENCY (HZI

3(a).

3(b).

3(c).

3(d).

3(e).

3(f).

Bearing block 90 ° location accelerometer spectrum for good roller bearing.

Bearing block 90" location accelerometer spectrum for roller bearing with inner race defect.

Bearing block 90 ° location accelerometer spectrum for roller bearing with rolling element defect.

Bearing block 270* location accelerometer spectrum for good roller bearing.

Bearing block 270 ° location accelerometer spectrum for roller bearing with inner race defect.

Beating block 270" location accelerometer spectrum for roller bearing with rolling element
defect.

Figure 3. Conventional 5-kHz acceleration spectra across several test bearing configurations.



low.merge Time History
7.0000 _ T T-'- T I I" ,I T "f T T q T [ 1 r l [ ]" bbg0,r lea_G

(a) .

-6.0000

-ooooo_ P't_C_/'f_'_rlll]l_ I¢_VI1VVt'"VI'L_ am 4(b) .

looooo _ _A i/__ "r _ z f 7- r -i" 1 r _ [ _c

- 11 0000 _ 3 [ .t---.-_L--_ 2- L ' '

1.7000 _ T 1 . t T T T _ _ [ _ "r T T r _o

4 (d).

- IgO00

2_ooo_ _ r _ T _ I i r T-T--T l T T T r _ ._c

4(e) .

-2.5000

r r---,--= ; r , 1  iTb27Orr,,:
(f).

- 30000

0.00 0.02 0.04 0.06 0.08 O.10 O.] 2

TIME (SEC)

4(a).

4(b).

4(c).

Bearing block 90 ° location accelerometer waveform for good roller bearing.

Bearing block 90 ° location accelerometer waveform for roller bearing with inner race defect.

Bearing block 90 ° location accelerometer waveform for roller bearing with rolling element
defect.

4(d). Bearing block 270 ° location accelerometer waveform for good roller bearing.

4(e). Bearing block 270 ° location accelerometer waveform for roller bearing with inner race defect.

4(f). Bearing block 270 ° location accelerometer waveform for roller bearing with rolling element
defect.

Figure 4. Raw acceleration (0- to 5-kHz band limited) waveforms across several test bearing

configurations.

10



0 IE+O0

10[;50 0048

:37 5 0 032

167 5 0 023

502 5 0 015

21325 0015

4775 0014

22525 0012

2205 0 0 008

335 0 0 006

COMP- 2 0883

PSD

O IE 04

lO000

812 5 o 919

645 0 0 895

1007.5 0889

27075 o 887

29375 (]869

2905 0 0861

14B25 0852

(Amp-Phase)

NAVG I [qo

HW 2 500

0 0000
0

ae test.S.low
r r i I i

X=bb.9Opcb
T , F

i......

r 7 • r

1000

TRI CO[IRRF]NCF] Txxxx(fl-

1

dz 1 i

2000 3000

Freq r3 (hz)
n O0,f2: 114730,f3)

5(a). 0- to 5-kHz PSD for bearing block 90 ° location accelerometer.

5(b). 0- to 5-kHz bicoherence spectrum corresponding to PSD of figure 5(a), reference frequency
set at inner race roller passing impact rate.

Figure 5. Roller bearing inner race defect bicoherence estimation using bearing block 90 ° location

accelerometer data (0 to 5 kHz) for a reference frequency set at inner race roller

passing impact rate.

5(a) .

5(b).

11



O.IE+02

3375 1204

1145.0 0.066

167.5 0.037

2140.0 0.022

3"7.5 O.OLO

505.0 0.009

2260.0 0.008

672.5 0.008

640.0 0.003

COMP= 3.5910

PSD

O. IE-04

1.0000

302.5 0.605

322.5 0.600

5O2.5 0598

672.5 0.594

960.0 059'2

7925 0.581

920.0 0,5?8

1297.5 0.571

1127.5 0.568

(Amp-Phase)

NAVG = I O0

BW= 2500

0.0000

ae.testT.low
) 1 i I

tl Ia

I " 1 I I I

X=bb.9Opcb
I I I I

S+ 40.00

I ' ' ' ' I ) ' ' ' l ' ' ' ' 1

, , , , I _ , , , -I _ , _ ._ I _ t _ ,

I ' ' , t' I ' ' ' ' 1 .... I ....

11 _r ....

I000 2000 40000

TRI-COHERENCI,: Txxxx(fl=

J

3OOO

Freq f3 (hz)

O.O0,f2= 353.70,f3)

5OOO

6(a).

6 (b).

6(a). 0- to 5-kHz PSD for bearing block 90* location accelerometer.

6(b). 0- to 5-kHz bicoherence spectrum corresponding to PSD of figure 6(a), reference frequency

set at rolling element spin frequency.

Figure 6. Roller beating rolling element defect bicoherence estimation using bearing block 90*
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Figure 7 is a compilation of PSD's (0 to 130 kHz), computed from the original time signals,
used to characterize the wideband responses of the bearing block accelerometers recorded during the

testing. As can be seen in the PSD's, no prominent distinguishing features separate the responses
of the clean bearing test (figs. 7(a) and 7(d)), the inner race defect test (figs. 7(b) and 7(e)), and the

defective rolling element test (figs. 7(c) and 7(0). Bandpass filtering of the time signals with a

passband setting of 10 to 80 kHz was applied to all wideband bearing block accelerometer data prior
to envelope analysis. This passband is denoted by the arrows in figure 7(a). Figure 8 shows the set

of envelope spectra, i.e., PSD's, recovered from the envelope of the wideband bearing block
accelerometer signals. This sequence of PSD's (of the envelope signals) in figure 8 is consistent

with the conventional PSD sequence of figure 3 in terms of beating defect and accelerometer location.
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This allows direct comparison of the spectra of the envelope time signals to their corresponding

conventional low-frequency PSD's from the original time signals. As can be seen in the figures, the

complexity of the recovered envelope spectra is greatly reduced when compared to the ordinary

PSD's of figure 3. This is due in large part to the elimination of the lower-frequency synchronous and

broadband noise components. Figures 8(a) and 8(d), which are the recovered envelope spectra from

the clean (no implanted fault) bearing test, show spectral peaks at synchronous and a few higher
harmonics of synchronous. These spectra are quite different from their corresponding low-frequency

PSD estimations seen in figures 3(a) and 3(d) that contain a multitude of discrete components.

Figures 8(b) and 8(e) are the spectra recovered from the envelope signals which contain the inner

race defect. The similarity of these recovered spectra to the analytically predicted pattern shown in

figure 2 is quite impressive. Every peak within the recovered envelope spectra can be linked to the
inner race defect/synchronous sideband family structure. Also, note how subsequent harmonics of

the inner race roller-passing frequency (IRP), indicated as integers in the figure, exponentially decay

as predicted by the analytic model. 4 5 Moreover, both main lobes and side lobes in the synchronous

(N) sideband components of each IRP family are apparent and support the analytic predictions as
well. With the case of the rolling element defect, as seen in figures 8(c) and 8(f), the analysts were

pleased to detect clear evidence of roller spin frequency (RS) and its subsequent harmonics in the

envelope data. No substantial evidence of the spin frequency was found using both conventional PSD
and nonlinear bispectral analysis of 0- to 5-kHz accelerometer data. Envelope analysis successfully

uncovered the subtle roller spin vibration predicted for the seeded defect.

As to why the clean-bearing envelope spectra contain discrete signal content at synchronous

and synchronous harmonics (figs. 8(a) and 8(d)), further analysis of similar no-defect roller bearings

would have to be performed to verify the recovery as an expected benign indicator.

Figure 9 contains the wideband instantaneous acceleration waveforms which correspond to
the envelope recovered spectra of figure 8. The time frame of the sequence coincides with the low-

frequency acceleration data shown in figure 4. Unlike the earlier figure, figure 9 depicts the transient

ringings initiated by the defective bearing surface impacts occurring during the defect tests. The best

examples of this are seen with the wideband acceleration data from the inner race defect test (figs.
9(b) and 9(e)), where successive ringings of the structure are separated by one period of shaft

rotation, TN, or one bearing load cycle. The wideband responses of the roller defect case (figs. 9(c)

and 9(f)) are not quite as impressive, and, in fact, are quite similar to the clean (no fault) bearing

waveforms of figures 9(a) and 9(d). Regardless of this temporal comparison, spectral analysis of the

rolling element defect envelope waveform successfully recovers the bearing fault, distinguishing it

from a no-fault bearing.

D. Envelope Detection Analysis Results (Acoustic Emission Data)

In an effort to determine the effectiveness of AE monitoring, the same envelope analysis

applied to the wideband accelerometer data was also applied to AE data acquired during each bear-

ing test of the CDDF research. Although, digital signal processing requirements for the AE envelope

analysis effort were much more intensive given the envelope bandwidth, 50 to 400 kHz, for the AE's

was much higher and broader than that of the accelerometer input, 10 to 80 kHz.

Figure 10 shows the wideband AE spectra across the selected bearing test cases with the

envelope analysis bandwidth denoted in figure 10(a). A sensor output calibration error occurred in
the recording or reduction of the AE's from the inner race defect case, as can be seen by comparing
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Figure 9. Wideband acceleration waveforms across several test beating configurations.
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Figure 10. Wideband acoustic emission spectra across several test bearing configurations.

the magnitude of figure 10(b) to those of figure 10(a) (clean beating) and figure 10(c) (roller defect),

but the error did not affect the overall results of the envelope recovery process. All three wideband

AE spectra are similar in that a majority of the spectral energy is contained in the bandpass region

selected for envelope analysis. Figure 11 shows the recovered envelope spectra of the AE's

recorded during the selected beating tests. As with the accelerometer-based envelope spectra, the

bearing signatures recovered in the AE envelope spectra are also quite impressive. Figure 1 l(a) is

the envelope spectrum recovered from the AE's recorded during testing of a good roller bearing. The

only distinguishable peaks in this spectrum are synchronous (N) related. Figure 1 l(b) is the AE

envelope spectrum from the inner race defect case. As with the accelerometer-sensed envelope
spectra, it displays a bearing defect spectrum amazingly similar to analytically predicted model of

figure 2. As identified in the figure, families of discrete components with individual members of each
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11 (a). Acoustic emission envelope recovered spectrum for good roller bearing.

11 (b). Acoustic emission envelope recovered spectrum for roller beating with inner race defect.

11 (c). Acoustic emission envelope recovered spectrum for roller bearing with rolling element defect.

Figure 11. Envelope spectra derived from acoustic emissions across several

test bearing configurations.

family separated by synchronous frequency are centered about the inner race roller passing frequency

(IRP) or its subsequent harmonics. As with the inner race bearing defect signature recovered from

the envelope of the wideband accelerometer data, the AE envelope spectrum for the inner race defect

case only contains spectral peaks related to the analytically predicted inner race roller passing/
synchronous sideband family signal structure. The AE spectrum also exhibits the characteristic

exponential decay in the inner roller-passing frequency chain of harmonics. The spectrum also con-

tains the lobing patterns in the synchronous sideband components of each IRP family (fig. 11 (b)).

Figure 1 l(c) is the envelope spectrum recovered from AE's recorded during the rolling element
defect test.

As with the successful accelerometer-based envelope recovery of the roller spin defect fre-

quency, AE envelope processing also uncovers the roller spin frequency and subsequent harmonics.

In addition, the AE envelope spectrum for the rolling element defect test (fig. 11 (c)) contains
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evidenceof theroller train cagefrequency(C) alongwith its first harmonic(2C). The cagefrequency
is the analyticallypredictedmodulatingfrequencyfor therolling elementdefectcaseassynchronous
frequencyis for the inner racedefectcase.Lack of subsequentcage-separatedcomponentsaround
roller spin frequencyandspin harmonicsin figure 1l(c) is mostlikely a result from insufficient side
loadsbeingapplied to the rotor assemblyduring testing.

Figure 12containsthe widebandinstantaneousAE waveformsthat correspondto the
recoveredenvelopespectraof figure 1I. Thesefiguresrelay thehighly transient"ringings" initiated
by the defectivebearingsurfaceimpacts,assensedby the AE sensorduring the bearingdefect
tests.Again, the inner racedefectcase(fig. 12(b))showsthis transientnaturebest.In the figure, a
seriesof successiveringings, separatedby an interval of approximatelyoneperiod of shaft rotation,
Try,is very evident. Again, aswith the widebandaccelerometercharacterization,the roller defect
case,figure 12(c)is not as impressive,and,in fact, is quite similar to the cleanbearingAE waveform
of figure 12(a).Regardless,spectralanalysisof theroller defectAE envelope(fig. 1l(c)) recovers
the correctbearingdistressindicators (RSandRS harmonics)for theseededfault.

Figure 13effectively highlights severalkey observationsmadeduring the researcheffort. It
comparestheenveloperecoveredspectra,from both the accelerometersandAE sensor,to the con-
ventionallow-frequency(0- to 5-kHz) accelerationspectrumfor the inner racedefectcasealong
with the analytically predictedbearingdefectvibrationspectrum.Peakidentification hasbeenpur-
poselyomitted in the figure to allow for betteroverall patternperception.Figure 13(a)is thecon-
ventional0- to 5-kHz vibration spectrumassensedby a bearingblock accelerometerduring the
inner racedefect test.The ability of envelopedetectionto "'filter out" nonbearingdefect-related
information is very evidentby comparingthebasicPSDof figure 13(a)to theenvelopespectraof
figures 13(b) and 13(c).While figure 13(a)containsbearingdefect-relatedfrequencycomponents
alongwith rotor dynamic/structuralresponsesandelectronicline noise,all frequencieswithin the
inner roller defectenvelopespectraarebearing-defectdriven andcanbedescribedby the inner roller
pass/synchronoussidebandmodulationpatternpredictedin figure 13(d).The intent of this summary-
type figure is twofold. First, it delineatesthe successof envelopeanalysis(figs. 13(b) and 13(c)) by
comparingits resultsdirectly to the analyticallypredictedvibrationspectrumfor the single-point
bearingdefect (fig. 13(d)).This correlationwassuccessfullydemonstratedusing bearing distress
signal contentcontainedin radically different frequencybands,i.e., theaccelerometerenvelopesig-
nalswererecoveredfrom the 10- to 80-kHzband,while the AE envelopesignalwas recoveredfrom
the 50- to 400-kHz band.This dual successin bearingdefectsignaturerecoverythroughenvelope
analysisusing two totally different sensortechnologies,accelerometerand AE, is encouragingin
that it identifies multiple analysispathsto thesamediagnosticsolution.Again, what is of interest in
envelopedetection-basedbearinganalysisis not the carrier frequency,which dictatestype of sen-
sor,but, rather, the modulatingfrequencyof thecarrieror bearingimpactrepetition rate. Secondly,
andmore importantly, figure 13highlights theeffectivenessof envelopedetectionin isolating bearing
defect information from extraneoussystemnoisesuchasrotor dynamicandenvironmentalfeed-
throughs.

Figure 14comparesthecorrespondinginstantaneouswaveformsof the low-frequency (0- to
5-kHz) accelerometersignal (fig. 14(a)),the wideband(10- to 80-kHz) accelerometersignal
(fig. 14(b)), and the wideband(50- to 400-kHz) AE's (fig. 14(c)) for the inner racedefect test case.
While the transientimpacteventsresultingfrom testingwith the imbeddedbearingflaw areeffec-
tively maskedin the low-frequencycharacterizationof figure 13(a),both the widebandaccelerometer
and AE responseseffectively capturethem.Figure 14(d)is the instantaneousenvelopewaveform
correspondingto theAE's of figure 14(c).Direct PSDanalysisof this envelopewaveform resultedin
thespectrumof figure 13(c).
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Figure 12. Acoustic emission waveforms across several test beating configurations.
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13(a). Bearing block 90 ° location 0- to 5-kHz acceleration spectrum for roller bearing with inner race
defect.

13(b). Bearing block 90 ° location 0- to 5-kHz envelope recovered spectrum for roller bearing with
inner race defect.

13(c). Acoustic emission envelope recovered spectrum for roller bearing with inner race defect.

13(d). Analytically predicted bearing defect vibration spectrum (McFadden and Smith4).

Figure 13. Comparison of envelope recovered spectra to conventional vibration PSD and analytically

predicted vibration spectrum, roller bearing inner race defect case.
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14(a). Bearing block 90* accelerometer low-frequency (0- to 5-kHz) response for roller beating with
inner race defect.

14(b). Bearing block 90* accelerometer wideband (0- to 130-kHz) waveform for roller bearing with
inner race defect.

14(c). Acoustic emission response (50 to 400 kHz) for roller bearing with inner race defect.

14(d). Envelope of waveform shown in figure 14(c).

Figure 14. Comparison of wideband and envelope beating defect waveforms to conventional
(0- to 5-kHz) acceleration waveform for inner race defect case.

E. Postenvelope Bispectral Analysis Results

The final leg of this CDDF-sponsored research effort was devoted to the application of non-
linear spectral analysis to the envelope signals of acquired wideband instantaneous acceleration and

AE data, i.e., postenvelope bispectral analysis. Given the success of bispectral analysis with con-
ventional low-frequency bearing data (0 to 5 kHz), signal content from the bandwidth where actual

characteristic defect frequencies reside, application of nonlinear analysis performed on the envelope

of the defect signals, in order to investigate the additional benefits gained, seemed a logical exten-

sion of the two technologies.

Figure 15 shows both the bicoherence (fig. 15(b)) and regular PSD (fig. 15(a)) spectra for an

accelerometer-sensed wideband envelope time signal from the inner race defect test. Resulting high
bicoherence estimates (fig. 15(b)), using a reference frequency set at the inner race roller pass
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15(a). 0- to 5-kHz PSD of bearing block 90 ° accelerometer wideband response envelope.

15(b). 0- to 5-kHz bicoherence spectrum corresponding to PSD of figure 15(a), reference frequency

set at inner race roller passing impact rate.

Figure 15. Roller bearing inner race defect bicoherence estimation using envelope of bearing block
90 ° accelerometer data, reference frequency set at inner race roller passing impact rate.

impact rate, not only confirm the harmonic relationship between the inner race passing frequency and

its multiples, but also the synchronous sideband (sum and difference) components around the pass-

ing frequencies. Figure 16 shows the corresponding bicoherence (fig. 16(b)) and PSD (fig. 16(a))

envelope spectra recovered from the AE transducer recorded during the inner race defect test.

Excellent results were obtained with the AE data in that not only the harmonic and sideband signal

structure related to the defect was verified, but that superior signal-to-noise ratio in the bicoherence

estimate was evident relative to the accelerometer-based estimate shown in figure 15(b). Figures

17 and 18 show similar bicoherence estimations for both accelerometer and AE envelope data,

respectively, for the rolling element defect case. As with the inner race defect case, bicoherence

analysis using the bearing impact frequency as a reference confirms the harmonic relationship

between the fundamental impact frequency and subsequent harmonics.
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Figure 16. Roller bearing inner race defect bicoherence estimation using envelope of acoustic
emissions, reference frequency set at inner race roller passing impact rate.
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Figure 17. Roller bearing rolling element defect bicoherence estimation using envelope of bearing
block 90 ° accelerometer data, reference frequency set at rolling element spin frequency.
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Figure 18. Roller bearing rolling element defect bicoherence estimation using envelope of acoustic

emissions, reference frequency set at rolling element spin frequency.

Since the envelope spectra for these single-point bearing defect cases under controlled lab-

oratory conditions have easily recognizable harmonic/modulation sideband patterns in them, applying

nonlinear signal analysis to enveloped bearing data may not appear to have added diagnostic value.

However, these successful applications prove the concept of coupling the two technologies, thereby

laying a foundation for future applications. Future applications will undoubtedly require nonlinear
analysis to sort out unidentifiable complex harmonic/modulation sideband patterns resulting from

multiple-point defects both within and across heterogeneous beating sets under complicated opera-
tional conditions.

V. SSME TURBOPUMP BEARING EXAMPLE

During developmental testing of the full scale SSME alternate design high pressure oxygen

turbopump (ATD HPOTP), one preliminary design of the high speed turbopump consistently experi-

enced extensive pump-end ball bearing wear. The beating wear developed during hot-fire testing
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was typically accompaniedby a transientthermalshift in the bearingcoolantcircuit asregisteredby
the temperaturedifferential acrossthebearingcoolantflow. During thebearingfault investigation
efforts, dynamicanalysisfocusedon extractingevidenceof pump-endball bearingdistressin high-
frequencydatachannelsacquiredduringSSMEhot firings. Conventionallow-frequency,0 to 5 kHz,
pumphousingaccelerationspectradid provideevidenceof ball spin (BS) frequenciesor its side-
bandsseparatedby the ball train cagefrequency(C). During the investigation,bispectral analysisof
the low-frequencyaccelerometerdatasuccessfullyverified severalsubtle bearingfrequenciesin the
dynamicdata.

In anattemptto bettercharacterizethebeatingcondition during the degradationincidents,
envelopeanalysisof pump-endaccelerometerwidebandhigh-frequencydatawasperformed.
Figure 19showsseveraldynamic indicatorsjust prior to anATD HPOTPpump-endball bearing
incident that occurred during SSME hot fire 904-159 in December of 1992. Figures 19(a) and 19(b)

are 0- to 25-kHz and 0- to 5-kHz pump-end accelerometer PSD's, respectively, reflecting pump

housing dynamic response 90 s before a beating incident. Figure 19(c) is the envelope spectrum
generated from the envelope signal recovered from the wideband response, 15-kHz to 25-kHz

frequency band, of the pump-end accelerometer. Figure 19(d) is a representative portion of the

instantaneous time signal of this wideband wavefonn used to calculate the envelope spectrum of

figure 19(c). During this time frame, there is no evidence of bearing-related frequencies in either the
conventional or wideband envelope spectra. The discrete components in the conventional PSD's of

figures 19(a) and 19(b) are primarily synchronous (N) or synchronous harmonics due to rotor

dynamic and inducer/impeller blade wake responses.

Figure 20 shows the same series of dynamic indicators 90 s later into the hot fire when a

significant thermal shift occurred across the pump-end ball bearing coolant circuit. First, notice the

increased discrete activity in the 15-kHz to 25-kHz frequency band shown in figure 20(a) as

compared to the same PSD taken 100 s earlier, start plus 20 s, shown in figure 19(a). Also, notice

the corresponding new subtle peaks in the 0- to 5-kHz band shown in figure 20(b). However, the

best dynamic indication of the bearing distress occurring during the thermal shift time frame is shown

in the recovered envelope spectrum of figure 20(c). Where the corresponding envelope PSD

estimated 90 s prior to the event (fig. 19(c)) shows absolutely no evidence of discrete bearing wear

indicators, the envelope spectrum estimated during the event (fig. 20(c)) displays a distinct ball spin

(BS) and cage (C) sideband modulation pattern similar to those recovered in this CDDF-sponsored
research. Notice the similarity of the recovered SSME ATD HPOTP envelope spectrum to the

analytically predicted defect spectrum predicted by McFadden and Smith 4 5 shown in figure 2. The

recovered envelope spectrum exhibits not only the characteristic exponential decay in the ball

passing frequency (BS) chain of harmonics, but it also exhibits the lobing sideband character
attributed to bearing load cycle. Figure 20(d) shows the corresponding wideband acceleration time

signal, over approximately 20 shaft revolutions, from which the envelope spectrum was developed.

Notice the increase in the peak-to-peak intensity of the waveform as compared to the same

indicator taken prior to the bearing event (fig. 19(d)). Bispectral analysis was also applied to the

envelope data in an attempt to confirm the modulation sideband pattern related to the beating
damage. Although some degree of nonlinear coupling between spectral peaks in the envelope PSD

(fig. 21(a)) was detected, the amplitudes of the bicoherence estimates of the envelope signal using a
reference frequency of twice the ball spin (BS) rate (fig. 21(b)) were nowhere near the levels
detected in the CDDF test cases (figs. 15(b), 16(b), 17(b), 18(b)). These lower levels of

bicoherence for this ATD HPOTP example can most likely be attributed to bearing configuration.

Traditionally, nonlinear bicoherence analysis applied to ball-type rolling element bearing defect data

yields lesser coherences than those developed from roller-type bearings. However, as shown in

figure 21 (b), bispectral analysis of the envelope signal is still useful in that it recovers some degree
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of nonlinearcorrelationbetweenthebearingcomponentscontainedin the correspondingenvelope
spectrum.Finally, figure 22 showsa time-frequencymappingof the pump-endaccelerometer
envelopesignalover the completebearingdegradationincidenthot-fire test.Overlaid on this
mappingis the ATD HPOTPpump-endball beatingcoolantflow delta-temperature(discharge
minusinlet). As can be seenin the figure, thereis anunmistakablecorrelationbetweenthe delta-
temperatureexcursionand recoveryof the discretebearingdistresscomponentsin the envelopeof
thewidebandaccelerationtime signal.
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19(a). Pump-end accelerometer 0- to 25-kHz conventional PSD.

19(b). Pump-end accelerometer 0- to 5-kHz conventional PSD.

19(c). Pump-end accelerometer 0- to 5-kHz envelope PSD.

19(d). High-frequency (15- to 25-kHz) waveform from pump-end accelerometer during PSD
estimation times of figures 19(a), 19(b), and 19(c).

Figure 19. High-frequency characterization of SSME alternate HPOTP vibration immediately prior
to pump-end ball bearing degradation incident.
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20(a). Pump-end accelerometer 0- to 25-kHz conventional PSD.

20(b). Pump-end accelerometer 0- to 5-kHz conventional PSD.
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20(d). High-frequency (15- to 25-kHz) waveform from pump-end accelerometer during PSD

estimation times of figures 20(a), 20(b), and 20(c).

Figure 20. High-frequency characterization of SSME alternate HPOTP vibration during pump-end
ball bearing degradation incident.
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Figure 21. ATD HPOTP bicoherence estimation using envelope of wideband pump-end

accelerometer data, reference frequency set at pump-end ball bearing ball spin frequency.
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Figure 22. Joint time/frequency mapping of SSME alternate HPOTP pump-end accelerometer

recovered envelope signal during pump-end ball bearing degradation incident hot-fire
test with ball bearing coolant circuit delta-temperature overlay.

VI. CONCLUSIONS/RECOMMENDATIONS

In summary, this CDDF-sponsored research successfully applied nonlinear signal analysis in

the identification of the complex signal structures associated with several single-point bearing defect

vibrations. The application was successful using both conventional and AE-type sensor technology.
Moreover, bearing defect signatures were identified using both low-frequency, within the band

containing the characteristic bearing frequencies themselves, and wideband dynamic data where

impacts from seeded bearing defects "rang" structural and sensor resonances. Recovered envelope

bearing spectra are strikingly similar to those analytically predicted in literature in that they display

symmetric lobing character in sideband structures related to the bearing load cycle. They also

consistently show a characteristic exponential decay in the fundamental impact rate harmonic series

which is also predicted analytically. This CDDF-sponsored research demonstrated the successful
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applicationof nonlinearbispectralanalysison recoveredenvelopetime signalsin identifying complex
bearing signatures. Such coupling of technology will undoubtedly be required in future diagnostic

evaluations of complex rotating machinery in advanced propulsion systems. Finally, the benefit of

AE monitoring for bearing defect analysis was confirmed in the research. In this research, both

wideband accelerometer- and AE-sensed responses (signals from two very different frequency

regimes) successfully identified seeded test bearing defects. However, in real-world applications,

accelerometer-based envelope detection analysis may be unable to recover bearing distress

information in complex rotating machinery systems since it is vulnerable to structural noise. In light

of this, AE-based envelope detection offers an attractive alternate diagnostic solution.

This accomplished research can be extended in several directions. An in-depth study into

bearing defect detection sensitivity thresholds using the diagnostic tools identified in this research,

particularly the expanded use of AE technology, would be of great benefit. Research could extend
into the characterization of more complex forms of beating signatures including those from multiple-

point defects along with subtle wear patterns such as rolling element-to-element nonuniformities.

Also, further application of the diagnostic tools to commercial applications in the transportation,

power, and manufacturing industries would undoubtedly prove the techniques' utility.
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APPENDIX

ROLLER BEARING FREQUENCY CALCULATIONS





JEFFCOTT BEARING FREQUENCY CALCULATION-MathCAD file JEFFCOTT BEARING FREQ

Modification for Jeffcott rotor kit SKF roller bearing NU 202 ECP

Dimensions in milli-meters (mm)

d:=5.5 D dm := 23.8125 Nb := ii

rad _ 1

8i := _i-deg

:= pi - Ho

d

deg - rad

180

HO := _o-deg

BT :=

1 - --'cos(Hi)

dm

1 + cos(A)

OBP := Nb-BT

IBP := Nb- (i - BT)

BS := ...... cos (8i)

2 d

8i= 0

d-5.5

Contact angles is zero for

roller bearings

Ho = 0

Cage Outer Ball Pass Inner Ball Pass

BT = 0.385 OBP = 4.23 IBP = 6.77

Ball Spin

BS = 2.049

_7 _._/q,_._,o._86

I_REt_iI_IG _ _;ImlTl" _ 37



d 15-20 mm

0.5906-0.7874 in

t 'I

r3_ [I
D D1 ..... d F

j j
Type NU

r2

dl ....

j_
Type NJ

Principal
dimensions

I

--.- cl dl

Type NUP

r4

r

Type N

Basic load ratings
dynamic static

d O B C Co Pu

mm

in

Fatigue Speed ratings
load Lubncation
limit grease oil

Mau Designation

N
Ibf

N r/rain
Ibf

38

15
0.5906

17
0.6693

2O
0.7874

35 11 12 500 10 200 1 220 18 0OO 22 000 0.047
1.3780 0.4331 2 810 2 290 274 0.10

35 11 12 500 10 200 1 220 18 000 22 000 0,049
1,3780 0,4331 2 810 2 290 274 0,11

42 13 19 400 15 300 1 860 16 000 19 000 0,086
1.6535 0,5118 4 360 3 440 418 0,19

42 13 19 400 15 300 1 860 16 000 19 000 0.088
1.6535 0,5118 4 360 3 440 416 0.19

40 12 17 200 14 300 1 730 16 000 19 000 0.068
1.5748 0,4724 3 870 3 220 389 0,15

40 12 17 200 14 300 1 730 16 000 19 000 0.070
1.5748 0,4724 3 870 3 220 389 0,15

40 12 17 200 14 300 1 730 16 000 19 000 0.073
1.5748 0,4724 3 870 3 220 389 0.16

40 12 17 200 14 300 1 730 16 000 19 000 0.066
1.5748 0,4724 3 870 3 220 389 0.15

40 16 23 800 21 600 2 650 16 000 19 000 0,092
1.5748 0.6299 5 350 4 860 596 0.20,

40 16 23 800 21 600 2 650 18 000 lg 000 0.095
1.5748 0.6299 5 350 4 860 596 0.21

40 16 23 800 21 600 2 650 16 000 lg 000 0.097
1.5748 0.6299 5 350 4 860 596 0.21

47 14 24 600 20 400 2 550 14 000 17 000 0.12
1.8504 0.5512 5 530 4 590 573 0.26

47 14 24 600 20 400 2 550 14 000 17 000 0.12
1.8504 0,5512 5 530 4 590 573 0.26

47 14 24 600 20 400 2 550 14 000 17 000" 0.13
1.8504 0,5512 5 530 4 590 573 0.29

47 14 24 600 20 400 2 550 t4 000 17 000 0.12
1,8504 0.5512 5 530 4 590 573 0.26

47 14 25 100 22 000 2 750 13 000 16 000 0.11
1.8504 0.5512 5 640 4 950 618 0,24

47 14 25 100 22 000 2 750 13 000 16 000 0.11
1.8504 0,5512 5 640 4 950 618 0,24

47 14 25 100 22 000 2 750 13 000 16 000 0,12
1.8504 0,5512 5 640 4 950 618 0,26

47 14 25 100 22 000 2 750 13 000 16 000 0.11
1.8504 0.5512 5 640 4 950 618 0.24

47 18 29 700 27 500 3 450 13 000 16 000 0,14
1.8504 0,7087 6 680 6 180 776 0.31

47 18 29 700 27 500 3 450 13 000 18 000 0.14
1,8504 0.7087 6 680 6 180 776 0.31

52 15 30 800 26 000 3 250 12 000 15 000 0.15
2.0472 0,5906 6 920 5 850 73t 0.33

52 15 30 800 26 000 3 250 12 000 15 000 0.15
2,0472 0,5906 6 920 5 850 731 0.33

52 15 30 800 26 000 3 250 12 000 15 000 0.16
2,0472 0,5906 6 920 5 850 731 0,35

52 15 30 800 26 000 3 250 12 000 15 000 0.15
2,0472 0,5906 6 920 5 850 731 033

52 21 41 300 38 000 4 800 11 000 14 000 0,21
2.0472 0.8268 9 290 8 540 1 080 0.46

NU 202 EC

NJ 202 EC

NU 302 EC

NJ 302 EC

NU 203 EC

NJ 203 EC

NUP 203 EC

N 203 EC

NU 2203 EC

NJ 2203 EC

NUP 2203 EC

NU 303 EC

NJ 303 EC

NUP 303 EC

N 303 EC

NU 204 EC

NJ 204 EC

NUP 204 EC

N 204 EC

NU 2204 EC

NJ 2204 EC

NU 304 EC

NJ 304 EC

NUP 304 EC

N 304 EC

NU 2304 EC
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