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ABSTRACT

A probabillstlc static stress analysis methodology has been developed

to estimate the reliability of a composite structure. Closed form stress

analysis methods are theprlmary analytical tools used in this methodology.

These structural mechanics methods are used to identify independent variables

whose variations siEnlflcantly affect the performance of the structure. Once

these variables are identified, scatter in their values is evaluated and

statistically characterized. The scatter in applied loads and the structural

parameters are then fitted to appropriate probabillstlc distribution

functions. Numerical integration techniques are applied to compute the

structural reliability. The predicted reliability accounts for scatter due

to variability lnmaterial strength, applied load, fabrication and assembly

processes. The influence of structural geometry and mode of failure are also
considerations in the evaluation. Example problems are given to illustrate

various levels of analytical complexity.

INTRODUCTION

Application of composite materials to primary aircraft structures

requires proven certification procedures to demonstrate their reliability.

The development of certification procedures for primary composite structures

must recognize theinherent characteristics of composites. One of these

characteristics isthe scatter in static strength and fatigue life data.

Because of thehigher static strength and fatip life data scatter in compos-

ites (as.compared to metals), the structural reliability provided by the

conventional deterministic certification approach would be different for

composite and metallic structures. The variation of static strength reliabil-

ity with the material data scatter can he seen in Figure 1. In this flEure,

the material strength distribution is characterized by a two-parameter Weibull

distribution. The reliability at design limit load is computed based on a

static design with a factor of safety of 1.5 and a margin of safety of 0.0.
Rellabllltles based on both A-basle andB-basle designs are shown in the

figure. As shown in the figure, for a Weibull shape parameter a of 20 (typi-

cal for composites) the B-basle reliability is 0.99996832, and at a - 25

(typical for aluminum alloys) it is 0.99999583. Although these rellabilltles

appear to be equally high, significant difference exists in the risk of the

1 This work was performed under Northrop IRAD project R-1056, entitled

"Strength and Life _m_urance Technology for Aircraft Structures."
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design or the probability of failure. The risk for composite structures is
3.2 x 10 .5 as compared to 4.2 x 10 .6 for metals. This example indicates that

in order for composite structure to achieve the same level of reliability as

metallic structures a probabilistic based reliability analysis methodology is

needed. The importance of the probabilistic approach is more obvious when fa-

tigue life of composites is considered, because of the even higher data
scatter observed in composite fatigue tests.

In addition to the scatter in strength and life data, another factor

that affects the reliability of a structure is the uncertainty in the applied

load. These uncertainties are conventionally covered by a factor of safety.

A 1.5 factor of safety, traditionally used in aircra£t structural design,

generally provides a very high level of reliability. However, this
deterministic approach cannot be used to assess the risk involved in a struc-

tural design. Thus, trade studies cannot be conducted to optimize the risk of
failure. A more desirable approach is the probabilistic approach that utiliz-

es the statistical distribution of the applied loads and the material

strength. The probability of failure canbe computed by integrating the

overlapping region of these two distributions. Using this technique, the
risk of failure of a atruetuwe oanbe estimated and the risk can be minimized

within the limits of cost and performance needs. The conventional factor of

safety approach and the probabilistic approach are illustrated in Fi_-_re 2.

There have been several efforts to develop reliability analysis

methods for composite structures ( References 1 through 7). The work in

Reference 1 concentrated on the evaluation of certification approaches

relating to structural reliability. An integrated impact damage tolerance
reliability analysis method was proposed in Reference 2. Attempts were made

in Reference 3, 4 and 5 to statistically characterize the applied load

distribution. References 6 and 7 proposed a micromechanics approach to

characterize the scatter in the mechanical properties.

In this paper, a comprehensive probabilistic static stress analysis

methodology is proposed. The methodology integrates structural mechanics

methods, scatter in material properties, uncertainties in applied loads and

the variability in fabrlcationand assembly processes into a single analysis

package to estimate the reliability of a composite structure. The various

levels of analytical complexity are illustrated by example problems.

ANALYSIS APPROACH

Stzuctural_roltability analysis methods depend on the structural

configuration and the anticipated_ of failure and, thareforo, are problem

specific. In this section, a general approach is first outlined. Example

problems are then used to illustrate various levels of analytical complexi-
ties.
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General Approach i_ ....

The general approach for reliability analysis of composite structures
can be summarized below.

1. Select static analysis method

2. Identify scatter parameters

3. Characterize applied load distribution statistics

4. Compute structural reliability

Closed form stress analysis methods are the primary analytical tools

used in the present methodology. Static stress analysis provides results that

describe the general response of a structure in response to applied loads. In

addition, for reliability analysis, static analysis methods can also be used
to identify independent variables and failure modes. Only those variables

whose scatter significantly affects the performance of the structure are

selected for reliability analysis. These variables are then statistically

characterized based on experimental data. The probabilistic distributions of

the structural parameters are finally incorporated into the static stress

analysis method for reliability computations.

The macromechanics approach recommended in Reference 1 is used here

for scatter parameter characterization. This approach is selected over the

micromechanics approach proposed in References 6 and 7 because it significant-

ly reduces the number of primitive variables. Furthermore, extensive database

at the macromechanics level exists in the literature to verify the analysis.

A second data item that requires statistical characterization is the

applied loads. In the case of existing aircraft types, the basic source of

loads data is the flight loads recorder data generated from the aircraft type.

The loads data are generally available in form of exceedance function. The

exceedance functions must be transformed into a probabilistic function for

reliability analysis. Attempts were made in References 3, 4 and 5 to fit the

exceedance function into a probabilistic function.

The exceedance data are fitted into a two-parameter Weibull

distribution in References 3 and 5. The Weibull shape parameter for air

combat maneuvers missions for the F-16 wing structures is found to be between

8 and 10 in Reference 5. In Reference 3, the cumulative probability of

exceeding a given load in one lifetime was defined by a_etbull function with

a shape parameter of 6 and a 0.001 probability of exceeding design ultimate

load (DUL). This distribution of applied load is shown in Figure 3. Both the

cumulative probability of exceedance and the probability density are shown in

the figure. As shown in the figure, the probability that an applied load

exceeds the design limit load (DLL) in the lifetime of an aircraft is approxi-

mately 0.55. The figure also indicates that during the lifetime of the

aircraft, the most frequently occurred (modal) load is approximately 1.05DLL.

-Such a load distribution may be reasonable for a military aircraft but rather

severe for a civil airplane. A less severe distribution has a Welbull shape

/
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parameter of two and retains the assumption that there is a 0.001 chance of an

applied load exceeding DUL. This distribution gives approximately 0.05

probability that the flight load exceeds DLL and the modal load is approxi-

mately 0.4DLL. This approach is used here for applied load distribution
characterization.

Once the key structural variables and the applied load are

statistically characterized and the probabilistic dis_lbutions are incorpo-

rated into the selected stress analysis method, the structural reliability can

be evaluated nu_rically. The principle of reliability analysis was shown in

Figure 2. The risk or probability of £ailure is assessed by integrating the
area of the shaded region of the Joint probablll_ distribution shown in the

figure. However, in reality, more than two r_ variables are encountered

in the analysis, and these variables may or may _ be totally independent.

Special numerical techniques are required for these analyses. Several relia-

bilit 7 algorirAms are available (Ragarancas l, 3-5 and 8-tt). In References

3-5 the reIiabilit 7 or the probability of failure is obtained by direct

integration of the Joint probability function as shown in Figure 2. This

approach is used in the present paper.

Structures With Single Variable and Sinsle Failure Mode

A_ 8 fLrat example, c_t_lo_ a simple tensile composite elemant with

cross-sectlo_ai area A and axial _'s modulus E subjected to axial load P.

The element is designed based on B-basis allowable strain (eALL) with zero

margin of safety at design ultima_ load (DUL) and _ factor of safety is

1.5. That is eDU L - 'ALL and eDL L - _1.5. Ass_atng that the design
allowable is derived from a two-parameter Weibull distribution of strength

data, from the definition of the B-basis allowables the _lbull scale parame-

ter (with a 95t confidence) is _vem by

1.5
- (1)
[-In (0.9)]1/-

Notice that the strains are normalized with respect to the design limit load

(DLL). The value of a is determined from statistical analysis of the material

strength data. For the commonly used graphite/epoxy comq_osite a - 20 is a

reasonable estimate (Reference 1). The reliability of the structure subjected

to a discrete applied load P is then given by

(2)

where x - (P/AE)/ eDLL is the normalized strain. The reliability of the

structure subjected to a distributed load over the lifetime of the structure
is

R - I - I_ f(_) F(P) dP
(3)
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wher e i_-iJ

F(P) is the probability of occurrence of the applied load at level P.

It should be noted that the Integral on the rlght-hand side of

equation (3) is the risk or the probability of failure. The integral is

evaluated by numerical integration. The reliability of the structure thus

evaluated is shown in Figure 4. The load distribution used in this evaluation

is based on the assumptions used in Reference 3, i.e. the load distribution is

described by a two-parameter Welbull distribution and the probability for

applied load exceeding DUL is 0.001. The figure shows the reliability of the

tensile element with a 95% confidence. As shown in the figure the reliability

is generally higher than 0.gg. The figure also indicates that the rellabillty

increases with materlal strength shape parameter (Us). However, based on the

load distributions assumed, the reliability decreases as the load shape

parameter (UL) increases.

The influence of the factor of safety (FS) on the reliability of the

structure was examined for this simple structure. The results are shown in

Figure 5. These results were obtained for u s - 20 and = L - 6. The figure

shows that the reliability increases rapidly with FS for FS less than 1.4.

The risk or the probability of failure (Pf) is plotted in terms of FS in the

insert of Figure 5. The figure shows that the FS increases linearly with the

negative order of magnitude of the risk. This trend indicates that the weight

increases at an exponential rate with reducing risk. Also shown in Figure 5

is the reliability of the structure operated under the discrete applied DLL.

It can be seen that this reliability is significantly higher than that pre-

dicted by distributed load.

Structures With Multlple Variables and Single Failure Mode

The reliability evaluation of an open hole element is a second example

for illustration purposes. The reliability computation in this example is

more complicated because of the increased complexity of the stress analysis

procedure and, therefore, more scatter variables involved. The strength

prediction of an open hole under uniaxial tension loading has been investigat-

ed by many authors. For illustrative purposes, the average stress criteria

suggested in Reference 12 is selected here.

In Reference 12 the static strength of an orthotroplc plate with a

circular hole under unlaxlal tensile loadlng can be approximated by

ef - Co.2(1 - _)/[2 - _2 . _4 + (K -3)(( 6 - _8)] (4)

where

_f is the static failure strain of the plate with a hole

eo is the unnotched failure strain of the laminate

K is the stress concentration factor
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- R/(R+ao) with R is the radius of the hole and Sop is a
characteristic length

Equation (4) states that the plate failure occurs when average strain

(stress) within the region characterized by a o reaches the unnotched strength

of the laminate. Equation (4) suggests that the reliability of the hole

strength can be evaluated in two separate parts: the unnotched strength and

the hole quality. The unnotchad strength (Eo), as can be seen from equation

(4), is independent of the hole geoitry and quality. The reliability con-

tributed by this part can be treated in the same manner as in the previous

example. The second part or the hole quality is more complex because of the
number of variables involved. These variables are: hole size (R), elastic

properties (K is a function of the elastic moduli in an orthotropic plate) and

the characteristic length (So). For the purpose of this Illustration, the

hole size and the elastic properties are assumed to be within the design

tolerance limits. Thus, the influence of these variables on the reliability

is negligible. This is a reasonable assumption because small variations in
hole size and moduli have a negligible effect on the strength scatter. The

major contributing parameter for the strength scatter is the hole quality

characterized by a o.

By considering only the scatter of the unnotchad strength and the

characteristic length in the reliability evaluation, the probability that a
hole strength exceeds a certain strain ef is then given by

Us a Qa
p(_f) - Exp [-(o) ] . Exp [-C--a)

_s _a
l (5)

In equation (5), both the unnotched strength and the characteristic length

distributions are assumed to be Weibull. Equation (5) was used, together with

the loads distribution and numerical integration technique described previous-

ly, to evaluate the reliability of a structure with an open hole. The results

are shown in Figure 6. The figure shows the results for a plate with a 1/4
inch diameter hole with a stress concentration factor of 4.75. Three values

of average characteristic length (a o) are shown; they are 0.10, 0.12 and 0.15

inch. The value of a o used in the design analysis was 0.10 inch, which gave a
design notch strength of 0.54SIAL L at DUL. The lifetime reliability of an

unnotched structure based on the same load distribution is 0.99848. Figure 6

shows that the hole quality scatter may significantly affect the reliability

of the structure when the scatter in hole quality is large (small as).

Structures With Competing Failure Modes

A third example here illustrates the effects of competing failure

modes on the reliability of a structure. In general, the probability of

failure for a structure with N failure modes is given by

N

Pf " Pfl + Pf2 + ..... + PfN " Z Pfi K 1.0
I

(6)
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where Pfi is the probability of failure due to ith failure mode.

The reliability is then

R - 1 - pf _ 0.0 (7)

Consider a beam-column with compression and buckling as two competing

failure modes. The beam-column is designed to buckle at DUL and the prebuck-

ling strain at DUL equals the compression design allowable CALL, which is

derived from a Weibull distribution. Then the probability of failure at

applied strain _ due to compression is

Pfc - 1 Exp [-(_--) s] (S)

_s

The buckling strain is

_cr - k (2H)2 _2

L 12(1-VxyVy x)

(9)

where

L

t

V_y
/

J

k

is the length of the beam

is the thickness of the beam

and Uy x are the Poisson's ratios

is a coefficient depending upon the boundary condition

The scatter variables in equation (9) are k, L, t, Uxy and Vyx. In the

present example, only the thickness variation is considered. Then the proba-

bility of failure, at applied strain ¢, due to buckling is given by

Pfb- 1- Exp {- [ iJ12(l'vxyUyx)__tk (L-)]at}2H
(io)

where a t and #t are the Weibull shape and scale parameter for the thickness
distribution.

The results of a clamped beam-column are shown in Figure 7. The beam-

column is designed for EDU L - 0.009 ( -- _ALL) with a factor of safety of 1.5.

The coefficient k - 1.030629 for clamped ends. Figure 7 shows the results for

a fixed strength scatter (a s - 20) and variable load and thickness scatters.
The nominal thickness of the beam is 0.132 inch. The reliability of the beam

without taking buckling into consideration is also shown in the figure. The
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results indicate that the reliability may be slgnlflcantly influenced by the

buckling failure at hi_er crLand lower at. In the practical range (aL

between 2 to 6 and a t approxlmately40) the reliability for compression

failure only ranges from 0.99848 to 0.99951. These values reduced to 0.98942

to 0.99812 when buckling is considered as a competing failure mode.

SUMMARY

A probabilistic static stress analysis and structural reliability

prediction approach have been outlined. This approach uses conventional

structural mechanics methods and associates probabilistic distributions with

the most significant variables. In addition, the uncertainties in the applied

loads is also considered in the structural reliability evaluation. The level

of complexity in the reliability analysis depends on the complexity of the

structure and the number of competing failure modes. Therefore, _e actual

analysis method is structure specific. However, the overall approach outlined

in this paper is generic and can be applied to composite structures.
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