
N95- 28741

UNSTRUCTURED CARTESIAN/PRISMATIC GRID

GENERATION FOR COMPLEX GEOMETRIES
Steve L. Karman Jr.*

Lockheed Fort Worth Company
Fort Worth, Texas 76101

SUMMARY

The generation of a hybrid grid system for discretizing complex three dimensional (3D)

geometries is described. The primary grid system is an unstructured Cartesian grid automatically
generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions
about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements,
may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies.
This paper describes the grid generation processes used to generate each grid type. Several example

grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little
pre-processing required by the user.

INTRODUCTION

The CFD analysis of complex geometries is becoming more prevalent in the early phases of
advanced tactical aircraft development. Unstructu red grid methods are gaining popularity with the design

engineers because of the reduced amount of pre-processing effort required by the CFD
practitioner(i,2,3). Cartesian unstructured methods have recently been developed in which essentially all
the grid is automatically generated (4,5,7). The flowfield around three-dimensional configurations as

complex as a fully loaded fighter aircraft have been analyzed using these new Cartesian unstructured
methods (1°,11). These analyses generally assume inviscid flow and capture extremely detailed features
in the flowfield by using solution adaptive grid refinement. Viscous analyses, on the other hand, are
prohibitive due to the large number of Cartesian cells required to resolve viscous regions, such as

boundary layers.

Prismatic grid generation methods can generate meshes clustered near body surfaces 6.

Typically, these grids are generated using a method which marches the grid away from the surface in the
normal direction. The resulting prismatic grid interfaces with another type of grid used to discretize the
global computational domain or is converted to an unstructured grid format and combined with the
external unstructured grid 8.

This paper will describe the hybrid grid approach of combining the automatic grid generation
versatility of a Cartesian mesh with the efficient clustering capability of a prismatic grid. The combination
enables the flow solver to compute solutions about complex geometries without the limitation of
assuming inviscid flow. The methods used to generate each part of the hybrid mesh will be described in
this paper. The interfacing strategy, used by the flow solver to connect the inner and outer CFD
solutions, will also be discussed. Example grids will be shown which demonstrate the use of the
techniques on realistic fighter aircraft configurations. No flowfield solutions are presented in this paper,
although flowfield features are discernible in the final adapted grids.

*Engineering Group Specialist

Copyright © 1995 by Lockheed Fort Worth Company. All rights reserved.

Published by the National Aeronautics & Space Administration with permission.

i ll Hma. RLI= 251

https://ntrs.nasa.gov/search.jsp?R=19950022320 2020-06-16T07:38:43+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42780832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SYMBOLS

A, a,b,c

AI, Au

ax, ay, a.z

h

hj
Vol

x, y, z

Ax, Az, Az

ot

0

03

Subscripts

1

2

c

f

i

grid adaption parameters

adaption function lower and upper thresholds

cell face areas in x-, y-, and z-directions

unit normal at grid node

unit normal at facet

cell volume

Cartesian coordinates

grid spacings in x-, y-, and z-directions

included angle

angle between node normal and facet normal

normal smoothing parameter

normal influence coefficient

relaxation parameter

minimum x-, y-, or z-coordinate of Cartesian cell

maximum x-, y-, or z-coordinate of Cartesian cell

cell centroid index

facet index

iteration counter

neighboring node index

SURFACE REPRESENTATION

Surface geometry is input to the Cartesian grid method and the prismatic grid method as a
triangulated surface mesh. The surface mesh is typically provided by the engineering computer aided
design (CAD) package used to define the configuration. By interfacing with the CAD package used by
the designers directly, the time required to convert between the designers drawings and CFD surface
modeling is virtually eliminated.

The surface in the CAD file is defined as a list of X, Y and Z coordinates and a connectivity in the

form of three node numbers corresponding to the global indices of the forming points of each triangle.
Geometry facets are oriented such that the surface normals point into the computational domain.
Subsets of the facets are grouped together and are associated with a common boundary condition type,
such as symmetry, characteristic far-field, surface tangent flow, etc.

The surface triangulation is assumed to be an accurate representation of the surface shape, as
opposed to representing the surface using splines or surface polynomials. Therefore, smaller triangles
are required to resolve high curvature regions of the geometry. The surface triangles also control the
size of the local Cartesian cells in the initial grid generation process.

252



CARTESIAN GRID GENERATION

The Cartesian grid is generated using recursive cell subdivision. Cell subdivision is initially based
on the user supplied geometry. As the CFD solution evolves, cell subdivision is based on gradients of
selected adaption functions. The major elements of the Cartesian grid generation process are described
in this section.

Octree Data Structure

An octree data structure is used to store information for each Cartesian cell during the recursive

grid generation process. A subdivided cell produces eight new offspring cells, as shown in Figure 1. The
parent cell is retained in the grid after the subdivision. The information stored for each cell consists of the

global index of the parent cell, the global indices of the eight children that may exist and the grid level of
the cell. The position of each offspring cell, in relation to the parent, is predetermined in the subdivision

process. With this information, the neighboring cell indices can quickly be determined. In addition, many
of the search procedures are made efficient using the octree data structure. For instance, the cell cutting
process, described later, makes extensive use of the parent-child information to quickly traverse the data
tree and determine which cells each geometry facet cuts.

Initial Grid Refinement Based on Geometry

The initial Cartesian grid is generated based on the resolution of the surface triangulation. The
process begins with the generation of a cube-shaped root cell that encompasses the entire
computational domain. The root cell is at grid level 1 and is subdivided in the X, Y and Z directions,
resulting in eight offspring cells at grid level 2, as shown in Figure 1. The process continues with each
offspring cell being recursively subdivided according to a length scale criterion.

In the length scale criterion, if the Cartesian cell length scale is larger than the length scale of any
facet contained within the cell or touched by the cell, the Cartesian cell is subdivided. A Cartesian cell's

length scale is defined as the length of one side of the cell. A geometry facet's length scale can be
defined in a number of ways. The most common method is the average length of the three sides of the
facet. Other possible definitions include the minimum length of the sides of the facet, the average length
of the medians of the facet or the minimum length of the medians of the facet. The user can supply a

scale factor associated with each body of the geometry that is used to multiply the facet length scale.

The initial cell subdivision process continues down each branch of the octree data structure until
all cells without offspring satisfy the length scale criterion. Recursively, the new offspring cells are tested
using the same criterion. The resulting grid contains cells near the boundaries that are proportional in
size to the geometry facets near the cell, see Figure 2.

Grid Smoothing

During the subdivision process several grid quality constraints are enforced. The first constraint
limits the number of neighbors a cell can have to no more than four neighbors on any side. This
corresponds to limiting the difference in the grid levels between neighbors to one. This constraint is
enforced so the octree data structure can be used to rapidly determine the neighbor information of the

cells on all grid levels and to simplify the flux calculation performed by the flow solver at each face. Any
refinement resulting from this constraint quickly propagates through the grid. The resulting grid varies
smoothly from fine resolution cells near the bodies or high gradient regions of the flowfield to coarse
resolution cells in the far field.

The second constraint improves the quality of the grid, and ultimately the numerical solution on
the grid, by prohibiting rapid changes in grid levels in the mesh. Any cell with finer mesh on opposite
sides in any direction is refined, as shown in Figure 3. This constraint eliminates the tendency to

253



generate coarse-fine-coarse grid regions in the mesh. Numerical accuracy in the flow solver is directly
related to the local grid size and is adversely affected by this type of rapid change in mesh size.

Boundary Cell Cutting

Boundary conditions in the flow solver are imposed on the actual surface shape, as opposed to
the stair-stepped surface resulting from the collection of Cartesian cells touching the geometry. Cells at
the boundary must therefore be clipped to conform to the surface shape. This cutting process is a critical
part of the Cartesian grid generation process. It must be capable of handling totally arbitrary geometries.
The cutting process must also be fast, since it is performed after each grid refinement and derefinement

process.

The cutting process consists of generating a list of triangular boundary facets resulting from the
intersection of the geometry facets with the Cartesian cells. A brute-force approach to generating this
boundary facet list would be to test each Cartesian cell for possible intersections with each geometry
facet. This approach is extremely slow. A faster approach is to use the octree data structure to test each

geometry facet for possible intersections with Cartesian cells. Only cells down the branches of the octree
data structure in the vicinity of the geometry facet need be tested. The search procedure consists of

testing the limits of a bounding box surrounding a geometry facet for possible intersections with each
child of the root cell. If the bounding box intersects with or is contained by the child cell, the offspring of
the child cell are then tested for possible intersections with the bounding box. The process continues,

recursively, down the branch of the tree to the finest level. Cells at the finest level are then checked for
true intersections with the geometry facet.

Once it has been determined that a Cartesian cell without offspring intersects a geometry facet, a

list of intersection points is generated. Vertices of the geometry facet contained within the cell are also
stored. The intersection points are ordered such that traversing the list of points generates a right-hand
rule normal pointing into the computational domain. A centroid of the intersection points is determine by
simple averaging of the collected points. The centroid will lie on the geometry facet because the facet is

planar and only one facet at a time is processed in this manner. Smaller triangular boundary facets are
then generated from the list of ordered intersection points and the computed centroid, see Figure 4.
These boundary facets comprise a sub-region of the original geometry facet.

Each Cartesian cell may intersect an arbitrary number of geometry facets. Therefore. the

resulting list of boundary facets is generally much larger than the list of geometry facets. A typical ratio of
boundary facets to geometry facets for a complex configuration is on the order of 20 or greater.

The actual boundary conditions are applied on these boundary facets. Each boundary facet is

associated with only one geometry facet and only one Cartesian cell. Since each geometry facet is a

particular type of boundary condition, each Cartesian cell may also contain an arbitrary number of

boundary condition types.

Grid Validity

The Cartesian grid generation process may result in cells that are divided into multiple distinct
volumes, such as the cell near the sharp trailing edge region shown in Figure 5. A distinct volume exists
above the surface and another exists below the surface. Both of the volumes reside in one Cartesian

cell. Cells divided by the geometry in this way are invalid cells, since storage for only one set of
conservative variables exists for each cell. Recursive subdivision of invalid cells can correct the

situation; however, detecting invalid cells can be difficult and computationally expensive.

Several methods have been devised for detecting invalid cells. The most general method, and

the most expensive method, involves sorting the distinct segments of the boundary facets that exist on
the six faces of a boundary cell. If the segments occurring on the faces of the Cartesian cell can be

254



sorted into one curve, then the cell is a valid cell. If the sorting produces more the one curve, then the
cell is an invalid cell. This method involves generating a list of segments for each cell, deleting duplicate
segments that occur from common edges of boundary facets, and attempting to sort the remaining
segments into one distinct curve. Throughout the process, an accurate grid tolerance must be used
when comparing endpoints of the segments. A tolerance too small or too large could easily result in
multiple closed curves and an incorrect determination of an invalid cell. Another drawback is that the

method cannot distinguish between the valid case and the invalid case shown in Figure 6. This may
result in excessive grid refinement. However, it may be argued from a numerical accuracy standpoint,
that each of these cases should be refined. Each boundary cell can have an arbitrary number of
boundary facets. But at what point is the number of boundary facets excessive? It may be wise to refine
the ambiguous cases and improve the quality of the mesh in the process.

A much simpler method to detect invalid cells is to sum the X, Y and Z area components of the
boundary facets in each cell. If any of the area components sum to zero when the maximum magnitude
of the area components in the same direction is non-zero, then the cell may be an invalid cell. This is
less precise than the first method and also cannot distinguish between the valid and invalid cases shown
in Figure 6. This method will also not detect an invalid cell when the geometry cuts the cell at an angle to
the Cartesian grid.

A third cell validity checking approach is a modification of the previous method. Sum the negative
and positive contributions to the area components in each direction. If both negative and positive
summations of significant magnitude occur in any of the three directions, then the cell may be an invalid
cell. Significant magnitude may be defined as a percentage of the face area of an uncut cell. This
approach will not distinguish between the valid and invalid cases in Figure 6, but it will detect invalid cells
cause by the geometry cutting the cell at an angle to the Cartesian grid, as in Figure 7. This method will
also force grid refinement in regions where there is a change in the orientation of surface normal for
smooth geometries, such as the wing leading edge shown in Figure 7.

Solution Adaptive Refinement & Derefinement

Periodically, the grid resolution may be enhanced to capture pertinent flowfield features and to
improve the solution accuracy. Adaption of the grid is based on gradients of user selected functions.
There are currently ten adaption functions available to users. A few of the more commonly used
adaption functions are velocity magnitude, Mach number, pressure, and helicity. Directional adaption
parameters are computed for each cell for each selected function, f, as

a = ox_f(Ax) 1+g, b = _v_)f(Ay) I +g,c =Oz3f (Az) l +g

A = _a2/a_+bf+ c 2

The variable in the exponent of the length scale multiplier is used to decrease the effect of discontinuities
in the flowfield on the grid adaption 9. Generally, g is set to a value of 1.0. A value of 0.0 corresponds to
computing the gradients of the function in computational space. Thus, a shock would produce a constant
valued adaption function as the grid was refined and could inhibit refinement from taking place in
smoother regions of the flow where large cells exist. Values of g greater than 1.0 would lessen the effect
of discontinuities even further and have been used successfully in fully supersonic flowfields to force
more rapid grid refinement of the entire flowfield.

The magnitude, A, of the adaption parameters is statistically averaged. Then, during the
derefinement process, a lower threshold value of the adaption function is computed as

255



A t = m-da ,

where m is the mean, a is the standard deviation and d is a user defined constant, typically set to 1.0.
Any cell, without children, with all three directional adaption parameters less than A t is marked for
deletion. If all eight children of a parent cell are marked for deletion, then the children are deleted from
the cell list. The parent cell would reclaim the collective volume of the computational domain previously

occupied by the children.

During the refinement process, an upper threshold value of the adaption function is computed as

A u = m+eo.

The variable e is another user defined constant typically set to 1.0. Any cell, without children, with any
one of the directional adaption parameters greater than A, is marked for refinement.

Additional Considerations

The refinement process could, conceivably, continue to add cells to the grid indefinitely.
Therefore, some limits must be imposed. The first limit is on the minimum and maximum cell size

allowed in the grid. No cell can be refined with a length scale less than the minimum cell size specified
by the user and no cell can exist without children with a length scale greater than the maximum cell size
specified by the user. These cell size limits are usually unnecessary because of the next limiting process
imposed on the refinement process.

The user specifies a "target" number of cells desired in the final grid. This target must be slightly
less than the maximum dimension of the code in order to allow the code to enforce the smoothness

criteria mentioned earlier. The user can also specify a maximum number of new cells added per

adaption function during each grid refinement process. Limiting the number of cells added per
refinement allows the solution to evolve slowly between refinements. This prohibits the grid from

reaching the maximum number of cells prematurely, before the flowfield can adequately develop.
Additionally, the user may specify a refinement box which delineates a region in the computational
domain where adaptive grid refinement takes place.

During the refinement process the cells are ranked from highest to lowest, according to adaption
parameter A. The marking of the cells for refinement proceeds from the top of the list down until the
estimated total number of cells exceeds the target maximum number of cells or the estimated number of
new cells added exceeds the specified maximum number added per adaption function. Thus, if
insufficient deletion took place to reduce the current number of cells below the target maximum, no
refinement would take place. In this case, the multiplier on the standard deviation in the lower threshold
value could be reduced or the target number of cells could be increased. The effect of these limiting

processes is to produce a near optimum grid for the target number of cells and the selected adaption
functions.

Cell Face Areas, Volumes and Centroids

The flow solver for the CFD code that uses this Cartesian mesh requires accurate computation of

the face areas and volumes of all cells. The higher order extrapolation procedure also requires the
location of the centroid of each face and the centroid of the cell. For uncut cells the face areas, volumes

and centroids are easily computed.

a x = AyAz, ay = AxAz, a z = AxAy

256



(-q +x2) (Yl +Yz) (zl +z2)
x_ = 2 , Yc = 2 ' zc = 2

Vol = AxAyAz.

For cube shaped cells, the spacing in each direction, ,Sx, Ay, Az, are equal. The centroids of the faces

are the appropriate components of the cell centroid, (xc, Yc, zc).

The boundary facets contain the necessary information for computing the face areas, centroids

and volumes of the cut cells. Edges of boundary facets that exist on each face of a cut cell are used to

compute the exposed area and centroid of the face. The face areas and the boundary facets are then

used to compute the cell volume and cell centroid.

An example of the exposed area computation of a face of a cut Cartesian cell is shown in

Figure 8. The shaded area in the top figure represents the portion of the face contained inside the

geometry. The unshaded region is the exposed area or the portion of the face existing in the

computational domain. An elaborate procedure has been developed to compute the exposed area of the

face. The procedure involves summing areas swept out by the edges of the boundary facets that exist
on the face.

A summation point is selected, such as the lower left corner of the face shown. The areas swept

out by the two vertices of each edge and the summation point are summed. The ordering of the edge

points determines whether the computed area is positive or negative. The positive area that results from

this process is shown as the initial area of the face.

The two vertices of each edge are then projected to the top and right boundaries of the face. The

"anti-areas" swept out by the projected vertices and the summation point are summed. The ordering of

the projected points determines whether the computed area is positive or negative. The negative area
that results from this process is shown as the anti-area of the face.

The area and anti-area of the face are combined to produce the actual exposed area of the face.

In this case the combination produces the negative area shown as the combined area. Adding this

negative area to the area of the uncut face produces the area of the exposed region shown as the

resulting area. The same procedure is applied on each of the faces of cut cells that are intersected by

boundary facets.

The centroids of the faces are computed by summing the area weighted centroids of the swept
out regions during the previously described steps and dividing the result by the actual face area. The
individual swept out regions are triangles, so the centroids are simply the average of the three forming
nodes of the triangle.

Volumes of cut cells are then computed by summing volume of sub-components of the cell. A cell
summation point is selected, such as the centroid of the uncut Cartesian cell. Tetrahedra are formed
from the summation point and the forming nodes of the boundary facets. The volume of each tetrahedra
contributes to the total volume of the cell. The orientation of the facet forming nodes in relation to the
summation point determines whether the computed tetrahedral volume is positive or negative.
Prismatoids are formed from the summation point and the area of each face of the cell. The volume of

each prismatoid is positive and contributes to the total volume of the cell. An example of the sub-
components of a cut cell are shown in Figure 9.

Cell centroids are computed from a volume weighted average of the centroids of the sub-
components of the cell just described. The centroids of the tetrahedra are simply the average of the four
forming nodes. The centroid of the prismatoid is assumed to be the point one fourth the distance from
the face centroid to the cell summation point.

257



PRISMATIC GRID GENERATION

The prismatic grid is generated by marching a triangulated surface mesh outward. The major
elements of the process are the surface triangulation, the computation of the surface normals at each

grid point, the marching step size, and the prevention of grid crossing in concave and convex regions of
the surface.

Surface Triangulation

The surface triangulation produced by the CAD program described earlier is used in the

development of the prismatic grid. In this case, however, the resolution of the surface mesh is more than
a description of the geometry. It is the starting layer of the prismatic grid. Therefore, facet resolution in
critical regions other than high curvature regions is important. The prismatic grid is currently not refined
by the CFD code during the solution process, so adequate resolution of the surface in critical regions
must be supplied by the surface triangulation.

Surface Normals

The triangular surface facets are marched outward along carefully computed normal vectors from
each node point, see Figure 10. The normal vector at each node must be constructed such that it is
visible to each facet containing that node 6. This ensures that the developing grid layers in convex

regions do not cross and produce negative prismatic cell volumes.

The initial normal vector at each node is computed as the weighted average of the normals of the

common faces

mf

^0 f

II -- mf '

f

where ns is the unit normal of common faces, and off is the included angle of the face as shown in
Figure 10. The variable mfis the number of faces surrounding the node.

An iterative procedure is then used to improve the normal vector at each node using a linear
combination of a weighted average of the normal vectors of the common faces and a weighted average
of the position vectors of the neighboring nodes projected to the next layer.

^i+ i
n

ir mf

= hi+co (l-_b) fm_

_, f

//

u/_.= l+0.

The weighted average of the face normals is once again based on the included angle of each common

face. The common face normal vector, h_, is multiplied by _ which is a function of the angle between
the current node normal vector and the face normal vector, E). The position vector of the neighboring

nodes projected to the next level is given by /'j and is weighted by the distance to the node, dj. The
variable _ varies from 0.0 to 0.5 and controls the amount of smoothing of the normal vector. With no
smoothing, the scheme tends to minimize the angle between the resulting node normal and common

258



face normals. With smoothing, the grid expands as it grows outward, approaching a mesh where the

tangential spacing between the nodes is equidistant. A typical value for the smoothing parameter is 0.25.
An under-relaxation factor, (o, is used to update the new normal vectors. The iterative procedure
continues until the changes in the normal vectors are negligible or a maximum iteration limit is reached.

The use of the included angle in the averaging procedure eliminates the tendency to get skewed
vectors for cases where a node has many small included angle facets on one side. This situation may
occur at sharp trailing edges. This normal calculation procedure has been tested on many complex
shapes and has produced valid surface vectors.

Additional control is added in extreme convex and concave regions of a geometry. The
smoothing portion of the equation is turned off for the nodes where the angle between the face normals
common to any given facet edge exceeds a user specified amount, such as 60 degrees. The normals at
such nodes are then improved using only the face normal portion of the iterative procedure.

Marching Step Size

The grid is advanced to the next layer by a specified spacing increment. The spacing increment
can be equally spaced, generated from a prescribed normal distribution or based on the minimum radius

of an inscribed circle for the facets on each layer. The marching step size at extremely concave nodes is
slightly increased. The marching step size at extremely convex nodes is slightly decreased. These
adjustments help to improve the quality of the grid at the next layer. The effect of the adjustments is to

reduce the maximum angle between face normals on each subsequent grid layer, i.e. smoothing out the
waviness.

The total thickness of the prismatic grid in the normal direction is usually just large enough to
resolve the estimated boundary layer thickness for viscous analyses or large enough to improve the
invalid cell situation at sharp edges for inviscid analyses. At each new layer the normals at each node
are recomputed using the above scheme and the process continues until the desired number of

prismatic layers is completed. Any portion of the boundary layer in viscous analyses not resolved by the
prismatic grid will be resolved by the refined Cartesian grid using the grid adaption scheme.

Prevention of Grid Crossing

Grid crossing in convex regions of the surface is prevented by carefully computing the surface
normals, as described earlier. Grid crossing in concave regions of the surface is controlled by reducing
the marching step size. As each layer is marched outward, the current grid layer is checked for grid
crossing. When grid crossing is detected, the local marching step size is reduced. The marching step
sizes across the current layer are then smoothed using a Laplacian type smoothing. The nodes are
projected outward once again and rechecked for grid crossing. This process continues until the crossing
is eliminated.

CARTESIAN/PRISMATIC GRID INTERFACE

The Cartesian grid treats the outer layer of the prismatic grid as another boundary. The Cartesian
grid generation, cell cutting and so forth are performed in the usual manner, since the outer layer of the
prismatic grid is made up of triangular elements like all other defined geometries. During the solution
process, the prismatic grid and the Cartesian grid interact through the flux calculations at the interface
boundary. Fluxes are computed at the interface boundary facets using data from the interior of the

prismatic grid and the local Cartesian grid cells. Fluxes are computed at the interface boundary using the
same upwind or central differencing schemes as used with the Cartesian grid faces and the interior
prismatic grid faces. The computed fluxes are distributed to each side of the interface in a fully
conservative manner.

259



EXAMPLE GRIDS

Several example cases are included to demonstrate the capability of the grid generation

procedures to discretize complex geometries and complex flowfields. Some of the cases use only the
Cartesian grid, while one case uses the hybrid grid system. The final case includes only the prismatic
grid for a complex store configuration. Flowfield solutions were obtained for all of the Cartesian grid-only
examples and the single hybrid grid example. Grid refinement of the Cartesian grid was used to resolve
pertinent flowfield features in these cases. Since this paper pertains to the grid generation aspect of the

problems, no flowfield solution data will be shown.

F16 Forebody

An inviscid supersonic flowfield for a F16 forebody/inlet geometry was computed using the

Cartesian grid system. The surface model included extensive geometric detail, including the inlet duct
back to the compressor face, the diverter section between the inlet and the underside of the fuselage,
and the CD band antenna on the underside of the nose. Grid refinement was based on two adaption

functions, Mach number and total pressure. The purpose of the analysis was to gain an understanding of
the shock structure and total pressure field entering the inlet. Qualitative results from this analysis

helped guide engineers in grid generation for a structured grid Navier-Stokes solution. A symmetry plane
cut through the mesh is shown in Figure 11. Adaption to Mach number is evident in the increased grid
resolution at the shocks, while the adaption to total pressure is responsible for the refinement aft of the

CD band antenna. The final grid contained 601,513 Cartesian cells.

F16 With Various Store Loadings

Several solutions were computed for a full F16 configuration with various types of weapons

Ioadings. The F16 aircraft geometry included accurate modelling of the inlet duct back to the compressor
face, the nozzle duct forward to the turbine face, the ventral fin, the wing with tip missile rail, and the
horizontal and vertical tails. The Cartesian grids for three different weapons Ioadings are shown in

Figure 12, Figure 13, and Figure 14. An inviscid transonic flow was computed in each case and the
adaption functions were velocity magnitude and static pressure.

The weapons shown in Figure 12 include a 600 gallon fuel tank and 3 CBU58s mounted on a

triple ejector rack. The constant-X cutting plane located aft of the wing trailing edge reveals the improved
resolution of the three-dimensional shock structure on the wing upper surface. The final grid contained

953,385 Cartesian cells.

Figure 13 shows a AIM 9 missile along with the fuel tank and the CBU58s. The constant-X
cutting plane is located at the mid-point of the wing leading edge and shows the increased resolution of
the region about the CBU58s. A total of 865,993 Cartesian cell are contained in the final grid.

The additional components shown in Figure 14 include the AIM 9, a 370 gallon fuel tank, an
ALQ119 ecm pod and a MK84 with pylon. Increased grid resolution about the MK84 store is evident in

the figure. This analysis was part of a quasi-steady trajectory analysis of the MK84 store separation.
Steady-state solutions were computed for several instances along the trajectory path. The computed
forces and moments were used, in conjunction with a six degree of freedom package, to compute the
new store locations. The process is analogous to the wind tunnel testing technique known as Captive

Trajectory Simulation.

Wing/Pylon/Store

A hybrid grid was used to discretize the computational domain surrounding a wing/pylon/store

configuration. The geometry was a clipped 45 degree swept delta wing with a pylon located at mid-span
and a generic store (1°'11'12). This analysis used a prismatic grid about the store combined with a

260



Cartesian grid for the wing, pylon and the remainder of the domain. The extent of the prismatic grid was
limited because of the close proximity of the store to the base of the pylon. The prismatic grid consisted
of 8,838 cells per layer in 5 cell layers for a total of 44,190 cells. The final Cartesian grid consisted of
307,361 cells in 17 grid layers. Periodic grid refinement on the Cartesian grid was performed based on
the gradients of Mach number and pressure. A side view of the Cartesian grid is shown in Figure 15. A
refinement box that extended just above the wing geometry was used to limit the Cartesian grid
refinement to the region in the vicinity of the store. The prismatic grid about the store is shown in
Figure 16. Less than half of the gap between the store and the pylon is discretized by the prismatic grid.
The remaining gap was discretized with the Cartesian grid. The use of the prismatic grid about the store
resulted in approximately half as many Cartesian cells as required for a Cartesian-only solution.

MK84 Store

A prismatic grid was generated for an isolated MK84 store geometry, see Figure 17. The MK84
geometry is very similar to the generic store shown in the previous case, e.g. a cylindrical body of
revolution with four tail fins. A five layer prismatic grid was generated for demonstration purposes only.
No solution has been obtained for this geometry. The thickness of the layers was restricted to
approximately 0.5 inches, due to the 90 degree corners at the fin/body juncture. The grid was equally
spaced in the direction normal to the surface. Grid smoothing is necessary to ensure the prismatic
elements march out of the corner regions properly. The marching step size for each layer also has to be
limited to prevent grid crossing in the corners. A thicker prismatic grid is possible with additional layers,
but would make viewing the grid more difficult than it currently is. Had this been an actual prismatic grid
for a viscous analysis, the number of layers would be larger, and the normal grid spacing would be
clustered toward the surface, as can be seen in the 21 layer grid shown in Figure 18 and Figure 19.

CONCLUSIONS

The methods for generating unstructured Cartesian meshes and triangular-element prismatic
meshes have been described. Example grids for various configurations have been shown for Cartesian-
only grids, hybrid grids, and prismatic-only grids. Grid adaption for the Cartesian grid has been
demonstrated in several of the examples where a flowfield solution was generated using the CFD solver
developed by the author. Highly three-dimensional flowfield features are apparent in the meshes, as the

refinement scheme detected gradients in the selected adaption functions. The flexibility of the prismatic
grid was demonstrated in an actual hybrid grid solution for a wing/pylon/store geometry where a
prismatic grid was employed around the store. The resulting inviscid solution made more efficient use of
fewer Cartesian cells to resolve the remainder of the domain. A prismatic grid suitable for viscous
solutions was shown for a complex store geometry. The ability to control the thickness and normal
distribution of the prismatic layers was demonstrated.

REFERENCES

1. Frink, N. T., Parikh, P., and Pirzadeh, S., "A Fast Upwind Solver for the Euler Equations on Three-
Dimensional Unstructured Meshes," AIAA-91-0102.

2. Potsdam, M. A., Intemann, G. A., Frink, N. T., Pirzadeh, S., "Wing/Pylon Fillet Design Using Unstruc-
tured Mesh Euler Solvers," AIAA-93-3500.

3. PiFzadeh, S., "Viscous Unstructured Three-Dimensional Grids by the Advancing-Layers Method,"
AIAA-94-0417.

4. De Zeeuw, D., Powell, K. G., "An Adaptively-Refined Cartesian Mesh Solver for the Euler Equations,"
AIAA-91-1542-CP.

261



5. Melton, J. E., Enomoto, F. Y., Berger, M. J., "3D Automatic Cartesian Grid Generation for Euler
Flows," AIAA-93-3386-CP.

6. Kallinderis, Y., Ward, S., "Prismatic Grid Generation with an Efficient Algebraic Method for Aircraft
Configurations," AIAA-92-2721-CP.

7. Melton, J. E., Pandya, S. A., Steger, J. L., "3D Euler Flow Solutions using Unstructured Cartesian and
Prismatic Grids," AIAA-93-0331.

8. Ward, S., Kallinderis, Y., "Hybrid Prismatic/Tetrahedral Grid Generation for Complex 3-D Geometries,"
AIAA-93-0669.

9. Warren, G. P., Anderson, W. K., Thomas, J. L., Krist, S. L., "Grid Convergence for Adaptive Methods,"
AIAA-91-1592.

10.Karman, S. L. Jr., "SPLITFLOW: A 3D Unstructured Cartesian/Prismatic Grid CFD Code for Complex
Geometries," AIAA-95-0343.

11.Welterlen, T. J., Karman, S. L. Jr., "Rapid Assessment of F-16 Store Trajectories Using Unstructured
CFD," AIAA-95-0354.

12.Parikh, P., Pirzadeh, S., Frink, N. T., "Unstructured Grid Solutions to a Wing/Pylon/Store Configura-
tion Using VGRID3D/USM3D", AIAA-92-4572.

8chidren
possible __ _[

grand-children _ _

Figure 1. Each cell subdivision results in eight new cells at the next grid level
using an octree data structure.

262



J

J

J

j...,,--

J

J

J

l
J

""i

l .:

Figure 2. The Cartesian cells near the nose of
a fighter configuration are proportional in size
to the local geometry facets.

:::::::::::::::::::::::::::::::::::::::::::::

Figure 3. Cells with finer mesh on opposite
sides are refined.

geometry facet \.

4:_i_;:?.._::_:i:i:-)_'

-.:..:°.

boundary fac

Figure 4. The cutting process for any given "geometry" facet
may produce multiple "boundary" facets.

263



Figure 5. An invalid Cartesian cell
caused by the cutting ,of a sharp trailing

edge.

Valid Case

Invalid Case

Figure 6. Two possible cell cutting cases.

D
A B

Figure 7. The third approach for determining invalid cells will A)
correctly detect the cutting of cells at an angle to the Cartesian grid and
B) detect changes in surface orientation.

264



put
eometry

facet

edges

,/ ,rea
Resulting

Area

Figure 8. Depiction of face area computation process.

d t

Figure 9. Exploded view of sub-components of a cut cell
containing a single boundan/facet.

265



node
normal/I,_ onsmatic

fnaoCre_]_

ir nodes

Figure 10. The prismatic grid marches outward along carefully

computed normal vectors.

i . i

i_iii
:: : : :

iiiii

Figure 11. Side view of symmetry plane cut through F16 forebody mesh.

266



Figure 12. Front-quarter view of axial station cut aft of wing trailing edge.

[

Figure 13. Front view of axial cut though mid-point of wing leading edge.

267



Figure 14. View of span station cut through MK84 c.g. from trajectory analysis solution.

t i i i i i

i . i

i i i i i i

i i i i i i i

J

i

IIIII_I
: ; I I!!!!
: : : :,:::

L i i::

:: ::::

I1 JR m llltl ; i;:; .!! _ .... ,, ....

iii i l :: " I iiiiiiii lit

I IIIIIIII I ........itttilti iii _ :

Figure 15. Side view ofspan station cutthrough centerofpylon and store.

: iI

: I1
: l!

i

268



!

f'tJ,4

f-t44

f'tN4

f3"44

f-H4

Figure 16. Prismatic grid about store displayed with pylon span station cutting plane through
Cartesian grid.

\

Figure 17. A five layer prismatic grid about MK84 store geometry.

269



Figure 18. A prismatic grid column near tail fin for the MK84 store geometry.

Figure 19. A prismatic grid column near nose for the MK84 store geometry.

270



UNSTRUCTURED GRID

TECHNOLOGY

271




