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ABSTRACT

The primary interest of the authors is in the area of grid

generation, in paticular, optimal domain decomposion about realistic

configurations. A grid generation proced_ with optimal blocking
strategies has been developed to generate multi-block grids for a

circular-to-rectangular transition duct. The focus of this study is the

domain decomposition which optimizes solution algorithm/block

compatibility based on geometrical complexities as well as the physical

characteristics of flow field. The progress realized in this study is

summarized in this paper.

INTRODUCTION

Most solution algorithms for irregular configurations presently solve

a discrete form of the fluid equations of motion. The discretized

equations must be solved on a discretized computational region, that is,

on the grid nodes. A discretization process of grid generation is to

establish a relationship between the physical and computational domain,

thus allow the solution algorithm to be performed in the transformed

domain.

In principle it is possible to make a correspondence between any

physical region and a single computational region. However, for general

complicated three-dimensional configurations the resulting grid is likely

to exhibit excessive skewness and coarseness. Despite the power and

sophistication of present grid generation capabilities, it remains difficult

to generate a reasonable, single-block grid about geometrically complex

flow field comfigtn'atiorL
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A better approach with complicated physical boundaries is to
decomposethe physical domains,each boundedby six curved sides and
each of which transforms to a rectangular block in the computational

domain(ref.1). This domain decomposition has the merits of flow solver

efficiency, grid smoothness and orthogonality, and flexibility of griddi_

for complex geomeixies by choosing suitable block topologies.

There are _,nany approaches and philosophies which can be included

under the domain decomposition strategies. Structured grid analysis of

flow around complex geometries in widespread use is blocked

decomposition, in which the solution domain )_s divided into regions
with common internal boundaries. The grid lines at adjoining blocks

can be set up to match in a variety of ways, with various levels of

slope continuity. There is no theory which governs the way in which a

flow field should be partitioned. A limited number of papers in the

literature(ref.2-5) address basic flow-field-decomposition criteria and

guidelines. Eiseman has developed an automatic block decomposition

algorithm(ref.6). This algorithm is based on the geometrical

complexities. However, no comprehensive, systematic studies have been

done to determine the effect on the computed solution of using different

blocks for the same geometry. Currently, the major bottleneck is in the

design and implementation of the blocking plane(ref.7)

To remedy this problem, the focus of this study is the domain

decomposition which optimizes algorithm/block compatibility based on

geometrical complexities as well as the physical characteristics of the

flow field.

Generally, the use of analytical shapes is not enough to satisfy

the unusual geometrical requirement. Hence, sculptured curve/surface

definitions such as Non-Uniform Rational B-Splines(NURBS), and quick

elliptic grid refinement algorithms are developed. The application of

these algorithms to grid adaption and domain decomposition is

demonstrated. Grid generation associated with the circular-to-rect

angular transition duct has been accomplished by applying these

techniques. After careful consideration of the various alternatives, the

structured muli-block approach must be chosen as the most suitable,

from the point of view both grid generation and flow analysis.

INS3D(ref.8), a three-dimensional multi-block incompressible Naver-

Stokes code is used for this study.
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DOMAIN DECOMPOSION PROCEDURE

The work focuses on effects for optimizing domain decomposition

strategies associated with circlar-to-rectangular transition duct_ The

_ansition duct is designed to connect a typical circular engine exhaust

to a high aspect ratio rectangular nozzle. The application presented is

of considerable engineering importance in internal fluid flow designs.

To take full advantage of the flexibility of multi-block stl"uctured

techniques, one has to decide upon a suitable blocking topology to yield

an optimal block arrangement for a given flow solver.

[ CAD
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Geometry
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Analysis of solver

: scheme

: block capability

: flow properties

Compter resources

: CPU time

: amount of memory

Decision of block topologyJ
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Transformation of physical]to computational domain

I
I Generation of surface grid]

I
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I
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Figure 1. Basic procedure for domain decomposition
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This step is an art, requiting knowledge-based techniques and

trial-and-error. Typically, a domain decomposition strategy is performed

and then surfaces and volume grids are created for each individual

block. Figure 1 shows the basic procedure. The desired characteristics

of multi-block grid are strongly dependent on the needs of the flow

solver and computer.

GEOMETRY DEFINITION FOR TRANSITION DUCT

The circle-to-rectangular transition duct can be designed by the

equation of a superellipse.

--
Where a and b are the semi-major and semi-minor axes, respectively,

of the superellipse. The x axis is coincident with the streamwise

direction and the y and z axes are parallel to the major and minor axes

of the duct. The cross-sectional area at a given streamwise location is

given by

r(1) z
2

An: q ( -_- )(4ab) (2)
r(_)

Where n refers to the gamma fuction defined as

l'(_)= f :(e -t t'-t)dt (_>0) (3)

The design procedure for the transition duct is to specify the

sWearnwise variation of the semi-major and semi-minor axes, and

superellipse exponent(_) defined by fifth order polynomial functions.

Special cases of the superellipse include a circle( a=b, __-oo), an ellipse(

a/ b, _=_).

Steady, incompressible, turbulent, swirl-flee flow through a

circle-to-rectangular transition duct has been studied experimentally

(ref.9). For comparison, the same geometry has been simulated. Figure

2 shows the lower half of the duct. The transition duct has an inlet

diameter of 20.43cm, a length-to-diameter ratio of 1, and an exit plane
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aspect ratio of three. The transition region length-to-diameter ratio is

1.5. The cross-sectional area remains the same at the exit as at the

inlet, but varies through the transition section to a maximum value

approximately 15% above the inlet value.

SURFACE REDISTRIBUTION AND REMAPPING

The principal requirement for generating a grid about a complex

geometry is the ability to efficiently redistribute points on the surface

while maintaining the integrity of the geometry. Because the regions

where high gradients are expected in the flow solution require high

density of grid points. The redistributed surface grid is accomplished

by evaluating the NURBS surface at th_ respective parameter

associated with the desired distribution space. The NURBS is used for

the standard surface description. The convex hull, local support, and

variation disrninishing properties of B-spline functions contribute to the

generation of the well-distributed smooth grid.

Let r:[xl(L_), xz(L4), xa(¢,)] denote the parametric representation

of the surface with coordinate(x1, x_ x3) and parameter(_, n). A

control point form of the NURBS surface(in 3-D) is defined as a tensor

product formula in 4-D(ref.10).
NI N

,'_oyoo (4)
P(_, n): m N M

_B, (_)B_(n)U¢i
i=o./=o

Where B_(_):theM th degree B-spline basis functions in i direction.

BM(n):theK _ degree B-spline basis functions in j direction.

Ho : weight (positive real values)

O_ : control points

The control points of the surface are determined using tensor product

formula associated with both ( and 4 parameters when a surface with

a set of data point is given. It is called the inverse problem.

The parametric space associated with NURBS is transformed as

the normalized arc length distribution mesh. The original surface which

is expressed into non-NURBS form can be converted to NURBS

representation. It is important to note that the redistributed surface grid
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is obtainedby evaluating the NURBS surface at the desired distribution
point. However, the NURBS surface is smooth and has kept precisely
the fidelity of the original surface. A redistributed surface resulting
from the NURBS surface is demonstrated in Figure 3.

ELLIPTIC REFINEMENT

The grid should exhibit the desirable qualities of smoothness and

orthogonality especially near the solid surface. Some results of algebraic

grid methods such as transfinite interpolation .functions can not meet

the requirement of the grid qualities on certain geometries. Thus,

elliptic grid methods are used to make up the shortcoming of the

algebraic methods(ref.ll).

Derivation of the control function based on grid metrices begins

with analyzing the elliptic grid equation. Define the physical and

computational space with r: (xl, xa x3) and f_: (_1, _2, _3), respectively.

The covariant and contravariant vectors then appear as follows:

a, : covariant base vectors re, (i=l, 2, 3)
i

a : contravariant base vectors Az___ (i= 1, 2, 3)

g0 : ai. as = gJ_ (i=1, 2, 3), (j=l, 2, 3)

gO : a'' _ : g_ (i=l, 2, 3), (j:l, 2, 3)

g = detlgo[ = [ al • ( a2xaa)] 2

(gO) _ = derivative of go with respective to _k

- r¢,¢, reJ + l:e' res¢,, (i=l, 2, 3), (j=l, 2, 3), (k=l, 2, 3)

The elliptic grid generation system used in this study(ref.12) is
3 3 3

Z Zg ° 1: ¢,¢s+ kZ=tg_Pk 1: ¢, = 0 (5)
i:l/=t =

The determinations of the three control functions for the general

three-dimensional case can be summarized as follows. The three

components of the elliptic grid generation equation(5) provide a set of

three equations,
3 3 3

Zg _ (r¢,) l Pk = -i_-_lS_.lg° ( $2¢gJ)t, l=1, 2, 3 (6)
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that can be solved simultaneouslyat each point for the three control
functions, Pk, k:l, 2, 3. The derivatives here are represented by

central differences. The smoothness is established by replacing the

control function at each point with the average of the four neighbors in

the two curvilinear directions other than that of the function. Thus,

p1(_1, _2, _3):1[pd¢1 ' ¢2+1 ' _3) + pl(¢l, ¢2_1, _3)

+ pl(_1, _2, _a+l) + p1(_I, _2,_3_i)' (7)

with analogous equations for P2 and P3. No smoothing is done in the

directionof the function because to do so would smooth the spacinq

distribution.The use of smoothed control functions evaluated from the

algebraic grid produces a smooth grid that retains essentially the

spacing of the algebraic grid(ref.13).

An application of these control functions results in a smooth-nearly

orthogonal grid in fewer iterations of the elliptic solver. These control

functions are applied in surface/volume grid refinement. It can be

observed that the elliptic grid provides smoothness and near

orthogonality in Figure 4.

BLOCK INTERFACES

There are three distinct configurations along the axial direction

which are a constant diameter circular entrance section, the transition

section, and a rectangular extension section. Because of the drastic

changes in the flow direction, a multi-block grid topology has been

adapted. This provides a smooth discretization of the entire volume

inside the transition duct_

Each block has its own curvilinear coordinate system irrespective

of that in the adjacent blocks. In order to keep complete continuity of

grid lines across the interfaces between blocks, the linkage among the

various blocks can be set by interpolation or fixing an actual boundary.

The grid points on an interface of one block are coincident in physical

space with those on another interface of the same or another block.

This facilitates the interface of block treatment without an application

of interpolation. This philosophy allows the flow solver to be run on

the multi-block grid system.
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APPLICATION

The two previously described methods, elliptic and algebraic, are

merged appropriately to obtain various multi-block grids on the

transition duct configuration. Moreover, by ufilizafing an approprite

blending of these methods allows a grid generation capability ranging

from cases with only a few blocks to cases with hundreds of blocks

for various shapes.

To demonstrate the capability of the present procedure, several

types of multi-block grids are designed such that the grid cell aspect

ratio and orthogonality are maintained with a reasonable range for all

the duct cross section. Figure 5-8 present several examples. For

comparative purposes, all types of domain decomposition are

implemented in the same flow solver code using equivalent boundary

conditions. Even the flow conditions for the computational analysis are

chosen to correspond to the experiments reperted in Ref.8. Inlet

conditions are as follows:

Reynolds number = 390,000(based on U and D)

Bulk velocity(U) = 29.95 m/s

Core velocity(UcAJ) = 1.083

Friction velocity(UtauAJ) = 0.04063

RESULTS AND DISCUSSION

The results of the flow calculation are shown in Figures 9-12.

Pressure contours of the axial flow component are plotted in Figure 9

(a)-(b) which are on the x-y plane and x-z plane, respectively. The

velocity contours on both planes are demonstrated in Figure 10.(a)-(b).

The transition segment produces saddle-shapod pressure distributions in

the y-z plane as shown in Figure 11. Within the boundary layer the

velocity is reduced as shown in Figure 12, but the cross-stream

pressure gradient imposed by the flow outside the boundary layer is

not reduced. This can result in significant flow turning in the boundary

layer and is refered to as skew-induced secondary flow or cross flow.

The rate of cross flow production increases as the amount of

streamline curvature increases(ref.13). Figure 13 shows the comparison

of sidewall normalized static pressure between the experimental data

and the computed solutions in the upper quarter of the duct only. The

results of computational simulation and the measured data of Ref.9.,

show a very good agreement.
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CONCLUSIONS

Several blocking strategies have been considered in order to
analyze the transition duct flow. Optimal domain decomposition is
dependenton the method of flow solver and flow properties as well as
geometry concerns. This domain decompositiongives us the following
merits:

• A higher solution accuracy and faster convergence for the

computational fluid dynamics solver.

• Savings in the CPU time and the amount of memory.

• Maximization of the grid quality and optimization of the grid

distribution.
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Figure 2. The lower half of the duct

606



Figure 3. A NURBS surface

Figure 4. Elliptic grid refinement
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Figure 5. Two-block system along the flow direction

Figure 6. Two blocks, O-type grid system.
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Figure 7. Two blocks, O-H type grid system.

Figure 8. 5 blocks H-type grid system.
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Figure 9. Pressure contours (a)x-y plane, (b)x-z plane.
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Figure 10. Velocity contours (a)x-y plane, (b)x-z plane.
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Figure 12. Boundary layer effects.
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Figure 13. Comparison of peripheral wall pressure

coefficient distribution between computed and measured

data_ (symbol: experiment, simbol-line:calculation)
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NEW METHODS/APPROACHES/

APPLICATIONS (1)
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