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ABSTRACT

In this paper the capabilities of an automated CFD system which is currently available at NLR

are demonstrated. Transonic flow around the AS28(; wing/body configuration and hypersonic

flow through a generic three-dimensional mixed-compression airbreathing inlet are simulated. An

assessment of the level of automation of the current CFD-system is made. The problem-turnaround

time lies within the order of a week for both applications.

1. INTRODUCTION

Experience with (?FD technology (multiblock structured grid methods) learns that the turnaround

time for generation of grids for Euler/Navier-Stokes calculations of complex aircraft configurations

is large. In order to efficiently contribute to aircraft design the problem-turnaround time must be

reduced to the order of a day or a week [1]. Unstructured grid methods offer the possibility to
bring about this reduction.

The level of acceptance of CFD technology in the aerodynamic design process is directly related

to the ability to t)roduce accurate solutions. High accuracy of aerodynamic forces is especially

important so that the computed lift, drag and pitching moment can be relied upon to reduce the

risks involved in aircraft design.

In view of those aspects DLR and NLR started a cooperation entitled "CFD for conlplete aircraft"

to develop a fully automatic system for three-dimensional flow simulations. The algorithms used
are based on the unstructured grid approach [2] which is based on a GMerkin finite-element method

to discretise the throe-dimensional Euler equations.

The objective of this paper is to demonstrate the capabilities of the CFD system which is cur-

rently available at NLR. The focus will be on the level of automation and accuracy of the CFD

system. The first application concerns three-dimensional transonic inviscid flow past the AS28(;-

wing/body configuration. The second application is the study of an airbreathing inlet, which is

part of the AEOLUS programme, a joint industry project in the Netherlands [3]. The CFD sys-

tem is used to simulate hypersonic inviscid flow (no real gas effects included) through a generic

three-dimensional mixed-compressioll inlet with two ramps.

2. C.FD SYSTEM AT NLR

At NLR an automated CFD-system for three-dimensionM inviscid flow simulations is acquired. In

the current (:FD-system the following algorithmic steps are necessary to obtain a visual represen-

tation of the flow field for a given aircraft configuration.

1. Geometry definition.

1 Part of this investigation has been carried out under contract awarded by the Netherlands Agency for Aerospace

Programs
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2. Surface triangulation.

3. Three-dimensional grid generation.

4. Pre-processing.

5. Flow calculation.

6. Grid adaption.

7. Visualisation and post-processing.

The algorithnlic steps 2-6 are flflly automated, i.e. extensive user interaction is not required for

these steps. In this section these algorithmic steps are discussed.

2.1 Geometry definition

The geometry of an aircraft configuration is usually defined using a CAD system (e.g. I(?EM-

('JFD) and described in a standard data format. Typically, the geometry is established in terms of

geometric entities, viz. support surfaces and curves. The relation between these geometric entities,

referred to as the topology, has to be defined explicitly. The respective entities are then modelled

by means of piecewise cubic surface and curve representations.

At present an application starts either with a user-defined aircraft configuration or an aircraft

configuration abstracted from a three-dimensional multi-block grid [4]. By adding the geometry

description of far field boundaries and the symmetry plane (optional) a three-dimensional ttow

domain enclosed by bounding surfaces is defined. In such a way tile boundaries of tile flow domain

are fully defined.

2.2 Surfa,:e triangulation

In order to perform a ttow calculation the flow domain has to be discretised, i.e. boundaries are

triangulate(l and a tetrahedral grid ix generated in the interior of the flow domain. Firstly, the

boundaries of the flow domain are discretised resulting in a surface triangulation. To this l)urp()so

a surface: triangulatio_z algorithm is employed which incorporates an equi-distribution algorilhn, for

discretising curves and an advancing front-type generation algorithm for (liscretising surfa('es. A

distribution function controls the size of the edges and triangles in the surface triangulation.

This distribution function is defined by paratnetors which are specified in the background grid aim

in scmrce forms. Source terms are introduced it, regions to refine regions of special interest. The

distribution function expresses a desired spacing in each point of tile [low domain.

2.3 Three-dimensional gri,I gem,ration

Subsequently, a three-dimensional grid of l)elaunay-type is obtained by mnploying a thv_(-dim( _._i,mal

grid 9('**(vation algorithm. In this algorithm a prospoclive node is loca led at the barycontor of a

t'otrahedron. If this prospective node satisfies the l)elaunay criterion the node is insort_,d and c_m-

netted to the existing tetrahedral grid, In case the grid size, duo to insertion of this m_de, bec_mms

to small the prospectiw, node is rejected. ,_uloot.hlless of tile three-dimensional grid is treated

explicitly by the distribution function (as detined by the background grid and source forms). As

a result a thro_,-dimensional tetrahedral grid ix generated which is bounded by a topologically

two-dimensional surface triangulation.

2.4 Pro-processing
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The next algorithmicstepis the pr_-proccssin 9 algorithm. This algorithm is designed to optimise

the flow calculation for the generated three-dimensional grid. By employing a colouring algorithm

for the edges in the throe-dimensional grid a high degree of wwtorisation in tile flow calculation

can })e reached.

2.5 Flow calculation

In the Jl,m, calculatio;t algorithm three-dimensional inviscid flow is simulated. The incorporation of

an upwind solver makes the (iFI)-systom suited for the simulation of subsonic, transonic, supersonic

as well as hypersonic flows. For the spatial discretisation of the three-dimensional tLuler equations

Roe's approximate Riemann solver [5] is utilised. Second-order accuracy is achieved by employing

a MUS(IL interpolation [6] for the state vectors, following the approach in [7, S]. An entropy

tix is incorporated to prevent physically incorrect features in a numerical solution. At. present

the boundary conditions are treated with first-order accuracy. Time integration is established by

adopting a Runge-Kutta time step algorithm. ('_onvergence acceleration is achieved by local time

stepping and residual averaging.

2.6 Grid adapt|on

In case the tlow calculation has sufficiently converge(] (by taking a large nunlber of Runge-Kutta

tiiuo steps) the grid adaptioT_ algorithm can be employed. The grid adapt|on algorithm is based

on remeshing. Based on the values of an adapt|on variable {for instance: density, Math number or

pressure coefficient) an adapt|on indicator is calculated which is based on the undivided difference of

this adapt ion variable. According to the value of tile adapt|on indicator sources terms are generated

which are utilised to adapt the surface triangulation. Subsequently, the three-dimensional grid

generation alNorithm is adopted to generate an entire new three-dilnensional grid. By incorporating

the newly generat,,d source (erms in the existing distribution function a locally refined grid is

ol)tained. For the adapt_'d grid a numerical solution is then obtained by first employing the pre-

pr(wessing alger|Ibm and subsequently the flow calculation algorithm. This process can be repeated

un|il a numerical solutio[_ of sufficient accuracy is obtained.

2.7 Visllalisation and post-processillg

Finally. a p,._'t-proct._sil_fl ttlgorilhm is adopted lo calculate aerodynamic quantilies. Flow visual|

sati(,n is achiev('d by using lhe conlmercial package I)ata Visualiser [9]. Interfaces are available to

visualise the gOOlllOll'y dot|nil|on, the Silt'face triangulation and the numerical solution.

3. AI)PI_I(IATI()NS

This se<lion discusses two apl)lications of the current (_FI) system at NLR. The first aplflicati¢)n

('_mcerns Iransonic flow around a wing/body configuration and l.he secoiid apl)li('alion c()n('erns

hypors(mic flow for a generic three-dimensional mixed-compression airbreathing inlet configuration.

3.1 AS28(; wing/body configuration

In the tir:_t application described here inviseid flow around the AS28(; wing-body configuration is

simulated. The geometry is defined by 14 support surfaces and ,12 curves. Tile physical coordinates

of these support surfaces and curves are abstracted from a multi-block grid. Tile support surfaces

contain approximately 17000 nodes. Far field boundaries and asymmetry plane are incorporated
to define a closed tlow domain.

"I'lw surface triangulation shown in figure 2 is obtained. It can 1)e el)serve(1 that tile nose region,
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tail region,wing leadingedge,trailing edgeand tile tip are refined. Sourceterms are located ill

these regions in order to obtain sufficient resolution of the geometry of the AS2S(', wing/body

configuration and to reduce expected losses in total pressure.

One successiw, refinement is employed. The surface triangulation of the adapted grid is shown in

figure 3. The dimensions of the surface triangulation and the three-dimensional grid for the initial

and the adapted grid can be found in table 1. The prol)lem size for the adapted grid is approxinm.tely

two times larger in comparison with the initial. (:t)u-times for the respective algorithmic steps are

shown ill table 2 and the convergence history is depicted in figure 1.

In the flow calculation a three-step Runge-Kutta time step scheme with a (',FL-number of 0.9 is

utilised. Two jacobi iterations are eml)loyed to smooth tile residuals. The flow calculation algorithm

uses 81 words per grid node, which is relatively large [10], and reaches a performance of 253 Mitops
on the NEC SX3.

Tile Mach-number and total pressure distribution are shown in figures 4 and .5 respectively. A

relatively small amount of grid points is necessary to resolve the lambda shock on the upper side

of the wing. This is a promising result as for instance in a multi-block structured code more

grid points are necessary to capture the same shock structure. Nevertheless, largo losses in tota.1

l)ressure (-t-25%) are experienced at the leading edge of the wing. This is mainly due to fact that the

boundary condition at the wing is only first-order accurate. A relative large loss in total pressure

is also observed on the upper side of the wing (S%).

3.2 Three-dimensiCnml mixed compression airtwea.l, hing inlet

One of the most critical enabling technologies of advanced reusable launchers is the propulsion

system. For example a two-stage-to-orbit aerospace vehicle needs a propulsion system to power the

vehicle from take-off to sustained flight at Math numbers ranging from 6 to 7 (separation Math

number of the rocket powered second stage fl'om the airbreathing first stare ) . Sustained flight of

airbreathing aerospace vehicles at these Math numbers is not feasible with todays technologies.

The inlet consi(lered here is of mixed compression tyl)e [11, 12]. Boil)re entering the inlet, the

oncoming air is decelerate(l to a hypersonic Mach nunlber lower than the ttight Math nulnlmr by

oblique shock waves (see tigure 6). Near the ilarrowest ducl cross section, the throat, the flow passes

a normal shock wave. Behind this shock the flow is subsonic. Flll'|.hel' deceleration is required to

a velocity acceptable for the combustion clmmber. Tile subsonic deceleration roquiro.s a diw,rging
duct called the diffuser.

The t)resent section discusses typical results for flow through the mixed compression arirbreathing

inlet. The geometry of the inlet is described in full detail in reference [13]. The inlet geometry is

based on a two-dimensional design that has been obtained by using engineering tools. The inlet

considered here is designed for a freesti'eam Mach number of M,×, = 4.5. The forebody of the space

plane is not modelled. Hence, a Math number smaller than the flight Math number is considered.

Bleed slots are not taken into account since viscosity is neglected. Both lhe cowl lip and the side
wall are modelled with finite dimensions.

The geometry of tile inlet is defined by ,16 curw_s and 18 supl)ort surfaces. Tile geometry contains

16 planes and 2 cubic polynonfial representations, namely the cowl lip and the loading o(lgo of the

side wall. Figure 7 shows an inside view of the inlet fi'om the upstream direction. The cowl lip

and the side walls are clearly visible. At the top of the figure two ramps can be observed. The

large bounding I)la.nes at the right-hand and left-hand side are boundaries of the flow domain on

which symmetry conditions are imposed. In the inlet duct the right-hand bounding plane is also

defined as a symmetry plane. At the left-hand side the wall of lille inlet duct can be observed. An

impression of the surface triangulation on tile side-wall (left-hand side of figure 7) is shown in figure

,_. Sufficient grid points are generated to obtain an accurate representation of the cowl lip.
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Forthe freestrea.mMath-numberM,,, = 4.5 a typical "unstart" condition is obtained, see figure 9.

This lneans that there is a strong bow shock in front of the duct inflow plane providing subsonic

flow throughout the duct. In win(Itunnel experiments a. "slarte(l" condition is obtained by opening

the throat signi(icantly so that the shock can pass. Oli('e the shock has been swallowed, the diffuser

throat area is (lecrea.sed, while simultaneously tile pressure ratio of the pressure of the outlet of the

<lilfuser with respect to the freestream pressure is iucreased so that the shock is <a.alsed t() move l()

the diffuser throat [14].

During numerical simulations, however, the va.ria(ion ()f the ?geometry is u()t trivial )() simulate. To

solve this t)rot)lem the calculation is started with a hi,her Math number M = 5.0 s<:)that effective

throat area is increased. This results in a globally correct pattern of oblique shock waves. The

"unstart" condition is not exl)erienced a.s the effective throat area is too wide for that particular

Ma('h number. ,_ut)sequeully, 111o Math number is ?gra.(lually lowere(l l() the required value M,_. =
.1.7).

kl()re,,vm', t()()t)(a.in (he tiual sh()ck i, the (lifl'u._er throal a)l(I a('('()rdill_ly subsonic (mttl<)w, the

l)r<'ss,re a_ 111, diffuser,ullel basle be imposed. The location of the final sh()ck is a fuu('ti()u of

the value ()f the i)res._ur'o, which can t)e found 1)y employing uormal shock retali()ns and usin_ the

[a('t thal the fl,)w i_ is,,)_trol)ic l)ehin<l the final sh<,ck (see reference [15]).

l"i_uro i0 sh,)w._ a _i<h' view (,f (he "slarle<l'" condili(m wil]la tiual sh(>('k behi1_d Ill(, lhr();_( ()f (he

<l,('r. I_ can I)e ()i)serv,<t)hal the <A)li(luO shock_ and tile final ,_ho<'k ar'e resolved (lIIil.o a('curatelv.

1. I:EVEL ()F AI;T()MATi()N

A r<'(lll('ti(m in (!FI)-l>r()t)lelll lurnaroull<l lime ('an t)e a.('hieve<l l)y a.u increased level ()f aut()tllatiotL.

Thi._ _o(+ti(m will fi)('u,_ <., the aHl<)ma.tion level of the <'ur'r'ent ('.FI) syslem for Ill(, at)l)li('ati()ns

dis('u,_._(,d in se('ti()n 3. Th()se al_(>rilhmic steps in lhe <'urrenl ('FI)syslem des('ril)e<l in section :2

whi('h require user-interaction are i<len(ified. This i(lentifi('ati()n is necessary in order t.() as._ess the
[)()(eulial f<)t"an in('reased level <)f aut()ma, ti<>n.

A Wilh respect _o ?geometry definition (step 1)an aircraft configuration is usually defined in

terms of sta.nda)'<I (I:\I) data. format. Extensive user intera.('tio)l is required to :egenerate a

)nulti-1)lo<k grid (such a.s fi)r (he wing/bo<ly ('onii_uralion) which is suited as input f()r the

current (;l"l)-system. ('()nsequently the l)rOblem-turnar()un<l-time is large for mu]ti-I)lo(:k
based _eomet )'ies.

T'he detinition of far tield boundaries (step 1) (such as for tile wing/l)ody contiguration)

requires ,s(,r intera.('tion. The tel)elegy of a three-dimensional far" field cube, tile dimensions

()f the cube and the relati<))l with between ('ut)o and the aircraft configuration have to 1)e
e,_t a.1)li,_he(I.

The definition of tl)e distrit)ution function (steps 2 and 3), which controls the size and ._hat)e of

))'ian?_iles in tile surface trian_;ulalion and tetrahe<lral elements in the three-dimensional ?__;vi<l,

re(luiros Its(,)' interaction. Visuali,_ation of the generated surface triangulation i,_ necessary

in (_r<ler t<) il_sl)ec) lhe influence ()f the (lislribution function. A surface tria.ngulalion is

a('('el)te(l if s)]lfi('ie)l( resolution <>f details of tile aircraft configuration (like wing leading and

trailing;e<lgo) is ol)taiued. After modification of the distribution function it is necessary to

regenerate the surface tria.n_ulation. It is observed that the definition of a suitable distribution

function does I)oi. guaranlee a ,_u<'<'e,_sfu] three-dimensional grid generation algorithm. An

intolerably ]a.rpge )lumber of tetrahe<Ira] e]ements may be pgenerate(l in case i)arameters <lefinin_;

(he <listril)uti<)n function are chosen too smal]. For the current (!I:I)-system a,n exl>ert user
is required t<) specify the distribution function.
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D It is necessaryto defineboundarytypes(like symmetryplane, far field or solid wall) ['(_r
eachsurfaceof the flowdomain(step4). This requiresonly a relativesmallamountof llSel"
interaction.

E This requirementalsoholdsfor thespecificationof flowcalculationl)arameters(step5), such
asfor instance:Mach-numl)er,angleof attack, (:FL-numl)er,numberof tlunge-Kuttatime
stepsand Restart-option.

F Inspectionof the flow solutionby visualisation(step7) can have a negative inttuence on

the problem-turnaround-time if the number of nodes in the three-dimensional grid is large.

This effect can 1)e attributed to the fact that the handling of a large data-tile in a multi-user

environment and the operations necessary for visualisation, such as zooming, l)ivoting and

moving, are relatively slow.

(1 In the grid adaption algorithm (step 6) user interaction is required to assess the level of grid

refinement. Initially, default values for the grid adaption parameters are taken. Visual in-

spection then learns whether the surface triangulation has been adapted sufficiently. If the

generated surface triangulation is not acceptable (for instance the level of refinement is too

high) the grid adaption algorithm has to be repeated with modified input-parameters. More-

over, the number of nodes generated in the three-dimensional grid (after adat)tion, remeshing)

is very sensitive to the values of the parameters specified in the grid adaption algorithm. If

the number of nodes generated becomes too large it is necessary to rel)eat the grid adat)tion

algorithm and the three-dimensional grid generation algorithm.

In the near future the focus is on the respective parts requiring extensive user interaction, namely

items A, (; and (;. It is foreseen that the remaining items B, D and F requiring more than minimal

user interaction can be automated.

By constructing an interface with a standard (IA[) data format the generation of a. multi-block

grid as input for the CFD-system can be avoided (item A). The data structure in the current (IFI)

system is capable of handling a standard (_AI) data format. This would already significantly reduce

the amount of user interaction.

The inttuen('e of the distribution function (background grid and source terms)and th_ _ grid a.(lal)ti(m

t)arameters on the tilree-dimensiona.l grid generation algorithm remains ditficult t() estimate (itf,m

(: and G). Ideally, a %nctional relationshit) between these parameters and the numl)or c)f nodes

generated in the three-dimensional grid could contribute here. ttowever, for coml)lex g(,r)motries

this relationship is (liflicult to assess.

5. ('ON('.I,I!SI()NS

The capabilities of the ('.Fl) system haw, been demonstrated for two applications. F()r the AS2S(;

wing/1)ody configuration and the three-dimensional mixed compression airt)reathing inlet contigu-

ra'tion the results so far indicate the l)otential for short turnaround times. An assessment of those

parts in the (',FD system which require user interaction shows that lho automation level can he

increased. The actual problem-turnaround tilne (geometry definition, surface triangulation, 3D

grid generation, flow calculation, grid adal)tion, flow visualisation and l)OSt-processing) lies in the

order of a few clays for both applications.

Moreover, the results indicate that the current (iFD-system produces accurate sohltions. The

upwind-based flow calculation algorithm yields a spatially second-order accurate solution. How-

ever, the boundary conditions are currently only first-order at'curate.
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Surfacetriang.
(;rid nodes triangles

Initial 22275 44546

Adapted 30744 61484

3D (;rid (;eneration Flow cah:.

nodes elements edges time steps

105786 609338 737396 500

222:359 134827.1 1600926 2000

Table 1: Number of nodes and triangles in the surface triangulation, number of nodes and number

of elements in three-dimensional grid for the initial grid and the adapted grid for the AS2S(;

wing/body configuration

Algorithm cpu-time cpu-time Mflops computer

(initial grid) (adapted grid)

Surface triangulation

3I) grid generation

Pre-processing

How calculation

(;rid adaption

3hn 20s

5m 54s

lm 18s

46m 1ls

2m 58s

14m 16s

3m :is

,_h 5m 6s

4

4

3

253

5
I

S(;I-Onyx
NE(: SX3

NE(I SX3

NE(: SX3

NE(' SX3

Table 2: ('pu-times for the respective Mgorithmic steps for the AS28(; wing/body configuration

o
_u

|-_

v

500 1001] 1500 20_ 2500

Runge-Kulto t;me sleps

Figure 1" ('_onvergence history of the flow calculation algorithm for the AS28(; wing/body config-

uration on the initial grid and the adapted grid
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Figure3: Surfacetria,ugul_tioufor"l,h(,AS2_Gwing/bodycouli_ur'+_tioua,fterone._u(we.ssiverefine-
tn en t
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Figure 4: Mach number distribution for the AS28G wing/body configuration on the upper side of

the wing after one successive refinement
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Figure 5: Total pressure distribution scaled with respect to tile fl'eestream values for tile AS28G

wing/body configuration on the upper side of the wing after one successive refinement
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Figure 6: M,_in ildet components _nd terminology
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Figure 7: Impression of the three-dimensional mixed compression airbreathing inlet geometry mod-
el.led by cubic surface and curve representations
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Figure 8: Surface grid at side-wall with refinements at, the side wall and the cowl lip
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Figure9: Sideviewof the Machnumberdistribution. Theflowconditionrepresents"unstarted"
flow: strongbowshockandsubsonicflow in duct
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Figure 10: Side view of the Mach number distribution. The flow condition represents "started"

flow with a final normal shock in the duct
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Figure 11: Detailed view of the Mach-number distribution at the intersection of the side-wall ramp
and the cowl lip. The flow condition represents "started flow" with a final shock in the duct
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