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SUMMARY

A combined geometric approach for computational fluid dynamics is presented for the analy-

sis of unsteady flow about mechanisms in which its components are in moderate relative motion.

For a CFD analysis, the total dynamics problem involves the dynamics of the aspects of geom-

etry modeling, grid generation, and flow modeling. The interrelationships between these three

aspects allow for a more natural formulation of the problem and the sharing of information

which can be advantageous to the computation of the dynamics. The approach is applied to

planar geometries with the use of an efficient multi-block, structured grid generation method to

compute unsteady, two-dimensional and axisymmetric flow. The applications presented include

the computation of the unsteady, inviscid flow about a hinged-flap with flap deflections and a

high-speed inlet with centerbody motion as part of the unstart / restart operation.

INTRODUCTION

The computation of the unsteady fluid dynamics about mechanisms with components in

relative motion has become an important topic in computational fluid dynamics (CFD) [1-5].

One example of such a mechanism is the NASA Variable Diameter Centerbody (VDC) inlet in

which the axisymmetric centerbody can translate and change diameter to adjust the mass flow

rate and stabilize the flow [6,7].

The CFD analysis process involves the aspects of geometry modeling, grid generation, and

flow modeling, as shown in figure 1. When the components of the mechanism are not in relative

motion, the geometry model, if one exists, is used to generate a grid, which is then used in the

flow model and computation. The flow may, or may not, be a function of time. If no solution

adaptive grid method is used, the grid remains fixed for the time interval of the analysis. This

process is sequential with information being passed in one direction from the geometry model

to the grid to the flow model.

When the components of the mechanisms are in relative motion, the geometry modeling,

grid generation, and flow modeling all become a function of time. The main flow of information

continues to be from the geometry model to the grid to the flow model. However, the geometry

modeling and grid generation take on an increased importance. The interrelationships between

the geometry modeling, grid generation, and flow modeling become more important and are

discussed. The approach presented here attempts to use these interrelationships advantageously

to enhance the overall computation of the total dynamics problem.

The focus of the approach is placed on the establishment of a geometry model, which is

composed of a collection of geometric entities representing the components of the mechanism.

This allows for accurate modeling of the mechanism and specification of the geometry motion.

The existence of a geometry model allows the possibility for transfer of geometry data in the
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form of standardized computer-aided-design (CAD) file formats such as the NASA-IGES format

[8]. The work here considers planar geometry with the motion of a geometric entity assumed to

be a rigid body motion.
The flow domain is the enclosed control volume in which the flow equations are solved.

The modeling of the boundary of the domain is generally considered part of the geometry

modeling because the domain boundary entities usually have the same mathematical form as

the geometric entities. The approach presented here places a greater distinction between the

geometric entities and the domain boundary entities because of the possibility of the relative

motion of the geometric entities.
When there is relative motion of the components of the mechanism, it is possible that the

grid will be regenerated in some manner at each time step of the computation. This requires

an efficient grid generation approach. A multi-block, structured grid topology is used in the

work presented here. This choice of topology is due to the desire for accurate and efficient

computation of unsteady, viscous flows. It is assumed that the block topology remains fixed

during the time interval of the computation. This restricts the extent of the geometry motion
to moderate levels. The approach presented here involves the full use of the geometry and flow

models in the grid generation. The grid generation information is associated with the geometric

and domain boundary entities to ensure accurate generation of the boundary grid and grid

dynamics. The association provides a natural formulation of the grid generation problem, which
is used to implement some automation into the grid generation problem. An algebraic, sub-block

method is used to efficiently generate the grid while providing for high grid quality. The same

approach is used to compute the grid dynamics.
A mixed Eulerian-Lagrangian description of the integral form of the Navier-Stokes equations

accounts for the motion of the geometry and flow domain. These equations are discretized for

a cell-vertex, finite-volume approximation. The motion of the cell-faces of the finite-volume are

based on the grid speeds. A time-accurate method is used to integrate the finite-volume equa-

tions. The approach presented here associates the flow boundary conditions with the geometric

and domain boundary entities; allowing a natural specification of the boundary conditions and

improving the association of the flow with the geometry model and grid.

The approach introduced above attempts to use the interrelationships between the aspects of

geometry modeling, grid generation, and flow modeling for the full benefit of the computation of
the total dynamics problem. Because of these interrelationships and the focus on the geometry

modeling, the approach is referred to as the combined geometric approach for CFD.

The details of the approach are presented in the following sections. Some applications of the

approach are presented in the analysis of a hinged flap with sinusoidal flap motion and the VDC

inlet during the unstart / restart operation involving tile motion of the centerbody.

GEOMETRY MODELING

A mechanism is assumed to consist of a set of components defined by some assembly infor-

mation. The components may move relative to each other according to some kinematic relation

as a function of time. The configuration of the mechanism is the spatial relationship of the

components at a certain time. The work presented here assumes that each component moves as

a rigid body in translation and rotation about a point; and not as a deformable body.

A mechanism used to illustrate the concepts of the approach is the NASA Variable Diameter

Centerbody (VDC) inlet [6,7]. The VDC inlet is a mixed-compression inlet being studied at the
NASA Lewis Research Center as a concept for a high-speed inlet for transport aircraft. Figure
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2 shows the mechanical design of the VDC inlet. The VDC inlet is designed to operate at a

cruise Mach number of 2.5 with a 45% internal contraction of the flow using a biconic forward

centerbody. The second and aft cones of the centerbody consist of overlapping leaves which

form an umbrella mechanism which allows the diameter of the centerbody to change to vary the

mass flow of air into the inlet. The centerbody may also translate to adjust the mass flow rate.

There is a bleed slot in the centerbody and bleed holes on the forward interior of the cowl for

the stabilization of the normal shock and improvement of the pressure recovery.

The geometry model of the mechanism consists of a collection of geometric entities which

model the individual components. The geometric entities are defined numerically using a para-

metric coordinate related to the arclength along the entity. The methods of computer-aided-

design (CAD) provide standard procedures for generating such models as m_ttllematical curves

and surfaces [9]. An effective numerical representation of the geometry is the non-uniform ra-

tional B-spline (NURBS) representation. The NASA-IGES format [8], a subset of the Initial

Graphics Exchange Standard (IGES), provides a standard format for transfer of geometry data.

In a design environment, one might expect a geometry model would already exist as part of the

CAD effort and would be available for the CFD analysis.

The work presented here considers a planar geometry model as would be needed for a two-

dimensional or axisymmetric CFD analysis. Each component of the mechanism is modeled as

a single geometric entity (m), represented either as a line segment or a cubic spline curve using

the parametric coordinate (u), which corresponds to the arclength along the geometric entity.

Figure 3 shows the planar geometry model for the VDC inlet with the individual geometric

entities identified.

Each geometric entity is assumed to move as a rigid body, which allows an efficient modeling

of the geometry using the parametric coordinate since the mathematical description of the curves

only needs to be computed once, at the start of the computation.

The variable centerbody of the VDC inlet is modeled by specifying the dynamics of certain

entities. The change in diameter of the centerbody is modeled by the rotation of the geometric

entities defining the second and aft cones about their respective points of rotation as shown in

figure 3. The translation of the centerbody is modeled by the translation of the geometric entities

defining the centcrbody nose, second cone, aft cone, and aft centerbody. The dynamics of these

geometric entities are defined by simple kinematic relations. Figure 4 shows a variation of the

centerbody in which the centerbody has translated forward and the second-cone has rotated to

match the angle of the nose cone.
Geometric information is obtained from the geometry model as a function of the geometric

entity (m), parametric coordinate (u), and time (t). Information that is available is the position

coordinates (r-'), velocity (r-*), tangent vector ([), normal vector (h), acceleration (r-*), second-

derivative (_'"), and curvature (to). A single subroutine in the code provides this information

by referencing the geometry model and entity kinematic state for the given time.

This approach for the geometry modeling may seem excessive for a simple planar geometry,

but it sets a framework for the handling a more complex geometry model for three-dimensional

mechanisms.

DOMAIN MODELING

The domain modeling involves defining the boundary of the flow domain. Part of the bound-

ary will consist of the geometric entities of the geometry model. The remaining part of the

boundary requires domain boundary entities to be defined such that the flow domain is en-

closed.
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The domain boundary entities are defined mathematically the same as the geometric entities

of the geometry model. Thus, the domain boundary entities may be specified in the same manner

as the geometry model. In figure 3, the domain boundary entities include the inflow, farfield,

and outflow entities.

The relative motion of some of the geometric entities of the geometry model requires that

some domain boundary entities be of variable geometric representation. These entities axe

called variable domain boundary entities. For the planar VDC inlet model shown in figure 3,

the bleed slot entity will be of variable shape as the second cone and aft cone are rotated. As the

centerbody is translated, the a2ds-of-symmetry and aft centerbody entities will change shape.

Figure 4 shows the change of shape in these variable domain boundary entities.

Defining the flow domain is a secondary task in the CFD analysis and one suited for automa-
tion. Such automation will require the use of information about the geometry and flow models.

The approach presented here provides a framework for providing that information.

GRID GENERATION

When there is relative motion of the geometric entities, the grid becomes a function of time.

The grid will then be regenerated in some manner for each time step in the CFD analysis. This

requires an efficient grid generation method.
The work presented here uses a multi-block, structured grid topology with grid lines matching

contiguously across blocks. The choice of this topology was due to the desire for accurate and

efficient computation of viscous flows. Further, the problems of interest (VDC inlet) did not

warrant a more general grid topology such as overset or unstructured grids. Yet, many of the

ideas of the approach are applicable to other grid topologies.

For the planar domains of this work, a block is a quadrilateral. A face of the quadrilateral

is defined by specifying the entities which comprise the face. To enclose the quadrilateral, block

interface entities may have to be defined. The block interface entities also divide two blocks in

the domain. These are represented in the same mathematical form as the geometric and domain

boundary entities. Thus the block interface entities may be specified in the same manner as the

geometry model. Figure 3 shows the block interface entity for the VDC inlet.

The block represents a (_,T/) generalized coordinate system. The generalized _-coordinate

of the structured block is commonly directed in the streamwise direction while the generalized

_-coordinate is commonly directed in the transverse flow direction. To reduce the amount of

work required to generate a grid, each block is limited to only one entity in the T/-direction (_,,_n

and _,,_= faces).

It is assumed that the topology of the block remains fixed throughout the computation. This

imposes a limitation on extent of the motion of the components and limits the generality of the

approach, but it minimizes the amount of work required to regenerate the grid at each times

step.

The grid generation is performed efficiently by the use of algebraic methods. Quality grids

are obtained by sub-dividing a block into sub-blocks according to the geometric features of the

entities. Each sub-block is usually small enough to approximate the shape of a generalized

"rectangle". A face of a sub-block contains at most one entity and may contain only a portion

of an entity.

Figure 5 shows how the domain for the VDC inlet has been divided into two blocks with sub-
blocks. The first block extends from the inflow boundary through the diffuser to the compressor

face. Block 2 extends from the inflow boundary over the cowl to the exterior outflow boundary.
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Sincethere is only one entity along in the q-direction of a block, the entities that define

the q-constant boundaries of each sub-block are defined. The _-constant boundaries of the sub-

block are either the _,_in boundary of the block, the _m_x boundary of the block, or a sub-block

boundary. The sub-block boundary is defined using a two-point cubic spline with the endpoint

tangents specified as the normal vectors of the entities on the qmin and r/max faces of the sub-

block. Figure 5 shows how these sub-block boundary curves intersect the entities at right angles.

This orthogonality helps generate an interior grid that is orthogonal to the entities.

The endpoint normal vector used to construct the sub-block boundary curve may have

different directions if the slopes of the entities at a junction of two entities do not match. This is

illustrated in figure 6. The choice of which normal vector to use is based on the flow boundary

conditions for the entities. For example, if entity B is a solid wall boundary condition while

entity A is a freestrcam boundary condition, the normal vector from entity B would be used

since it is felt that it is more important to resolve the solid wall flow than the freestream flow.

One feature of the combined geometric approach is that the grid generation information

such as grid density, grid spacing along the boundary, and grid spacing normal to the boundary

is associated with the geometric entities. This allows for a more natural procedure for the

specification of this information. One can sense the number of grid points and the spacings that

may be needed to resolve the flow along and normal to an entity. One constraint is that the

number of grid points need to match across the block and not introduced excessive grid line

skewing.

Once, the geometry of the sub-block is defined, the grid density and spacing are defined along

the boundaries. A hyperbolic tangent method is generally used to distribute the boundary grid

points with respect to the parametric coordinate of the geometric entity [10]. Each boundary

grid point is associated with a parametric coordinate on a geometric entity. This ensures that

the boundary grid will always adhere to the time-dependent geometry.

The association of the grid and geometry allow geometric information such as position coor-

dinates (_, velocity (r"), tangent vector (t'), normal vector (_), acceleration (r'*), second-derivative

(7"), and curvature (_) to be available for use in the grid generation methods.

In a CFD analysis, grid generation is a secondary activity in that it is a means to an

end: the computation of the flowfield. Ideally, grid generation should be fairly automatic and

transparent to the analyst. Proper automation of grid generation requires information on the

geometry and flow conditions. The interrelationships between the geometry model, grid, and

flow model as highlighted in this approach lends itself to an automated procedure for determining

the grid density and spacing along the entities. Using information on the geometric properties

of the entity, the flow boundary conditions, and grid quality parameters such as minimum and

maximum grid spacing, maximum grid spacing ratio, and minimum and maximum grid aspect

ratio, the appropriate number of grid points and their spacing are determined along each entity.

Once the grid points are distributed along the sub-block boundaries, the volume grid can

be generated using a transfinite-interpolation method. Since a sub-block maintains a fairly

"rectangular" shape, a transfinite-interpolation works well.

Figure 7, 8, 9 show examples of grid generated using the sub-block, algebraic grid method.

The grid for the VDC inlet is shown for the entire domain in figure 7, while figure 8 shows a

close-up of the grid in the throat region of the VDC inlet with the centerbody moved. Figure 9

shows the grid for the hinged-flap at a 15 degree angle-of-attack.

The motion of the geometry requires the grid motion to be computed for each time step.

Several strategies are investigated for generating the dynamic grid and computing the grid

speeds. First, one can regenerate the grid at each point in time based on the current configuration
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of the geometricmodel.Thegrid speedscan thenbedeterminedthrougha time-differenceof a
sequenceof grids.A secondstrategyis to start with an initial grid and deform it as a geometric

entity is moved. Again the grid speeds can be determined through a time-difference. A third

strategy is to start with an initial grid and directly compute the grid speeds as a boundary-

value-problem using the knowledge of the velocities of the entities. The time-dependent grid is

then obtained through a time-integration of the grid speeds.

FLOW MODELING

The integral form of the Navier-Stokes equations for a time-varying control volume is

d Iv UdV + fs H.fidS = 0 (1)-_ (t) (t)

where U is the algebraic vector of conservative variables,

v': (p, pv, E,) (2)

where for a perfect gas,

[ i )]E_=p e+_ (f.f

and p and p are the primitive variables of pressure, and density.

Cartesian coordinates is
f =u_ + vL

The H is the flux dyadic, which for a mixed Lagrangian-Eulerian description [11] is,

The velocity vector, 17, in

(3)

H = F-_U. (4)

The ff is the velocity vector of the boundary of the control volume. In Cartesian coordinates, it

is

= xr i + y_j. (5)

An Eulerian description is obtained for _ = 0 while a Langrangian description is obtained for

The F is the Cartesian flux dyadic for the two-dimensional, unsteady Navier-Stokes equa-

tions. The flow equations are complete with Sutherland's formula, the definition of the Prandtl

number, and the assumptions of a perfect gas (air) and laminar viscous flow. A Reynolds av-

eraging is used to approximate turbulence effects and a turbulence model provides the eddy

viscosity.

The flux dyadic can also be expressed as

H = C - D, (6)

where C is the portion of the flux dyadic containing the convective terms,

o--
and D is the portion of the flux dyadic containing the non-convective terms.

(7)
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Equation1canbeexpressedin a compactform of

where

dO + & 0 (8)
dt

fJ = [ U dV (9)
JV (t)

and

= _ H. hdS. (10)
Js (t)

The solution of the flow equations require the specification of the flow boundary conditions.

One feature of the combined geometric approach is that the boundary conditions are associated

with the entities of the geometry model. For example the curves defining the surfaces of the inlet

(i.e. nose cone, cowl, etc...) are specified to be solid wall boundary conditions which are slip
surfaces for inviscid flow analysis and non-slip walls for viscous flow analysis. The flow domain

boundaries not representing the inlet surfaces are specified to be inflow or outflow boundaries.

Associating the flow boundary conditions with entities allows the possibility that for a moving

geometry and grid, the boundary grid points move from one geometric entity to another. Thus,

the grid point may change the type of boundary condition with which it is associated.
One issue that arises is what boundary condition to impose at a grid point located at the

junction of two entities if the entities are associated with different boundary condition types?

These issues are resolved by defining a hierarchy for the flow boundary conditions. For example,

at the junction of an entity defined as a non-slip wall and an entity defined as an inflow boundary,

the non-slip wall would get more priority and the boundary grid point would be imposed as a

non-slip boundary condition.

The existence of a geometry model allows its use by the flow boundary condition modeling.

The physical boundary condition for a slip wall can be specified as

p, (0. - ThS. (11)

Commonly, fi is computed from the local grid. Since the boundary grid point is associated to a

geometric entity through a parametric coordinate, the exact normal vector can be determined

easily. Further, the pressure at the surface can be determined through a normal projection of

the of the momentum equation at the wall,

Op . (12)

Again the geometry model can be accessed to obtain the tangent vector [ and the curvature of

the wall a.

TIME-DEPENDENT COMPUTATION OF THE DYNAMICS

A cell-vertex, finite-volume approximation is applied for the spatial discretization of equation

8. The discretization allows for two-dimensional and axisymmetric planar flow domains. The

temporal discretization is applied using an explicit, two-stage Lax-Wendroff method [12]. The

time-marching algorithm for a time step Ar is of the form

^ * _ n ^ n

= Ri, j ,Ui,j Ui,j + Ar (13)
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Ui,j = Ui,j + Ar Ri,j, (14)

and

0. _+1 1 f
^ n ^ **= -2 UiJ + Ui 'j }" (15)t12

The /) and /_ denote the algebraic vectors of the generalized conservative variables and flux

residual, respectively. The/)" is defined as

/)" = U V, (16)

where V is the volume of the finite-volume cell. The/_ is defined as

Ri,j = Fi+,/2,j - _'i-,/2,j + ['i,j+,/2 - Fi,.i-1/2, (17)

where the flux vector for a cell face is defined as

P = H.ridS. (18)

The inviscid fluxes are computed using the Roe flux-difference splitting with a TVD limiter

as presented in reference [12]. The viscous fluxes are computed using differences and averages

computed at the cell faces. The time step is computed using the CFL condition.

Characteristic boundary conditions are used to compute the solution points on the bound-

aries. The flow conditions at the compressor face boundary of the VDC inlet were applied using

a variation of the method discussed in reference [13]. This involved specifying the average Mach

number at the compressor face, which allowed the pressure to vary and was shown to be a

non-reflecting boundary condition.

The V needed to decode /J is computed from the geometric conservation law as discussed

in references [14] and [15]. The geometric conservation law relates the change in volume of the
cell to the motion of the cell faces and is derived from the flow integration equations with the

assumption of a uniform solution for the conservative variables. The geometric conservation law
follows the form of equations (13) to (15) with U = V and /_ = 2 where 2 is the vector sum of

speeds of the cell faces.

APPLICATIONS

Some preliminary inviscid computations involving dynamic grids are presented below.

Simple Hinged Flap

A simple mechanism with relative motion of its components is a plate with a hinged flap

at the end of the plate. The flap is specified to rotate about its hinge in a sinusoidal manner

with an amplitude of 15 degrees and a period of 0.03 seconds. The time scale of the motion is

perhaps unrealistic for a flap or aileron motion on an aircraft; however, it serves to demonstrate

the dynamic grid capabilities.

The analysis assumes an inviscid flow with a freestream Mach number of 2.0. The steady-

state flow is obtained with the flap at zero degrees deflection and no movement of the geometry.

Once the steady-state flow has been obtained, the flap is set in motion. Figure 9 shows the grid

with a flap deflection of 15.0 degrees. The time-variation of the Mach number contours is shown

in figure 10. The time-varying formation and disappearance of the shocks and expansions can be

seen. To get some evaluation of the accuracy of the flow computation, the variation of the Mach
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number at the midpoint of the upper surface of the flap during the first and third periods of the

flap motion was compared to the Mach number computed from steady flow, inviscid supersonic

theory [16]. Figure 11 shows that the comparison is fairly good. The computed Mach number

for the compression portion of the flap motion compares well to the steady flow theory ; however,

in the expansion portion, the Mach number compares less. This suggests that dynamic effects

may be more significant in the expansion region.

The flap motion problem is similar to other problems of interest in aeropropulsion. One such

problem is the unsteady flow about a thrust-vectored nozzle.

NASA VDC Inlet

The unsteady flow through the VDC inlet during the unstart / restart operation is now

analyzed. At the cruise conditions, the inlet is in a supercritical mode in which a normal shock

is positioned just aft of the centerbody bleed slot. This allows for a shorter diffuser, which saves

on weight of the inlet, and for a maximum total pressure recovery. The disadvantage of this

shock placement is that the shock is sensitive to flow perturbations and may unstart. During

unstart, the shock moves forward in the inlet. Once past the throat, the shock is forced to be

expelled from the inlet. This creates a bow shock ahead of the cowl lip, resulting in significant

drag. A buzz cycle will develop if the inlet is not restarted. For the VDC inlet, restart is

achieved through a slight forward translation of the centerbody, a reduction in the diameter

of the centerbody, and an opening of the bypass doors to reduced the back pressure at the

compressor face.

A preliminary inviscid flow computation is presented to show the nature of the flowfield

during the unstart / restart operation. The steady-state flow is computed for a freestream Mach

number of 2.5 with the inlet at an angle-of-attack of 0.0 degrees. The Mach number at the

compressor face was set at 0.31, which is just slightly greater than the design compressor face

Mach number. This places the terminal shock at a position x/rcowt = 3.25, which is greater

than the design position of x/rco_ol = 2.73.

The computed pressures along the forward portion of the centerbody compared very well

with data from wind tunnel tests [7]. However, comparisons in the diffuser were not comparable

since the actual flow is dominantly viscous.

The inlet is forced to unstart through an impulse at the compressor face of the Mach number

of a magnitude of -0.12 over a time interval of 0.01 seconds. The pressure pulse that is created

at the compressor face travels upstream in the diffuser and interacts with the terminal shock,

which is then forced forward. The shock passes ahead of the throat. When the shock reaches

the shock sensor, the restart process begins with a start in the motion of the centerbody. For

this analysis, the centerbody was set to translate a distance of 0.2 units forward and the second

cone angle rotates from an angle of 18.5 degrees to a angle of 12.5 degrees, which is equal to the

angle of the nose cone. The centerbody motion occurs over a time interval of 0.05 seconds. The

compressor face Mach number is increased from a value of Mach 0.31 to 0.50 to simulate the

opening of the bypass doors and the reduction of the back pressure. Figure 12 shows a sequence

of Mach number contours for the unstart / restart operation. The shock is expelled from the

inlet and proceeds a short distance ahead of the cowl lip before returning to the cowl lip and

entering the inlet. A new terminal shock begins to form in the diffuser as the flow ahead of it

becomes supersonic. Once the terminal shock is formed, the centerbody returns to its design

position and the compressor face Mach number returns to a value of 0.31.

The analysis of the unstart / restart fiowfield continues. At this point it is evident that the

motion of the centerbody is significant to the restart operation.
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CONCLUSIONS

For the CFD analysis of a mechanism involving the relative motion of its components, the

aspects of geometry modeling and grid generation become a function of time, as does the flow

modeling, and take on an increase importance in the problem. The combined geometric approach

presented in this paper has examined some of the interrelationships between the geometry mod-

eling, grid generation, and flow modeling and has shown that these interrelationships provide for

a more natural formation of the problem and can be used advantageously in the computation

of the total dynamics problem.
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Figure 1: The aspectsof the CFD analysisprocess:geometrymodefing,grid generation,and
flowmodeling

Figure2: The mechanical design of the NASA Variable Diameter Centerbody (VDC) inlet
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Figure 3: The entities of the planar geometry, flow domain, and block interface for the VDC
inlet

_t]/Design (Cruise) Centerbody Configuration

___'_ Varied Centerbody Configuration:

Second Cone Angle: 12.5 degrees (equal to nose cone angle)

Centerbody Translation: - 0.2 x / rcowl

Figure 4: An example of the geometric variation of the VDC inlet

J

Sub-Block Boundaries

Figure 5: The block and sub-block boundaries for the grid for the VDC inlet
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Entity A Junction of entities

Figure 6: The junction of two entities of a planar geometry
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Figure 7: The multi-block grid for the inviscid analysis of the VDC inlet during the unstart /

restart operation
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Figure 8: A closeup of the grid in the throat region of the VI)C inlet with the centerbody
translated and second and aft cones rotated

Figure 9: The grid for the hinged flap at a hinge angle of 15.0 degrees
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Figure 10: The sequence of Mach number contours for the inviscid analysis of the hinged flap

with a freestream Mach number of 2.0 and zero degrees angle-of-attack
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Figure Ii: The comparison of the time-variation of the computed Mach numbers with the

steady-state, oblique shock theory at the midpoint of the top surface of the hinged flap
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Figure 12: The sequence of Mach number contours for the inviscid analysis of the unstaxt /

restart operation of the VDC inlet with centerbody translation and change of diameter
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SOFTWARE SYSTEMS (2)
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