https://ntrs.nasa.gov/search.jsp?R=19950022828 2020-06-16T07:45:18+00:00Z

NASA-CR-197654

N((3-1/

EFFECTS OF THE COOLING SYSTEM PARAMETERS ON HEAT TRANSFER AND PERFORMANCE OF THE PAFC STACK DURING TRANSIENT OPERATION

P- 407

CR

RABI M. J. RIDHA

Master of Science in Mechanical Engineering South Dakota State University 1987

Bachelor of Science in Mechanical Engineering KUWAIT University 1935

Submitted in partial fulfillment of the requirements for the degree

DOCTOR OF ENGINEERING

at

The Cleveland State University

(NASA-CR-197654)EFFECTS OF THEN95-29249COOLING SYSTEM PARAMETERS ON HEATTRANSFER AND PERFORMANCE OF THEUnclassPAFC STACK DURING TRANSIENTUnclassOPERATION Ph.D. Thesis (ClevelandState Univ.)407 p

G3/34 0055109

poor quality document.

This dissertation has been approved for the Department of Mechanical Engineering and the College of Graduate Studies by Λ

(Dissertation Committee Chairperson)

Dr. K. Alkasab Mechanical Engineering Department/ 8 - 31 - 1992(Department/Date) Dr. W. J. Atherton Mechanical Engineering Department/ 8-31-92 Department/Date) Dr. P. M. Flanagan Mechanical Engineering Department/ /9/92 (Department/Date) Dr. P. D. Hambouger Physics Department/ 8-31-199. (Department/Date) Dr. A. Presler Analex Corp. (None Voting Member)/ 8-31-92 NASA Lewis Research Group (Department/Date) Mhan Talu Dr. Orhan Talu 8/51/92 Chemical Engineering Department/

(Department/Date)

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and deep gratitude to my advisor, Dr. K. Alkasab. Committee Chairman and Dissertation Advisor. His heartly devotion, constructive instructions and continuous encouragement during the course of the presented investigation were simply invaluable.

I would like to extend my appreciation to Dr. W. Atherton, Dr. P. Flanagan, Dr. P. Hambourger, Dr. A. Presler and Dr. O. Talu for serving on my Dissertation Committee.

I shall be eternally indebted to my parents, Dr. M. Ridha and Mrs. S. Shuwky, for their infinite support and understanding, and to my wife, Dr. W. Al-Dhahir, for her precious faith and endless patience. I am grateful to my parent-in-laws, Dr. M. Al-Dhahir and Mrs. A. Al-Attar for their never-ending confidence.

Special thanks to Mr. Thomas Heinen and Mr. Charles Owen from Heinen's Incorporated for their encouragement as friends and superiors.

Lust, but not least, I would like to acknowledge the financial support of the NASA Lewis Research Center.

Rabi M. Ridha

iii

b Mil (1.14) 🗇

EFFECTS OF THE COOLING SYSTEM PARAMETERS ON HEAT TRANSFER AND PERFORMANCE OF THE PAFC STACK DURING TRANSIENT OPERATION

RABI M. J. RIDHA

ABSTRACT

An experimental investigation for the effects of transient operation of a phosphoric acid fuel-cell stack on heat transfer and temperature distribution in the electrodes has been conducted.

The proposed work utilized the experimental setup with modifications, which was designed and constructed under NASA Contract No. NCC-3-17(5). The experimental results obtained from this investigation and the mathematical model obtained under NASA Contract No. NCC3-17(4) after modifications, were utilized to develop mathematical models for transient heat transfer coefficient and temperature distribution in the electrode and to evaluate the performance of the cooling system under unsteady state conditions. The empirical formulas developed were then implemented to modifying the developed computer code.

Two incompressible coolants were used to study experimentally the effect of the thermophysical properties of the coolants on the transient heat transfer coefficient and the thermal contact resistance during start-up and shut-down processes. Coolant mass flow rates were verified from 16 to BB 2 Kg/hr during the transient process when the electrical

i٧

power supply was gradually increased or decreased in the range (0 to 3000 W/m^2). The effect of the thermal contact resistance with a range of stack pressure from 0 to 3500 KPa was studied.

TABLE OF CONTENTS

1

nan na ta sun function de seus ennemente en la sur contra marche de la seu actual de seus estas estas estas est

PAGE

		•
CHAPTER I	INTRODUCTION	1
···	1.1 Fuel Cells	1
	1.2 Fuel Cells Classification and Advantages of PAFC	3
	1.3 PAFC System	5
	1.3.1 Fuel Processor	5
	1.3.2 Fuel Cell Subsystem	5
	1.3.3 Power Conditioning Subsystems	8
	1.4 Fuel Cell Transient Operational Mode	8
	1.4.1 Cold Start-Up	8
	1.4.2 Warm Start-Up	9
	1.4.3 Warm Shut-Down	9
	1 A A Cold Shut-Down	9
	1.4.5 Fmergency Shut-Down	9
	1.4.6 Emergency Stop	10
CHAPTER II	LITERATURE REVIEW	13
OUNDER IT	EXPERIMENTAL SET-UP	20
CHAPIER III	3.1 Fuel-Cell Unit.	20
	3.2 Power Supply Unit	22
	3.2 Theulation. \cdots	22
a da ser a ser	Soling System.	25
	3.4 COOLING DIDUNE Measurement Equipment	29
	3.5 Temperature Measurement = 4.44	

vi

		PAGE
	3.6	Flow Measurement Equipment 29
	3.7	Data Acquisition System
	3.8	Fuel Cell Stack Pressure Control and Measurement Equipment
	3.9	Testing Procedure
	3.10	Interface Temperature Differential Measurements
	3.11	Experimental Results Accuracy 35
CHAPTER IV	MATHE	MATICAL MODEL OF TRANSIENT HEAT TRANSFER
	IN TH	IE FUEL CELL STACK
	4.1	Transient Heat Transfer Analysis for the Cooling System
		4.1.1 Heat Transferred to the Cooling Fluid
		4.1.2 Transient Convective Heat Transfer Coefficients and Nusselt Number
		4.1.3 The Experimental Overall Heat Transfer Coefficient 46
	4.2	Experimental Results
	•	4.2.1 Start-Up Process
	•	4.2.1.1 The Variation of the Transient Nusselt Number as a Function of the Cooling System Flow Characteristics (a) Water Coolant
		4.2.1.2 Measurements of the Transient Thermal Contact Resistance
		4.2.1.3 The Effect of the Stack Pressure and Cooling System Flow Characteristics on the Transient Overall Heat Transfer Coefficient (a) Water Coolant

and the second stream of the second second

.......

C. HELLING

1

4.2.2	Shut-Down Process 65
	 4.2.2.1 The Variation of the Transient Nusselt Number as a Function of the Cooling System Flow Characteristics
	4.2.2.2 Measurement of the Transient Thermal Contact Resistance 65
·	<pre>4.2.2.3 The Effect of the Stack Pressure and Cooling System Flow Characteristics on the Experimental Transient Overall Heat Transfer Coefficient</pre>
4.3 Develo	ped Experimental Correlations 78
4.3.1	Start-Up Process 79
	4.3.1.1 Transient Convective Heat Transfer Coefficient and Nusselt Number (a) Water Coolant 79 (b) Oil Coolant
•	 4.3.1.2 Transient Thermal Contact Resistance and Effective Temperature Drop
· · · · ·	4.3.1.3 Calculated Transient Overall Heat Transfer Coefficient (a) Water Coolant (b) Oil Coolant 98
4.3.2	Shut-Down Process 105
	4.3.2.1 Transient Convective Heat Transfer Coefficient and Transient Nusselt Number

• • •	· · ·	4.3 Res Temp (a) (b) 4.3 Over (a) (b)	2.2 Transient Thermal Contact istance and Effective perature Drop
CHAPTER V	TRANS	SIENT EI	LECTRODE TEMPERATURE DISTRIBUTION
· ·	5.1	Experi During	mental Temperature Profiles Start-Up Process 131
· .	•	5.1.1	The Effect of the Stack-Pressure on the Transient Temperature Distribution
	•	5.1.2	The Effect of the Cooling System Flow Rate on the Transient Temperature Distribution 142
· ·	5.2	Shut-Do	own Process 148
		5.2.1	The Effect of the Stack- Pressure on the Transient Temperature Distribution148
•	·	5.2.2	The Effect of the Cooling System Flow Rate on the Transient Temperature Distribution
	5.3	Theore Electro	tical Analysis of the Transient ode Temperature Distribution154
. ·	5.4	Accura	cy of the Theoretical Analysis. 164
		5.4.1	Start-Up Process 164
		5.4.2	Shut-Down Process 192
CHAPTER VI	CURRI	ENT DEN	SITY DISTRIBUTION 235
	6.1	Transi Distri	ent Electrode Current Density bution During a Start-Up Process 236

No. of the second s

ş

Contraction Contraction

SAMPLE IN

の「日本」を知いていたかいというという

6.2 Transient Electrode Current Density Distribution During a Shut-Down Process 259

CHAPTER VII	DISCUSSION OF RESULTS AND ACCURACY ANALYSIS. 263
CHAPTER VIII	CONCLUSION AND RECOMMENDATIONS
	8.1 Conclusion
	8.2 Recommendations
REFERENCES .	
APPENDIX A-1	WATER COOLANT HEAT TRANSFER CHARACTERISTICS. 290
APPENDIX A-2	WATER COOLANT THERMAL CONTACT RESISTANCE AND
	AFFECTIVE TEMPERATURE DROP
APPENDIX B-1	OIL COOLANT HEAT TRANSFER CHARACTERISTICS 300
APPENDIX B-2	OIL COOLANT THERMAL CONTACT RESISTANCE AND
	AFFECTIVE TEMPERATURE DROP
APPENDIX C	PART I: EXAMPLES OF TEMPERATURE DISTRIBUTION DURING START-UP PROCESS WITH OIL COOLANT 311
APPENDIX C	PART II: EXAMPLES OF TEMPERATURE DISTRIBUTION DURING SHUT-DOWN PROCESS WITH OIL COOLANT
APPENDIX D	CURRENT DENSITY DISTRIBUTION DURING SHUT-DOWN PROCESS
APPENDIX E	EXPERIMENTAL (t_) TEMPERATURES

and the states

10.0

PAGE

.

LIST OF TABLES

TABLE	P	AGE
I.	Start-Up Process with Water Coolant (P=3500 KPa, Re=1250)	168
II.	Start-Up Process with Water Coolant (P=0 KPa, Re=1250)	172
III.	Start-Up Process with Water Coolant (P=3500 KPa, Re=3321)	176
IV.	Start-Up Process with Water Coolant (P=0 KPa, Re=3321)	180
v.	Start-Up Process with Water Coolant (P=3500 KPa, Re=6167)	184
VI.	Start-Up Process with Water Coolant (P=0 KPa, Re=6167)	188
VII.	Shut-Down Process with Water Coolant (P=3500 KPa, Re=1250)	195
VIII.	Shut-Down Process with Water Coolant (P=0 KPa, Re=1250)	202
IX.	Shut-Down Process with Water Coolant (P=3500 KPa, Re=3321)	• 209
х.	Shut-Down Process with Water Coolant (P=0 KPa, Re=3321)	• 215
XI.	Shut-Down Process with Water Coolant (P=3500 KPa, Re=6167)	• 221
XII.	Shut-Down Process with Water Coolant (P=0 KPa, Re=6167)	• 228

xi

TABLE

APPLANE & SHALL F

A-1-1.	Heat Transfer Characteristics During Start-Up Process (Water Coolant, P=0 KPa, Re=15)
A-1-2.	Heat Transfer Characteristics During Start-Up Process (Water Coolant, P=3500 KPa, Re=15) 292
A-1-3.	Heat Transfer Characteristics During Shut-Down Process (Water Coolant, P=0 KPa, Re=15)
A-1-4.	Heat Transfer Characteristics During Shut-Down Process (Water Coolant, P=3500 KPa, Re=15)294
A-2-1.	Effective Temperature Drop and Thermal Contact Resistance During Start-Up Process (Water Coolant, (P=0 KPa, Re=15)
A-2-2.	Effective Temperature Drop and Thermal Contact Resistance During Start-Up Process (Water Coolant, (P=3500 KPa, Re=15)
A-2-3.	Effective Temperature Drop and Thermal Contact Resistance During Shut-Down Frocess (Water Coolant, (P=0 KPa, Re=15)
A-2-4.	Effective Temperature Drop and Thermal Contact Resistance During Shut-Down Process (Water Coolant, (P=3500 KPa, Re=15)
B-1-1.	Heat Transfer Characteristics During Start-Up Process (Oil Coolant, P=0 KPa, Re=1250)
B-1-2.	Heat Transfer Characteristics During Start-Up Process (Oil Coolant, P=3500 KPa, Re=1250)302
B-1-3.	Heat Transfer Characteristics During Shut-Down Process (Oil Coolant, P=0 KPa, Re=1250)
B-1-4.	Heat Transfer Characteristics During Shut-Down Process (Oil Coolant, P=3500 KPa, Re=1250)304
B-2-1.	Effective Temperature Drop and Thermal Contact Resistance During Start-Up Process (Oil Coolant, (P=0 KPa, Re=1250)
B-2-2.	Effective Temperature Drop and Thermal Contact Resistance During Start-Up Process (Oil Coolant, (P=3500 KPa, Re=1250)

. .

PAGE

• .

ţ

ł

ł 4 ł

B-2-3.	Effective Temperature Drop and Thermal Contact Resistance During Shut-Down Process (Oil Coolant, (P=0 KPa, Re=1250)	308
B-2-4.	Effective Temperature Drop and Thermal Contact Resistance During Shut-Down Process (Oil Coolant, (P=0 KPa, Re=1250)	509
c-1.	Example of Temperature Distribution During Start-Up Process with Oil Coolant (P = 0 KPa, Re=15)	312
C-2.	Example of Temperature Distribution During Start-Up Process with Oil Coolant (P = 3500 KPa, Re=15)	316
C-3.	Example of Temperature Distribution During Shut-Down Process with Oil Coolant (P = 0 KPa, Re=15)	321
C-4.	Example of Temperature Distribution During Shut-Down Process with Oil Coolant (P = 3500 KPa, Re=15)	329
D-1.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=1)	338
D-2.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=2)	339
D-3.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=3)	340
D-4.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=4)	341
D-5.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=5)	34 2
D-6.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=6)	343
D-7.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=7)	344

TABLE

1. 1.

内ちしたう

TABLE

A CANADA

The state of the

D-8.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=8)	345
D-9.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=9)	346
D-10.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=10)	347
D-11.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=11)	348
D-12.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=12)	349
D-13.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=13)	350
D-14.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=1)	351
D-15.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=2)	352
D-16.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=3)	353
D-17.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=4)	354
D-18.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=5)	355
D-19.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=6)	356
D-20.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=7)	357

TABLE

Sector States

#

「日本日になっていたち」と

Salation of the

D-21.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=8)	- 358
D-22.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=9)	359
D-23.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=10)	360
D-24.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=11)	361
D-25.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=12)	362
D-26.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, T.I.=13)	363
D-27.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=1)	364
D-28.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=2)	365
D-29.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=3)	366
D-30.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=4)	367
D-31.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=5)	368
D-32.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=6)	369
D-33.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=7)	370

PAGE

а

Т	A	B	L	E
'Ľ	A	D		1

D-34.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=8)	371
D-35.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=9)	372
D-36.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=10)	373
D-37.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=11)	374
D-38.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P=0 KPa, Re=6167, T.I.=12)	375
D-39.	Transient Current Density Distribution During a Shut-Down Process (Water Coolant, F=0 KPa, Re=6167, T.I.=13)	376

LIST OF FIGURES

144

		PAGE
FIGURE		. 4
1.	The Fuel Cell Concept	
2.	The Potential of a Fuel Cell	4
3.	Principal of Operation of Fuel Cells in General	0
4.	Process Flow Chart for a (PAFC) Power Plant	7
5.	Transient Efficiency of an Experimental PAFC on a Co-Generation System	19
6.	Experimental Fuel Cell Model and Interference with Measuring Equipment	21
7.	Component of the Fuel Cell Model	23
8.	Power Supply to Fuel Cell Model	24
9.	Suspension Cooling Plate Dimension	26
10.	Layout of the Cooling System	27
11.	Layout of the Oil Cooling System	28
12.	Fuel Cell Stack Pressurizing System	31
13.	Experimental Power Distribution During the Considered Start-Up Process	-33
14.	Experimental Power Distribution During the Considered Shut-Down Process	34
15.	Location of the Interference Thermocouples	36
16.	Heat Transfer Therocouple Location	43
17-a.	System Measured Temperature	47
17-b.	Experimental Thermal Contact Resistance Measurements	48

PAGE

FIGURE

18.	Experimental Transient Nusselt Number (Start-Up with Water Coolant)	52
19.	Experimental Transient Nusselt Number (Start-Up with Oil Coolant)	53
20.	Experimental Transient Thermal Contact Resistance (Start-Up Condition with Water Coolant Re=1250)	55
21.	Experimental Transient Thermal Contact Resistance (Start-Up Condition with Water Coolant Re=3321)	56
22.	Experimental Transient Thermal Contact Resistance (Start-Up Condition with Water Coolant Re=6167)	57
23.	Experimental Transient Overall Heat Transfer Coefficient (Start-Up Condition with Water Coolant Re=1250)	59
24.	Experimental Transient Overall Heat Transfer Coefficient (Start-Up Condition with Water Coolant Re=3321)	60
25.	Experimental Transient Overall Heat Transfer Coefficient (Start-Up Condition with Water Coolant Re=6167)	61
26.	Experimental Transient Overall Heat Transfer Coefficient (Start-Up Condition with Oil Coolant Re=15)	62
27.	Experimental Transient Overall Heat Transfer Coefficient (Start-Up Condition with Oil Coolant Re=43)	63
28.	Experimental Transient Overall Heat Transfer Coefficient (Start-Up Condition with Oil Coolant Re=80)	64
29.	Experimental Transient Nusselt Number (Shut- Down Condition with Water Coolant)	66
30.	Experimental Transient Nusselt Number (Shut- Down Condition with Oil Coolant)	67
31.	Experimental Transient Thermal Contact Resistance (Shut-Down Condition with Water Coolant, Re=1250)	68

ĥ

Service States

1. N. N.

,É

32.	Experimental Transient Thermal Contact Resistance (Shut-Down Condition with Water Coolant, Re=3321)
33.	Experimental Transient Thermal Contact Resistance (Shut-Down Condition with Water Coolant, Re=6167)
34.	Experimental Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Water Coolant, Re=1250)
35.	Experimental Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Water Coolant, Re=3321)
36.	Experimental Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Water Coolant, Re=6167)74
37.	Experimental Transient Overall Heat Transfer Coefficient (Shut-Dcwn Condition with Oil Coolant, Re=15)
38.	Experimental Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Oil Coolant, Re=43)
39.	Experimental Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Oil Coolant, Re=80)
40.	Analytical Transient Nusselt Number (Start-Up Process with Water Coolant) 81
41.	Analytical Transient Nusselt Number (Start-Up Process with Oil Coolant) 83
42.	Analytical Transient Thermal Contact Resistance (Start-Up Condition with Water Coolant, Re=1250)86
43.	Analytical Transient Thermal Contact Resistance (Start-Up Condition with Water Coolant, Re=3321)87
44.	Analytical Transient Thermal Contact Resistance (Start-Up Condition with Water Coolant, Re=6167)88
45.	Analytical Transient Thermal Contact Resistance (Start-Up Condition with Oil Coolant, Re=15) . 89

PAGE

FIGURE

A DAME OF TAXABLE INC.

The state of the s

A DESCRIPTION OF THE PARTY OF T

46.	Analytical Transient Thermal Contact Resistance (Start-Up Condition with Oil Coolant, Re=43) .	90 ·
47.	Analytical Transient Thermal Contact Resistance (Start-Up Condition with Oil Coolant, Re=80) .	91
48.	Effective Temperature Drop (Start-Up Condition with Water Coolant, Re=1250)	92
49.	Effective Temperature Drop (Start-Up Condition with Water Coolant, Re=3321)	93 [.]
50.	Effective Temperature Drop (Start-Up Condition with Water Coolant, Re=6167)	94
51.	Effective Temperature Drop (Start-Up Condition with Oil Coolant, Re=15)	95 、
52.	Effective Temperature Drop (Start-Up Condition with Oil Coolant, Re=43).	96 ·
53.	Effective Temperature Drop (Start-Up Condition with Oil Coolant, Re=80).	97
54.	Analytical Transient Overall Heat Transfer Coefficients (Start-Up Condition with Water Coolant, Re=1250)	99
55.	Analytical Transient Overall Heat Transfer Coefficients (Start-Up Condition with Water Coolant, Re=3321)	100
56.	Analytical Transient Overall Heat Transfer Coefficients (Start-Up Condition with Water Coolant, Re=6167)	101
57.	Analytical Transient Overall Heat Transfer Coefficients (Start-Up Condition with Oil Coolant, Re=15)	102
58.	Analytical Transient Overall Heat Transfer Coefficients (Start-Up Condition with Oil Coolant, Re=43)	103
59.	Analytical Transient Overall Heat Transfer Coefficients (Start-Up Condition with Oil Coolant, Re=80)	. 104
60.	Analytical Transient Nusselt Number (Shut-Down Condition with Water Coolant)	. 107

61.	Analytical Transient Nusselt Number (Shut-Down Condition with Oil Coolant)	108
62.	Analytical Transient Thermal Contact Resistance (Shut-Down Condition with Water Coolant Re=1250)	110
63.	Analytical Transient Thermal Contact Resistance (Shut-Down Condition with Water Coolant Re=3321)	111
64.	Analytical Transient Thermal Contact Resistance (Shut-Down Condition with Water Coolant Re=6167)	112
65.	Analytical Transient Thermal Contact Resistance (Shut-Down Condition with Oil Coolant Re=15).	113
66.	Analytical Transient Thermal Contact Resistance (Shut-Down Condition with Oil Coolant Re=43)	114
67.	Analytical Transient Thermal Contact Resistance (Shut-Down Condition with Oil Coolant Re=80)	115
68.	Effective Temperature Drop (Shut-Down Condition with Water Coolant, Re=1250	116
69.	Effective Temperature Drop (Shut-Down Condition with Water Coolant, Re=3321)	117
70.	Effective Temperature Drop (Shut-Down Condition with Water Coolant, Re=6167)	118
71.	Effective Temperature Drop (Shut-Down Condition with Oil Coolant, Re=15)	119
72.	Effective Temperature Drop (Shut-Down Condition with Water Coolant, Re=43)	120
73.	Effective Temperature Drop (Shut-Down Condition with Water Coolant, Re=80)	121
74.	Analytical Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Water Coolant, Re=1250)	123
75.	Analytical Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Water Coolant, Re=3321)	124
76.	Analytical Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Water Coolant, Re=6167)	125

:

PAGE

77.	Analytical Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Oil Coolant, Re=15)	126
78.	Analytical Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Oil Coolant, Re=43)	127
79.	Analytical Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Oil Coolant, Re=80)	128
80.	Instantaneous Temperature Profiles During Start-Ups (Water Coolant, P=0 KPa, Re=1250, E.E. = 1500 w/m ²)	133
81.	Instantaneous Temperature Profiles During Start-Ups (Water Coolant, P=0 KPa, Re=1250, E.E. = 2250 w/m ²)	133
82.	Instantaneous Temperature Profiles During Start-Ups (Water Coolant, P=0 KPa, Re=1250, E.E. = 3000 w/m ²)	134
83.	Instantaneous Temperature Profiles During Start-Ups (Water Coolant, P=3500 KPa, Re=1250, E.E. = 1500 w/m ²)	134
84.	Instantaneous Temperature Profiles During Start-Ups (Water Coolant, P=3500 KPa, Re=1250, E.E. = 2250 w/m ²)	135
85.	Instantaneous Temperature Profiles During Start-Ups (Water Coolant, P=3500 KPa, Re=1250, E.E. = 3000 w/m ²)	135
86.	Experimental Transient Average Electrode Temperature During Start-Ups with Water Coolant	136
87.	Instantaneous Temperature Profiles During Start- Ups (Oil Coolant, p=0 KPa, Re=15, E.E.=1500 w/m ²)	138
88.	Instantaneous Temperature Profiles During Start- Ups (Oil Coolant, p=0 KPa, Re=15, E.E.=2250 w/m²)	138
89.	Instantaneous Temperature Profiles During Start- Ups (Oil Coolant, p=0 KPa, Re=15, E.E.=3000 w/m ²)	139
90.	Instantaneous Temperature Profiles During Start- Ups (Oil Coolant, p=3500 KPa, Re=15, E.E.=1500 W/m^2)	139

: :

するとうないと きまたのになって

「日子」をいうない、「日日日」

. .

91.	Instantaneous Temperature Profiles During Start- Ups (Oil Coolant, p=3500 KPa, Re=15, E.E.=2250 w/m^2)	140
92.	Instantaneous Temperature Profiles During Start- Ups (Oil Coolant, p=3500 KPa, Re=15, E.E.=3000 w/m^2).	140
93.	Experimental Transient Average Electrode Temperature During Start-Ups with Oil Coolant	141
94.	Instantaneous Temperature Profiles During Start- Up (Water Coolant, P=0 KPa, Re=6167, E.E.=1500 w/m^{2})	143
95.	Instantaneous Temperature Profiles During Start- Up (Water Coolant, P=0 KPa, Re=6167, E.E.=2250 w/m ²)	143
96.	Instantaneous Temperature Profiles During Start- Up (Water Coolant, P=0 KPa, Re=6167, E.E.=3000 w/m^{2})	144
97.	Instantaneous Temperature Profiles During Start- Up (Oil Coolant, P=0 KPa, Re=80, E.E.=1500 w/m ²)	145
98.	Instantaneous Temperature Profiles During Start- Up (Oil Coolant, P=0 KPa, Re=80, E.E.=2250 w/m^2)	1.45
99.	Instantaneous Temperature Profiles During Start- Up (Oil Coolant, P=0 KPa, Re=80, E.E.=3000 w/m ²)	146
100.	Experimental Average Electrode Temperature During Shut-Down Using Water Coolant	149
101.	Experimental Average Electrode Temperature During Shut-Down Using Oil Coolant	150
102.	Instantaneous Electrode Temperature Profiles During Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, E.E.=2250 w/m²)	151
103.	Instantaneous Electrode Temperature Profiles During Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, E.E.=1500 w/m ²)	151

sharaan in sila

1

104.	Instantaneous Electrode Temperature Profiles During Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, E.E.=0 w/m^2).	152
105.	Instantaneous Electrode Temperature Profiles During Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, E.E.=2250 w/m ²)	152 ्
106.	Instantaneous Electrode Temperature Profiles During Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, E.E.=1500 w/m²)	153
107.	Instantaneous Electrode Temperature Profiles During Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, E.E.=0 w/m²)	153
108.	Geometry of the Theoretical Analysis Model	155
109.	Theoretical Transient Average Electrode Temperature During Start-Ups with Water Coolant.	166
110.	Theoretical Transient Average Electrode Temperature During Start-Ups with Oil Coolant	167
111.	Theoretical Transient Average Electrode Temperature During Shut-Downs with Water Coolant	193
112.	Theoretical Transient Average Electrode Temperature During Shut-Downs with Oil Coolant .	194
113.	Transient Average Current Density During a Start-Up Process (Water Coolant)	239
114.	Transient Average Current Density During a Start-Up Process (Oil Coolant)	240
115.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=1)	241
116.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=2)	242
117.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=3)	243
118.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=4)	244

119.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=5)	245
120.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=3500 KPa, Re=1250, T.I.=6)	246
121.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=1250, T.I.=1)	247
122.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=1250, T.I.=2)	248
123.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=1250, T.I.=3)	- 249
124.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=1250, T.I.=4)	250
125.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=1250, T.I.=5)	251
126.	Transient Current Density Distribution During a Start-Up Process (Water Coclant, P=0 KPa, Re=1250, T.I.=6)	252
127.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=6167, T.I.=1)	253
128.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=6167, T.I.=2)	254
129.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=6167, T.I.=3)	255
130.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=6167, T.I.=4)	256
131.	Transient Current Density Distribution During a Start-Up Process (Water Coolant, P=0 KPa, Re=6167, T.I.=5)	257

FIGURE	the third a
132.	Transient Current Density Distribution During d Start-Up Process (Water Coolant, P=0 KPa, Re=6167, T.I.=6)
133.	Transient Average Current Density During a Shut- Down Process (Water Coolant)
134.	Transient Average Current Density During a Shut- Down Process (Oil Coolant)
135.	Comparisons of the Experimental Overall Heat Transfer Coefficient
136.	I(t) Ratio (Water, Start-Up)
137.	I(t) Ratio (Water, Shut-Down) 269
138.	Comparisons of Experimental Nusselt Numbers. • 270
139.	Transient Average Current Density (Start-Up) • • 272
140.	Comparisons of Experimental and Analytical U(t) Results

PAGE

:

A CALLER PROPERTY AND A CONTRACT OF A CALLER OF

متدكرها هيعاويها يركيب والمطولهات

and search and

ж <u>1</u>

. . · · . - ·

A = Area

記書

「「「「「「」」」」」

 $C_p = Heat Capacity$

D = Diameter

E = Voltage

E.E. = Electrical energy rate per unit area

h = Heat transfer coefficient

K = Thermal conductivity

K_c = Cooling fluid thermal conductivity m = Mass flow rate

Q = Heat transfer rate

Q/A = Heat flux

 λ = Constant

 θ = Constant

t = time

ΔT = Temperature differential

T_u = Wall temperature

T. = Fluid temperature

 $\frac{dT}{dx}$ = Temperature gradient

r = Thermal contact resistance, unless otherwise
 specified

T = Temperature

 ρ = Density

Pr = Prandlt number

Re = Reynolds number

 $\overline{\mathbf{v}}$ = Overall heat transfer coefficient neglecting

the thermal contact resistance

v = Velocity

 \dot{v} = Volumetric flow rate

- ox = Length of element
- η = Dynamic viscosity
- γ = Kinematic viscosity
- U = Overall heat transfer coefficient
- u = Internal energy
- α = Stack pressure constant
- λ = Time constant
- a = Flow constant
- X = x-coordinate
- Y = y-coordinate

P = Pressure

- Nu = Nusselt number
- $\Delta x = Conduction thickness$

i i i i i i i i

CHAPTER I

INTRODUCTION

A phosphoric acid fuel cell power plant is an energy conversion system that can efficiently utilize different hydrogen rich fossil fuels, reduce emission of harmful chemicals, and offer a very economical co-generation system. Therefore, fuel cell system analysis efforts concerned with different systems design and operational criteria are essential for design optimization to improve system performance and cost effectiveness.

1.1 <u>Fuel Cells</u>

A fuel cell is defined as an electrochemical device which can continuously convert the chemical energy of hydrogen fuels and oxidant to electrical energy. Most of the available fuel cells today are primary electrochemical cells, and generate electrical energy in a similar way as the conventional primary cells, such as the very commonly used zinc-manganese dioxide battery. However it should be noticed that the process of galvanic oxidation that actually causes the production of electrical energy in fuel cells and, which resembles the process that produces energy in conventional primary storage batteries, is continuous. That is, mainly due to the fact that the construction of fuel cells permits continuous feed of reactants and continuous

product removal during the irreversible electrochemical oxidation process. Therefore, different design and engineering from that found in the conventional primary storage batteries are required in the case of fuel cells because of that continuous operation. In addition, the fuel cell chemical reactions always involve chemisorption and catalytic processes.

Basically the phosphoric-acid fuel cell system consists of two electrodes, cathode (positive electrode) and anode (negative electrode), separated by an electrolyte. The electrolyte will serve as a medium to transmit ions. Hydrogen, the fuel, is supplied to the anode while oxygen, the cxidant from air, is supplied to the cathode. Utilizing a catalyst on the anode causes the disassociation of the hydrogen molecules (H_2) into hydrogen ions and electrons. Then the hydrogen ions travel through the electrolyte to the cathode and react with electrons supplied by an external circuit load. The hydrogen atoms react with oxygen to form water. This process can be summarized for a H_2-O_2 fuel cell as follows (see Figure 1).

A. Anode Reaction:

 $H_2 - 2H^+ + 2e^-$

B. Cathode Reaction:

 $1/2 O_2 + 2H_2^+ + 2e^- \rightarrow H_2O$

C. The Control Volume Reaction: $H_2 + 1/2 O_2 \longrightarrow H_2O + Q + E.E.$

where:

「「「「「「「」」」」

Q = thermal energy,

E.E. = electrical energy.

The anode reaction and the cathode reaction proceeds until a potential is established. This will bring the reaction into the equilibrium exhibited by the control volume reaction equation. Figure 2 shows the potential relations of a complete fuel cell. In general, the cell potential can be defined as:

 $\Delta E = E_{cathode} - E_{anode}$

1.2 Fuel Cell Classification and Advantages of PAFC

There are several methods of classifying fuel cells, mainly according to their components and structure. An important classification of fuel cells is according to the used electrolyte. Essentially there are three types of fuel cells being developed to be a complete or a co-generation power plant; acid (A), molton carbonate (MC), and solid further fuel cells are These fuel cells. oxide operation temperature of the by distinguished classification.

Acid fuel cells utilize acid electrolytes because acids are tolerant to carbon dioxide which permits the use of hydrogen and oxygen with low purity. Phosphoric acid fuel cells are the most developed fuel cells, according to reference [1]. In addition, PFAC is economical to build and operate due to its simple design, (see Figure 3).

3 -

Figure 2. Potential of Fuel Cell

1.3 PAFC Systems

Figure 4 shows a diagram of a simple phosphoric acid fuel cell power plant. The plant consists of three major subsystems:

- 1.3.1 <u>Fuel Processor</u>: This subsystem consists of three components. The reformer which is a catalytic reactor with variable temperature that can reach 1200°C with a pressure of 10 atm. Double shift converters and heat exchangers will function in association with the reformer to consume fossil fuel such as natural gas, methanol and naphatha to produce hydrogen.
- 1.3.2 Fuel Cell Power Subsystem: Through this stage the Oxygen-Hydrogen reaction takes place and electrical energy, thermal energy and water will be the reaction products. The thermal energy generated is removed continuously by a cooling system to avoid the accumulation of heat which can cause high thermal stresses and electrode plate basically This subsystem failures. fuel-cell stacks. consists of several Cooling is provided to these models by arranging them in a sandwich configuration where the cooling plates surrounds a group

7

「「「「「「「」」」」」」
than 8 hours. Plant control during COLD STARTUP will be manual.

1.4.2 WARM STARTUP

WARM STARTUP transient mode is defined as the plant transient from STANDBY to POWER. The plant will be designed for WARM STARTUP to the minimum POWER condition in a time interval of less than one hour. Plant control during WARM STARTUP will be either automatic or manual.

1.4.3 WARM SHUTDOWN

WARM SHUTDOWN transient mode is defined as the plant transient from POWER to STANDBY. The plant will be designed to complete a WARM SHUTDOWN from minimum power in a time interval of less than one hour. Plant control during WARM SHUTDOWN will be either automatic or manual.

1.4.4 <u>COLD SHUTDOWN</u>

COLD SHUTDOWN transient mode is defined as the plant transient from STANDBY to COLD STOP. The plant will be designed to complete a COLD SHUTDOWN in a time interval of less than 8 hours. Plant control during COLD SHUTDOWN will be manual only.

1.4.5 EMERGENCY SHUTDOWN

EMERGENCY SHUTDOWN transient mode is defined as the plant transient from a faulted condition during power operation to STANDBY. The plant will be designed to complete an EMERGENCY SHUTDOWN in a time interval of less than 1.5 hours; however, plant electrical power output will be disconnected from the utility transmission line in nearly 0.05 seconds. Plant control during EMERGENCY SHUTDOWN will be automatic only.

1.4.6 EMERGENCY STOP

EMERGENCY STOP is defined as the plant transient from a faulted condition during any plant operation or transient to COLD STOP. Plant control during EMERGENCY STOP will be automatic only.

The NASA Lewis Research Center, Fuel Cell Office, as the lead center for the PFAC Technology Program, has directed research and development efforts toward reducing cost, and improving performance and increasing life span, reliability of the fuel cell stack. In the technology area, some of the difficult problems that prevent the attainment of these goals are caused either by high temperatures at some regions of the electrode plate surface or by excessive temperature difference. While high temperature can cause corrosion of various components in the fuel cell module and excessive boiling and evaporation of the electrolyte, high temperature difference between various regions can produce thermal stresses that result in cracking or warping of the These material problems can be cathode and anode plates. especially compounded when the fuel-cell stack is subjected to sudden or gradual change of the electric output which is usually accompanied by a proportional change in the rate of flow of the heat generated. As a consequence, the fuelcell module undergoes a finite volumetric expansion or reduction, depending on the change in the rate of heat generated. In turn, an increase or decrease of the volume of the stack will produce a proportional change in the clamping pressure which is used to hold the stack of fuelcells and cooling plates together. However, the investigations, which were conducted under NASA Grant No. NCC 3-17(5) proved that a strong nonlinear functional relation exists between the clamped pressure and the overall heat transfer coefficient between the coolant and the electrode plates.

Thus, in addition to maintaining an almost uniform temperature on the electrode plates under steady state condition, the cooling system must make the necessary adjustments to cope with the compounded problem of changing the overall heat transfer coefficients and the rate of heat flow under unsteady state conditions. To achieve these tasks, accurate information concerning the nature of the functional relation between the stack clamped pressure and the overall heat transfer coefficient and the temperature distribution in the electrode plates, under unsteady state conditions, will be needed.

It should be noticed that previous work, under NASA Contract No. NCC 3-17(4), was directed to develop a computer model for the transient temperature distribution in the electrode plates and the fuel-cell stack. However, this

contains various heat transfer coefficients that have not been experimentally determined and, thus, have not taken into consideration the effect of the thermal contact resistance which effect the performance of the (PAFC) performance dramatically.

New States in Section 1, other 181

CHAPTER II

LITERATURE REVIEW

Only limited information exists on phosphoric acid fuel cell temperature distribution, stack pressure effects, thermal stability and cooling requirement during transient operational conditions. Alkasab and Lu [1] studied the response of a phosphoric acid fuel-cell stack power plant. They developed a mathematical model to describe the mass and heat transfer rates. A Fortran computer code was developed utilizing the mathematical model to simulate the effect of the current density, cell-plate dimensions, and reactant flow rates, on the temperature distribution. Baker, et. al. [2,3] conducted intensive studies of electrochemical systems. A mathematical method was developed for both thick and thin stacks. The peak stack temperature was estimated for an isothermal wall case. Green's function was used to develop a formula to detect the non-uniformity of heat generation. Westinghouse [4,5] developed a simulation code which uses finite element analysis to calculate currentvoltage characteristics, thermal energy generated and power as a function of the reactants' properties and the fuel-cell temperature distribution. Alkasab [6] et. al. investigated the performance of the PAFC model and succeeded in developing a thermodynamics model. Boyle [7] analyzed the

「日本語」の時代に、日本に、「小小」」

heat transfer characteristics of the turbulent flow through Buggy [8] conducted a feasibility serpentine passages. study of using fuel-cells as commercial electric utilities. NASA [9,10] was heavily involved in several important researches concerning the performance of experimental PAFC under different transient operational conditions. In those studies, the efficiency of the cooling system was tested when separate gas, process gas and liquid cooling fluid are used. NASA [11] presented a comparison that considered the effect of different cooling systems on the performance, construction simplicity, reliability, thermal pollution, and cost of cooling subsystem and electrolyte cost. Two phase inter-cell cooling was tested by U.T.C. [12] for PAFC. The testing revealed the poor performance of that cooling system due to the need to protect the copper tubes in the corrosive acid environment which lead to dramatically reducing the convective and conductive heat transfer rates. Alkasab and Abdul-Aziz [13] conducted an experimental and analytical study of the effects of the cooling system perameters on the electrode heat transfer characteristics and investigated the stack pressure effect on the heat transferred by the coolant, the thermal efficiency, the thermal contact resistance and the effective temperature The study revealed the dependence of the differential. overall heat transfer coefficient and the thermal efficiency on the stack pressure for the different coolants and cooling system configuration used. Significant improvement in both

14

のないなどのないないない。「「ないないない」」というないないないです。

the overall heat transfer coefficient and the thermal efficiency were noticed with higher stack pressure. Abelson [14] monitored the transient performance of a 200 kw PAFC plant and noticed that the equipment can respond rapidly to changes in the loads and efficiency is approximately constant as a function of demand in the interval 30% to 100% of the rated capacity.

Conway [15] considered PAFC researches in Europe and summarized the development achieved so far. The study concluded that PAFC as a co-generation system can be considered reliable for transient loading. Makansi [16] studied the feasibility of the concept of integrating power and PAFC units for systems utilizing PAFC systems residential applications. The results reported by the study predicts a steep decrease in the PAFC construction and operational costs of PAFC as a co-generation system using natural gas as a fuel. A time-dependent performance analysis of a 200 KW PAFC field test system at Hotel Plaza Oraka, Japan was presented by Singer et. al [12]. High efficiencies were noticed when the PAFC systems were compared to other co-generation systems especially when the combined cycle was used, i.e. the use of the generated heat. The transient efficiency change with a start-up process results are summarized in Figure 5.

Hart [51] presented a thermodynamic model to calculate the electrical and thermal energy generated due to the electrochemical reactions for different fuels and cell

types.

White [36] studied the viscous laminar and turbulent internal flows. Karlekar and Desmond [37] analyzed heat transfer rates in different configurations of mixed and nonmixed heat exchangers and provided several mathematical models to calculate the effectiveness as a function of the heat exchanger design, flow rates and conductance of the components. Also, a complete convective and conductive heat transfer analysis was presented for different boundary conditions of flow over a flat plate and in tubes. In addition, several techniques to determine the heat transfer coefficient were discussed.

Several accurate methods are available currently to measure experimentally the convection heat transfer coefficient. One of the most accurate methods is to use electrically conducting wall coatings and sense the change in current intensity at different locations. Omega [66] employed carbon impregnated coating on plastic plates and gold vapor deposited on a polyester sheet. Bailey Control [67] utilized infra-red photos of the cooled plates to determine the transient heat transfer coefficient and temperature equilibrium. One of the less expensive and less accurate methods of measuring the local convective heat transfer coefficients is to employ electrically heated. The major source of error is the energy loss plates. through radiation which is very difficult to evaluate as concluded by Hart [51]. In addition, electrically heated

stainless steel foils with surface thermocouples were used to measure the transient change of local heat transfer coefficient in a wind tunnel by Boyle [7]. The major source of error again is the radiation heat transfer to the surroundings. An important experimental method used in heat exchangers to measure the heat transfer coefficient is to monitor the fluid temperature and volumetric flow rate and use this information to calculate the change in enthalpy. The only concern when using this method should be the possibility of disturbing the flow and accuracy of the flow meter used.

The imperfect contact between fuel-cell plates and cooling plates in the fuel-cell stack causes thermal resistance that depend upon the pressure imposed on the whole stack. This thermal resistance is called contact thermal resistance. As mentioned before, this parameter must be considered in the calculation of the fuel-cell heat transfer rate.

This important thermal resistance is due to the absence of perfect contact between any two conductive surfaces and the existence of air gaps. Therefore, not all the solid volume in contact is available and a undirectional heat flow away from the contact surfaces will exist.

The instantaneous thermal contact resistance parameter can be calculated using the Fourier equations away from the interference location. Alkasab and Abdul-Aziz [13] measured the steady-state temperature variation of the fuel cell

plate at different thicknesses and at the fuel-cell plate cooling plate interferance. Brunont and Buckland [63] presented a study that demonstrates the effect of contact pressure and surface roughness on the value of the thermal contact resistance of cold rolled steel joints. The thermal contact resistance was found to decrease dramatically with reducing the surface roughness.

Pomerantrev [61] investigated the effect of thermal contact resistance on the heat flow and thermal stress in solids of revolution of arbitrary shapes. Barzely et. al. [64,65] analyzed the contribution of different metal combinations, using the same thicknesses, sample temperatures, heat flow direction and vertical pressure on the sample on the total value of the thermal contact resistance. The thermal contact resistance for a certain combination was found to increase with increasing the vertical pressure and depends heavily on the heat flow direction.

「大利元日子」

and the second second

CHICSHIE, PARE 16 OF POOR QUALITY

CHAPTER III

EXPERIMENTAL SET-UP

In this chapter a summarized description of the experimental set-up used to generate the needed data and a brief procedural review will be presented.

The experimental set-up, shown in Figure 6, consists of the following components:

1. Fuel-cell unit.

「ないた」で、「ない」の「ない」

- 2. Special insulation
- 3. Power supply unit.
- 4. Cooling system.
- 5. Temperature measurement equipment.
- 6. Flow circulation and measurement equipment.
- 7. Data acquisition system.
- 8. Fuel cell stack pressure control and measurement equipment.

The experimental set-up components can be described as follows.

3.1 Fuel-Cell Unit

In order to simulate the heat generated by the chemical reaction inside the fuel cell during an actual transient operational condition of the PAFC, an electrical heat source, was placed inside the cell plate of the experimental

fuel cell model with the required power. The electrical heat source consists of four nickel-chromium alloy coils. The power provided to each coil can be controlled by changing the voltage across the coil.

The heating elements are sandwiched by the lower graphite plate, (0.3 m x 0.41 m x 9.5 mm) and marinite plate from one side and the upper graphite plate (0.3 m x 0.41 m x 0.35 mm) and a mica sheet from the other side. The marinite plate and the mica sheet were used basically to prevent any contact between the heating elements and the electrically conductive graphite plates. See Figure 7.

3.2 Power Supply Unit

The power supply unit has the ability to provide six independent variable subpower supplies. Also it can provide readings for the supplied voltage and amperage for each of those sources.

In order to measure accurately the voltage and amperage, a separate voltmeter and an ammeter were used at the interface of the power supply wires with the heating elements as shown in Figure 8. The energy level was simply calculated as follows:

$$P = I * E \tag{1}$$

$$E.E. = \frac{P}{A}$$
 (2)

3.3 Special Insulation

The effect of heat losses from the control volume by

23

and and the second second second

Let de Art de la

radiation and convection was obvious on the accuracy of the gathered data. Therefore appropriate insulation was critically important to obtain acceptable results. Two Binder-Cement millboards were used above the upper graphite plate and below the cooling plate. Magnisa-85 insulation was used also to reduce heat losses above the upper millboard. Both of these insulations were used because of their ability to withstand high temperatures 300°C and above. Also all the clearences between the metal plates and the cell container walls were sealed by an insulation tape. In addition, insulation cement was used to seal any holes or clearence between the metal surfaces.

3.4 Cooling System

「ない」の言語を

A serpentine cooling plate configuration was used for the removal of the generated heat, as shown in Figure 9. This configuration consists of a 9.5 mm in diameter copper tube sandwiched by the graphite plates. The required potential energy for the cooling fluid circulation was provided by a constant speed pump. A maximum flow rate of 5 gpm can be obtained. The complete water cooling system is shown in Figure 10 while the complete oil cooling system is shown in Figure 11. The different volumetric flow rates and in relation the different Reynolds number were provided by three adjustable valves that will extract some of the working fluid from the line entering the fuel-cell module.

26

「これのいちかいたち、こと

27

Construction of

n s N^art

OF POUR OFALLEY

28

ALC NUM

Street She have a read

あるからう いう

3.5 Temperature Measurement Equipment

0.25 mm diameter T-type thermocouples were used inside the fuel cell unit to monitor the temperature distribution. A Fluke (model 2201 A) scanner chassis and a Fluke (model 2200 B) data logger will serve as the data acquisition system. This reading can provide continuous logging of 100 temperature readings. The data logger was interfaced with a computer to monitor and record the following:

- (a) The transient temperature distribution of the cell-plate.
- (b) Temperature of the working fluid entering and leaving the fuel-cell module.
- (c) Thermal contact resistance at the interface between the cell plate and the cooling plate.

3.6 Flow Measurement Equipment

The main flow rate can be read by using a flow meter and a turbine flow transducer. The second device has the ability to measure high temperature fluid flow, with high pressure with an accuracy of 0.4 gpm. This device was interfaced with the (MG Model 614A) counter to convert the frequency to digital readouts.

3.7. Data Acquisition System

An ARC (286 turbo) IBM compatible computer was used to monitor and record the time-dependent temperature profiles and the isotherm locations in conjunction with the coolant flow rate and power supplied to the heating element for the

determined time intervals during a simulation of a start-up or a shut-down operation. This interface was used to produce the Figures of the instantaneous locations of the isotherms using a (h/p) plotter. Each isotherm was expressed with a The figures produced also contained the certain color. Reynolds number of the test, the electrical energy level, temperature tolerance of the isotherms shown, the time interval and type of the coolant working fluid. The time interval for recording and interpreting the experimental instantaneous data was approximately 3.5 seconds. guaranteed an accurate input to the results' calculations.

Fuel Cell Stack Pressure Control and Measurement 3.8 Equipment

The pressure applied on the PAFC was simulated by sandwiching the fuel cell plates and the cooling fluid plate between two metal plates and applying pressure on the bottom one while fixing the other using a four ton hydraulic jack, as shown in Figure 12.

3.9 <u>Testing Procedure</u>

「日本人人」

Testing procedures for both incompressible fluids used was carried out as follows:

(A) <u>Water Coolant</u>: An open cooling system was used, a reservoir was filled continuously with water between 21°C and 25°C. Then the coolant was pumped through the fuel cell. At the beginning of the test (time = 0) the four heating elements were provided with 1500 W/m^2 , the coolant circulation pump and

valves, and the fuel cell stack pressure were adjusted for the test. An air blower was used to cool the circulation pump from overheating due to the long continuous runs. The power provided to the cell was gradually increased throughout the considered time intervals.

The temperature profile of the fuel cell was monitored and recorded continuously every one or five minutes. The figures produced provided instantaneous information about the fuel cell and the cooling system during the transient startup process and through the shut-down process. Reynolds number for a whole test was kept constant throughout the two transient processes. Also, the pressure was kept constant during both processes. On the other hand, the power provided to the four heating elements were varied as follows to simulate the transient heat transfer process during start-up process and shut-down process. See Figure 13 and Figure 14.

- 1) Time intervals (1 through 2): the maximum power provided was 1500 W/m^2 .
- 2) Time intervals (3 through 4): the maximum power provided was 2250 W/m^2 .
- 3) Time interval (5 until reaching steady state): the maximum provided power was 3000 W/m^2 .
- 4) Time intervals (steady state through 8): the minimum provided power was 2250 W/m².
- 5) Time intervals (9 through 10): the minimum provided power was 1500 W/m^2 .

32

A STATE OF A DESCRIPTION OF A DESCRIPTIO

×1.1.1

ORIGINAL PAGE IS OF POOR QUALITY

10 T 10

小学がないの

ORIGINAL PAGE

34

ないため、たちのこと、これです。

6) Time intervals (11 through 12): the minimum provided power was 0 W/m^2 .

The mass flow rate was verified from 16 Kg/hr to 88.2 Kg/hr, while the stack pressure was varified from 0 KPA to 3500 KPA.

B) <u>Oil Coolant</u>: A closed cooling system with a secondary cooling system was used where the oil inlet temperature was kept approximately between (25°C and 26°C). The same testing procedure was followed. Also the same variation of stack pressure was used, but the Re number was increased from 15 to 30.

3.10 Interface Temperature Differential Measurements

The temperature differences due to imperfect surface contact were determined by twelve thermocouples located at and around the interface of the cell plate and the cooling plate as shown in Figure 15. Graphite powder was spread between the two plates to reduce air gaps and achieve better contact. The cooling plate thermocouples are attached to the cooling piping to measure the surface temperature.

3.11 Experimental Results Accuracy

ORIGINAL PA

Due to the instruments' accuracy and other factors there was an error percentage to be accounted for when representing the results. Accuracy is defined as the maximum amount by which a certain measurement differs from the true value, or

Accuracy = $(M_m) - M_m$

percent accuracy based on reading is

$$A = \frac{M_m - M_a}{M_a} * 100$$

where:

M_ = maximum or minimum measurement,

 $M_{\bullet} = Actual value.$

3.11.1 <u>Instrumentation Error</u>

The important instrumentation error can be summarized as follows.

3.11.1.1 <u>Thermocouple Reading Accuracy</u>

The thermoccuple accuracy is considered the most important source of error that will affect the temperature distribution plots, the convection heat transfer coefficient, Nusselt number and overall heat transfer calculation. But. this error has a significant effect on the effective temperature drop measurements which are used to determine the thermal contact resistance. The percentage of this arror was determined by repeating certain tests with the same operation conditions, i.e. applied pressure, time interval versus supplied electrical energy for both incompressible coolants. The maximum error due to the thermocouples readings was found to be approximately 0.6 °C to 0°C, the manufacturer specified that the error for T-type thermocouples are 0.75% or 1°C over zero °C.

3.11.1.2 Data Logger Readings Accuracy

Two factors affected remarkably the accuracy of the data

logger reading.

State of the second sec

(a) Data logger input.

The minimum error was 0.5% as specified by the manufacturer. Also, on one occasion the machine had to be calibrated again after an electronic failure due to an electrical surge.

(b) Specified recording time intervals.

Since all the tests considered are transient tests therefore the selected length of the time interval should be as short as possible to avoid any significant change in the internal energy and other time dependent thermodynamic properties of the system. The time interval for the data logger to monitor all the thermocouples including the working fluid inlet and outlet thermocouples was approximately 3:5 seconds. This time interval was found to be very accurate because the change in the coolant outlet temperature during this time interval was nearly zero.

3.11.1.3 Voltage and Amperage Readings

The accuracy of the ammeters and voltmeters mounted in the power supply unit was 4.0% while the digital multimeter accuracy was 2.1% as specified by the manufacturer. Actually the voltage and ampere readings were more accurate because the power unit readings were checked again by the cell instrumentation.

3.11.1.4 Pressure Gauge Readings

The pressure gauge accuracy was 0.1%. The maximum

expected error when the highest applied pressure was used was
+35 KPa.

3.11.1.5 Volumetric Flow Rate Measurements

As mentioned before the combined accuracy of the flow instrumentation was found to be \pm 0.4 gpm or maximum combined error of 2.3%.

3.11.2 <u>Heat Exchange with the Surroundings</u>

The unaccounted for heat transferred by radiation convection and conduction to the surroundings is very difficult to calculate. However if the rate of heat transfer was significantly high it could negatively affect the accuracy of the final results that depends on the evaluation of the transient thermal energy transferred by the cooling fluid. Several tests were carried out utilizing both working fluids under different operation conditions. The maximum heat transfer was found to be 17.5 watt where using 3000 w/m^2 and maintaining a steady state operating condition with minimum Re number and maximum pressure. This is 7.792% of the internal heat generator simulated by the supplied electrical power. Additional insulation was added as described by Chapter III to reduce the heat loss. The heat transfer rate to the surroundings was reduced to a maximum of 9.1 Watts which is 2.466% of the supplied power.

3.11.3 <u>Human Error</u>

The human error is an important factor in the accuracy

of the final results. The effect of such error in this experiment was observed during the following.

(a) Voltage and amperage readings.

日日になったいで、「「「「「「「」」」」」

- (b) Obtaining exactly the required stack pressure.
- (c) Supplied power variation for the four electrical circuits used during a very short time interval.
- (d) To maintain continuously throughout the testing time interval the exact volumetric flow rate.

ъ ^с

.

(e) To maintain a constant room temperature during all the tests.

CHAPTER IV

MATHEMATICAL MODEL OF TRANSIENT HEAT TRANSFER -IN THE FUEL-CELL STACK

The thermal energy generated in the fuel cell should be removed continuously to prevent accumulation of heat which could lead to thermal stress, lower efficiencies and even structural failure. Therefore, proper design of the cooling system is vital to the operation and performance of any fuel cell power system. In this chapter the effect of the expected transient operation conditions' effect on the cooling system performance were investigated with water and oil as coolants.

記書の見ていていた。

4.1 <u>Transient Heat Transfer Analysis for the Cooling</u> <u>System</u>

This section will summarize the formulation employed to generate the needed results utilizing the gathered experimental data during the transient process considered using incompressible cooling fluids.

4.1.1 Heat Transferred to the Cooling Fluid

Applying the first law of thermodynamics for the considered case, at any instant of time during the transient process, the energy balance equation for the cooling fluid can be written as follows; see Figure 16.a.

$$(\dot{Q}(t))_{c.s.} = \left|\frac{d E(t)}{dt}\right| + \left[\dot{m}_{e}(t) * H_{e}(t) - \dot{m}_{i}(t) * H_{i}(t)\right]$$
 (3)

But, $\dot{m}_{e}(t) = \dot{m}_{i}(t) = \dot{m} = constant$ for a given test

$$(Q(t)_{c.s.} = \left| \frac{dE(t)}{dt} \right| + \dot{m} C_{p} (T_{be}(t) - T_{bi}(t))$$
(4)

Also

$$\frac{dE(t)}{dt} = \frac{m(t_2) * u(t_2) - m(t_1) * u(t_1)}{\Delta t}$$
(5)

where:

 $\dot{Q}_{c.s.}(t)$ = Heat transferred to the cooling fluid, as a function of time.

 $\dot{m}_i(t)$ = Instantaneous mass flow rate entering the coolant channel, constant for a given test.

m(t) = mass inside the cooling plate at time (t). H_i(t) = Instantaneous total enthalphy of the mass flow rate (i) entering the cell.

 $\left(\frac{dE(t)}{dt}\right)$ = transient change of the control volume internal energy, which includes the cooling plate and the upper part of the cell plate.

 $T_{bi}(t) = Cooling fluid bulk temperature entering the cell.$ $<math>T_{be}(t) = Cooling fluid bulk temperature leaving the cell.$ $\dot{m}_{e}(t) = Instantaneous mass flow rate leaving the cell$ from location (e), constant for a given test. $<math>H_{e}(t) = Instantaneous total enthalpy of the mass flow rate$ (e) leaving the cell.

 C_{p} = Specific heat at constant pressure.

u(t) = Cooling fluid internal energy at time (t) inside the control volume.

4.1.2 <u>Transient Convective Heat Transfer Coefficients</u> and Nusselt Number

The energy transferred to the cooling system can be utilized to accurately determine the transient local convective heat transfer coefficient as follows:

$$((\dot{Q}(t))_{e} = h(t) * A_{e.s.} * [T_{\mu}(t) - T_{e}(t)]$$
 (5)

where: 👘

h(t) = instantaneous convective heat transfer coefficient between tube surface and coolant.

 $A_{c.s.}$ = available heat transfer surface area of the cooling channel.

 $T_w(t)$ = instantaneous average wall surface temperature of the cooling plate. copper tube, obtained from the thermocouples welded to the coils.

 $T_{\bullet}(t) = instantaneous$ average bulk coolant temperature.

The instantaneous average wall surface temperature is the average of all the thermocouples' readings welded to the cooling coil for a certain measurement (see Figure 17.a).
The temperature variation of those thermocouples was found to be linear as a function of the coil length for any given test (refer to Appendix). The instantaneous average bulk temperature also called the mixed mean average temperature is basically the ratio of the total thermal energy crossing the tube in a unit time over the heat capacity of the fluid crossing the same section in a unit of time. This temperature was calculated utilizing the experimental data of selected laminar and turbulent cases for both fluids taking into consideration the change K.

of the thermal diffusivity of the fluid ($\alpha = \frac{K_c}{\rho C_p}$).

Also, for the laminar flow, the laminar entrance length was estimated using the average results of the Blasius, Sparrow and Schlichting equation in addition to the thermal entry length. The results of the average bulk temperature employing the forced convection of circular tubes equation provided by references [14] and [38] were compared to the average of the entrance and exit temperatures of the control volume. This comparison indicated that the difference was in the range of 1.5% to 3%. Therefore, the average bulk coolant temperature was used in the final calculations performed by the experimental monitoring system. The experimental Convective heat transfer coefficient (h(t)) was calculated from equation (5), as follows:

$$h(t) = \frac{((Q(t))_{c.s.})}{A_{c.p.s.}(T_{u}(t) - T_{o}(t))}$$
(6)

Then the experimental transient Nusselt number was calculated as follows:

$$Nu(t) = \frac{h(t) * D}{K_c}$$
(7)

4.1.3 <u>The Experimental Overall Heat Transfer</u> Coefficient

The experimental transient overall heat transfer coefficient for the control volume defined in the previous section was determined as follows: Since,

$$(\dot{Q}(t)_{e} = U(t) * A * (T_e(t) - T_e(t))$$

Therefore:

$$U(t) = \frac{(Q(t))_{c.s.}}{A_c(T_e(t) - T_e(t))}$$
(8)

But it should be noticed that the transient overall heat transfer coefficient is considered: in the reciprocal of the sum of three resistances See Figure 17-b: the convection resistance, the conduction resistance, and the thermal contact resistance. U(t) can be expressed as follows:

$$U(t) = \frac{1}{\left[\left(\frac{x_1}{K} \right) + \left(\frac{1}{R_t(t)} \right) + \left(\frac{x_2}{K} \right) + \left(\frac{1}{h(t)} \right) \right]}$$
(9)

DE RELAL PARE &

The thermal contact resistance between the upper part of the cell plate and the cooling plate can be calculated as follows: (please refer to Figure 17.c).

$$Q = K_{A} A_{c} \frac{dT}{dx} |_{0}^{L_{1}} = K_{B} A_{c} \frac{dT}{dx} |_{L_{1}}^{L_{2}}$$
(10)

However, the instantaneous thermal conductance parameter (R) is defined as:

$$R_{c}(t) = \frac{q(t)}{\Delta T(t)}$$

when

q(t) = instantaneous heat flux (Q/A).

 ΔT = effective temperature drop through the interference between the upper part of the cell plate and the cooling plate.

Substituting in equation (6):

$$R_c * \Delta T = K_A \frac{dT}{dx} = K_B \frac{dT}{dx}$$

or

$$R_{c} = \frac{K_{A}}{\Delta T} \frac{dT}{dx} = \frac{K_{B}}{\Delta T} \frac{dT}{dx}$$
(11)

The thermal contact resistance (r_c) is the inverse of (R_c) :

$$r_{c} = \frac{1}{R_{c}} = \frac{\Delta T}{K_{A}} \frac{dT}{dx} = \frac{\Delta T}{K_{g}} \frac{dT}{dx}$$
(12)

Substituting equation (12) in equation (9), we will have the following:

$$U(t) = \frac{1}{\left[\left(\frac{x_1}{K} \right) + \left(\frac{\Delta T(t)}{K^* \left(\frac{dT}{dx} \right)} \right) + \left(\frac{x_2}{K} \right) + \left(\frac{1}{h(t)} \right) \right]}$$
(13)

where:

 K_{A} = thermal conductance of the cell plate.

 K_s = thermal conductance of the cooling plate.

u(t) = transient overall heat transfer coefficient of the control volume.

 A_c = contact area between cooling plate and cell plate.

 $T_{e}(t) = T.A. = transient$ average temperature of the electrode.

K = graphite conductivity (thermal).

 x_1, x_2 = thickness in the X direction (please refer to Figure 17.c).

 r_c = transient thermal contact resistance.

AT(t) = effective temperature drop.

4.2 Experimental Results

In this section the experimental results collected previously will be analyzed and interpreted to determine the effects of the stack pressure and the cooling systems flow characteristics on the fuel cell heat transfer The experimental results will be further characteristics. used to formulate the mathematical correlations to simulate and express the heat transfer characteristics of the examined fuel cell module during transient operation conditions, startup and shut-down.

4.2.1 Start-Up Process

Referring to section (4.1) of this Chapter, The value of h(t), Nu(t) and U(t) were determined by applying equations (6), (7) and (13) using the data gathered from the experimental set up.

4.2.1.1. The Variation of the Transient Nusselt Number as a Function of the Cooling System Flow Characteristics

(a) <u>Water Coolant (Re = 1250 to Re = 6167)</u>.

Experimental results demonstrated by Figure 18 indicates the dependence of the transient Nusselt number on the flow characteristics of the cooling system during a start-up process. Higher Nusselt numbers were calculated with higher flow rates.

51

のないで、「「「「「」」」

OF POOR QUALITY

OF POOR QUALITY

(b) Oil Coolant (Re=15 to Re=80).

Figure 19 demonstrates the variation of the Nu number during a start-up process using oil as a coolant.

4.2.1.2. Measurements of the Transient Thermal Contact Resistance

As described in Chapter III, the thermal contact resistance was actually measured utilizing 12 thermocouples planted around the interface area to measure the temperature differential. Equation (12) was then used to determine the value of r_c at any point in time. Figure 20 through Figure 22 shows the effect of the different considered stack pressures on the transient values of r_c . It should be noticed that a slight decrease in the rate of r_c was observed with a higher Re number.

POOR QUALITY

\$1 140 3 ÷.

- COL

4.2.1.3 The Effect of the Stack Pressure and the Cooling System Flow Characteristics on the Transient Overall Heat Transfer Coefficient

(a) <u>Water Coolant (Re = 1250 to Re = 6167)</u>.

Experimental results exhibited in Figure 23 through Figure 24 summarizes the experimental data gathered and the calculations from fifteen transient experimental tests which are part of the testing process that focused on investigating the heat transfer characteristics of the fuel cell during a start-up process. In each Figure the volumetric flow rate was kept constant for the five experimental runs to determine the overall heat transfer coefficient.

(b) <u>Oil Coolant (Re=15 to Re=80)</u>.

Figure 26 through Figure 28 exhibits part of the experimental results during a start-up process using oil as a coolant.

Experimental Transient Overall Heat Transfer Coefficient (Start-Up Condition with Water Coolant Re = 1250).

L PAGE 5 11 11 11

「「

「「「「「「「「」」」」」

Contraction of the

Experimental Transient Overall Heat Transfer Coefficient (Start-Up Condition with Water Coolant Re = 3371).

•,•

ini Ayse

OF POUL CONLEY

And A State of Lot of L

日本学生などの日日

60 .09

'A.M.V

ALL THE REAL PROPERTY OF

Б OUAL

「「「「「「「」」」」

* 1

sí.

ORIGINAL PARE IS OF POCH QUALITY State State

\$ 63

R. - Kithertown

18

1. ž έ.

64 29

4.2.2 Shut-Down Process

Referring to section (4.1.1 to (4.1.3)) of this Chapter, the values of h(t), Nu(t) and U(t) were determined using the same set of equations as in the previous section using the collected experimental data from the experimental set-up during a shut-down process.

Lesent The Variation of the Transient Nusselt Number as a Function of the Cooling System Flow Characteristics

(a) Water Coolant (Re = 1250 to Re = 6167)

Figure 29 summerizes the experimental results of the transient Nusselt number variation during shut-down process

for different coolant flow rates.

(b) 011 Coolant (Re=15 to Re=80)

Refer to Figure 30, for the experimental results of the oil Nu number variation during a shut-down process.

LEmredT freiens T the Transient Thermal Contact Resistance

Figure 31 through 33 exhibits the transient thermal contact resistance measured during part of the shut-down processes and demonstrate the dependence of this thermal resistance mainly on the applied stack pressure for different coolant flow rates.

S9

Experimental Transient Nusselt Number (Shut-Down Condition with Water Coolart).

ORIGINAL PAGE IS OF POOR QUALITY OF

「おいましていた」、それろう うち

A GA

Experimental Transient Nusselt Number (Shut-Down Condition with Oil Coclant).

19

67

ORIGINAL PAGE IS OF POOR QUALITY のないのであるというないであるので、「「「「「」」のないので、「」」

ġ.

5.

The same of the second s

HARSONSEN

そのになる ない こう

Experimental Transient Thermal Contact Resistance (Shut Down Condition with Water Coolant, Re = 6167).

L PARE 16 TOUALITY 11

and the second second

A PARTY OF A

e 70.

Å - 1 - 1

4.2.2.3 The Effect of the Stack Clamping Pressure and the Cooling System Flow Characteristics on the Experimental Transient Overall Heat Transfer Coefficient

(3) Water Coolant (Re = 1250 to RE = 6167)

Figure 34 through Figure 36 shows the variation of the transient overall heat transfer coefficient as a function of the stack clamping pressure and Reynolds number during fifteen complete shut-down processes. During each process the fuel cell model was monitored up to 360 minutes starting at a steady state to accumulate the required experimental data.

(b) <u>0il Coolant (Re=15 to Re=80)</u>

Refer to Figure 37 through Figure 39 for a summary of the experimental results when oil coolent is used during a

τL

CHANNAL PAGE IS

るう かいちにきき なんたまがきまたいをまたいで、「

S. S. S. S.

¥ 72

St

73

¥.,

٦

Page 15 POO POULA

ORIGINAL PAGE 15 OF POUR QUALITY Ħ 74.

Experimental Transient Overall Heat Transfer Coefficient (Shut-Down Coudition with C11 Coalant, Re = 15).

St

75.

ORIGINAL, PARE IS OF POOR QUALITY

Experimental Transiont Overall News Transfer Coefficient (Shut-Down Condition with Oil Coelant, Re = 43).

سيقر

76.

ORIGINAL PAGE IS OF POOR QUALITY And a state of the second

小田市市 かたいない 日本 あたち かたい ちょう

こう デモシモエモ

YTIJAUØ SI 20'84 TVNID

こうで、「ない」のないです。 こうかん ないない ないのう ないない ないのない ないのです いってい

LL

4.3 Developed Experimental Correlations

In order to describe the transient performance of fuelcell, a mathematical expression that interrelates the cell convection heat transfer coefficient, overall heat transfer coefficient and Nusselt number should be developed. Mathematical correlations with an exponential function of time was found to be the most suitable method to achieve this important research objective. This technique allows the establishment of the relationships between the effective parameters and also will exhibit the sensitivity of the transient function to the variation of every independent variable such as pressure and Re number.

A computer program to calculate the convective heat transfer coefficient, the overall heat transfer coefficient, Nusselt number, thermal contact resistance and the effective temperature drop was developed to simulate the change of those parameters during the transient process. The Matlab and the Picquick softwares at the VAX center of Cleveland State University were utilized to employee the curve fitting needed, linear, polynomial, exponential, flexible, and the other algorithms. Also those two softwares were used to plot the generated results.

The transient mathematical correlations that represent the convection heat transfer coefficient and the Nusselt number were found to be a function of the following:

- (1) Reynolds Number (flow condition)
- (2) Prandlt Number (working fluid property)

(3) Time intervals and the designed operation conditions that reflects the effect of operation conditions on the cell plate surface temperature.

4.3.1 Start-Up Process

In this section, mathematical correlations will be developed to describe the variation of the convection heat transfer coefficient, overall heat transfer coefficient and the Nusselt number during a start-up process as a function of the flow characteristics. Also the effect of the stack pressure should be demonstrated by the overall heat transfer coefficient.

4.3.1.1 Transient Convection Heat Transfer Coefficient and Transient Nusselt Number

For the start-up operation condition the h(t) and Nu(t) correlations can be written as follows:

$$h(t) = \left[A_1 * F_1(Re, Pr) * e^{\lambda_1 t} - B_1 * G_1(Re, Pr)\right] e^{\alpha_1 0}$$
(14)

and

$$\frac{Nu(t)}{where} = \left[A_2 * F_2(Re, Pr) e^{\lambda_2 t} - B_2 * G_2(Re, Pr) \right] e^{\alpha_2 0}$$
(15)

 $A_1 = constant,$ $F_1(Pr,Re) = function of Re and Pr,$ $G_1(Pr,Re) = function of Re, Pr, and initial operation conditions,$

 $\lambda_1 = time constant,$

o = operations condition parameter,

 α_1 = operation condition constant,

 $B_1 = constant,$

 $A_2 = constant$

F,(Pr,Re) = function of Re, and Pr,

G₂(Pr,Re) = function of Re,Pr, and initial operation condition,

 λ_2 = time constant,

 α_2 = operation condition constant,

 $\beta_2 = \text{constant}.$

It should be noted that F_1 , G_1 , F_2 , and G_2 are not functions of time but actually are functions of the flow, working fluid properties and design criteria. The developed experimental correlations for both considered working fluids can then be written using equations (14) and is as follows:

(a) Water Coolant (Re = 1250 to Re = 6167)

$$h(t) = 31.088 (Re^{0.05779}) (e^{0.00953t}) (Pr^{0.01433}) (e^{0.0001240})$$

 $- 31.088 (Re^{0.05779}) (Pr^{0.01433}) (e^{0.0001240})$ (15)

$$Nu(t) = 0.3259 (Re^{0.05632}) (e^{0.008219t}) (Pr^{0.0385}) (e^{0.0001230}) - 0.3259 (Re^{0.05632}) (Pr^{0.00385}) (e^{0.0001230})$$
(16)

The variation of Nu(t) with different Re number for the considered start-up process are exhibited by Figure 40. Only five Re number results are shown to summarize. It should be noted that $F_1 = G_2$, $A_1 = B_1$, $A_2 = B_2$ and $F_2 = G_2$ and a_1o , a_2o are correction factors that will allow the correlation to be sensitive to the effect of P on the cell

temperature. The second term of the two equations was used to simulate the initial equation condition of zero heat transfer at t = 0.

(b) <u>Qil Coolant (Re=15 to Re=80)</u> h(t) = 16.088 (Re^{0.216}) ($e^{0.00961t}$) ($Pr^{0.0076}$) ($e^{1.356*10-40}$) - 16.088 (Re^{0.216}) ($Pr^{0.0076}$) ($e^{1.356*10-40}$)

$$Nu(t) = 0.7326 (Re^{0.214}) (Pr^{0.0039}) (e^{1.356*10-40})$$
 (18)

(17)

The variation of Nu(t) with different considered cases start-up processes are shown in Figure 41.

tina <u>£</u>

Effective Temperature Drop

The experimental correlations that were developed to simulate the change of the transient thermal contact resistance and the effective temperature drop must demonstrate the effect of time, stack clamping pressure flow characteristics, and the operation condition as concluded from the experimental results. In general, the developed correlations can be formulated as follows:

$$r_{c}(t) = A_{3} \left[W_{1}(p) * e^{\lambda_{3} t} - W_{2}(p) \right] e^{\gamma_{1} 0}$$
(19)

$$\Delta T(t) = \left[(A_4 - W_3(p)) e^{\lambda_4 t} - (A_5 - W_4(p)) \right] e^{\gamma_2 0}$$
(20)

where

 λ_3 , λ_4 , λ_5 = constants,

 $W_1(p)$ = function of stack pressure,

 $\lambda_1 = time constant,$

 $W_2(p)$ = function of stack pressure,

p = stack pressure

 λ_{i} = time constant,

 γ_1, γ_2 = operation condition constants,

 $W_3(p)$ = function of stack pressure,

 $W_4(p)$ = function of stack pressure.

o = operation condition parameter

It is important to notice that W_1 , W_2 , W_3 and W_4 are not a function of time but a function of the applied stack **pressure**, therefore, the developed correlation for both

(a) Water Coolant (Re = 1250 to Re = 6167)

$$r_{e}(t) = 0.003556) = e^{-0.0001790}$$

∘9110000.0-[⇒]

The results generated by the above two correlations are
shown in Figure 42 to Figure 44 and Figures 48 to 50
respectively, for all the stack pressures applied and for
the minimum, average, and maximum volumetric flow rate. It
should be noticed that
$$w_1 = w_2$$
 and $w_3 = w_4$ for this case and
o was found to be directly proportional to the flow rate.

 $[(qe3e000.0 - 38e.7) - {}^{0.012t} - (7.986.7) - (7.986.7)] = (J)T$

(b)
$$\underline{O11} \underline{Cool3nt} (\underline{Re=15} \underline{to} \underline{Re=80})$$

 $\mathbf{r}_{c}(t) = 3.61 \pm 10^{-5} (e^{0.0122t}) \pm (e^{-2.255 \pm 10^{-6}t}) - (e^{-2.255 \pm 10^{-6}t}) = (e^{-0.000160})$
 $\mathbf{T}(t) = [(7.985 - 9.597 \pm 10^{-6}t) e^{0.0122t} - (7.985 - 9.597 \pm 10^{-6}t)]$
 $\mathbf{r}_{e}^{-0.000160} = (e^{-0.000160})$
(23)

.eds woll sittemulov mumixem bus the stack pressures applied and for the minimum, average, 45 to Figure 47 and Figures 51 to 53 respectively, for all correlations for the oil coolant case are shown in Figure A summary for the results generated by the above two

(77)

(22)

(TZ)

THERMAL CONTACT RESISTANCE (m~2*c/W)

OF POOR QUALITY

Superior of the second of the second

-28 84

H

87

OF POCK OUALITY

「「「「「「「」」」」」「「「「」」」」」」

and any state of the lighter

A STATE AND A STAT

•

THERMAL CONTACT RESISTANCE (m~2*c/W)

THERMAL CONTACT RESISTANCE (m-2*c/W) .

ORIGINAL PAGE IS OF POOR QUALITY こういん来 ていいろ

A state of the second states of

68

89

THERMAL CONTACT RESISTANCE (m-2*c/ w)

ORIGINAL PAGE IS OF POOR QUALITY

の日本語を見ていた

٠ ÷

1、11年 1、11日 小田市

alteres and an

Diam'r

90.

THERMAL CONTACT RESISTANCE (m-2*c/W)

ORIGINAL PAGE 15 OF POOR QUALITY Sala Carlo and a sala a sala

JO

91

(m-2*c/W) THERMAL CONTACT RESISTANCE

OF POOR QUALITY

いたのないないである

- ようなく こ

「「「「「「「「「」」」」

10 Mar 10

the second second

20 92

TRANSIENT EFFECTIVE TEMP. DROP (C)

ORIGINAL PARE IS OF POOR QUALITY 4 1 4

56 93

TRANSIENT EFFECTIVE TEMP. DROP (C)

ORIGINAL PAGE IS OF POOR QUALITY 1.45

State State State and State State State State

AND AND A CONTRACTOR OF A CONT

₱**6** 94.

ORIGINAL PARE IS OF POOR QUALITY

IRANSIENT EFFECTIVE TEMP. DROP (C)

***** 95

TRANSIENT EFFECTIVE TEMP. DROP (C)

「「「「「「」」とない、「」」とない、「」」というないで、「」」

* *

TRANSIENT EFFECTIVE TEMP. DROP (C)

ORIGINAL PAGE IS OF POOR QUALITY Barage weight and a substantion and the second

のないないという

「「「「「「」」」

いたがないのない、このであった。「ないないないない」」というないので、このではないないである」というないで、「ないない」」というないで、「ないない」」というないで、「ないない」」というない、「ないない」

4.3.1.3 Calculated Transient Overall Heat Transfer Coefficient

It is important to calculate the transient overall heat _transfer coefficient utilizing the correlation results of the transient convective heat transfer coefficient and the transient thermal contact resistance during a start-up process to determine the accuracy of the developed correlations to calculate the value of (U(t)). The following previously developed equation was utilized to calculate (U(t)):

$$U(t) = \frac{1}{\left[\frac{1}{h(t)} + \frac{\Delta x}{K_{tota!}} + r_c(t)\right]}$$

Results using the developed correlation were utilized to generate results for the two incompressible working fluids: (a) <u>Water Coolant (Re = 1250 to Re = 6167)</u>

To summarize only the minimum average and maximum Re numbers were used here as exhibited by Figure 54 to Figure 56 in order to demonstrate the effect of the stack-pressure and the flow characteristics on the (U(t)) value.

(b) <u>Oil Coolant (Re=15 to Re=80</u>

유승 것 '주 나는 다

Figure 57 to Figure 59 summarizes part of the **Calculated results** for all applied stack pressure and for **Baximum** average and minimum flow rate.

x 99.

ORIGINAL PAGE 18 OF POOR QUALITY

「ない」となるとう

1 A.

U (W/m-2*c)

100

OFICINAL PASE IS OF POOR QUALITY いたいである。いたかか

1.

1.11

U (W/m~2*c)

OF POOR QUALITY

記述をたい

「「「「「「「」」」

のであるというというのであるという

いたいであるのであるとう

しょういがい いまし 御子事 い

A SUMP

τοτ

 $M_{\rm eff}^{\rm opt} = 1$

U (W/m~2*c)

ORIGINAL PROE IS OF POOR QUALITY

家

111 B. B. AB

201

102-

U (W/m~2*c)

÷.

and a second second

701

104

U (W/m~2*c)

ORIGINAL PAGE IS OF POOR QUALITY

4.3.2 Shut-Down Process

In this section the shut-down mathematical correlation will be developed to demonstrate the variation of heat transfer characteristics of the fuel cell modules for the different considered operation conditions.

4.3.2.1 Transient Convection Heat Transfer Coefficient and the Transient Nusselt Number

The following general correlation can be formulated for the shut-down process:

$$h_s(t) = A_{s1} * H_1(Re, Pr) * [exp (_{s1}t + \alpha_{s1}o)]$$
 (25)

and

$$Nu_{s}(t) = A_{s1} * H_{2}(Re, Pr) * [exp(_{s2}t + \alpha_{s2}o)]$$
 (26)

where

 λ_{13} , λ_{12} = shut-down initial condition constants.

 $H_1(Re, Pr), H_2(Re, Pr) =$ function of the flow rate and the fluid properties.

 λ_{s1} , λ_{s2} = shut-down time constants.

 α_{s1}, α_{s2} = operation condition constants.

The developed mathematical correlation utilizing the generated experimental results can be written for both Working fluids as follows:

(a) Water Coolant (Re=1250 to Re = 6167

$$h_s(t) = 70.088*(Re^{0.05779})*(Pr^{0.01433})*$$

[exp (-0.00891t + 0.000123 o) (27)
 $Nu_s(t) = 0.769*(Re^{0.05632})*(Pr^{0.0385})*$
[exp(-0.01083t + 0.000124 o)] (28)

Figure 60 demonstrates calculated Nusselt number results when water was used as a coolant.

(b) Oil Coolant (Re=15 to Re=80)

$$h_s(t) = 35.044*(Re^{0.21506})*(Pr^{7.614*10-3})$$

[exp (-0.00901t + 1.356*10⁻⁴ o) (29)
 $Nu_s(t) = 0.771*(Re^{0.2105})*(Pr^{3.86*10-3})*$
[exp(-0.01082t+ 1.356*10⁻⁴ o)] (30)

The calculated values for the Nu number is stated as a function of time for the Re number during a shut-down process when oil is used as a coolant. Refer to Figure 61.

ないです

7.0

NU number

LOT

ORIGINAL PAGE IS OF POOR QUALITY 「おおいた」

ALL CONTRACTOR

A STATE

,80T

demonstrates the variation of the transient thermal contact respectively with different applied stack pressure and Reynolds number

+ [6.129 - (0.7365*10⁻²)P] (32)

 $[(o^{-0.101 \times 10^{-2}})P][exp(-0.0046t-0.101 \times 10^{-2})P]]$

$$(31) = 0.00575 \times (e^{-0.00236p}) \times (e^{0.00236p}) \times (e^$$

Where λ_{51} , λ_{54} , λ_{55} and $\lambda_{56} = \text{constants.}$ $W_{61}(P) = \text{function of stack pressure.}$ λ_{65} , $\lambda_{64} = \text{shut-down time constant.}$ o = operation condition parameter.

 $\nabla L^{\bullet}(\varsigma) = [Y^{22} - M^{22}(b)] [\varepsilon x b(y^{2t} \varsigma + \lambda^{25} o)] + [Y^{2e} - M^{2t}(b)]$ (30)

 $L^{c_{*}}(\zeta) = Y^{2_{2}}M^{2_{1}}(b)_{*}[\varepsilon xb(Y^{2_{2}}\zeta + \lambda^{2_{1}}o)] + Y^{2_{4}} xM^{2_{5}}(b)$ (53)

can be expressed as follows:

correlations that simulate the change of contact resistance and the variation of transient thermal contact resistance

During a shut-down process the mathematical

Avite The Safetise and the Effective A.3.2.2 Contact Resistance and the sequence of the sequen

60T

OH

110

THERMAL CONTACT RESISTANCE (m-2*c/W)

original page is of poor quality a standard a

たちのためたちろうろうというとう

CONFICT

13. 1. 18.

ORIGINAL PAGE IS OF POOR QUALITY 444 46

1. A.

under servicelis in the

τττ

zur 112

THERMAL CONTACT PESISTANCE (m~2*c/W)

ORIGINAL PAGE IS OF POOR QUALICY

MT 114

QUALITY

All All

OF POOR

CONTACT RESISTANCE (m-2*c/W)

ORIGINAL PASE IS OF POOR QUALITY

stt ... 115

917

114

TRANSIENT EFFECTIVE TEMP. DROP (C)

いたたが大気

ŧ

TRANSIENT EFFECTIVE TEMP. DROP (C)

ORIGINAL PASE IS OF POOR QUALITY

and a substituted and substituted

Store and a second state of the

LH 117

87

118

TRANSIENT EFFECTIVE TEMP. DROP (C)

OF POOR QUALITY

「おいたいないない」

ett 119

TRANSIENT EFFECTIVE TEMP. DROP (C)

ORIGINAL PAGE IS OF POOR OLIALITY 1

a Water of the other

_027

120

TRANSIENT EFFECTIVE TEMP. DROP (C)

Original Page is of Poor Quality

時にいるとないので、「「「「「「」」」

11

「日本」「「「「「「「「「「」」」」」

しいましい ちょうち おくいちち

More a prese

M

121

TRANSIENT EFFECTIVE TEMP. DROP (C)

ORIGINAL PAGE IS OF POOR QUALITY L'ENTER STOR

SUPPLY STATES STATES

.Jnsloop a 25 Teta **Qnlau**

$$\mathbf{t}^{\mathbf{e}}(\mathbf{r}) = 0.00575 + (e^{-2.56*10-4p}) + [exp(-0.00339t - 1.79+10^{-5} \circ)]$$

$$\mathbf{t}^{\mathbf{e}}(\mathbf{r}) = 0.00575 + (e^{-2.56*10-4p}) + [exp(-0.00339t - 1.79+10^{-5} \circ)]$$

$$\mathbf{t}^{\mathbf{e}}(\mathbf{r}) = 0.00575 + (e^{-2.56*10-4p}) + [exp(-0.00339t - 1.79+10^{-5} \circ)]$$

175

$$\mathbf{M}^{*}(\mathbf{r}) = [\mathbf{14.986} - (7.366*10^{-4})\mathbf{P}][\mathbf{exp}(-\mathbf{4.155}*10^{-5}\mathbf{t} - \mathbf{1.012}*10^{-5}\mathbf{o})]$$

Figure 65 to Figure 67 and Figures 71 to 73 represents the generated results for equations [33] and [34] respectively, the specified stack pressure during a shut-down process. Wote: The difference between the two above correlations set was just the exponential variable factor which will affect the rate slightly.

हर्य

ORIGINAL PAGE IS OF POOR QUALITY

123

U (W/m~2*c)

キシンション ちまち

「真然」とい

Analytical Transient Overall Heat Transfer Coefficient (Shut-Down Condition with Water Coolant, Re = 6167).

szí 125

U (W/m~2*c)

ORIGINAL PASE IS OF POOR QUALITY

AT 124

ORIGINAL PAGE IS OF POOR QUALITY

御書に あたいい

「「「「「「「「」」」」 بويد أمراع المورية المطالع والمحادثة

U (W/m~2⁺c)

<u>j</u>zt

127

ORIGINAL PAGE IS OF POOR QUALITY Ŭ (₩/m~2*c)

SI BAAR DIALITY

--

Ż

82/______

4.3.2.3 Calculated Transient Overall Heat Transfer Coefficient

The transient overall heat transfer coefficient during a shut-down process was calculated using the same method defined in section 4.3.1.3.

(a) Water Coolant (Re = 1250 to Re = 6167)

Part of the calculated results are summarized by Figure 74 through Figure 76 which represents the minimum, average and maximuim water flow rates during a shut-down process.

(b) <u>Oil Coolant (Re=15 to Re=80)</u>

Figure 77 to Figure 79 demonstrates the change in the calculated overall heat transfer coefficient using the experimental calculations for three cases when oil was used as a coolant during a shut-down process.

CHAPTER V

TRANSIENT ELECTRODE TEMPERATURE DISTRIBUTION

The chemical reaction that takes place inside the phosphoric acid fuel cell results in generating thermal energy that approximately equals the electrical energy produced. In order to prevent temperature rise that leads to efficiency drop and high thermal stress, the excessive thermal energy is removed continously by heat transfer to the cooling plate and input gases.

It is extremely important to study the temperature profiles of the electrode to determine the thermal peaks locations and improve the cooling system design. In this chapter the transient temperature profiles developed from the experimental results will be compared with the theoretical results that were generated from the modified Fortran computer code developed originally by Alkasab and Lu [1] in their theoretical study. The internal heat generation produced by the chemical reaction can be simulated accurately by the heat generated by the resistance heating elements. The temperature profiles identify the **Areas** with high thermal energy accumulation which is effected by the operation conditions such as the applied stack pressure, coolant flow rate and coolant fluid

properties. The transient isotherm were developed by monitoring the thermocouples readings located at 70 points in the fuel cell plate for the different considered operation conditions. The isotherms were drawn utilizing both the computer generated charts and the printed transient data.

In the following section, the transient experimental temperature profiles during start-up and shut-down processes will be analyzed for different operation conditions to examine the effect of the stack pressure, coolant flow rate and coolant properties on the cell model performance and the cooling system efficiency.

5.1 Experimental Temperature Profiles During Start-Up Process

5.1.1 The Effect of the Stack-Pressure on the Transient Temperature Distribution

The effect of the stack pressure on the temperature distribution during a start-up process with a constant volumetric flow rate is demonstrated by Figure 80 through Figure 85 for water coolant and by Figure 87 through Figure 92 for oil coolant. The previous figures represent the generated isotherms that summarizes the thermocouple transient readings. Considering the first set for water, the coolant flow rate was kept constant at $Re = 125^{\circ}$, while the stack pressure was changed from 0 Kpa to 3500 Kpa. From these figures, we can observe the increase of the temperature with respect to time until the steady state is reached for any given coolant flow rate and stack pressure. The highest temperature zone location is slightly off the center due to the configuration of the cooling system. With higher stack pressure two effects on the transient electrode temperature distribution were noticed.

(a) Higher transient average electrode temperature with higher applied stack pressure approximately 3.064*10³ °C/KPa as shown in Figure 86. Considering the most extreme case when water was used as a coolant, with minimum flow rate, the peak electrode temperature as exhibited by Figures 80 to 82 when the applied stack pressure was (O KPa), increased from 87.1°C to 185.3°C during the considered time intervals. On the other hand, when the applied stack pressure was increased to 3500 KPa the peak electrode temperature increased from 92°C to 189°C before reaching the steady state operation condition. average transient The electrode temperature, when the applied pressure was 3500 KPa, went up from 64.8 °C to 129.3 °C with Re=1250 as shown by Figure 86. The reason for this temperature increase will be explained in Chapter VII.

1911 (BE) - 1911

Similar transient electrode temperature distributions were noticed when oil was used as the cooling fluid for different flow rates, refer to Figures 87 to 93. However, in general the peak and average transient electrode temperatures were higher for oil than those for water as

PO

Figure 83. Instantano

5

Instantaneous l'emperature Profiles During Start-Ups (Water Coolant, P=3500 KPa, Re=1250, E.E.= 1500 w/m²).

Re - 1250

Ccolant Fluid :water

ORIGINAL PAGE IS OF POOR QUALITY

P - 3500 (KPa)

E.E. - 3000 (N/m*2)

Figure 85. Instantaneous Temperature Profiles During Start-Ups (Water Coolant, P=3500 KPa, Re=1250, E.E.=3000 w/m²).

्रस

113

THERMAL CONTACT RESISTANCE (m~2*c/W)

ORIGINAL PARE IS OF POOR QUALITY ディーター

46.4

-

ORIGINAL PAGE IS OF POOR QUALITY i a

Contraction and a

136.

demonstrated by Figure 97 which shows the variation of the experimental transient average temperature. The average transient electrode temperature increase per unit of applied pressure was approximately 2.131×10^{-3} °C/KPa. These results were unexpected. Higher heat transfer rates to the coolant should decrease the average surface temperature of the cathode plate.

construction -

(b) More uniform temperature distribution: the transient isotherms temperature difference decreases and that is basically due to enhancing the surface contacts because of increasing the clamping pressure which causes reducing the thermal contact resistance. This in turn will result in a more even and symmetrical temperature distribution and reduce the existence of high number of thermal peaks. These observations were common for both coolants used.

⊱e = 15

P - 3500 (KPa) E.E. - 1500 (W/m²)

Figure 90. Instantaneous Temperature Profiles During Start-Ups (Oil Coolant, p=3500 KPa, Re=15, E.E.=1500 w/m²).

OF POOR QUALITY

and the second state of the second second

Instantaneous Temperature Profiles During Figure 91. Start-Ups (Oil Ccolant, p=3500 KPa, Re=15, E.E.=2250 w/m^2).

Coolant Fluid : OIL - 15 Ae

3500 (K@a)

E.E. - 3000 (W/m²)

· • Figure 92. Instantaneous Temperature Profiles During Start-Ups (Oil Coolant, p=3500 KPa, Re=15, E.E.=3000 w/m²).

FOOR QUALITY

141

144

「「「「「「「」」」」

5.1.2 The Effect of the Coolant Fluid Flow Rate on the Transient Temperature Distribution

The other parameter, beside the stack pressure, that will affect the performance of the fuel cell is the mass flow rate of the cooling system and the thermophysical properties of the fluid. This section was devoted to examine the influence of those two parameters on the transient temperature profiles, transient fuel cell average temperature and peak electrode temperature when the stack pressure is kept constant throughout the considered experimental time intervals.

Referring to Figure 94 through Figure 96, the following can be observed for the water coolant case:

- (a) The cell peak electrode temperature increased from 87.1 °C to 185.3 °C when the Re number was 1250 and from 34.3° C to 140° C when Re = 6167 with an applied stack pressure of 0 KPa.
- (b) Lower transient average electrode temperature were noticed for both fluids with higher mass flow rate as shown in Figure 101 for Re number. For example comparing between the test done using water coolant with Re=6167 using (0 KPa) applied pressure and that with Re = 1250 using the same applied pressure, the average temperature went up from 37.2 °C to 68.4°C in the first test while the raise in the second case was from 63.3°C to 118.4 °c.

ž

¥.

Figure 94. Instantaneous Temperature Profiles During Start-Up (Water Coolant, P=0 KPa, Re=6167, E.E.=1500 w/m²).

96. Instantaneous Temperature Profiles During Start-Up (Water Coclant, F=0 KPa, Re=6167, E.E.=3000 w/m²).

Instantaneous Electrode Temperature Profile

Re - 80 Coolant Fluid : CIL

- 0 (KPa)

Ρ

OF POOR QUALITY

÷

3

1. 6 1. Ju

いないたいない

A STATE

E.E. - 2250 (W/m⁻2) Instantaneous Temperature Profiles During Start-Up (Oil Coolant, P=0 KPa, Re=80, E.E.=2250 w/m²).

145

日本語の語を見たい

(c) By comparing Figures 80 to 82 and Figures 94 to 96, it can be noticed that the transient temperature profiles propagation rate decreased with increasing the mass flow rate.

On the other hand, when oil was used as a coolant imilar observations were noticed with higher volumetric flow rates and constant applied pressure as shown by Figure 97 to Figure 99 which summarizes the effect of the coolant flow rate on the temperature profiles for Re = 15, P = 0KPa and Re = 80, P = 0 KPa. Referring to Figure 93, the variation of the average temperature for part of the experimental results are summarized as a function of time. The transient average electrode temperature decreased with high coolant volumetric flow rates remarkably. Also, the decrease in the transient peak electrode temperature was very obvious with higher Re numbers.

5.2 Experimental Temperature Profiles During Shut-Down process

5.2.1 The Effect of Stack Pressure on the Transient Temperature Distribution

During a shut-down process similar observations were noticed for both working fluids when the effect of the stack pressure is considered while keeping the mass flow rate constant. The variation of the average transient electrode temperature is exhibited by Figure 100 and Figure 101 for both coolant. The electrode of temperature drop rate in the electrode was slower with higher pressure. Also the average increase in the temperature due to increasing the pressure values 2.893 \pm 10⁻³ and 2.011 \pm 10⁻³ °C/KPa for water and oil respectively. On the other hand, the temperature profiles vere more uniform than the start-up process as demonstrated by Figure 102 through Figure 107 for water coolant for the whole testing period.

5.2.2 The Effect of the Coolant Fluid Flow Rate on the Transient Temperature Distribution

The higher coolant mass flow rate has increased the electrode temperature drop rate when the pressure is kept constant. Also, the peak electrode temperature was reduced significantly with a higher Re number for both fluids. In eddition, the transient isotherms temperature differential decreased dramatically when the mass flow rates were increased. Water Coolant.

.ert 149

POOR QUALITY

DATA STATE STATES AND A STATES

ORIGINAL PARE IS OF POOR QUALITY 3

The set of set of

051 150

Figure 103. Instantaneous Electrode Temperature Profiles During Shut-Down Process (Water Coolant, P=0 KPa, Re=1250, E.E.=1500 w/m²).

> ORIGINAL PAGE IS OF POOR QUALITY

152

ORIGINAL PAGE IS OF POOR QUALITY

E.E. - 0 (W/m²) Figure 107. Instantaneous Electrode Temperature Profiles During Shut-Down Process (Water Coolant, P=3500 KPa, Re=1250, E.E.=0 w/m²).

3500 (KPa)

ORIGINAL PAGE IS OF POOR QUALITY

5.3 Theoretical Analysis of the Transient Temperature Distribution

In this section the theoretical analysis developed by Alkasab and Lu [1] was modified for the transient operation condition considered with incompressible cooling fluids. The previous analysis considered the PAFC shown in Figure 108 where the stack consists of a matrix of five cells between each cooling plate sandwich.

The energy balance equation used represents the contribution of fuel cell, cooling plate, process air and coclant in the heat exchange during a transient process. The following assumptions were considered when modifying that model:

- (a) The total thermal resistance of the system is dependent on the applied stack pressure, i.e. (K_x) is not constant and will be modified using the experimental correlations for the thermal contact resistance developed in the previous chapter.
- (b) A symmetrical behavior of identical halves throughout the fuel cell stack.
- (C) One-phase flow.

- (d) Incompressible working fluids.
- (e) Constant processing and cooling fluid specific heat and densities values during the considered time intervals.

であるといろい

> C. The Manual Solution \$

1.1.1.1.1.1

ž.

1.1

ORIGINAL PAR IS OF POOR QUALICY

- (f) Temperature gradient in the z-direction is negligibly small.
- (g) A adiabatic (isothermal and reversable) behavior is assumed of the fuel cell edges, no correction factor will be used to modify the heat transfer coefficients for the cell and cooling plates.
- (h) The transient experimental expression for the cooling fluid convection heat transfer coefficient will be used.

For the chemical reaction inside the fuel cell, the following was assumed:

- (a) Fuel to process air operational ratios remains constant throughout the considered testing time intervals.
- (b) Phorphoric acid concentration does not change during the considered time intervals.
- (c) No significant accumulation in reaction components.

The governing equation can be written as follows for a transient for the considered PAFC components:

Fuel Cell Plate:

The governing equation for the fuel cell plate should include the conduction heat transfer in the x-direction, considering the effect of the thermal contact resistance on the conduction heat transfer in the y-direction, the heat

loss to the process air by convection, the internal heat generation and the effect on the internal energy of the fuel cell plate as follows:

$$K_x \frac{\partial T}{\partial x}\Big|_{x+L_1} - K_x \frac{\partial T}{\partial x}\Big|_x + L_1 K_y \frac{\partial^2 T}{\partial y^2}\Big|_y$$

$$-\frac{c_1\dot{m}_1}{M_1}\frac{\partial T_1}{\partial y}\Big|_{y} + I \left(\frac{\Delta H}{F} - V\right) = \rho_1 c_1 L_1 \left(\frac{\partial T}{\partial t}\right)$$
(35)

<u>Cooling Plate:</u>

The governing equation for the fuel cell plate should include the heat conduction in the x-direction, the heat conduction in the y-direction, heat loss to the cooling fluid by convection and the effect of the internal energy of the cooling plate; as follows

$$\left[\frac{2K_x}{\partial x} \left| \frac{\partial T}{\partial x} \right|_{x + \frac{L_2}{2}} \right] + L_2 K_y \frac{\partial^2 T}{\partial y^2} |_y - \frac{C_2 \dot{m}_2}{M_2} = \rho_2 c_2 L_2 \left(\frac{\partial T}{\partial t} \right)$$

(36)

Process Air:

The governing equation for the process air is composed of the heat gain by the process air by convection, the change of the air enthalpy, and the effect of the air enternal energy as follows:

$$h_1 P_1 (T - T_{\bullet 1}) - \dot{m}_1 c_{p1} \frac{\partial T_1}{\partial t} = \rho_a A_1 C_1 \frac{\partial T_1}{\partial t}$$
(37)

Cooling Fluid:

The governing equation for the cooling fluid should include the heat transfer to the cooling fluid by convection, the change in the enthalpy of the cooling fluid, and the effect on the internal energy of the cooling fluid, as follows:

$$h_2 P_2 (T - T_2) - \dot{m}_2 C_{\rho 2} \frac{\partial T_2}{\partial y} = \rho_f A_2 \frac{\partial T_2}{\partial t}$$
(38)

The initial and boundary condition can be minimized as follows:

(X) START-UP PROCESS

Start-Up Initial Conditions: Room temperature at (t=0) = T(x,y,t) = T(x,y,0)Transient Boundary Conditions: Geometrical Symmetry (1) $\frac{\partial T}{\partial x} = 0$ at x=0, t>0 Adiabatic Process (2) $\frac{\partial T}{\partial y} = 0$ at y=0, t>0 Geometrical Symmetry (3) $\frac{\partial T}{\partial x} = 0$ at x = L_x, t>0 Adiabatic Process (4) $\frac{\partial T}{\partial y} = 0$ at y = L_y, t>0 Negligible Temperature $\frac{\partial T}{\partial z} = 0$ at $0 < z \le L_z$, t>0 Changes in the Z-Direction **Process air inlet temperature (6)** $T_1(x,0,t) = \overset{*}{C_1} t > 0$ **coolant fluid inlet temperature (7)** $T_2(x,0,t) = \overset{*}{C_2} t > 0$ **except in the case of oil coolant):** $T_2(x,0,t) = \overset{*}{C_3} t > 0$ **where** $\overset{*}{C_3} = \overset{*}{C_2} + \eta$

Note: For water coolant $h_2(t) = 31.088 (Re^{0.05779}) (e^{0.00953t})$ $(Pr^{0.01433}) (e^{0.000124o}) - 31.088$ $(Re^{0.05779}) (Pr^{0.01433}) (e^{0.000124o})$ For oil coolant $h_2(t) = 16.088 (Re^{0.216}) (e^{0.00961t})$ $(Pr^{0.0076}) (e^{1.356*10-4o}) - 16.088$ $(Re^{0.216}) (Pr^{0.0076}) (e^{1.356*10-4o})$

(B) SHUT-DOWN PROCESS

The initial and boundary conditions can be summarized as follows for the shut-down process that will start from a steady state operation condition when t=120 minutes:

Shut-Down Initial Conditions:

Average cell temperature at (t=120 minutes) = t(x,y,t) = T(x,y,120)

Transient Boundary Condition:

Geometrical symmetry (1) $\frac{\partial T}{\partial x} = 0$ at x=0, t>120 **Adiabatic process (2)** $\frac{\partial T}{\partial y} = 0$ at y=0, t>120 **Geometrical symmetry (3)** $\frac{\partial T}{\partial y} = 0$ at y=L_x, t>120 **Adiabatic process (4)** $\frac{\partial T}{\partial y} = 0$ at y=L_y, t>120 Negligible temperature $\frac{\partial T}{\partial z} = 0$ at $z \leq L_2$, t > 120change in the z-direction (5) Process air inlet temperature (6) $T_1(x,0,t) = \overset{*}{C}_1 t > 120$ min coolant fluid inlet temperature (7) $T_2(x,0,t) = \overset{*}{C}_2 t > 120$ min (except in oil case): $T_2(x,0,t) = \overset{*}{C}_3 t > 120$ min

Note: For water coolant: $h_s(t) = 70.088 * (Re^{0.05779}) * (Pr^{0.01433}) *$ [exp (-0.00891t + 0.000123 o) For oil coolant: $h_s(t) = 35.044 * (Re^{0.21506}) *$ (Pr^{7.614*10-3}) [exp (-0.00901t + 1.356*10⁻⁴ o)

where

T = T(x,y,t) = Temperature converted to (C^o)

 $T_1 = fuel cell plate temperature (C°)$

 T_2 = cooling plate temperature (C°)

 K_x = effective thermal conductivity in stacking

direction in $(\frac{W}{m-C})$

 K_y = effective thermal conductivity in the process air

direction in $(\frac{W}{m C^0})$

m1 = process air mass flow rate (Kg/hr)

 $\dot{\mathbf{m}}_2$ = cooling fluid mass flow rate (Kg/hr)

 $L_1 = fuel cell plate thickness (m)$

 L_2 = cooling plate thickness (m)

 L_x = high of the considered slice (m)

 L_y = length of the considered slice (m)

AH = molar heat of reaction of hydrogen F = Faraday's constant, (constant/meter) v = voltage (volts) I = Current density $(\frac{Amps}{m^2})$ c_{p1} = fuel cell plate specific heat $\left(\frac{J}{K_{p}-C^{0}}\right)$ $c_{\rho 2}$ = cooling plate specific heat $\frac{J}{KqC^{\circ}}$ M_1 = fuel cell plate pitch (m) M_2 = cooling plate pitch (m) ρ_1 = fuel cell plate density (Kg/m³) $\rho_2 = \text{cooling plate density} (Kg/m^3)$ $\rho_a = molar$ density of air (gm-mk/m³) $P_1 = process air channel perimeter (m)$ $P_2 = cooling tube perimeter (m)$ A_1 = process air channel cross-section area (m^2) A_2 = cooling air channel cross-section area (m²) h_1 = convection heat transfer inside process air channel

 h_2 = convection heat transfer coefficient inside cooling

tubes $(\frac{W}{m^2 C^0})$

Note: The purpose for using (C_3) in the case of oil, is to account for the higher temperature of the cooling fluid due to the effectiveness of the cooling heat exchange of the secondary cooling system.

The partial differential equations were solved by the

finite difference method utilizing the available initial and boundary conditions. The developed Fortran computer code was then used to generate the theoretical temperature profiles, the average temperature, the current density profiles and the average current density for the start-up and shut-down process under different operations conditions and for the two incompressible fluids.

The importance and the accuracy of the data generated by the electrode depends on the consideration of the design and operation parameters, the cooling system configuration, cooling fluid properties and current density effects on the electrode temperature distribution.

-

In addition, two of the parameters that affect the performance of the cooling system predicted by the computer code are the plates dimensions and the fuel cell stack material construction and design. The consideration of those two parameters will make the code sensitive to the material properties of the cooling and cell plates, such as the thermal conductivity, the cooling system and the sandwiched cell plates configurations, and the properties of the working fluid.

In the theoretical analysis considered above, the computer code was modified in order to predict the performance of a fuel cell that was simulated by the experimental model by considering the following design parameters:

(a) Cooling and fuel cell plates dimensions.

- (b) Cooling and fuel cell plate thermal conductivities.
- (c) Mass flow rate of cooling incompressible fluids utilized.
- (d) Serpentine cooling system dimensions and configurations.
- (e) Thermophysical properties of the utilized cooling fluids.
- (f) Inlet temperature of the cooling fluid (oil coolant only.
- (g) Total applied stack pressure.

ź

-

 (h) The sequence of the monitoring time intervals.

The output data file modified to demonstrate the transient electrode temperature distribution. The initial conditions will determine whether the performed test is a start-up or a shut-down process.

5.4 Analytical Results

:

こうちょう ちょうちょう ちょうちょう ちょうちょうちょう ないない

In this section the results generated by the theoretical analysis will be presented and appropriate analysis will be made to provide the needed information for a comparison betweeen the experimental and theoretical results.

5.4.1 Start-Up Process

The transient temperature profiles for a start-up process are demonstrated by Table I to Table IV, only for maximum and minimum applied stack pressure, with minimum, average, and maximum mass flow rates, when water is employed as a coolant. Figure 109 summarizes the variation in the average electrode temperature during the different As noticed considered start-up processes. in the experimental results, there is a tendency toward a higher average electrode temperature with higher applied stack pressure on the average of nearly 2.075 \star 10⁻³ °C per additional KPa. On the other hand, the average electrode temperature will drop with higher coolant mass flow rate or In addition, the transient temperature Re numbers. differential seems to decrease remarkably between the isotherms with higher stack pressure, but the opposite is noticed with the same stack pressure but lower mass flow rates.

Similar results were observed when oil was used as the **Cooling** fluid as exhibited by sample Table C-I and Table-II

approximately 1.109 * 10⁻³ °C/KPa. time and also a dependent of the applied stack pressure to notional a sa beredisnoo ent tot eratered as a function of applied stack pressure. Figure 110 shows the variation of distribution gradually becomes more uniform with higher femperature эцт •dn-jzejs B Guilub uoidudirdelb temperature electrode әцт то cysude әұә umpers, stack pressure for the minimum, maximum, and average Re beilqqs muminim and mumixem works roinw , xibneqqs ent nt

S9T

OF POOR QUALITY

2014 W ٦D

a start to be fully and

E= U L9/ 107 VIIJAUO NOOS 10

Table I. Start-Up Process with Water Coolant (P=3500 KPa, Re=1250)

ELECTPODE TEMPERATURE DISTRIBUTION STARTING TIME = 10.00 ENDING TIME = 20.00 AVERAGE TEMPERATURE = 65.631 PRESUVE= 3500.0 NPA REYNOLD'S DUMBER= 5.125002+04 COOLANT:WATER

3

記事でいたいます

\$1.50900.74679 33879.22878.46777.79776.94676.18675.42674.71978.95876.19777.43676.67575.91475.15374.39273.63178.09977.24676.48475.72274.95974.19773.43472.67271.91976.25275.43974.72573.96273.19972.43571.67270.90576.14574.56573.82473.65672.29371.52770.76269.99669.23163.45670.73471.96971.20370.43869.67268.96768.141G7.37666.51070.14065.38268.62567.86757.10966.352C5.59464.83564.75966.22767.43966.74265.98535.22854.47063.71362.95662.195\$6.34665.36964.83364.07663.32062.56361.80761.05062.294\$7.46762.72251.57861.23360.45959.74559.00058.25657.512\$9.26858.55237.33757<17356.49555.69056.07454.25923.543	83.162	82.404	81.645	80.385	80.128	79.363	78.611	77.852	77.694
73.71978.95876.19777.43676.67575.91475.15374.39273.63178.00977.24676.48475.72274.95974.19773.43472.67271.91076.25275.49974.72573.96273.19972.43571.67270.90570.14574.58973.65672.29371.52770.76269.99669.23163.46672.73471.96971.20370.43869.67268.96768.14167.37666.51070.14065.38266.62567.86767.10966.352C5.59464.83564.07964.20767.43966.74265.98535.22854.47063.71362.95662.195h6.34665.36964.83364.07663.32062.56361.80761.05062.29443.46762.72261.57861.23360.45959.74559.60058.25657.51259.26858.55237.33757.17356.49555.69050.77454.25923.543	91.509	89.748	79 998	79.228	78.467	77.797	76.946	76.186	75.42 6
78.00977.24676.48475.72274.95974.19773.43472.67271.31976.25275.43974.72573.96273.19972.43571.67270.90576.14574.56573.65672.29371.52770.76269.99669.23169.45677.73471.96971.20370.43869.67268.90768.14167.37666.31070.14065.38266.62567.86757.10966.33265.59464.83564.77966.21767.49966.74265.98535.22854.47063.71362.95662.195h6.34665.56964.83364.07663.32062.56361.80761.05060.294*1.46762.72251.57861.23360.45959.74559.00058.25657.51259.26858.55237.33757<173	79.719	78.958	78.197	77.436	76.675	75.914	75.153	74.392	73.531
76.25275.45974.72573.96273.19972.43571.67270.90570.14531.56573.65672.29371.52770.76269.99669.23163.46677.73471.96971.20370.43669.57268.96768.14167.37666.51070.14065.38268.62567.86757.10966.352C5.59464.83564.07968.20767.43966.74265.98535.22864.47063.71362.95662.19566.34665.36964.83364.07663.32062.56361.80761.05062.29461.46762.72261.57861.23360.45959.74559.00058.25657.51259.26858.55237.33757.17356.49555.69050.77454.25923.543	78.009	77,246	76.484	75.722	74.959	74.197	73.434	72.672	71.910
73.824 73.056 72.293 71.527 70.762 69.996 69.231 63.456 72.734 71.969 71.203 70.438 69.572 68.957 68.141 67.376 65.310 70.140 65.382 68.625 67.867 57.109 66.352 05.594 64.835 64.759 68.207 67.499 66.742 65.985 55.228 54.470 63.713 62.956 62.199 66.346 65.369 64.833 64.076 63.320 62.563 61.807 61.050 60.294 61.467 62.722 61.878 61.233 60.459 59.745 59.000 58.256 57.512 59.268 58.552 37.337 57.133 56.495 55.690 50.774 54.259 53.543	16.252	75.499	74.725	73.962	73.199	72.435	71.672	70.905	70.145
77.734 71.969 71.203 70.438 €9.572 68.967 68.141 G7.376 66.510 70.140 65.382 68.625 67.867 57.109 66.352 C5.594 64.835 64.79 68.207 67.439 66.742 65.985 35.228 54.470 63.713 62.956 62.195 66.346 65.369 64.833 64.076 63.320 62.563 61.807 61.050 62.294 61.467 62.722 61.578 61.233 60.459 59.745 59.600 58.256 57.512 59.268 58.552 37.337 57.173 56.495 55.690 50.774 54.259 23.543	;	73.62<	73.056	72.293	71.527	73.762	69.996	69.231	69.45E
79.140 55.382 68.625 67.867 57.109 66.352 C5.594 64.835 64.79 66.207 67.439 66.742 65.985 55.228 54.470 63.713 62.956 62.195 h6.346 65.359 64.833 64.076 63.320 62.563 61.807 61.050 60.294 h1.467 62.722 61.878 61.233 60.459 59.745 59.000 58.256 57.512 59.268 58.552 37.337 57.133 56.495 55.690 50.774 54.259 53.543	72.734	71.969	71.203	70.438	63.572	68.907	68.141	67.376	66.310
68.207 67.439 66.742 65.985 55.228 54.470 63.713 62.956 62.195 56.345 65.359 64.833 64.076 63.320 62.563 61.807 61.050 60.294 51.467 62.722 51.578 61.233 60.459 59.745 59.000 58.256 57.512 59.268 58.552 37.337 57.173 56.495 55.690 50.774 54.259 53.543	79.110	65.382	68.625	67.867	57.109	66.352	C5.594	64.835	64.979
h6.346 65.369 64.833 64.076 63.320 62.563 61.807 61.050 60.294 h1.467 62.722 61.578 61.233 60.459 59.745 59.000 58.256 57.512 59.268 58.552 57.337 57.133 56.495 55.690 50.274 54.259 53.543	68.207	67.439	66.742	65.985	\$5.228	54.470	63.713	62.956	52.195
N1.467 62.722 61.578 61.233 60.459 59.745 59.000 58.256 57.512 59.268 58.552 57.337 57.173 56.495 55.690 50.774 54.259 53.543	n6.34 6	65.589	64.833	64.076	53.320	62.563	61.807	61.050	60.294
59.258 58.552 37.337 57 138 56.405 55.690 58.074 54.259 53.543	63.467	62.722	51.578	61.233	60.459	59.745	59.000	58.256	57.512
	59.252	58.552	57.337	57 131	56.49	55.690	58.074	54.259	53.543

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 20.00 ENDING TIME = 30.00 AVERAGE TEMPERATURE = 77.372 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.12505E+04 GOOLANT:WATER

94.005	93.148	92.291	91.433	90.576	89.718	83.861	89.003	87.146
97.341	91.480	99.618	89.757	28.895	88.034	-87.172	85.311	85.450
90.384	85.521	89.658	87.795	86.932	85.070	85.207	84.344	83.481
88.601	87.735	86.869	86.003	85.137	84.271-	83.406	82.540	81.G7¢
\$6.713	85.844	84.976	81.108	83.240	82.372	81.504	80.636	79.768
\$5.038	84.165	83.292	82.420	81.547	80.675	79.802	78.929	78.057
82.969	82.096	81.222	80.349	79.476	78.603	77.729	76.856	75.983
79.187	78.331	77.476	76.620	75.765	74.910	74.054	73.199	72.343

ORICIMAL, PAPE 16 OF POOR QUALITY

Table I (Continued).								
-1.61 ·	76.165	75.310	74 456	73.601	72.747	71 092	71 338	79.163
-: 78°	73.906	73.083	72.231	71.378	70.525	69.672	68.619	67.967
10,329	67.563	68.738	67.912	67.987	66.261	65.436	64.610	\$3.764
(1.14)	62.432	\$1.667	60.905	50.1:3	59.380	58.517	57.884	57.051

ELECTRODE FEMPERATURE DISTRIBUTION STARTING TIME = 30.00 ENDING TIME = 40.00 AVERAGE TEMPERATURE = 87.744 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.17500E+04 CHOLANT:WATER

106.838	105.913	104.938	103.963	102.989	102.014	101.039	100.064	99.085
:05.209	104 227	103.246	102.264	101.203	100.301	99.320	98.379	\$7.357
193.057	102.074	101.090	100.106	99.122	98.139	97.155	96.171	95.157
:91.194	100.205	99.216	98.227	97.238	96.249	95.200	94.271	93.282
\$3.150	98.157	97.164	96.172	95.179	94.135	93.194	92.201	91.208
97.474	96.473	95.473	94.473	93.473	92.472	91.472	90.472	89.471
95.192	94.199	93 189	92.187	91.185	90.183	99.101	88.379	87.177
45.01E	E8.947	87.976	87.305	86.073	85.062	84.093	87.310	82.143
27.413	86.440	85.471	24.501	63.531	82.563	\$1.592	50.672	79.637
24.755	E3.829	82.862	81.895	80.928	79.961	76.994	76.027	77.0E0
79.513	77.592	75.671	75.750	74.829	73.908	72.988	72.057	71.146
67.773	66.954	66.136	65.318	64.499	63.681	62.663	62.045	61.225

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 40.00 ZNDING TIME = 50.00 AVERAGE TEMPERATURE =100.100 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 9.12500E+04 COOLANT:WATER

12.251 121.135 120.021 118.906 117.791 116.676 115.561 114.446 113 331 20.552 119.428 118.303 117.179 116.054 114.929 133.865 112.689 111.556 18.177 117.049 115.920 114.792 113.664 112.536 111.408 110.280 109.152 15.324 115.088 113.952 112.817 111.681 110.545 109.409 108.273 107.137

> ORIGINAL PAGE IS OF POOR QUALITY

ţ

Table I (Continued).

13, 393	112.802	111.715	110.569	109.428	104.287	107.146	106.004	104.863	
:: 121	111.178	110.025	108.873	107.720	105 567	105.415	10:.262	103.109	
122.850	108.694	107.538	106.381	105.225	104.069	102.913	101.757	100.600	
. 22. 597	101.548	100 478	99.369	93.260	97.150	96.041	94.921	93.822	
:9.773	99.672	97.565	96.458	95.351	91.244	93.137	92.030	90.923	
36.678	35.596	94.493	93.391	92.288	91,185	90.083	88.980	87.878	
58.074	87.041	86.008	84.976	83.943	82.910	81.877	80.844	79.811	
73.103	72.22;	71.378	70,456	69.573	68.690	67.80B	66.925	56.042	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 50.00 EMDING TIME = 50.00 AVERAGE TEMPERATURE =114.872 PRESUPE= 350.0 KPa SEYMOLD'S NUMBER= 0.12500F+04 COOLANT:WATER

140.645 139.362 139.079 136.796 135.514 134.231 132.546 131.655 130.382 148.921 137.625 136.028 135 033 133.737 132.441 131.145 129.349 128.553 "16.134 134.983 133.662 132.383 132.685 12# 779 128.478 227.177 125.877 .14.133 132.991 131.509 130.297 110.926 127.674 126.362 125.090 122.738 131.779 130.460 129.140 127.821 125.502 125.182 123.863 122.544 121.224 130.151 128.816 127.480 126.145 124.809 123.473 122.138 120.802 119.467 127.500 126.158 124.816 123.474 122.132 120.790 119.448 118.196 116.764 117.972 116.597 115.423 114.148 112.874 111.600 110.325 109.051 107.777 14.557 113.206 112.016 110.745 109.474 108.203 106.532 105.661 104.390 :10.912 109.547 108.382 107.118 105.853 104.588 103.323 102.059 100.794 99.366 98.200 97.035 95.869 94.704 93.539 92.373 91.205 90.042 79.311 71.659 78.353 77.39€ 75.481 74.523 73.566 72.608 75.438

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 60.00 ENDING TIME = 70.00 AVERAGE TEMPERATURE =132.605 PRESURE= 3500.0 KPA REYNOLD'S NUMBER= 0.12500E+04 COOLANT:WATER

OF POOR YUALITY

•••

Table I. (Continued).

7

A DECEMBER OF A DECEMBER OF

:2.75A	161.273	159.789	150.304	156.820	1551335	153:850	152.366	150,861
0 . 999	159.497	157.995	156.494	154.992	153.490	151988	150.486	148.984
	155.551	155.042	153.533	152.024	150:515	149.007	147.498	145.924
.5.900	154.376	152.852	151.329	149.805	148.281	146.258	145.234	143.711
.53.177	151.643	150.110	148.576	147.042	145.509	143.975	142.442	140.908
.33.613	150.057	1<8.501	146.945	145.390	143.834	. 142.278	149.722	139.164
144 443	147.277	345.710	144.147	142.577	141.010	139.444	117.877	206.310
.36.304	134.631	133.359	131.887	130.414	128.942	127.169	125.997	124.525
32.288	130.920	129.353	127.885	126.417	124.950	123.432	122.014	120.547
. 27.952	126.493	125.034	123.575	122.116	120.657	119.198	117.739	115.280
12.745	ز42.1	110.100	108.778	107.455	106.133	104.811	103.489	102.164
86.544	83.500	64.455	83.410	82.365	01.320	89.275	79.220	16 195

171

ORIGINAL PAGE IS OF POOR QUALITY

Table II. Start-Up Process with Water Coelant (P=0 KPa, Re=1250).

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 10.00 ENDING TIME = 20.00 VVERAGE TEMPERATURE = 53.163 FRESURE= 0.0 KPa FCYNOLD': NUNBER= 0.12500E+04 COOLANT:WATER

77.543	76.818	76.094	75.369	74.644	73.919.	73.194	72.469	71 743
75.9ć5	75.340	74.413	73.686	72.9 6 0	72.233	71.507	10.780	70.054
14.062	73.334	72.607	71.880	71.153	79.426	69.699	AN 971	69 344
72.321	71.002	79.874	70.145	69.417	63.688	67.960	67 321	00.244
70 557	£9.817	69.098	68.368	67.639	-66.909	66.190	55 ASO	60.303
-8.800	65.137	67.495	66.674	55.942	65.211	64.480	67 7/2	94.721
€7.302	Sē.2/1	65.539	54.808	64.076	63.345	62.613	51 832	03.01/
64.457	63.733	63.009	52.265	51.561	6 0.0 37 ·	60.113	50 740	01.12J
62.567	61.843	61.119	50.395	59.672	949	58 775	87 E 11	30.00:
60 651	59.928	39.205	58.482	57.760	57.037	56 214	57.501	56.778
57.052	57.242	58.431	55.720	55.008	54 747	57 583 ·	52.521	51.565
\$2.8 6 2	53.178	52.495	51.811	51 127		10 72	34.8/4	52.161
						49./60	49.076	48.392

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 20.00 ENDING TIME = 30.00 AVERAGE TEMPERATURE = 71.214 PRESURE= C.0 KPa REYNOLD'S NUMBER= 0.12500E+C4 CCOLANT:WATER

いいとういろうちょう

87.654	86.835	86.015	85.196	84.377	83 557	87 730	•• •• •	_
\$5.949	85,125	84 303			03.337	04.138	81.919	91.099
A1 970		04.302	83.479	82.656	81.633	\$1.010	80.187	79.363
	83.145	82.321	81.495	80.672	79.847	79.023	78.190	17 27.1
92.152	81.325	80.497	79.675	79 843	73 015			
80.236	79 406	70 879		13.042	/8.015	//.185	76.360	75.533
78 6.0		10-311.	77.747	76.917	75.088	75.256	74.429	73.599
	77.682	76.548	76.014	75.180	74.345	73.512	17 670	21.0.0
76.430	75.596	74.761	77 977	71 003			-4.016	/1.645
72.770	71 863			/3.093	12.258	71.424	70.589	69.755
		/1.136	70.318	69.501	63.684	67.866	67.049	66.231

original Flat is

Table II. Continued.

* N. ± 9¶	69.782	68.565	58.145	57.332	26.315	65.699	64.983	64.064	
ER 370	67.555	66.740	65.925	65.110	54.235	63.480	62.565	51.851	
54.164	61.375	62.586	61.797	61.008	60.219	59.430	58.642	57.853	
57 431	56.702	55.973	55.244	54.515	53.786	53.056	52.327	51.59%	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 30.00 ENDING TIME = 40.00 AVERAGE TEMPERATURE = 80.768 PRESURE= 0.0 KPa ASYNGLD'S NUMBER= 0.12500E-04 COJLANT:WATER

design the second states

**.666	98.735	97.693	95.872	95 540	95.008	94.077	93.145	92.213
97.926	56.928	95.330	95.112	94.174	93.236	92,298	91.361	90.423
\$5.744	94.804	93.864	92.924	91.984	91.044	90.104	89.1E4	88.224
73.829	92.884	91.939	90.394-	99.043	85,194	88.159	87.23.1	86.259
41.744	90.795	89.847	88 899	87.950	87.001	86.053	85.104	84.156
F9.933	89.042	88.086	87 130	86.174	85.218	84.263	83.307	82.351
17.531	86.753	85.7°€	3	63.65)	62.904	61.946	30.985	50.031
P2.033	51.765	80.777	79.845	75.920	77.492	77.064	76.136	75.206
0 .123	79.197	78.270	77.343	76.417	75.490	74.563	73.637	72.710
77.517	76.593	75.669	74.746	73.822	72.898	71.974	71.050	70.126
71.563	70.689	69.809	59.929	68.049	67.159	66.289	65.109	64.530
61.591	60.809	60.028	59.246	58.464	57.682	56.900	56.118	55.336

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 40.00 ENDING TIME = 50.00 AVERAGE TEMPERATURE = 92.149 PRESURE = 0.0 XPa RIYNOLD'S NUMBER = 0.12500E+04 CODLANT:WATER

.13.991	112.926	111.860	110.795	109.729	108.664	107.598	106.533	105.467
.12.207	111.132	110.058	108.983	107.909	106.834	105.759	104.685	103.610
\$9.790	108.712	107.634	106.556	105.479	104.401	103.323	102.245	101.167
07.765	106.680	105.594	104.509	103.423	102.338	101.253	100.167	99.087

OF POOR QUALITY

Continued. Table II.

ALC: NO

in the second se

į

a week the second

See Style - 16 to

1 244 . . 4 . SA 1610-161 State

105.479	104.388	103.296	102.237	101.315	100.026	98.935	97.845	96.754	
103.715	102.614	191.512	100.411	99.309	98.208	37.106	96.005	94.903	
101.193	100.085	98.983	97.879	96.774	95.663	94.564	93.459	92.355	
94.376	33.316	92.256	91.196	90.136	89.076 [°]	88.016	86.956	851895	
91.161	90.403	89.345	. 88.297	87.229	86.172	85.114	84.056	82.998	
83.309	37,345	36.291	85.238	34.184	83.131	82.0/7	81.023	79.970	
80.285	79.238	78.311	77.324	. 76.337	75.350	74.363	73.375	22.308	
66.436	65.593	64.749	63.906	63.062	62.219	61.376	60.532	59.609	
							• .		

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 50.00 ENDING TIME - 60.00 AVERAGE TEMPERATURE -105.755 PPESURE-0.0 KPa REYNOLD'S NUMBER- 9.12500E+04 COOLANT:WATER

125.013 123.787 122.561 121.335 131.143 129.916 123.591 127.405 226.239 123.112 121.873 120.635 119.397 129.304 128.065 125.827 125.529 124.350 120.397 119.154 117.911 116.568 122.883 121.540 126.613 125.370 124.127 118.195 116.942 115.688 114.434 120.702 119.449 121.956 124.463 123.209 115.633 114.372 113.111 111.850 138.154 116.893 129.415 121.935 120.675 112.512 111.235 109.959 116.340 115.064 113.786 117.617 120.169 118.693 109.750 108.476 107.193 113.505 112.323 111.040 114.887 117.452 116.170 101.107 99.889 98.671 103.542 102.324 104.760 108.413 107.195 105.977 98.935 97.721 96.506 95.292 100.150 105.007 103.793 102.579 101.364 91.724 96.558 95.349 94.141 92.932 101.392 100.183 98.975 97.766 81.553 82.782 83.896 \$7.237 86.123 85.009 50.578 89.464 88.350 56.587 65.672 64.757 67.502 72.077 71.162 70.247 69.332 68.417

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 60.00 ENDING TIME = 70.00 AVERAGE TEMPERATURE =122.091 PRESURE= 0.0 KPa REYNOLD'S NUMBER- 0.12500E+04 COOLANT:WATER

ORIGINAL PARE IS OF POOR QUALITY

Table	11.	Contin	ied.
10010			

Shinking and the

111 741	150.342	148.924	147.505	145.087	144.668	143.250	141.931	149.412	
149.651	148.419	146.984	145.548	144.113	142.678	141.243	139.808	138.373	
146.843	345.401	143.959	142.518	141.076	139.634	138.192	135.751	135.309	
.44.553	:43.097	141.641	140,185	138.729	137.273	135.817	134.361	132.905	•
141.735	140.270	138.804	137.339	135.874	134.408	132.943	131.478	130.017	
.39.994	138.498	137.011	135.524	134.038	132 551	131.064	129.578	128.091	
137,113	135.616	134.119	132.622	131.126	129.629	128.332	125.635	125.138	•
125.260	123.853	122.446	121.039	115.532	118.225	116.819	115.411	114.004	
121.260	119.857	118.455	117.053	115.650	114.248	112.845	111.443	119.041	•
115.963	115.575	114.181	112.787	111.393	109.998	108.604	107.210	105.815	
:92.774	101.510	100.247	98.983	97,719	96.456	95.192	93.929	92.565	
75.651	77.653	76.554	75.656	7:.637	73.359	72.500	71.662	79.663	

ORIGINAL PAGE IS OF POOR QUALITY

Table III. Start-Up Process with Water Coolant (P=3500 KPa, Re=3321).

ELECTRODE TEMPERATURE DISTRIBUTION
STARTING TIME - 10.0C
ENDING TIME - 20.00
AVERAGE TENSELATURE - 58.739
PRESURE= 3500.0 KPB
REYNOLD'S NUMBER- 0.33210E+04
COOLANT : WATER

The solution was an

 $1 - \alpha_{\rm eff}^{\rm eff} \, {\rm d}_{\rm eff}$

11.924	71.166	70.407	69.649	68.890	68.132	57.373	68.514	65.858
/C.484.	69.724	68.963.	58.203	67.442	66.692	65.922	65.161	64.401
£9.925	66.164	67.403	66.641	55.081	65.120	64.359	63.596	62.837
07.436	66.673	65.911	65.149	54.386	63.624	62.861	52.099	61.337
65.906	65.143	64.379	63.616	62.852	62.089	61.326	60.562	59.795
€4.457	63.697	62. <u>9</u> 2÷	62.161	61.395	59.630	59.841	59.025	58.224
62.342	52.377	61.311	60.546	59.780	59.015	58.219	57 484	56.716
\$6.589	59.831	59.073	58.315	57 558	.56.800	55.043	53.285	54.52
58.350	58.192	57.435	56.678	55.921	55.163	54.406	53.649	52.892
57.287	56.530	55.774	55.017	54.261	53.504	52.745	51.991	51.235
54.788	54.043	53.299	52 555	51.810	51.068	50 322	49.577	45.833
51.150°	50.435	49.719	49.ũ04	48.258	47.573	46.857	45.141	45.424

ELECIRODE TEMPERATURE DISTRIBUTION STARTING TIME = 20.00 ENDING TIME = 30.00 AVEFAGE TEMPERATURE = 66.220 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.33210E+04 COQLANT:WATER

81.303	80.445	79.588	78.730	77.873	77.015	76.158	75.300	74.443
79.851	78.990	78.128	77.267	76.405	75.544	74.682	73.821	72.960
78.146	77.283	76.421	75.558	74.695	73.832	72,969	72.107	71.244
76.592	75.727	74.961	73.995	73.129	72.263	71.397	70.531	69.663
74.947	74.079	73.211	72.343	71.475	70.607	69.738	63.870	66.000
73.486	72.614	71.741	70.868	69.996	69.123	68.251	67.378	66.505
71.685	70.812	69.939	69.065	68.192	67.319	66.445	65.572	64.599
58.404	67.548	66.693	65.837	64.982	64.127	63.271	62.416	61.562

ORIGINAL PARE IS OF POOR QUALITY

Table III. Continued.

The subscription of the second s

. Server

A CONTRACTOR

	. 5.6£3	64.304	63.954	63.099	62.245	61.390	50.536	55.681
• 4 577	63.724	62.871	62.019	61.156	60.312	59.460	58.607	37.755
60 754	59.938	59.112	58.287	57.461	56.636	55.810	54.985	54.159
4.510	53.772	53.014	52.231	51.488	50.725	49.962	49.199	48.436

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 30.00 ENDING TIME = 40.00 AVERAGE TEMPERATURE = 75.039 PRESURF= 3500.0 XPa REYNOLD'S NUMBER= 0.33210E+04 COGLANT:WATER

92.444	91.469	90.494	89.520	88.545	87.570	86.595	55.620	84.645
40.978	82,997	02,015	88.034	67.052	85.071	35.089	34.198	83.126
69.104	88.120	37.137	86.153	95.169	84.185	83.202	82.218	81.234
87.479	86.490	85.501	84.512	03.523	82.534	81.545	80.556	79.557
85.697	84.794	83.711	82.719	81.725	90.733	79.741	78.748	27.756
<i>⊾</i> ⊿.233	83.233	82.232	81.232	80.232	79.232	78.231	77.231	76.231
92.246	E1.244	89.242	79.240	78.238	77.237	76.235	75.233	74.231
77.674	76.703	75.731	74.760	23.789	72.817	71.846	70.875	(9.903
75.491	74.522	73.552	72.582	71.612	70. 543	69.673	68.763	67.733
73.217	72.250	71.283	70.316	69.350	68.383	57.416	66 449	65.482
67.776	66.855	65.935	65.014	64.093	63.172	62.251	61.330	60.410
56.490	57.672	56.854	56.036	55.217	54.399	53.581	52.763	51.944

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 40.00 ENDING TIME = 50.00 AVERAGE TEMPERATURE = 85.675 PRESURE- 3500.0 KPa REYNOLD'S NUMBER= 0.33210E+04 COOLANT:WATER

105.731	104.616	103.501	102.386	101.271	100.156	99.041	97.926	96.811
104.246	103.122	101.997	100.873	99.748	98.623	97.499	96.374	95.250
102.176	101.348	99.920	98.792	97.664	96.536	95.408	94.280	93.151
100.472	99.336	98.200	97.064	95.928	. 94.792	93.657	92.521	91.385

ORIGINAL PAGE IS OF POOR QUALITY

table Ifl. Continued.

ヨカジ

No. 2. 11 15

.

.

64 526	57.385	95.244	95 103	93.961	92.820	91.673	96.538	87.396
\$7.272	95.919	94.767	93.614	92.461	91.308	90.156	89.003	87.850
94.910	93.754	92.598	91.442	90.286	89.129	87.973	85.817	85.661
25.712	\$7 603	86.494	85.384	84.275	83 166	82.056	80.947	19.838
s ő.173	85.065	83.959	62.852	81.745	80:639	79.532	78.425	77.318
£1,495	52.392	81.290	80.187	79.084	77.982	76.879	75 777	74.674
.6.331	71.998	73.965	72.932	71.899	70.866	69.833	68.800	67.767
63.031	62.209	61.326	60.443	59.561	58.678	57.795	56.913	55.030

ELECTRODE TEMPERATURE (DISTRIBUTION ELECTRON TIME - 50.00 ENCING TIME - 50.00 AVERAGE TEMPERATURE - 90.320 23ESURE- 3500.0 KPA REYNOLD'S NUMBER- 0.33210E+04 COLANT: WATER

.21.639 120.337 119.074 117.791 116.369 115.225 113.942 112.639 111.276 .22.130 118 834 117.538 116.242 114.940 113.650 112.354 111.056 109.763 117.832 116.531 115.230 113.929 112.628 111.327 110.026 108.725 107.425 16.040 114.728 109.480 108.169 113.415 112.104 110.792 106.857 105.545 .11.899 112.540 111.260 109.941 108.622 107.302 105.963 104.664 103.344 .12.472 111.136 109.801 108.465 107.130 105.794 104.458 103.123 101.787 .10.160 108.918 107.476 196.134 104.792 103.450 102.108 100.766 99.424 .01.907 100.633 99.358 98.084 96.810 95.535 94.261 92.987 91.712 98.937 97.656 95.395 95.124 93.853 92.582 91.311 90.041 88.770 \$5.767 94.503 93.238 91.973 90.709 89.444 88.179 86.914 85.650 45.778 84.512 83.447 82.282 79.951 78.785 77.623 76.454 81.116 68.449 67.491 66.533, 65.576 64.618 63.661 62.763 61.746 60.758

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 60.00 ENDING TIME = 70.00 AVERAGE TEMPERATURE =113.499 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.33210E+04 COOLANT : WATER

ORIGINAL PAGE IS OF POOR QUALITY

Table III. Continued.

والمراجع والمراجع

			•					
:7.76:	139.280	137.795	136.310	134.826	132.341	131.037	130.372	125.558
19.223	137.721	136.219	134.717	133.215	131.713	130.211	128.709	127.207
34.659	135.150	133.641	132.133	130.624	129.115	127.606	126.097	124.589
34.770	133.246	131.722	130,199	128.675	127.152	125.628	124.104	122.531
12.393	130,960	129.326	127.793	126.239	124 726	123.192	121.65e	120.125
31.018	129.452	127.906	126_353	124,795	123.239	121.682	120.127	116.571
18.600	177.034	125.467	123,901	122.334	120.767	119.291	117.634	116.013
17.743	116.271	114.798	113.326	111.850	110.381	108.909	107.436	105.964
14.250	112.782	111.375	109.847	128.379	106.912	105.444	103.977	102.Fő=
10.430	109.022	107.553	106.104	104.645	109.986	101.727	100.268	98 809
;7.32 2	95.005	94.583	93.361	92.038	90.718	89.394	88.071	38.749
4.691	73.648	72:602	71.557	70.512	69.467	68.422	67.377	66 532
				•				

OF POOR QUALITY

Table IV. Start-Up Process with Water Coolant (P=0 KPa, Re=3321).

LLECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 10.00 ENDING TIME = 20.00 AVERAGE TEMPERATURE = 53.056 PRESUPE= 0.6 KPA RESUPE= 0.33210E+04 COOLANT:WATER

		64 507	\$7.609	62.705	51.510	60.911	60.013	59.113
60.305	02.302		67 774	61.373	50.472	59.571	58.669	57.768
×4.97H	64.976	53.175	02.274	60.073	59 031	58.130	57.228	56.325
63.541	62.639	61.737	66.835	33.333		66 747	55.843	54.939
-2.160	61.261	60.361	59.457	58.554	51.950	50.747		67 570
66.758	59.853	38.945	56.044	57.139	\$5.234	55.329	24.424	
19.422	58.515	57.600	56.701	55.793	51.886	53.979	53.072	32.195
17 314	57 077	56.119	55.212	54.305	53.397	52.490	51.583	50.675
	5. 0ED	54 060	53, 162	52.265	51.367	50.469	49.571	48.673
	J . J . J . J . J	57 451	51,653	50.755	49.858	48,961	46.063	47.165
24.369	23.440		50 123	44.126	43.029	47.433	45,536	15.540
91.013	51.910	SILVIN		A	45.095	45.216	44.333	43.451
50.505	49.627	49.745	41.001	NE.700		47 067	41.219	40.371
47.158	46.300	45.460	44.512	43,764	44.913	42.00.		•

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 20.00 ENDING TIME = 30.00 AVERAGE TEMPERATURE = 59.815 PRESURE= 0.0 KPa REYNOLO'S NUMBER= 0.33210E+04 COOLANT:WATER

74.951	73.935	72.919	71.902	70.886	69.870	68.854	67.837	56.821
73.613	72.592	71.571	70.550	69.529	68.508	67.487	66.466	65.445
72.041	71.019	69.996	68.974	57.951	56.929	65.506	61.994	63.861
70 609	69.583	69.557	67.531	66.504	65.478	64.452	63.426	62.399
69.093	68.064	67.035	66.006	64.977	63.948	62.919	61.890	60.862
\$7.746	66.712	65.678	64.644	63.609	62.575	61.541	60.507	59.471
46.085	65-051	64.016	62.981	61.945	60.911	59.876	58.841	57.80é
£3.061	62.047	61.033	60.019	59.006	57.992	56.978	55.964	54.950

ORIGINAL PARE IS OF POOR QUALITY Table IV. Continued.

-

「「「「「「」」」」

and the second second

The Second

the state

11.322	60.309	59.297	58.294	57.271	56.258	55.246	54.233	53.225
19.533	59.523	57.512	56.501	55.491	54.490	53.469	62.455	±1 44€
-6.018	55.040	54.061	53.083	52,104	51.126	50.147	49.159	18.191
50.240	49.376	48.472	47.568	46.663	45.759	44.855	43.950	43.046

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 30.00 ENDING TIME = 40.90 AVERAGE TEMPERATURE - 57.837 PHISURE - 0.9 KPa REYNOLD'S NUMBER 0.33210E+04 COCLANT:WATER

83.222	84.067	82.911	81.756	003.05	79.445	78.269	77.134	75.978
83.87 1	82.708	81.545	60.381	79.218	79.055	76.832	75.728	74.563
82.143	80.977	79.812	78.646	77.480	76.314	75.148	73.982	72.81≦
87.645	79.473	78.301	77.129	75.95?	74.785	73.613	72.441	71.258
79.003	77.826	76.650	75.473	74.297	73.129	71.944	70.767	69.591
77.953	76.468	75.292	74.097	72.911	71.725	70.540	69.355	68.169
75.212	74.635	73.447	72.280	71.972	67.885	\$8.697	67.510	65.323
71.607	70.456	69.305	68.154	57.002	65.851	64.700	63.549	52.392
69.595	66.443	67.297	60.147	64.998	63.849	62.699	61.550	60.401
67.499	66.353	65.207	64.061	62.915	61.769	60.623	59.477	58.331
62.483	61.392	60.300	59.209	58.118	57.026	55.935	54.844	53.752
53.923	52.953	51.983	51.013	50.044	49.074	48.104	47.134	48.154

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 40.0J ENDING TIME = 50.00 AVERAGE TEMPERATURE = 77.391 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.33210E+04 COOLANT:WATER

97.471 96.150 94.828 93.507 92.185 90.863 89.542 88.220 86.899 96.103 94.770 93.437 92.104 90.771 89.438 88.106 86.773 85.440 94.194 92.857 91.520 90.183 88.846 87.509 86.172 84.835 83.49E 92.623 91.277 89.931 88.585 87.238 85.892 84.546 83.200 81.85-

OF PODY QUALITY

181

Table IV. Continued.

ないまたいまたいした

164 ALA'S

-2.630	39.477	28.125	86.772	85.420	64,367	22.714	£1.362	80.005	
nc. 490	86.124	86.75?	85.391	84.025	82.659	81.293	79.923	78.560	
1 127	86.127	84.755	83.396	82.016	80.644	79.275	77.905	76.53±	
/83	30.469	79.154	77.239	76.524	78,210	73.895	72 58C	72.26E	
79.413	78.131	76.819	75.507	74.195	72.683	71.571	70.259	68.947	
*4.974	75.667	74.360	73.053	71.747	70.440	69.133	67.826	66.519	
10.093	63.869	67.644	66.420	65.196	63 972	62.747	61.523	60.299	
59.164	57.118	56.072	55.026	53.980	52.934	51.888	50.842	49.796	
• • • •									

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME ~ 50.00 ENDING TIME = 60.00 AVERAGE TEMPERATURE = 88.815 PRESURE - 0.0 KPA REYNOLD'S NUMBER = 0.33210E+04 COOLANT:WATER

112.137 110.616 109.096 167 575 136.055 104.534 103.014 101.494 99.973 93.994 98.458 103.036 101.530 110.745 109.210 107.674 106.138 104.602 93.376 97.834 \$6.292 104.002 102.469 100.916 108.627 107.085 105.543 100.075 105,420 103.856 102.311 100.755 99.203 97 646 36.092 \$4.53 92.193 115.002 103.438 101.075 95.820 94.056 160.311 98.74? 91.184 92.606 91.023 95.772 \$4.185 97.355 103.687 102.104 100.521 98.930 95.193 93.603 92.012 90.412 88.831 101.555 56.781 99.965 98.374 86.396 84.885 83.375 81.865 93.948 92.437 90.927 89.416 87.906 79.159 83.678 82.172 80.666 85.185 91.210 89.704 68.197 86.691 82.292 80.793 79.295 77.796 75.29* 88.288 86.789 85.290 83.791 75.079 74.935 73.554 72.173 70.791 69.410 68.029 77.628 78.315 56.234 55.159 54.024 63.103 61.968 60.833 59.698 58.564 57.429

OF POOR QUALITY

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 60.00 ENDING TIME = 70.00 AVERAGE TEMPERATURE =102.529 PRESURE= 0.0 KPA REYNOLD'S NUMBER= 0.33210E+04 COOLANT:WATER

Table IV. Continued.

5

129.167	129.000	126.248	124,489	122.729	120.970	119.210	117.451	115.691	
128.346	126.566	124.786	123.096	121.226	119.446	117.666	115.886	114.105	
125.983	124.195	122.407	120 619	119.831	117.042	115.754	113.466	111.678	
124.242	122.436	120.630	118.825	117.019	115.213	113.407	111.602	109.796	
122.051	129.234	118.416	115.599	114.781	112.964	111.146	109.329	107.511	
:20.764	113.940	117.096	113.252	113.408	321.564	1.09.720	107.875	105.032	
110.556	116.699	114.842	112.985	111.129	109.272	107.415	105.559	103.702	
198.547	106.801	105.056	103.311	i91.565	99.821	y8.076	96.331	94.385	
105.327	103.587	101.848	100.108	95 369	96.630	94.890	93.151	91.411	
101.852	100.123	98.394	95.664	94.935	93.206	91.477	89.748	88.019	
28.727	80.159	36.592	65.025	83.456	ē1.891	50.323	78.756	77.189	
69.358	81.520	66.362	55.113	03,505	62.666	61.428	60.190	\$8.951	

•

Table V. Start-Up Process with Water Coelant . . (P=3500 KPa, Re=6167).

LECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 10.00 ENDING TIME = 20.00 AVERAGE TEMPERATURE = 48.874 PRESURE = 3500.0 KPa ATYNCLD'S NUMBER = 0.61670E+04 CODLANT.WATER

1 1 B.

Site 25

Car Driveretty

- 4 . 058	63.195	62.332	61.469	60.606	59.742	58.879	58.014	57.153
42.330	61.455	60.600	. 59.735	58.870	58.005	57.140	56.274	55.409
60.497	59-631	58.765	57.900	57.034	56.168	55.302	54.436	53.570
÷5.723	57.856	56.988	56.121	55.253	54.386	53.519	52.651	51.784
56.913	56.044	55.175	54.307	53.438	52.570	51.701	50.833	49.964
5.170	54.299	53.428	52.557	51 686	50.825	40.944	49.074	48.203
57.284	52.413	51.542	50.671	49.890	48.929	45.056	47.187	46.316
50.961	42.999	49.137	48.275	47.413	46.551	45.689	44,827	43.963
8.961	48.099	47.237	46.376	43.514	44.65]	43.791	42.929	42.068
47.041	46.180	45.319	44.458	43.598	42.737	41.876	41.015	40.155
	43.597	42.750	41.903	41.056	40.209	39.362	28.515	37.668
:0 934	40.140	39.326	38,512	37.695	36.883	36.069	35.255	34.441

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 20.00 ENDING TIME = 30.00 AVERAGE TEMPERATURE = 55.121 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.61670E+04 COOLAHT:WATER

72.410 69.484 68.508 67.532 66.557 65.581 64.606 71:435 70.459 70.614 69.634 68.654 67.674 66.693 65.713 64.733 63.753 62.773 68.590 60.737 67.609 66.627 65.645 64.664 63.682 62.700 61.719 56.697 58.815 €0.735 59.800 65.712 64.726 63.741 62.756 61.771 64 720 ē3.732 62.744 61.757 60.769 59.781 58.794 57.806 56.816 62.898 55.948 54.953 61.905 60.912 59.920 58.927 57.934 56.941 60.782 55.814 54.820 53.827 52.833 59.788 58.794 57.801 56.807 57.422 54.502 53.529 52.555 51.582 50.609 49.535 56.448 55.475

> ORIGINAL PAGE IS OF POOR QUALITY

•

Table V. Continued.

ŝ.

1

54.27: 53.301 57.329 51.357 +5.242 50.385 49.413 48.440 47.468 . : . 027 52 057 51.086 50.110 45.146 46.176 47.205 46.233 45.265 48.352 47.413 4 291 46.473 45.534 44.595 43.656 42.710 41.277 42.800 41.932 41.063 <s.668 40.195 39.327 38.459 37.591 36.723

ELECTROPE TEMPERATURE DISTRIBUTION STARTING TIME = 30.00 ENDING TIME = 40.00 AVERAGE TEMPERATURE = 62.536 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.61670E+04 COOLANT:WATER

82.334	81.224	80.115	79.006	77.896	76.787	75.678	74.564	73.459
83.454	79.337	78.223	77.104	75.997	74.871	73.754	72.637	71.520
*\$.208	77.088	75.970	74.850	73.731	72.612	71.495	70.373	. 69.254
76.177	73.051	73.926	72.801	71.675	70.550	69.425	60.3CC	67.175
74.003	72.873	71.744	73.614	59.485	68.356	67.226	66.097	64.967
72.095	70.958	59.820	68.682	67.544	66.406	65.268	64.130	62.992
i9.735	53.536	67.456	66.316	65.176	64.035	62.897	61.757	60.617
£5.204	54.099	62.993	61.868	60.703	59.578	58.573	57.455	56.363
67.399	61.596	60.493	59.389	33.226	57.183	56.019	54.975	53.572
62.122	59.022	57.922	56.822	55.721	54.622	53.522	52 421	51.321
54.980	53.932	52.885	51.837	50.789	49.742	48.694	47.645	46 598
6.831	45.900	44.969	44.038	43.107	42.176	41.245	40.314	39.383

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 40.00 ENDING TIME = 50.00 AVERAGE TEMPERATURE = 71.369 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.61670E+04 COOLANT:WATER

. •

74.167 92.899 91.630 90.361 89.092 87.824 86.555 85.286 84.017 92.187 90.908 89.628 88.349 87.059 85.790 84.510 83.233 81.951 89.682 88.398 87.115 85.831 84.548 83.264 81.981 80.697 79.414 \$7.491 85.198 84.906 83.614 82.321 81.929 79.737 78.444 77.152

ORIGINAL PAGE IS

. .

Table V. Continued.

......

<u>.</u>

1

ł

	83.7 6 3	57.405	S1.186	73.838	78.569	77.291	75.391	74.69-
	81 774	8C.463	79.151	77.839	76.528	75.216	73.905	72.573
5,000	75 154	77.843	76.528	75.212	73.897	72.581	71.266	a9.950
60.4·4	33.109	9: G46	70.683	69.421	68.159	66.897	65.635	64.372
7 1.4 79		60 057	67.793	66.533	65.274	64.014	62.755	61.495
71.571	13.312	65.35) 66 35)	64 798	63.543	62.289	61.034	59.780	58.525
66.561	62.307	00.034	58 150	56.975	55.729	54.624	53.449	52.274
61.57 6	60.501	29.325	36.120	A6 469	45 194	44.489	43.485	42.481
40.813	49 511	48.506	41.594	40.470		•		

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME - 50.00 ENDING TIME - 50.00 AVERACE TEMPERATURE + 81.922 PRESURE- 3500.0 KPa REINCLD'S NUMBER- 0.61670E451 COOLANT: WATER

98.118 96.653 102.497 101.037 99.578 103.957 :03.336 106.876 105.416 95.912 94.438 97.367 98.861 101.510 109.336 104.759 103.285 105.734 91:502 93.052 95.023 94.542 97.505 98.985 100.463 100.423 101.943 90.599 89.104 92.092 93.594 96.570 25 077 99.355 98.062 101.047 85.348 87.849 89.350 90.851 92.352 93.853 96.855 35.354 90.356 84.110 88.668 87.149 85.629 90.188 91.708 93.227 96.267 94.747 82.716 81.189 85.770 54.243 87.297 91.877 90.350 88.823 93.404 73.947 76.847 75.397 78.297 79.746 85.546 \$4.096 82.646 81.196 70.694 73.496 72.050 74.942 76.288 79.280 77.834 82.172 96.725 57.12" 71.444 70.005 68.565 72.983 75.761 74.322 78.539 77.200 60.301 58.975 61.627 62.953 64.279 65.605 69.583 58.257 66.931 46.085 47.178 48.267 51.536 49.357 50.446 51.804 52.625 53.715

> OFIGINAL PAGE IS OF POOR QUALITY

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 60.00 ENDING TIME = 70.00 AVERAGE TEMPERATURE = 94.613 PRESURE= 3500.0 KPa Reynold's Number= 0.61670E+04 Coolant:Water

Table V. Continued.

فردية منتظ

•								
.:5.369	123.679	121.990	120.301	118.612	115.923	115.234	113.545	111.855
123 118	121.409	119.700	117.991	116.282	114.573	112.964	111.156	109.447
1.9.546	118.232	128.515	114.798	113.082	111.365	109.648	107.931	106.215
::7.357	115.624	113.890	112.157	110.423	108.699	106.356	105.223	103.489
114.327	112.582	110.837	109.072	107.348	105.603	103.858	102.113	100.368
:12.141	110.270	198.600	1.06.830	105.060	103.290	101.519	39.749	97 979
109.040	107.257	105.475	103.693	101.910	103.126	98.345	96.563	94.780
\$8.840	37.164	95.469	93 814	92.133	90.463	88.788	87.113	35.428
y4.890	93.220	91.350	89.981	88.211	86.541	84.871	63.201	51.531
721	89.061	87.401	85.741	84.031	82.421	80.761	79.101	77.441
78.952	77.448	75.943	74.439	72.934	71.430	69.925	68.420	66.914
59.803	58.614	57.425	56.236	25.947	53.858	52.669	51.431	50.291

ORIGINAL PAGE IS OF POOR QUALITY

Table VI. Start-Up Process with Water Coolant. . (P=0 KPa, Re=5167).

ELFOURDE TEMPERATURE DISTRIBUTION STARTING TIME = 10.00 FNOING TIME = 20.00 Average temperature = 39.690 FRESURE= 0.0 KPA FRESURE= 0.0 KPA FEYNOLO'S NUMBER= 0.61670E+04 COOLDNT:WATER

中学成正

								•
52.820	52.095	51.370	50.645	49.921	49.196	48.471	47.746	47.021
*1 797	50.570	49.843	49.117	48.390	47.654	46.937	46.210	45.484
AS 685	49.958	48.231	47.504	46.717	45.050	45.323	44.595	43.868
40 173	47.395	45.566	45.935	45.209	44.451	43.752	43.024	42.295
49.129	45.801	45.071	44.342	43,612	42.883	42.155	41.424	40.695
40.330	44.261	(3.530	42.798	42 057	41.335	40.604	39.873	39.141
	47 605	J1.875	41.145	40.411	39.680	36.948	35.717	37.485
43.54T	40 573	19.799	39.075	38.351	37.627	36.963	36.179	35.495
10 76*	38 858	38,135	37.411	36.597	35.964	35.240	34.516	33.793
17.JUL	37 178	36.455	35.732	35.009	34.285	33.563	32.841	32.110
37.301	34 965	34 251	33.543	32.832	32.120	31.409	30.628	29.986
	37.505	31 376	- 30 692	AC. 905	19.315	28.641	27.957	27.275
14	27.060							

CLECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 20.00 ENDING TIME = 30.00 AVERAGE TEMPERATURE = 44.768 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.61670E+04 COCLANT:WATER

59.707	58.886	55.069	57.249	56.430	55.611	54.791	53.972	53.152
58.114	57.291	56.467	55.644	54.821	53,998	53.175	52.352	51.527
56.332	55.508	54.684	53.859	53.035	52.210	51.386	50.561	49.73
\$4.557	53,830	53.003	52.175	51.348	50.520	49.693	48.865	48.038
52.913	52 084	51.254	50.425	45.595	48.756	41.936	47.107	46.277
\$1,295	50 461	49 627	48.794	47.960	47.126	46.292	45.458	44.624
49.416	49 601	47 767	46 932	45.098	45.263	44.429	43.594	42.760
46.568	45 750	47.707	44.115	43.298	42.491	41.653	40.846	40.029

ORIGINAL PAGE IS OF POOR QUALITY

- -
18.153	43 846	43.030	42.213	41.327	10.580	35.764	23.942	38.13)
42 72:	41.909	41.094	40.279	39.465	36.550	37.635	37.010	36.205
33 543	20.779	37.990	37,201	35.413	35.824	34.835	34.056	33.257
14.913	34.184	33.455	32.726	31.397	31.258	30.539	29 810	29.081

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 30.00 ENCING TIME = 40.00 AVERAGE TEMPERATURE = 50.796 PPERURE= 0.0 KF3 REYNOLD'S NUMBER= 0.61670E+04 COCLANT:WATER

4: 830	66.538	66.026	65.095	64-163	63.201	61.300	61.358	60.437
90.212	65.274	64.336	63.398	62.460	61.523	\$0.585	59.647	58.709
64.232	63.292	52.352	61.412	€0.472	59.531	58.591	57.652	56.711
52.425	61.481	60.536	59.391	58.546	57.701	56.756	55.811	54.865
69.503	59.554	58.606	57.657	56.709	55.750	54.812	53.863	52.914
15.247	37.841	56.685	55.923	54.953	54 677	53.002	52.104	51.150
11.735	55.761	51.804	53.247	52 789	S1 932	50.974	54.017	49.060
52.879	51.951	51.022	50.094	49.166	48.238	47.310	46.352	45.454
50.689	49.762	48.835	47.909	46.982	46 0.55	45.129	44.202	43.275
48.449	47.517	46.593	45.669	44.745	43.821	42.897	41.973	41.949
44.135	43.255	42 375	41.495	40.615	39.735	38.855	37 275	37.095
37.442	36.660	35.879	35.097	34.315	33.533	32.751	31.969	31.187

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 40.00 ENDING TIME = 50.00 AVERAGE TEMPERATURE = 57.977 PRESURE= 0.0 KPa RIYNOLD'S NUMBER= 0.61570E+04 COOLANT:WATER

77.647	76.582	75 516						
15 84-		13.510	14.421	73.385	72.320	71.254	70.189	69.122
11	74.794	73.719	72.644	71.570	70.495	69.420	68.346	67.271
*3.655	72.577	71.499	79.421	69.343	68.265	67.187	66.109	65.031
•1.598	70.613	69.527	68.442	67.356	66.271	55.186	64.100	63.015

ORIGINAL PAGE IS OF POOR QUALITY

Continued. Table VI.

. 4

÷4

and the second states of the second

-5.555	38.4/0	67.379	66.239	65.198	€: 108	63.017	61.927	60.≣3 :
. 759	n6.637	65.556	54.454	53.353	62.251	61.150	60.048	58.947
35.452	64 347	63.243	62.138	61.033	j9.926	53.823	57.719	55.514
40.323	59.333	58.273	57.213	56.153	55.093	54.033	52.973	51.913
57 851	58 803	51.746	54.686	53.630	52.572	51.514	50.457	49.399
55.240	54.386	53.133	52.079	51.026	49.972	48.918	47.865	46.811
49.510	48.523	47.536	46.549	45.561	44.574	43.587	42.600	41.513
40.383	39.544	38.701	37.857	37.014	36.171	35.327	34.484	33. 5 40

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 50.00 ENDING TIME = 60.00 AVERAGE TEMPERATURE = 66.564 FRESURE= 0.0 RPa REYNOLD'S NUMBER= 0.61570E+04 TOOLANT:WATER

45.330 · 88.104 85.878 85.652 84.427 83.201 81.975 80.749 79.323 . 77.521 87.423 81.236 79.998 78.753 \$6.190 84.951 \$3.713 82.475 21.940 63.637 53.454 81.231 79.968 78.725 77.482 75.239 74.996 82.306 77.793 16.540 75.286 74.033 72.779 81.554 80.300 79 047 74.110 86.414 72.850 71.589 70.328 79.153 77.892 76.632 - 75.371 78.506 77.232 74.679 70.850 69.574 68.196 75.955 73.403 72.127 75.969 68.275 65.710 74.686 73.404 72.122 70.839 69.557 66.992 67.376 68.158 63.287 62.070 60.852 59.634 56.941 65.723 64.505 56.431 65.217 59.145 56.715 64.002 62.783 61.573 69.359 57.939 63.350 62.151 60.943 59.734 58.526 57.317 56.109 54.900 53.621 \$5.837 54.743 52.516 50.289 49.175 48.062 46.348 53.630 51.402 43.817 42.902 41.987 41.072 40.157 39.242 38.327 37.412 36.497

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 60.00 ENDING TIME = 70.00 AVERAGE TEMPERATURE = 75.874 PRESURE= 0.0 KPA REYNOLD'S NUMBER= 0.61679E+04 COOLANT:WATER

ORIGINAL, PAGE IS OF POOR QUALITY

-

-

.

	101.956	100.538	99.119	97.700	96.262	94.863	93.445	92.02 1
	- C4 A98	98.453	97.017	95.582	94 147	92.712	91.277	87 842
	97 070	95,629	94.187	92.715	91.303	89.867	88.420	86.978
20.512	04 718	93 262	91.800	90.350	68.894	87.438	85.597	91.524
56.143	03.005	90 540	89.075	\$7.609	86.144	84.579	23.213.	81.748
93.475	92.005	90.240	86 994	85.597	84.020	102.533	£1.047	79.361
51.154	83.95	30.400	24 125	82 690	81.201	79.704	Je.207	76.710
ES.535	87.169	35.092	76 976	74 579	73.122	71.715	70.308	68.901
60.157	78.750	77.343	13.339	11 103	69.701	68.209	55.89E	53.494
6.713	75.311	73.908	72.596	/1.103	65.142 66 173	64.729	63.335	61.941
2.094	71.700	70.306	68.911	6/.51/	67.340	52 707	54.532	63.267
-3.376	62.13.4	60.851	59.587	58.324	5 .000		* 20 B2J	39.82E
<7.813	46.815	45.815	44.615	43.819	42.821	et.023		

ORIGINAL PAGE IS OF POOR QUALITY

5.4.2 Shut-Down Process

「「ないない」を見ているという

あることであり

and a state of the state of the

The transient temperature distribution is exhibited by Table I to Table XII for the same cases considered in the previous section. Also, Figure 111 demonstrates the change of the average electrode temperature as a function of time during the considered shut down process. The average transient decrease in the average transient electrode temperature was $4.665 * 10^{-4}$ °C per KPa. In addition, the increase in the coolant mass flow rate was somewhat less effective in rapidly reducing the transient electrode temperature. Both of these negative behaviors of the cooling system is due to the accumulation of heat and also because the heat loss to the surrounding was eliminated absolutely by the assumptions.

Considering the test results for the oil coolant, the temperature distribution for the considered examples are demonstrated by sample Table III and Table IV in the Appendix. Figure 112 shows the average electrode temperature decrease during a shut-down process. The curves that represent the different cases are closer to each other and with higher incremental slope. The average temperature differential during a shut-down process was 2.146 * 10⁻⁴ °C/KPa.

OF POOR QUALITY

ORIGINAL PAGE 18 OF POOR QUALITY であっ

「おおちまち」

のからい

por jac

Shut-Down Process with Water Coolant Table VII. (P=3500 KPa, Re=1250).

. •

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME +120.00 ENDING TIME +150.00 AVERAGE TEMPERATURE =181.319 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.12500E+04 COOLANT: WATER

いたと見

4.04.0

4 -

Ξ

÷

193.415	197.164	195.912	194.660	193.405	192.157	190.905	189.653	185.401	
196.844	195.592	194.340	193.038	191.836	190.534	189.332	188.080	186.529	
194.435	193.190	191.943	190.697	189.450	188.204	186.957	185.711	184.464	
192.450	191.206	189.962	188.719	187 475	186.231	184.957	183.744	182.300	
190.561	189.419	188.176	186.934	185.692	184.450	163.208	181.966	180.723	
198,874	187.533	186.393	185.132	183.911	182.671	181.430	180.189	175.949	
87.093	185.854	184.615	183.375	182.237	180.898	179.658	178.419	177.180	
185.277	184.039	182.802	181.565	189.327	179.090	177.852	176.615	175.378	
.63.513	182.277	ie1.041	179.505	178.570	17" 334	175.098	174.862	173 625	•
.81.747	180.513	179.278	175 044	175.310	175.575	176.341	173.106	171.872	
.80.093	178.850	177.626	176.352	175.159	173.925	172.691	171.458	170.224	
.78.315	177.083	175.831	174.619	173.387	172.155	170.923	159.691	168.459	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =150.00 ENDING TIME =180.00 AVERAGE TEMPERATURE =167.440 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.12500E+04 COOL NOT NUMBER COOLANT:WATER

85.249 184.080 182.911 181.743 189.574 179.405 178.236 177.067 175.893 83.772 182.604 181.435 180.256 179.098 177.929 176.750 175.593 174.423 80.506 179.349 178.192 177.035 175.878 174.721 173.563 172.406 171.249 174.753 173.601 172.449 171.298 170.146 168.994 78.203 177.056 175.904 75.281 175.133 173.984 172.836 171.687 170.539 169.390 168.242 167.093 170.923 169.778 168.633 167.488 166.342 165.197 74.359 173.214 172.069 72.451 171.309 170.167 169.025 167.883 166.741 165.599 164.456 163.314 70.470 169.331 168.193 167.055 155.916 164.772 163.639 162.501 161.362

> **CIUGINAL PAGE IS** POOR QUALITY

100 M

4

-iet

165.199 167.464 166.329 165.193 164.058 162.922 151.787 160.651 159.516 144.724 145.592 164.460 163.327 162.195 161.062 159.930 108.798 157.665 1:3 58. 163.950 162.619 161.688 160.557 159.427 158.296 157.165 156.03: :=3.181 162.054 160.926 159.799 158.671 157.544 156.416 155.289 154.187 . .

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =180.00 ENDING FIME =210.00 AVERAGE TEMPERATURE =152.461 PRESURE- 3500.0 KPa REYNCLD'S NUMBER- 0.12500E+04 COOLANT : WATER

170.903 169.827 168.749 167.670 166.592 165.514 164.435 163.357 162.279 :59.534 168.456 167.378 166.299 165.221 164.143 163.065 161.987 160.909 165.370 164.310 163.250 162.190 161.130 160.070 159.010 157.949 155.889 162 795 161.743 160.691 159.639 158.587 157.535 156.493 155.431 134.379 154.457 153.410 152.362 160.740 159.603 158.646 157.598 156.551 155.504 158.633 157.651 156.609 155.566 154.524 153.481 152.439 151.397 150.354 156.509 155.631 154.594 153.555 152.518 151.481 150.443 149.405 1:8.363 154.535 153.503 152.471 151.438 150.405 149.374 148.342 147.310 196.278 152.570 131.542 150.515 149.457 148.460 147.432 146.405 145.277 144.350 :50.559 149.576 142 553 147.530 146.507 145.484 144.462 143.439 147.416 148.977 147.957 146.935 145.916 144.895 143.875 142.854 141.834 140.813 145.972 145.956 144.941 143.925 142.910 141.894 140.879 139.864 138.848

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME +210.00 ENDING TIME +240.00 AVERAGE TEMPERATURE +136.886 PRESURE = 3500.0 KPa REYNOLD'S NUMBER- 0.12500E+04 COOLANT: WATER

151.803 154.820 153.837 152.854 151.871 150.888 149.905 148.922 147.939 :\$4.543 153.561 152.578 151.595 150.612 149.629 148.645 147.663 146.681 :49.511 148.552 147.594 146.635 145.677 144.718 143.760 142.801 141.843 46.712 145.764 144.816 143.867 142.919 141.971 141.023 140.075 139.127

> ORIGINAL PAGE IS OF POOR QUALITY

....

.

.::.550	143.608	142.666	141.724	140.782	139.841	138.899	137.957	137.015	
141 401	141.465	140.530	139.595	138.659	137.721	136.788	135.055	134.915	
: 43 . 283	139.354	138.425	137.496	136.567	135.638	134.709	133.780	132.85.	
138.024	137.102	136.180	135.259	134.337	133.415	132.493	131.572	130,630	
:25.989	135.073	134.157	133.241	132.325	131.410	130.494	129.578	128.661	
:33 948	133.038	132.128	131.218	130.309	129.399	128.489	127.579	126.670	
132.364	131.457	130.550	129.544	128.737	127.030	126.923	126.017	125.110	
130.250	129.380	125.480	127.580	126.080	125.760	124.880	123.980	123.079	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =240.00 ENDING TIME =270.00 AVERAGE TEMPERATURE =121.191 PRESURE= 3500.0 KPa RETNOLD'S NUMBER= 0.1250GF+G= COOLANT:WATER

Sec. log

140.352139.466138.581137.695136.810135.924135.039134.153133.268139.207138.322137.436136.551135.666134.780133.895133.010132.124133.354132.535131.664130.629129.973129.113126.263127.408125.557.10.425129.592128.749127.907127.064126.221125.378124.535123.671.25.199127.364126.522125.693174.856124.023123.186122.352121.517.25.981125.154124.326123.499122.671121.843121.016120.188119.361.23.804122.925122.165121.345120.525119.705118.685118.065117.245.21.460120.649119.838119.027119.216117.404116.593115.782114.971.15.38a118.504117.730116.976116.172115.368114.564113.760112.956.17.311115.515115.718114.921114.124113.328112.531111.734110.937.15.782114.989114.196113.403112.610111.817111.024110.231109.437.13.560112.874112.089111.364110.519109.733108.948108.163107.377

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =270.00 ENDING TIME =300.00 AVERAGE TEMPERATURE =105.807 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.12500E+04 COOLANT:WATER

> ORIGINAL PLACE IS OF POOR QUALITY

	124.146	123.358	122.569	121.781	120.993	120.205	119.416	118.628	
121.905	123.117	122.329	123.541	120.753	119.965	119.177	118.389	117.601	
117,449	115.695	115.943	115.100	114 437	113 £85	112.932	112.179	111.426	
114.492	113.652	112.923	112.184	111.444	110.705	109.966	109.226	103.467	
112,131	111.400	110.670	109.939	109.209	108.478	107.748	107.917	106.28;	
.09.885	109.163	109.442	107.720	106.998	106.275	105.354	104.833	104.111	
107.620	106.975	106.233	105.550	104.837	104.123	103.410	102.697	101.984	
195.305	104.605	103.902	103.199	102.496	101.792	101.089	100.386	99.582	
; 23.239	102.543	101.848	101.153	100.455	99.762	39.067	98.372	97.67 <u>6</u>	
101.157	100 479,	99.792	99.105	98.418	97.731	27.044	96.357	95.670	
99.711	99.028	98.345	97.561	96.978	96.295	95.612	94.929	94.246	
97.592	96.913	96.244	95.569	94.895	94.221	93.547	92.872	}2.198	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =300.00 ENDING TIME =330.00 AVERAGE TEMPERATURE = \$1.099 PRESURE= 3500.0 KPa SEYNOLO'S NUMBER= 0.12500E+04 COOLANT:WATER

.99.292	109.193	108.505	107.812	107.118	106.425	305.732	105.038	104.345
.00.577	108.264	107.591	205.098	106:205	105.511	104.918	104.125	103.432
.02.050	101.396	300.742	100.087	79.433	98.775	98.125	\$7.471	56.916
98.987	98.347	97.707	97.068	96.428	95.788	35.148	34.509	93.869
96.725	36.095	95.465	94.835	94.205	93.575	92.941	92.314	91.684
\$4.456	93.875	93.254	92.634	92.013	91.392	90.771	9Ġ.15I	89.530
*2.325	91.7/3	91.102	90.490	89.879	89.267	88.656	88,044	. 87.435
\$9.9 59	89.358	88.758	88.157	87.556	86.955	86.354	85.754	85.153
87.932	87.340	86.747	85.155	85.563	84.971	84.379	83.787	83.194
\$ 5.996	85.323	84.739	84.156	83.572	82.989	82.406	81.822	81.239
41.540	83.961	83.382	82.803	82.224	81.645	81.066	80.187	79.903
82 472	81.902	01.332 ⁻	80.762	80.193	79.523	79.053	78.483	77.913

ELECTRODE TEMPERATURE DISTRIBUTION Starting time =330.00

> original place is of poor guality

•••••

ENDING TIME =360.00 AVERAGE TEMPERATURE = 77.354 PRISURE= 3500.0 KPa PEYNOLD'S NUMBER= 0.12500E+04 COCLANT:WATER

					•			
79.515	94.912	94.310	93.707	93.104	92.501	91.699	91.296	90 631
	94.108	93.505	92.903	92.301	91.698	91.096	90.494	66 801
27.504	86.943	86.382	85.821	85.260	84.699	84.138	83 577	97.89I
3:,494	83.948	83.402	82.856	82.310	81.764	81.218	80 675	03.016
12.297	81.751	81.215	80,678	80.142	79.606	79 070		80,126
30.117	75.591	79.065	78.538	78.012	77.486	75 950	73.534	77.998
*8.013	77.497	76.980	76 463	75 047			10.432	75.907
-5.714	75 200	74 744		13.941	/5.430	74.913	74.397	73.890
	/ /.200	/4./03	74.197	73.692	73.186	72.689	72.175	71 560
3.769	73.272	72.775	72.279	71.782	71.285	70.788	70 291	60 504
-:.830	71.342	70.854	70.36E	69.878	69 261	60.000		09.194
·0.969	70.086	59 662	60 110		, , , , , , , , , , , , , , , , , , , ,	38.993	58.415	\$7.917
A 603			39.1.9	68.525	63.152	67.663	67.185	ē£.702
0.333	00.119	57.545	67.171	66.697	65.223	65.719	65.275	64.801

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -360.00 ENDING TIME -390.00 AVERAGE TEMPERATURE - 64.722 PRESURE- 3500.0 KPa REYNOLD'S NUMBER- 0.12500E+04 CCOLANT:WATER

A CARACTER STATES

100

. 894
194
246
473
441
451
530
431
573
25

of R:

Tab	le VII	. Con	tinued	• ,					
995	57.597	57.200	56.003	56.405	56.0CA	55.611	55.214	54.816	
-6 149	55.760	55.372	54.984	54.595	54.200	53 820	53.432	53.04:	
ELEC Star Eng Aver Pres Rey Cool	TRODE TEM TING TIME NG TIME - Age Tempe UR2- 3509 GLD'S NUM ANT:WAIER	PERATURE -390.00 420.00 RATURE - .0 KP3 BER- 0.12	DISTRIBUT 53.512 5002+04			-	 	••••	· · · · · · · · · · · · · · · · · · ·
69.622	69.182	68.743	68.304	67.865	87.425	66.986 ·	55.54 7	.66.107	•
£9.019	68.581	58.142	67.703	67.264	. 66.525	66.386	65.9,17	65.508	•
\$1.830	51.434	61.037	60.641	60.245	59.848	59.452	59.055	58.639	
59.109	58.727	58.345	57.963	57.581	57.199	56.817	56.435	56.053	
57.126	56.754	56.381	56.009	55. 6 37	55.265	54.993	54.520	54.149	
53.191	54.829	51.466	54.104	53.741	53.379	53.316	52.654	52.291	
53.333	52.979	52.626 -	52.273	51.920	51.557	51.213	50.860	50.507	
51.297	50.954	50.512	50.269	49.927	49.584	49.242	48.899	48.556	
49.613	49.275	48.945	48.611	48.277	47.943	17.608	47.274	46.940	
47.944	47.519	47.293	46.368	45.542	46.316	45.991	45.665	45.339	
46.923	46.602	46.280	12.959	45.527	45.316	44 934	44.673	44.352	. .
45.234	44.927	44.609	44.297	43.954	43.572	43.355	43.047	42.734	•• •
ELECT Start Endin Avera Fresu Resu Resu Coola	RODE FEME Ing time Ig time =4 Ige temper Re= J500. Ild's nume NT:WATER	ERATURE D -420.00 50.00 ATURE - 4 9 KPa ER- C.125	ISTRIBUT) 3.602 002+04	ION	•	·	•		
58.386	59 019		67 341						
\$7.874	57.504	57.650	57.281	. 20. 913	56.545	56.176.	55.808	55.439	
10,957	57.506	57.138	56.770	56.402	56.034	55.666	55.298	54.930	
48.413	39.525	50.299	49.972	49.045	49.319	48.992	48.666	48.339	
45.617	48.129	47.816	47.503	47.190	45.877	16.564	46.251	45.938	
34 844	46.313	46.009	45.706	45.402	45.098	44.795	44.491	44.187	
	41.550	44.255	43.960	43.666	43.371	43.077	42.782	42.488	
	•								

and a start of the second s

The state of the s

والكركان ويلوه ومروقه ومناقل والمناقل والمراقع والمركبة

Tab	<u>)</u> e VII	. Con	tinued	-					
43.149	42.86	42.577	42.293	42.005	41.720	41.434	41.148	40.863	
.1.293	41.017	40.741	40.456	40.190	39.914	39.633	39.353	39.007	
39.773	39.506	39.238	36.970	38.792	38.434	38.166	37.898	37.631	
38.273	39.013	37.753	37.493	37.233	36.973	36.713	36.453	36,193	
27.377	37.121	.35.865	36.609	,36.353	36.097	35.841	35.585	35, 329	
15 066	35.618	35.371	35.123	34.375	34.527	34.379	\$34.132	32.854	
		· •							
ELEC	TRODE TE	MPERATURE	DISTRIBUT	TION .					• .
ENDI	ING TIME	480.00				•			•
AVE: PRES	VAGE TEMPS Sure= 350(ERATURE -	35.047					• •	•
REYN	OLD'S NUN	BER- 0.12	2500E+04						
					•				
			•		•	· .	:- -	· · ·	•
A.384'	48.079	47.773	47.468	47.163	46.858	46.552	45.247	15.942	
	47.648	47.343	47.018	46.733	45.428	46.123	45.615	45.513	
1.425	41.170	40.904	47.633	40.373	40.107	35.642	29.576	39.310	
9.166	38.912	38.659	38.400	18.153	37.900	37.647	37.394	37.141	
7.517	37.273	37.028	36.784	36.539	36.295	36.051	35.806	35.567	
.923	35.688	35.452	35.214	34.930	34.744	34.508	34.272	34 036	
1.407	34.179	33.951	33.723	33.495	33.268	33.040	32.812	12 584	
.750	32.531	32.313	32.094	31.875	31.656	31.438	31,219	33 000	
.406	31.194	30.903	30.771	30.560	30.348	30.137	29.925	79 714	
.084	29.880	29.675	29.471	29.267	29.063	28.858	28.654	-3.,114 78 AEA	
	29.112	28,911	28.710 ·	28.510	28,309	28.108	27 907	20.9JV	
.313 .									
-313 ·	27.795	27.602	27,409	.27.215	27.022	26.826	26.635	26.447	
.313 [.] .989	27.795	27.602	27,409	27.215	27.022	26.828	26.635	26.442	

.

.

ORIGINAL PARE IS OF POOR QUALITY

•

۰.

201

.

5

Table VIII. Shut-Down Process with Water Coolant (F=0 KPa, Re=1250).

ELECTRODE TEMPERATURE DISTRIBUTION
STAPTING TIME =120.00
ENDING TIME -150.00
AVERAGE TEMPERATURE =171.316
PRESCHE- 0.0 KPa
REYNOLD'S NUMBER= 0.12500E+04
COOLANT:WATER

日本町町の市市市町町町町町町

188.968	197.910	135.851	185.793	184,735	183.577	182.618	101.560	180.502	
187 084	186.025	181.967	183.909	182.851	181.793	150.735	179.576	179.615	
:\$4.408	183.354	182.301	181.247	180.194	179.140	178.086	177.033	175.979	
182.134	181.083	180.031	178.980	177.929	176.873	175.826	174.775	173.724	
150.045	176.998	177.948	176.898	175.843	174.795	173.748	172.698	171.648	
177 953	176.917	175.868	174.819	173.771	172.722	171.672	170.625	169.576	
175.890	174.842	173.795	172.747	171.700	179,032	162.603	168.558	.167.510	
173.781	172.735	171.689	170.643	189.597	168.551	167,505	166.460	155.414	
: 1.723	170.679	.169.634	168.589	167.545	166.500	165.455	154.411	163.366	
69.664	168.621	167.577	186.534	155.490	154.447	163.494	162.360 .	161.317	
:57.710	166.668	165.625	164.582	153.539	162.496	161.454	160.411 ·	159.368	
162.542	164.500	163.559	162.517	161.475	160.435	152,393	158.352	157.310	
			-						

```
ELECTRODE TEMPERATURE DISTRIBUTION
STARTING TIME -150.00
ENCING TIME -180.00
AVERAGE TEMPERATURE -158.21J
PRESURE- 0.0 KPa
REYNOLD'S NUMBER- 0.12500E+04
COCLANT:WATER
```

 -*6.428
 175.440
 174.452
 173.464
 172.476
 171.488
 170.500
 169.512
 168.524

 -74.661
 173.673
 172.685
 171.697
 170.709
 169.721
 168.733
 167.745
 166.757

 :71.197
 170.219
 159.240
 168.262
 167.284
 166.306
 165.328
 164.350
 163.372

 .68.655
 167.682
 166.708
 165.735
 164.761
 163.788
 152.814
 161.841
 160.967

 .96
 469
 165.498
 164.527
 153.557
 162.585
 161.615
 160.644
 159.673
 158.703

 .64.289
 163.321
 162.353
 161.385
 160.417
 159.449
 158.481
 157.513
 156.544

 .62.125
 161.159
 160.194
 159.228
 158.263
 157.297
 156.332
 155.367
 154.401

 .59.893
 158.931
 157.968
 157.006
 156.044
 155.081
 154.119
 153.157
 152.194

ORIGINAL PAGE IS OF POOR QUALITY

A SAUDE A STATE

 157.765
 155.808
 153.848
 154.888
 153.929
 152.969
 152.009
 151.049
 150.049

 151.640
 151.683
 153.726
 152.768
 151.811
 150.654
 149.897
 148.940
 147.981

 153.730
 152.774
 151.818
 150.862
 149.907
 148.951
 147.995
 147.039
 146.063

 151.583
 150.630
 149.677
 148.724
 147.771
 146.818
 145.865
 144.912
 143.959

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -180.00	• •	•			•				. ·
ENDING TIME =210.00 Avfrage temperature =144.066 Presure= 0.0 KPa	•			• •		• •			•
ACYNOLD'S NUMBER- 0.12500E+04			•	•		•		•	
			1.1	~		•••	•		, ·

1&2.767161.856160.944160.033159.121158.210157.298156.307155.475161.129166.217159.305158.394157.483156.571155.660154.749153.837156.841155.945155.049154.153153.257152.361151.465155.566149.672154.069153.180152.291151.401150.512149.623148.733147.944146.955151.793150.908150.023149.138148.252147.367146.482145.597144.711149.528148.647147.766146.885145.004145.122144.241143.360142.479'47.267146.410145.533144.656142.779142.902142.025141.148140.271144.946144.074143.202147.329141.457140.585139.712138.840137.967147.768144.074143.202147.329141.457140.585139.712138.840137.967147.768144.899141.031140.162139.294138.425137.557136.528135.619149.586139.722138.857137.993137.128136.263135.399134.534133.670136.734137.871137.009136.146135.283134.421133.558132.696131.833136.526135.668134.809133.951133.093132.234131.376130.517129.652

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =210.00 ENDING TIME =240.00 AVERAGE TEMPERATURE =129.358 PACSURE= 0.0 KPa REYNOLD'S NUMBER= 0.12500E<04 COOLAMT:WATER

-48.384 147.553 146.722 145.891 145.060 144.229 143.398 142.567 141.737 -45.881 146.050 145.219 144.389 143.558 142.727 141.896 141.065 140.23E -41.800 140.389 140.179 139.369 138.559 137.749 136 030 136 137 136 330

287 R. 44. W.

A STATE AND A STAT

41111

Profiles Meridian profiles

4

134.504 135.708 134.912 134.116 133.320 132.524 131.728 130.932 136.135 134.176 133.386 132.595 131.804 131.014 130.223 129.432 128.642 127.851 131.883 131.097 130.312 129.527 128.741 127.956 127.171 126.385 125.600 129.460 128.601 127.902 127.123 126.343 125.564 124.785 124.006 123.227 127.252 126.478 125./04 124.930 124.156 123.381 122.607 121.833 121.059 125.042 124.273 123.504 122.735 121.966 121.197 120.428 119.659 115.890 123.262 122.496 121.730 120.963 120.197 119.430 118.664 117.898 117.131 121.021 120.260 119.459 118./38 117.977 117.217 116.456 115.695 114.934

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -240.00 ENDING TIME -270.00 AVERAGE TEMPERATURE -114.536 PRESURE 0.0 KF3 REYNOLD'S NUMBER- 0.12500E+04 COOLANT. WATER .

133.669 132.925 132.172 131.423 150.674 129.926 129.177 128.429 127.650 132.205 131.507 130.008 130 660 179.312 128.563 127.815 127.067 126.31E 116.514 125.791 125.068 124.346 123.623 122.900 123.177 121.454 120.731 123.444 122.731 122.019 121.305 120.594 119.881 119.169 116.455 117.744 121.063 120.357 119.651 118.945 118.239 117.533 116.827 116.121 115.41E 118.705 118.005 117.305 116.607 115.907 115.208 114.508 113.809 113.109, 116.391 115.695 115.005 114.311 113.618 112.925 112.232 111.539 110.846 113.024 113.238 112 553 111.867 111.181 110.496 109.810 109.124 108.439 108.999 108.320 107.640 106.960 106.281 111.718 111.038 110.359 109.679 .09.512 108.839 108.165 107.492 106.818 106.145 105.471 104.798 104.124 .37.821 107.151 106.480 105.810 105.140 104.469 103.799 103.128 102.458 .05.581 104.918 104.254 103 590 102.926 102.262 101.599 100.935 100.271

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 270.00 ENDING TIME -300.00 AVERAGE TEMPERATURE =100.005 PRESURE-0.0 KPa REYNOLD'S NUMBER- 0.12500E+04 COOLANT:WATER

ORIGINAL PAGE IS of POCRADUALITY

7 Ş ÷ 1

.

÷ f

1.1

15.985	118.319	117.652	115.996	115.320	115.653	114.987	114.323	113.655	
:17.762	117.09€	116.429	115.753	115.097	114.431	113.765	113.099	112.433	
1.392	110.755	110.119	109.482	108.845	108.209	107.373	106.937	106.300	
106.170	107.645	107.020	106.395	105.770	105.145	104.520	103.895	103.270	
105.830	105.272	104.655	104.037	103.419	102.802	192.184	101.567	100.949	
03.539	192.929	102.318	101.708	101.098	100.488	99.878	99.268	98.652	
101 241	100.538	100.035	99.432	98.829	98.226	.97.624	97.021	35.412	
\$8.775	98.180	97.586	96.991	96.397	\$5.802	95.208	94.613	94.019	
96 606	96.019	95.431	94.843	\$4.255	93.667	93.080	92.492	91.964	
94.441	93.960	93.279	92.698	92.117	91.537	90.956	90.375	89.79:	
92.855	92.277	91.700	91.123	90.545	89.968	89.391	88.913	88.236	
90.655	90.086	89.516	80.946	88.376	87.805	87.236	86.666	35.095	

ELECTRODE TENPERATURE DISTRIBUTION STARTING TIME =300.00 ENDING TIME =330.00 AVERAGE TEMPERATURE = 36.112 PRESURE= 0 0 KPa REYNOLD'S NUMBER= 0.12500E+04 COOLANT:WATER

.04.659	104.073	103.487	102.901	102.315	101.729	101.142	100.556	99.970
103.573	102.988	102.402	101.816	101.230	100.644	100.059	99.473	768.89
95.787	96.234	95.681	95.128	94.575	94.022	93.469	92.916	92.363
33.681	93.140	92.599	92.059	91.519	90.977	90.436	89.896	89.353
91.342	90.309	90.276	89.744	59.211	88.678	98,1∢6	87.613	87.090
85.038	88.513	87.989	87.464	86.939	86.415	85.850	45.365	34.841
86.796	86.279	85.762	85.245	84.729	84.212	83.695	83.179	82.661
64.377	83.870	83.362	82.854	82.346	81.838	81.331	80.823	80.315
82.283	81.782	81.281	80.781	80.280	79.780	79.27 9	78.779	78.278
80.195	79.702	79.209	78.715	78.222	77.729	77.236	75.743	76.249
78.723	78.238	77.749	77.259	76.770	76.280	75.791	75.301	74.812
76.610	76.129	75.647	75.165	74.684	74.202	73.720	73.239	72.757
				•				

. .

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =330.00

OF POOR QUALITY

INCING TIME -300 00 AVERAGE TEMPERATURE = 73.128 PRESURE= 0.0 KPA KEYNOLD'S NUMBER= 0.12500E+04 COOLANT:WATER

「日本語の「日本の日」で、

Ę

::

. .

• •

े **म** इ.स.

1

A. P. L. L.

.

(U. 17)

ec.366	90.157	89.948	89.438	88.929	88.419	87.910	87.401	86.891	
90.014	89.505	83.996	88.487	87.978	87.468	86.959	86.450	85.941	
82.991	82.516	82.042	81.558	81.094	60.620	60.145	79.671	79.197	
75 965	79.504	79.042	.78.581	79.119	77.658	. 77.196	76.734	76.273	
77.767	77.253	76.000	76.347	75.894	75.441	74.988	74.534	74.081	
73.490	75.045	74.600	74.155	73.711	73.266	72.821	72.376	71.931	
73.342	72.905	72.468	72.032	71.595	71.158	70.721	70.285	69.845	
۰۱.016	70.565	70.161	69 734	69.307	68.879	68.452	65 024	67.597	
62.030	65.510	68.19C	67.770	67.350	\$6.930	66.510	60.090	65.679	
67.254	56.642	6€.230	55.81?	65.405	53.992	54.580	64.168	63.755	•
\$5.717	65.308	64.899	64.491	64.082	63.674	63.265	52.856	62.448	
52.718	63.317	62.916	62.513	52.115	61.715	61.314	62.913	20.513	

ELECTRORE TEMPERATURE DISTRIBUTION STARTING TIME =360.00 ENDING TIME =390.00 AVERAGE TEMPERATURE = 61.251 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.12500E+04 COOLANT:WATER

75.941 74.128 76.375 75.503 75.066 74.528 77.691 76.816 77.253 76.865 75.116 74.678 74.241 73.80-77.302 76.427 75.990 75.553 70.225 67.817 67.416 67.013 68.219 69.324 69.422 69.021 68.620 67.338 65.783 65.395 65.006 64.617 64.229 66.949 66.561 66.172 63.196 64.055 63.675 63.295 62.915 62.535 62.154 64.816 64.436 \$3.102 60.127 51.243 60.271 60.499 61.615 62.730 62.358 61.986 61.082 59.263 58.899 58.535 58.172 59.627 60.718 59.990 50.354 38.830 57.472 57.118 56.763 56.409 56.054 58.535 57.827 58.181 57.041 54.959 54.612 54.265 56.694 56.000 55.653 55.306 56.347 \$5.207 53.510 53.170 52.831 52.491 54.868 54.528 54.189 53.849

ORIGINAL PARE IS

. 4. 027 53.671 53.335 23.000 52.66% 52.326 51.992 51.638 51.321 11 157 51.829 51.50% 51.173 50.645 50.517 50.190 49.862 49.534 SUECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -390.00 ENDING TIME -420.00 AVERAGE TEMPERATURE = 50.602 FRESURE= 0.0 KPa REYNOLD'S NUMBER- 0.12500E+04 COOLANT:WATER +£.206 65.935 55.564 \$5.192 64.821 54.450 64.078 62.707 .63.33E 65.597 64.113 65.226 54.855 64.484 63.742 63.371 63.000 62.629 58.541 58.306 57.971 57.636 57.301 56.966 56.631 36.296 55.951 \$3.940 55.617 55.245 54.972 54.649 54.326 54.003 . 53.680 53.357 53.545 53.631 53.317 53.002 52.028 52.373 52.038 51.744 51.423 52.004 51.697 51.391 511005 50.770 56.472 50.165 49.859 49.552 50.139 49.840 49.542 49.243 43.945 48.646 48.348 48.049 47.750 47.825 49.114 47.535 47.246 46.956 46.666 46.377 46.087 45.798 43.126 46.142 45.361 45.578 45.296 45.014 44.731 44.449 44.165 44.957 44 482 44.205 43.931 43.656 42.381 43.105 42.830 42.555 13.637 43.425 43.153 42.862 ,42.630 42.338 42.050 41.795 41.523 12.019 41.755 41.491 10.963 `43.69S 41.227 40.434 40.170 39.906 . . 1 ELECTROLE TEMPERATURE DISTRIBUTION STARTING TIME -120.00 SNCINC TIME -450.00 AVERAGE TEMPERATURE - 41.236 PRESURE= O.G RPa PETNOLD'S NUMBER- 0.12500E+04 . COOLANT : WATER \$5.506 55.295 54.983 54.672 54.361 54.049 53.738 53.426 53.115 \$3.COS 54.694 54.382 54.071 . 53.760 \$3.449 53.138 52.827 52.516 48.324 48.048 47.772 47.496 47.220 48.944 46.662 46.391 46.115 45.846 45.581 45.316 45.052 44:787 44.523 44.258 43.993 43.729 44.022 43.765 43.509 43.252 42.995 42.739 42.482 42.225 41.968 42.254 42.005 41.756 41.507 41.258 41.009 40.760 40.511 40.262

Table VIII. Continued.

1

「「「「「「「「」」」」」

207

ORIGINAL PARE IS OF POOR QUALITY

17.218	36.992	35.765	36.539	36.312	36.096	35.860	35.633	35.407
15 728	35.509	35.247	35.069	34.850	34.630	34.410	34.190	33.971
14 907	34.591	34.375	34.138	33.942	33.725	33.509	33.292 -	33.076
33.317	33.108	32.098	32.689	32.479	32.270	32.060	31.851	31.641
elec Star Endi Averi Presi Reyn Cool	TRODE TEMI TING TIME NG TIME AGE TEMPEU URE= 0 010'S NUMI ANT:WATEP	PERATURE 1 -450.00 490.00 RATURE - .0 KPa BER- 0.17	DI3TRIBUT 33.151 5092+04	ion	•	•	• .	
				(5 ()AB	44 390	44 532	44.274	44 Q16
40.090	75.822	45.564	45.308	43.540	44.786	44.479	43.771	43.513
47.575	43.318	45.069	11.802 	44.234	74.200	27 051	37 727	37.502
39.798	39.074	38.849	35.625	38.400	70.110	37.334	35 660	35 354
37.066	36.852	36.638	36.424	. 36.210	35.996	32.182	35.503	33.33.
35.429	35.222	35 016	34.809	34.532	34, 396	34.189	33.983	33-110
J3.849	33.649	33.450	33.250	33.051	32.851	32.652	32.452	32.253
32.347	32.154	31.961	31.759	31.575	31.383	31 191	30.958	30.8CE -
30 718	30.533	30.348	39.153	29.975	29.754	29.609	29.424	29.239
29.385	29.209	29.031	28.852	28.673	28.494	23.310	28.137	27.958
28.084	27.911	27.739	27.566	27.393	27.220	27.948	26.875	26.702
27.297	27.128	26.958	26.788	26.618	26.449	26.279	26.109	25.940
26.000	25.836	25.673	25.509	25.346	25.182	25.019	24.853	24.692

ORIGINAL PAGE IS OF POOR QUALITY

38.874

37.099

35.633

39.115

37.322

35.860

39 357

37.565

36.086

38.632

36.866

35.407

208

Continued.

39.840

38.032

19.598

37.798

36.312

40.082

38.265

Table VIII.

20.565

38.731

46.323

Shut-Down Process with Water Coolant Table IX. (P=3500 KPa, Re=3321).

CLECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -120.00 ENDING TIME -150.00 AVERAGE TEMPERATURE -168.220 PRESURE= 3500.0 KPa PEYNCLD'S NUMBER= 0.33210E+04 COCLANT . WATER 104.913 188.127 196.341 184.555 182.770 180.984 179.193 177.412 175.627 143.016 186.231 184.445 182.659 180.873 179.088 177.302 175.516 173.731 185.324 183.546 181.768 179.990 178.212 176.434 174.656 172.878 171.100 183.036 181.262 179.488 177.714 175.940 174.166 172.392 170.616 166.844 190.937 179.165 177.393 175.621 173.850 172.078 170.306 168.534 166.762 178.841 177 0"1 175.302 173.532 171.762 169.993 168.223 166.453 164.683 176.752 174.984 173.717 171.449 169.582 167.914 166.147 164.379 162.612 174.630 172.865 171.190 169.335 167.570 165.005 164.040 162.275 160.510 172.559 170.796 169.033 167.273 165.507 163.744 161.932 160.219 158.456 170.487 168.726 166.965 155.204 163.444 151.683 159.922 158.161 156.401 :65.520 166.761 165.001 163.241 161.487 159.722 157.962 156.202 154.443 166.433 164.651 162.924 ,161.166 130.409 137.652 155.894 154.137 152.379

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -150.00 ENDING TIME -180.00 AVERAGE TEMPERATURE -155.352 PRESURE= 3500.0 KPa REYNOLD'S NUMBER- 9.332168+04 COOLANT : WATER · .

1. V 1.

ż.

÷

1

1

5

1.11

5

2

> 177.319 175.643 173.975 172.308 170.641 168.974 167.306 165.639 163.972 175.531 173.864 172.197 170.530 168.863 167.195 165.529 163.862 162.194 172.047 170.397 168.746 167.095 165.445 163.794 162.144 160.493 158.842 169.431 167.848 166.205 164.562 162.920 161.277 159.634 157.991 156.349 167.291 165.653 164.014 162.376 160.738 159.100 157.461 155.823 154.185 165.097 163.464 161.830 160.196 158.563 156.929 155.295 153.662 152.023 152.919 161.290 159.661 158.032 156.403 154.773 153.144 151.515 149.886 140.674 159.050 157.426 155.802 154.178 152.554 150.930 149.306 147.683

209

ORIGINAL PARE IS OF POOR QUALITY table IX. Continued.

.

ALL ALL BREAK ALL ALL

 • 515
 156.916
 155.79\$
 153.677
 152.057
 150.437
 148.818
 147.198
 145.578

 • 14
 154.775
 153.154
 151.549
 149.934
 148.318
 146.703
 145.088
 143.473

 • 4
 42
 157
 019
 151
 246
 149.633
 148.620
 146.407
 144.754
 143.121
 141.558

 • 4.2
 150.764
 149.096
 147.468
 145.880
 144.271
 142.663
 141.055
 139.447

ELICINODE TEMPERATUES LISTRIBUTION STARTING TIME -190.00 ENDING TIME -210.00 AVERAGE TEMPERATURE -141.464 PRESUREM 3500.0 KF4 REYNOLD'S NUMBER- 0.33210E+04 COOLANT:WATEP

163.581162.643160.505153.966157.428155.890154.352152.814151.276161.931160.393158.855157.318155.780154.242152.704151.166149.62817.621155.108154.596153.084151.572150.060148.547147.035145.52314.832'152.332151.021150.339148.830147.329145.628144.327142.827151.542151.049149.525148.051146.367145.073143.580142.086140.591150.264148.777147.290145.803144.316142.829141.342139.655138.365144.09146.529145.049143.569142.089140.609139.129137.649136.167143.403142.710341.238139.766138.294136.621135.350133.677143.403140.531139.065137.600136.134134.665133.203131.737141.266139.809136.350136.091135.432133.973132.514131.055129.596137.428137.946136.493135.037133.561232.126130.670129.214127.755137.183135.734134.286132.837131.389129.940128.492127.043125.595

. . .

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =210 00 ENDING TIME =240.00 AVERAGE TEMPERATURE =127.023 PRESUPE= 3500.0 KPa REYNOLD'S NUMBER= 0.33210E+04 COOLANT:WATER

 149.126
 147.724
 146.322
 144.919
 143.517
 142.115
 140.713
 139.310
 137.908

 147.613
 146.211
 144.809
 143.407
 142.005
 140.603
 139.201
 137.799
 136.397

 142.504
 141.137
 139.770
 138.403
 137.035
 135.668
 134.301
 132.934
 131.567

 139.535
 138.183
 136.831
 135.478
 134.126
 132.773
 131.421
 130.058
 128.714

ORIGINAL PAGE IS OF POOR QUALITY

134.835 133.502 132.168 130.834 129.499 128.165 126.831 125.497 124.162 122.529 131.204 129.879 128.553 127.228 125.903 124.578 123.252 121.927 130.097 128.778 127.460 126.148 124.233 123.518 122.203 120.889 119.574 117.871 126 565 125.259 123.952 122.646 121.340 120.033 119.727 117.420 ::5.643 124.351 123.053 121.756 120.458 119.160 117.853 116.565 115.267 123.850 127.564 121.271 119.978 118.684 117.391 116.078 114.805 113.511 121.602 120.319 119.035 117.751 116.467 1155103 113 839 112.615 111.331 • • . •

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -240.00 ENDING TIME -270.00 AVERAGE TEMPERATURE =112.469 PPLSURS- 1500.0 KPa REYNOLD'S NUMBER- 0.33210E+04 COOLANT:WATER

ŝ

ないないというないないできると

134.337 133.074 131.811 130.547 129.284 128.022 126.758 125.495 124.232 132 564 131.702 130.439 129.176 127.933 125.650 125.257 124.125 322.662 127.143 125.923 124.703 123.483 122.254 221.044 119.924 118 604 117.366 124.055 122.853 121.650 120.448 219.246 118.043 / 116.041 115.635 114.436 121.561 120.469 119.278 118.087 116.895 115.704 114.512 113.321 112.130 119.205 118.109 116.928 115.748 114.567 113.397 112.207 111.026 109.846 116.961 115.792 114.622 113.452 112.283 111.113 109.944 108.774 107.504 114.481 113.324 112.166 111.009 109.852 108.695 107.538 106.301 105.224 :12.252 111.115 109.968 108.821 107.574 106.527 105.380 104.233 103.657 :10.043 103.907 107.770 106.634 105.497 104.361 103.224 102.088 100.951 C8.342 107.211 106.079 104.948 103.817 102.686 101.554 100.423 99.292 106.389 104.969 103.849 102.729 101.609 100.489. 99.368 98.248 97.129

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 270.00 ENDING TIME -300.00 AVERAGE TEMPERATURE = 98.202 PRESURE- 3500.0 KPa REYNOLD'S NUMBER- 0.33210E+04 COOLANT: WATER

> ORIGINAL PARE IS OF POOR QUALITY

Jable IX. Continued.

1 1 1

14

	1:3.455	117.331	116 207	115.082	113 958	112.834	111.709	110.585
114.349	117.125	116 101	114.977	113 853	112.728	111.664	110.480	109.356
:::.945	110.671	102.797	196.723	107.645	106.575	195.501	104 427	103.353
: 23.805	107.751	106.697	105.642	104.587	103.533	102.478	101.424	100.369
130.412	105.370	104.328	103.286	102.244	101.202	100.150	49.11B	93.076
174.048	103.018	101.985	100.959	39.930	93-900	97.871	96.841	45.811
101.737	100.720	99.702	93.685	97.668	96.650	95.633	94.616	93.598
99.257	98.254	97.251	96.248	95.244	94.241	93.238	92.235	91.232
•:.076	96.084	95.093	94.101	93.109	92.117	91.126	90.134	89.142
+4.899	\$3.9IS	92.928	\$1.958	90.978	89,998	89.018	88.036	87.058
93 303	\$2.329	91.354	90.380	89.496	88.432	87.457	86.483	85.509
91.092	90.130	09.165	88.207	87.245	86.283	85.321	84.359	83.398

ILECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =360.00 ENDING TIME =330.00 AVERAGE TEMPERATURE = 24.561 PRESURE= 3500.6 KPA AEYNOLD'S NUMBER= 0.33210E+04 COOLANT:WATER

105.182 104.193 103 204 102.215 101.226 100.237 99.246 98.259 97.270 :04.090 103.101 102.113 101.124 100.135 .99.147 98.158 97.170 95.181 97.268 96.334 95.401 \$4.468 93.535 92.602 91.669 90.735 89.802 \$4.145 93.232 92.320 91.407 90.495 89.582 88.670 87.757 86.845 \$1.752 90.894 83.935 87.096 88.197 87.298 86.399 \$5.500 94.601 -49.476 88.591 \$7.705 86.820 - 85:935 85.043 84.154 83.278 82.393 87.222 86.349 85.477 84.605 83.733 82.860 81.988 81.115 80.244 \$4.790 83.933 83.076 82.219 81.362 80.505 79.648 78.791 77.934 \$2.683 81.838 80.994 80.149 79.304 78.460 77.615 76.770 75.925 80.564 79.752 78.919 78.087 77.255 76.423 75.530 74.755 73.925 79.100 78.282 77.456 76.630 75.804 74.978 74.152 73.325 72.499 16.973 76.156; 75.353 74.540 73.718 72.915 72.162 71.289 70.476

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =330.00

ORICANAL PAGE IS

. 263	52.701	53.134	52.568	.52 901	51.424	50.868	50.001	49.734
. 103	51.855	51,301	50.745	50.195	49.543	49.003	43.534	47.5E1

SLECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 390.00 ENDING FIME = 420.00 AVERAGE TEMPERATURE = 49.692 PRESURE 3500.0 KPa REYNOLD'S NUMBER U.33210E+04 COULANT:WATER

÷

(66.011	65.325	61.758	64.131	62.505	62.878	62.252	51.625	
	65 708	64 672	64.046	63.420	62.794	62.168	61.542	60.913	
	60 327	57 807	57 236	56.671	56,106	55.540	54.975	54.409	
SM.933	- EE 273	37.002	51 583	54.038	53,493	52.948	52.403	51.858	
	52.973	57 151	52.620	52.059	51.558	51.027	50.496	45.955	
	51 747	51 775	50.708	50,191	49.674	49.157	48 640	45.123	
1.100	19 281	49 377	48.873	48.369	47.865	47.362	40.858	45.354	
43.347	47.861	47.372	46.083	46.395	45.906	45.417	44.929	44.440	
45.652	45.175	43.698	45.222	44.745	44.269	42.792	43.315	42.839	
44.974	44.309	44.045	43.580	43.116	42.632	42.187	41.723	<1.2E2	
.3.908	43.449	42.991	42.532	12.074	41.615	41.157	40.598	40.240	
42.221	41.776	41.330	40.884	40.438	39.992	39.547	39.101	38.633	
						•	-		

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =420.00 ENDING TIME =450.00 AVERAGE TEMPERATURE = 40.496 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.33210E+04 COOLANT:WATER

35.884	55.359	54.833	54.308	53.782	53.257	52.731	52.206	51.680
35.279	34.754	54.229	53.704	53.179	52.654	52.129	51.604	\$1.079
48.564	48.098	47.632	47.166	16.701	46.235	45.769	45.303	44.837
46.073	45.626	45.180	44.733	44.286	43.840	43.393	42.947	42.500
44.239	43.806	43.373	42.940	42.507	42.073	41.640	41.207	40.774
42.462	42.042	41.622	41.201	49.781	40.361	39.941	39.521	39.101

- DELEMAL, PART 18 OF POOR QUALITY

Table	e IX.	Contin	nued.					·
10.364	40.358	39.943	39.541	39.133	38.725	38.315	37.910	17,302
11.943	38.527	38.133	37,740	37.347	36.953	36.560	36.167	35.773
17 199	37.017	36.635	36.253	35.871	33.189	35.107	34.725	34.343
15 502	35.531	35.160	34.789	34.419	34.048	33.677	33.306	32.935
)1 576	34 610	34.245	33.980	33.575	33.149	32.764	32.419	32.054
33.477	33.124	32.770	32.417	32.063	31.710	31.356	31.003	30.649
			:				1	
ELECT STAR	RODE TEAN	ERATURE 1 -450.00	DISTRIBUT	CN	· ·			
ENDIN	G TIME -	130.00 LATURE - 3	12.535			•	· .	•
PPESU	JRE- 3500. DLD'S NUME	.0 KP3 SER= 0.332	2102+04			•		· .
001	NT:WATER	• .		. •	•	•		
					. •		•	: 1 C
46.210	45.875	45.439	45.004	44.569	44.133	43.698	43.252	42.827
46.210 45.803	45.875 45.368	45.439 44.933	45.004	44.569	44.133 43.628	43.698 43.193	43:252 42.757	42.827 42.322
46.210 45.803 34.494	45.875 45.368 39.115	45.439 44.933 38.735	45.004 44.490 38.357	44.569 44.063 37.978	44.133 43.628 37.599	43.698 43.193 37.220	43:252 42:757 35:641	42.827 42.321 36.461
46.210 45.803 34.494 37.250	45.875 45.368 39.115 36.885	45.439 44.933 38.735 36.528	45.004 44.490 38.357 36.167	44.569 44.063 37.978 35.806	44.133 43.628 37.599 35 445	43.698 43.193 37.220 35.084	43:252 42:757 35:641 34:722	42.827 42.321 36.461 34.361
46.210 45.803 34.494 37.250 35.604	45.875 45.366 39.115 36.685 35.255	45.439 44.933 38.735 36.528 34.906	45.004 44.490 38.357 36.167 34.256	44.569 44.063 37.978 35.806 34.369	44.133 43.628 37.599 35 445 23.966	43.698 43.193 37.220 35.084 33.512	43.252 42.757 35.641 34.722 33.162	42.827 42.321 36.462 34.361 32.834
46.210 45.803 34.494 37.250 35.604 34.015	45.875 45.366 39.115 36.885 35.255 23.679	45.439 44.933 38.735 36.528 34.306 23.342	45.004 44.490 38.357 36.167 36.556 23.005	44.569 44.063 37.978 35.806 34.309 32.609	44.133 43.628 37.599 35 445 23.860 32.332	43.698 43.193 37.220 35.084 33.512 31.996	43:252 42:757 35.641 34:722 33.163 21.559	42.827 42.322 36.462 34.361 32.814 31.322
46.210 45.803 34.494 37.250 35.604 34.015 32.505	45.875 45.365 39.115 36.885 35.255 23.679 32.180	45.439 44.933 38.735 36.528 34.906 23.342 31.855	45.004 44.490 38.357 36.167 34.556 23.005 31.530	44.569 44.063 37.978 35.806 34.309 32.609 31.205	44.133 43.628 37.599 35 445 23.966 32.332 30.880	43.698 43.193 37.220 35.084 33.512 51.996 36.555	43:252 42:757 35:641 34:722 13:162 21:559 30:230	42.827 42.321 36.467 34.361 32.834 31.322 29.905
46.210 45.803 34.494 37.250 35.604 34.015 32.505 30.868	45.875 45.366 39.115 36.885 35.255 23.679 32.180 30.556	45.439 44.933 38.735 36.528 34.906 23.342 31.855 30.244	45.004 44.490 38.357 36.167 34.556 23.005 31.530 29.932	44.569 44.063 37.978 35.806 34.309 52.699 31.205 29.620	44.133 43.628 37.599 35 445 23.860 32.332 30.880 29.308	43.698 43.193 37.220 35.084 33.512 31.996 30.525 28.996	43:252 42:757 35.641 34.722 33.163 21.559 30.230 28.684	42.827 42.321 36.462 34.361 32.814 31.323 29.905 28.371
46.210 45.803 34.494 37.250 35.604 34.015 32.505 30.868 29.531	45.875 45.365 39.115 36.885 35.255 23.674 32.180 30.556 29.230	45.439 44.933 38.735 36.528 34.906 23.342 31.855 30.244 29.928	45.004 44.490 38.357 36.167 34.556 23.005 31.530 29.932 28.626	44.569 44.063 37.978 35.806 34.309 32.609 31.205 29.620 28.325	44.133 43.628 37.599 35 445 23.860 32.332 30.880 29.308 28.023	43.698 43.193 37.220 35.084 33.512 51.996 36.555 28.996 27.721	43:252 42:757 35:641 34:722 73:162 21:359 30:230 28:684 27:419	42.827 42.321 36.467 34.361 32.834 31.322 29.905 28.371 27.118
46.210 45.803 34.494 37.250 35.604 34.015 32.505 30.868 29.531 28.220	45.875 45.366 39.115 36.889 35.255 23.679 32.180 30.556 29.230 27.329	45.439 44.933 38.735 36.528 34.306 23.342 31.855 30.244 28.928 27.637	45.004 44.490 38.357 36.167 34.556 23.005 31.530 29.932 28.626 27.346	44.569 44.063 37.978 35.806 34.209 52.699 31.205 29.620 28.325 27.054	44.133 43.628 37.599 35 445 23.860 32.332 30.880 29.308 28.023 26.763	43.698 43.193 37.220 35.084 33.512 31.996 30.555 28.996 27.721 26.471	43:252 42:757 35.641 34.722 33.163 21.559 30.230 28.684 27.419 26.180	42.827 42.321 36.462 34.361 32.834 31.323 29.905 28.371 27.118 25.889
46.210 45.803 34.494 37.250 35.604 34.015 32.505 30.868 29.531 28.220 27.429	45.875 45.365 39.115 36.685 35.255 23.674 32.180 30.556 29.230 27.329 27.143	45.439 44.933 38.735 36.528 34.906 23.342 31.855 30.244 29.928 27.637 26.856	45.004 44.490 38.357 36.167 34.556 23.005 31.530 29.932 28.626 27.346 26.570	44.569 44.063 37.978 35.806 34.309 32.609 31.205 29.620 28.325 27.054 26.284	44.133 43.628 37.599 35 445 23.860 32.332 30.880 29.308 28.023 26.763 25.997	43.698 43.193 37.220 35.084 33.512 31.996 30.555 28.996 27.721 26.471 25.711	43:252 42:757 35:641 34:722 73:163 21:359 30:230 28:684 27:419 26:180 25:424	42.827 42.321 36.467 34.361 32.814 31.322 29.905 28.371 27.118 25.889 25.126
46.210 45.803 34.494 37.250 35.604 34.015 32.505 30.868 29.531 28.220 27.429 25.125	45.875 45.365 39.115 36.889 35.255 23.679 32.180 30.556 29.230 27.929 27.143 25.849	45.439 44.933 38.735 36.528 34.306 23.342 31.855 30.244 28.928 27.637 26.856 25.573	45.004 44.490 38.357 36.167 34.556 23.005 31.530 29.932 28.626 27.346 26.570 25.297	44.569 44.063 37.978 35.806 34.209 52.699 7 31.205 29.620 28.325 27.054 26.284 25.021	44.133 43.628 37.599 35 445 23.860 32.332 30.880 29.308 28.023 26.763 25.997 24.745	43.698 43.193 37.220 35.084 33.512 31.996 30.555 28.996 27.721 26.471 25.711 24.470	43:252 42:757 35.641 34.722 33.163 21.559 30.230 28.684 27.419 26.180 25.424 24.194	42.827 42.321 36.461 34.361 32.8:4 31.321 29.905 28.371 27.118 25.889 25.126 23.912

. Continue

Ĩ

RIGHTLE COL IS

Table X. Shut-Down Process with Water Coolant (P=0 KPa, Re=3321).

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -110.00 ENDING TIME -150.00 AVERAGE TEMPERATURE -165.467 PRESURE- 0.0 MPA REYNOLO'S NUMBER- 0.33210E-04 COCLANT:WATER

1.4

176.575178.019177.464176.909176.354175.799175.243174.688174.132177.005176.450175.895175.340174.785174.230173.674173.119172.5641*.686174.134175.561173.025172.475171.923171.570170.817170.254172.747172.195171.643171.092170.540169.989165.437268.886162.334170.985170.434169.883169.332163.781168.230167.679167.128J66.575:69.225168.674J68.124167.574167.024166.474165.924155.373164.82316*.471166.921165.372165.822165.273154.723164.174143.624163.675:6.05165.137J64.563164.039163.490162.942162.393161.644161.291:6.104162.852162.364161.755161.207160.559160.111159.562:6.208161.661161.113160.566160.019159.471158.924158.376157.829:60.553160.022159.475158.928158381157.834157.287156.739156.192:*3.819158.273157.727157.140156.634156.067155.541154.995154.445

ELECTFORE TEMPERATURE DISTRIBUTION STARTING TIME =150.00 ENDING TIME =180.00 AVERAGE TEMPERATURE =152.804 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.33210E+04 COOLANT:WATER

 1*66.724
 156.205
 155.687
 155.169
 164.651
 164.132
 153.614
 163.096
 162.577

 165
 252
 164.733
 164.215
 163.697
 163.178
 162.660
 162.142
 161.624
 161.105

 152.172
 161.658
 161.145
 160.632
 160.119
 159.606
 159.093
 158.579
 158.066

 159.963
 159.452
 158.941
 158.430
 157.920
 157.409
 156.898
 156.387
 155.877

 156.220
 157.580
 157.070
 136.361
 156.552
 155.542
 155.633
 154.524
 154.014

 156.220
 155.712
 155.204
 154.396
 154.189
 153.381
 153.173
 152.665
 152.157

 154.365
 153.858
 153.352
 152.845
 152.339
 151.832
 150.819
 150.313

 .52.444
 151.939
 151.435
 150.930
 150.425
 149.920
 149.415
 148.910
 148.405

Fildel, part is 2 poor cement

lable X. Continued.

 110.424
 130.121
 149.617
 149.113
 148.610
 148.106
 147.603
 147.099
 146.596

 144.500
 148.298
 147.796
 147.294
 145.792
 146.289
 145.767
 145.783
 144.783

 147.564
 146.632
 146.181
 145.650
 145.178
 144.677
 145.175
 143.674
 142.172

 145.340
 144.340
 143.540
 143.340
 142.840
 142.840
 141.640
 141.340

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =180.00 ENDING TIME =210.00 AVERAGE TEMPERATURE =139.137 PRESURE= 0.0 KPa REYNOLT'S NUMBER= 0.33210E+04 COCLANT:WATER

153.815153.337152.853152.360151.902151.424150.946150.467149.969152.448151.970151.492151.014150.536150.057149.579149.101148.623148.573148.103147.633147.163146.692146.222145.752145.282144.812145.129145.652145.195144.729144.262143.795143.329142.862142.298144.152143.687143.223142.759142.294141.830141.365140.901340.436142.134141.722141.259140.797140.335139.873139.410138.948138.485146.238139.777139.317138.857138.397137.937137.477137.016136.556138.194137.736137.279136.821136.363135.906135.448134.990134.533136.001135.352134<516</td>134.481134.023133.369133.114137.632134.468133.955133.501133.048132.940131.6271.1.213130.782132.826132.374131.921131.469131.016130.564130.111129.652129.206130.903130.453130.902129.552129.102128.651128.201127.751127.300

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =210.00 ENDING TIME =240.00 AVERAGE TEMPERATURE =124.926 PRESURE= 0.6 KPA REYNOLD'S NUMBER= 0.33210E+04 COOLANT:WATER

140.223139.787139.351138.915138.479138.043137.607137.171136.735:38.968138.532138.097137.661137.225136.789136.353135.917135.481!34.324133.899133.474133.049132.624132.199131.774131.349130.924:31.691131.271130.850130.430130.010129.589129.169128.748128.328

CE POOR QUALITY

Table X. Continued.

			• .	• •				1 26 201
		100 707	128.379	127.962	127.544	127.125	125.795	126.291
32	129.215	123-131		125 977	125.512	125.097	124.683	124.268
:86	127.171	126.757	126.342	123.32.		177 098	122.686	122.274
: 70	125.155	124.746	124 334	123.922	122.510	. 23. 4.20		
		122 612	172.203	121.794	121.385	120.977	120.503	110.105
429	123.020	1.1.0.0		119 866	119.459	::e.053	118.847	118.241
490	121.054	120.575	120.272	1191000		117 127	116.723	116.320
: 47	119.144	118.746	118.337	117.934	117.530			114 797
		117.210	116.805	116.405	116.003	115,601	115	
014	11/.012			114 449	114.041	113.641	113.242	112.843
. 037	115.637	115.238	114.833		- · ·			

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =240.09 ENDING TIME =270.03 AVERAJE TEMPERATURE =110.606 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.33210E+04 COOLANT:WATER

				• •		•		
			175.139	124.746	124.353	123.961	123.508	123.173
5.317	125.924	125.331	113.100	117 607	123.215	122.322	122.429	122.037
5.178	124.785	124.392	124.000	123.507		117 566	117.190 .	116.811
0 R45	119.465	119.086	118.707	118.326	117,948	T11.203		
		116 334	115.960	115.586	115.212	114.838	114.465	114-074
7.081	116.707	110.001		113 487	113.117	112.746	112.376	112.005
4.969	114.595	114.228	113.375	115110		110 672	110.306	109.93*
.2.875	112.508	112.141	111.774	111.407	171.040	110.000		167.911
10.070	110 455	110.093	109.729	109.365	109.002	108.638	108.6/5	10
10.020			107 538	107.178	106.818	105.459	106.099	105.739
68.617	108.257	101.031	10.1000	+05 722	104.877	104.520	104.163	103.807
06.659	106.303	105.946	105.590	103.233		107 586	102.226	101.873
04.790	104.346	103.993	103.640	103.206	102.933	102.300		- 00 116
	133 878	102.527	102.175	101.923	101.472	101.120	100.754	TOOTATE
.03.230	104.840			99 840	99.492	99.143	98.793	98.447
101.233	100.885	100.536	100.100	33.010	•••••			

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =270.00 ENDING TIME =300.00 AVERAGE TEMPERATURE = 96.569 PRESURE= 0.0 KPa REYNOLD'S NUMBEX= 0.33210E+04 COOLANT:WATER

> ORIGINAL PAGE IS OF FOOR QUALITY

> > -

-

į

Table X. Continued.

Conference of the second second second

「「「「「「」」」」」

<u>.</u>....

. .

đ

ENDING TIME -360.00 AVERAGE TEMPERATURE - 70.606 PRESERE: 0.0 KPS REYNOLD'S RUMEES: 0.33210E+04 COOLANT:WATER

	•					•			
35.963	85.696	85.429	83,162	84.894	34.627	84.36U	81.093	83.825	
45.155	84.898	84.631	84.364	84.097	83.829	83-562	83.295	83.028	
74.615	78.367	78.115	77.869	77.620	77.372	77.123	76.374	76.625	
75.544	75.60?	75.359	75.137	74.675	74.632	74.391	74.149	73.907	
-1.795	73.557	71.319	73.082	72.344	72.606	72.358	72.131	71.893	
71.782	71.549	71.316	71.082	70.849	70.515	70.382	70.149	69.913	
69.831	69.602	69.373	69.144	68.915	68.686	68.457	68.22?	67.99E	
67.708	67.484	67.260	67.035	50.811 ·	65.587	66.363	66.138	65.914	
45.904	65.684	65.463	65.243	65.023	64.302	64.582	64.352	64.141	
£3.108	63.851	63.675	63.459	63.242	63.026	62.810	62.593	62.377	
42.918	62.704	52.490	62.275	62.061	61.847	61.632	61.418	61.203	
61.093	50.883	60.673	60.453	60.253	89.042	59.832	59.622	59.412	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -360.00 ENDING TIME -290.00 AVERAGE TEMPERATURE - 59.133 PRESURE- 0.0 KPa REYNOLD'S NUMBER- 0.33210E+04 COOLANT:WATER

72.224 71.995 72.683 72.454 72.913 73.831 73.602 13.372 73.142 71.532 71.302 71.991 71.761 72.220 33.138 72.908 72.679 72.449 65.470 65.260 65.049 64.839 44.523 65.681 65.891 66.312 66.102 62.848 62.440 62.23E 62.644 63.052 \$3.867 63.663 63.459 63.256 61.914 60.917 60.717 60.518 60.318 61.116 61.715 61.515 61.316 59.027 58.442 58.832 58.637 6C.003 59.222 59.806 59.613 59.417 \$7.013 56.7631 \$8.158 56.822 57.395 57.204 57.967 57.776 57.585 56.146 55:031 . 54.845 54.659 55.217 55.403 55.961 55.775 55.589 53.002 54.458 53.548 53.366 53.184 53.730 54.276 54.094 53.912 \$2.781 51.535 51.35÷ 51.713 52.247 52.069 51.891 52.603 52.425

> ORIGINAL PAGE IS OF POOR QUALITY

lable X. Continued.

51.003 50.826 50.650 50.474 50.298 \$1.531 51.355 51.179 11.707 49.321 49.149 48.977 46.805 40.633 49.685 49.493 19.837 10.000

٠.

.

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TINE =390.00 ENDING TIME =420.00 AVERAGE TEMPERATURE = 48.849 PRESURE= 0.0 KPa REYNOLD'S NUMBER= C.33210E+04 COOLANT:WATER

.

			۰.	•				
62 659	\$2.465	62.270	62.975	€1.880	61.685	61.491	61.296	61.101
÷1.064	61.869	61.674	51.480	61.255	61.090	60.846	60.701	60.50€
£5.5 <u>5</u> 0	55.374	55.198	55.022	54.847	54.671	54.495	54.319	54.143
33.057	52.868	52.718	52.549	52.380	52.210	52.041	51.871	51.702
51.230	51.063	50.900	50.735	50.570	50.405	50.240	50.075	K9.910
19 430	45.289	49.128	46.957	48.807	48.646	48.485	46.324	43.144
47.739	47.583	47.426	47.269	47.113	45.956	46.799	46.643	46.495
45.873	45.721	45.569	45.417	45.265	45.113	44.961	44.809	44.637
41.324	44.175	44.027	43.979	43.731	43.583	43.435	43.285	43.138
:2.790	42.645	42.501	42.157	42.212	42.068	41.924	41.779	\$1.625
42.836	41.693	41.551	41.408	41.266	41.123	40.931	40.830	40.695
40.289	40.150	40.011	39.873	39.734	39.596	39.457	39.315	39.180

ELECTRODE TEMPERATURE DISTRIBUTION STANTING TIME =420.00 ENDING TIME =450.00 AVERAGE TEMPERATURE = 39.804 PRESURE: 0.0 EPa REIMOLD'S NUMBER= 0.33210E+04 CODLANT:WATER

.

52.548	52.384	52.221	52.058	51.894	51.731	51.568	51.404	51.241
52.042	51.879	51.715	51.552	51.389	51.225	51.062	50.899	50.73 6
45.777	45.632	45.487	45.342	45.197	45.052	44.907	44.763	44.618
4J.483	43.344	43.205	43.066	42.927	42.789	42.650	42.511	42.372
41.806	41.671	41.537	41.402	41.267	41.133	40.998	40.863	40.729
40.179	40.048	39.918	39.787	39.656	39.526	39.395	39.264	39.134

OF POOR QUALITY

Table X. Continued.

	38.495	38.379	35.243	38.116	37.999	37.863	37.136	37.639
		76.632	30.560	36.437	35.315	36.193	36.071	35.948
20.027		35 755	35.177	35.053	34.939	34.820	34.70%	34.501
25.533	32.414	32.679	11 811	33,697	33.552	33.467	33.351	33.2.+-
34.159	34.043	33.928		17 871	12 758	32.644	32 530	32.127
:3.325	23.212	33.098	32.985	32.011	21 255	31.785	31,175	31.065
31.945	31.835	31.725	31.615	31.505	21.235			

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =450.00 ENDING TIME =460.00 AVERAGE TEMPERATURE = 31.995 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.33210E+54 COOLANT:WATER

			361 61	42 004	47.569	42.73?	42.598	42.461
43.546	43.410	43.275	43.139	43.00%				
43.120	42.985	42.850	12.714	42.579	42.444	42.303	42,174	42.035
37.227	37.109	36.991	36.873	36.755	36.538	36.520	36.402	36.254
35.156	35.043	34.931	34.819	34.707	34.594	34.482	34.370	34.253
13.545	33.537	33.429	32.370	33.217	33,103	32.995	32.887	32.779
17 186	32.082	31.977	\$1.672	31.363	31.663	31.558	31.454	31.349
30 798	30 697	30.596	30.495	.30,394	30.193	30.192	30.057	29 990
29 287	29 190	29.093	28.996	28.899	28.802	25.705	28.000	28.511
38 050	27 964	27.870	27.776	27.682	27.589	27.495	27.401	27.307
20.050	76 753	26 669	26.578	- 26.487	26,397	26.306	25.216	26.125
10.030	20.739	75 057	25 868	25.779	25.690	25.601	25.512	25.423
-0.135	25.040	23.331	23.000	74 586	24.500	24.414	24.328	24.243
24.925	24.843	24.757	24.0/1	24.300				

ORIGINAL PAGE IS OF POOR QUALITY

Table XI. Shut-Down Process with Water Coolant (P=3500 KPa, Re=6167).

FLECTRODE TEMPERATURE DISTRIBUTION DIARTING TIME =120.00 LNDING TIME =150.00 AVIDAGE TEMPERATURE =155.638 PRISURE= 3500.0 KFa REYNOLD'S NUMBER= 0.81570E+04 COOLANT:MATER

169.126168.505167.985167.264166.643166.022165.402164.781164.150167.538166.917166.226165.675165.055164.434163.813163.192162.572165.240164.622164.002163.385162.767162.149161.531160.913160.295163.301162.684162.068161.451160.834160.218159.601155.984158.367161.521160.913160.299159.683159.067158.451157.835157.219156.603159.753159.145158.533157.917157.302156.687156.072155.457154.842154.001157.387156.772156.158155.543154.925154.315153.700153.096154.464153.851153.236152.625152.012151.400156.787156.174149.561152.716152.104151.492150.880150.268149.656149.044148.432147.212151.062130.451149.840149.228148.616148.005147.393145.781146.169142.520142.625144.675144.474146.263144.252145.541143.036144.415

ELECTRODE TENFERATURE DISTRIEUTION STARTING TIME =150.00 ENDING TIME =180.00 AVERAGE TEMPERATURE =143.729 FRESURE= J500.0 KP4 REINOLD'S NUMBER= 0.61670E+04 COOLANT:WATER

157.903157.323156.744156.164155.584155.005154.425153.846153.266156.413155.833155.253154.674154.094153.515152.935152.356151.776153.402152.828152.254151.680151.106150.533149.959149.385146.812151.216150.645150.074149.503146.932148.361147.790147.219146.648149.349148.775148.209147.640147.070146.501145.931i45.362144.792147.486146.918146.250145.782145.214144.646144.078143.510142.942145.636145.070144.503143.937143.371142.804142.238141.672141.105143.726143.161142.597142.032141.468140.903140.339139.774139.217

ORIGINAL PAGE IS OF POOR QUALITY

. Č.

÷ .

Table XI. Continued.

i.

÷

٤.

1.811 141.348 140.705 146 278 139.659 130.096 138.523 137.973 147.407 .0 693 139.531 138.970 138.405 137.547 137.205 136.724 136.162 135.601 13.476 137.910 127.349 135.788 136.729 135.667 135.106 134.545 133.985 . 10. 034 136.075 135.516 134.957 134.390 133.939 133.280 132.721 132.142

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -160.00 ENDING TIME -210.00 AVERAGE TEMPERATURE -130.877 PRESURE= 3500.0 KPa REVNOLD'S NUMBER= 0.61670E+94 COCLANT:WATER

45.677 145.142 144.607 144.072 143.538 143.003 142.468 141.934 141.399 .<4.294 143.759 143.225 142.690 142.155 141.621 141.086 140.552 140.017 .=0.538 140.013 139.407 138.961 133.436 137.910 137.384 136.859 136.333 .28.139 137.516 137.095 136.573 130.051 135.530 135.008 134.486 123.963 36.182 135.662 135.143 134.624 134.105 133.585 133.066 132.547 132.02-.34.234 133.717 133.200 132.634 132.167 131.650 131.133 130.616 130.099 .32.303 131.793 131.279 130.764 130.250 129.735 129.221 128.706 128.192 30.291 129.779 129.207 128.755 128.244 127.732 127.220 156.708 125.107 13.418 127.909 127.395 125.890 126.380 125.871 125.361 124.852 124.342 26.343 126.036 125.529 125.071 124.514 174.007 123.500 122.993 122.485 .24.963 124.457 123.951 123.445 122.939 122.433 121.927 121.421 120.915 .23.062 122.539 122.055 121.552 121.048 120.544 120.041 119.537 119.034

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =210.00 ENDING TIME =240.00 AVERAGE TEMPERATURE -117.512 PRESURE= 3500.0 KPa Reynold's number= 0.61670E+04 COOLANT : WATER

.

32.804 132.316 131.829 131.341 130.854 130.367 129.879 129.392 128.904 31.535 131.048 130.560 130.073 129.586 129.098 128.611 128.124 127.635 27.060 126.585 126.110 125.634 125.159 124.684 124.209 123.733 123.258 24.491 124.021 123.550 123.080 122.610 122.140 121.670 121.200 120.732

> ORIGINAL PAGE IS OF COSTONETITY

121.465121.998121.531J21.054120.557120.130119.663119.196151.719120.455119.989119.525119.061116.557J16.134117.570117.206106.74213.470112.009117.539117.068116.627116.157115.705115.245114.76416.370115.913115.456114.999114.542114.085113.623113.171112.73414.462114.008112.554113.100112.645112.152111.737111.283120.325112.552112.100111.649111.198110.747210.296109.843109.394109.342111.027110.578110.128109.678109.229108.779108.330107.431109.086108.646108.193107.747107.301106.834106.408105.962105.516

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =240.00 ENDING TIME =270.00 AVERAGE TEMPERATURE =104.044 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.61670E+04 COCLANT:WATER

119.533 119.194 118.755 118.315 117.377 117.439 116.999 136.560 145 121 118.482 118.043 117.604 117.165 115.726 115.237 115.848 115.409 114.970 113.364 112.940 112.516 112.091 111.657 111.143 110.819 110.395 169 371 210.079 110.261 109.043 109.416 109.008 108.550 108.171 107.754 107.316 108.512 306.198 107.784 107.370 108.955 106.541 105.117 101.713 105.799 104.102 103.692 103.231 106.564 106.154 105.743 105.333 104.913 104.512 104.554 104.147 103.740 103.334 102.927 102.521 102.114 101.797 101.391 99.187 102.405 102.003 101.601 101.198 100.796 100.394 99.590 99.992 27.200 98.097 97.699 98.496 98.895 99.293 99.692 100.489 100.091 95.807 35.412 95.202 96.992 96.597 97.388 97.783 96.573 98.178 93.973 94.366 94.75% 95.152 90.332 \$5.539 95.546 97.119 96.725 92.444 92.054 92.833 93.222 93.612 94.001 94.780 94.390 95.169

OF PORTS STATIS

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =270.00 ENDING TIME =300.00 AVERAGE TEMPERATURE = 90.842 PRESURE= 3500.0 KPA REYNOLD'S NUMBER= 0.61670E+04 COOLANT:WATER

1.1

となるとう かたまちない

A STATE OF A

104.537 104.146 103.756 103.365 305.710 105.319 104.928 176 602 106.101 102.332 102.723 103.504 103.114 103.695 104.286 104.677 105.007 115.458 96.825 97.200 37.946 97.573 98.693 98.320 99.066 çə.813 99.440 94.508 94.143 94.275 95.241 95.974 95.608 96.708 96.341 27.074 92.101 92.463 92.826 93.188 93.550 93.912 94.775 94.637 94.995 90.085 90.443 91.159 90.801 91.517 91.875 92.233 92.591 92 949 88.469 68.115 88.822 89.175 89.883 89.530 90.237 90.591 90.944 65.998 96.695 86.346 87.044 87.392 87.741 83.090 88.439 38.787 84.138 84.828 24.483 85.172 35.517 \$5.207 85.862 66.551 86.396 82.281 62.622 82.963 83.303 83.644 83.985 84.325 84.666 85.007 81.267 80.928 81.606 81.944 82.283 82.622 63.299 82.960 83 638 79.041 79.710 79.375 80.044 80.378 31.381 81.716

ILECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =300.00 ENDING TIME =330.00 AVERAGE TEMPERATURE = 78.219 PRESURE= 3500.0 KPm REYNOLD'S NUMBER= 0.61670E+04 CCOLANT:WATER

. 90.919 91.607 91.263 91.951 92.630 ,92.795 92.982 93.570 93.326 90 347 90.003 90.690 91.034 91.721 91.378 ٠ 92.409 92.065 92.752 84.131 84.780 84.455 85.104 85.429 85.753 86.402 86.077 86.726 81.456 81.774 82.09i 82.408 82.725 83.042 83.350 83.677 83.994 79.760 79.448 80.073 80.385 80.697 81.010 81.322 81.635 \$1.947 77.465 78.085 77.777 78.392 78.700 79.008 79.316 79.623 79.931 75.543 76.150 75.846 76.756 76.453 77.059 77.362 77.666 77.969 73.463 73.761 74.059 74.356 74.654 74.952 75.548 75.250 75.846 71.663 71.957 72.251 72.544 72.838 73.132 73.425 73.719 74.012 69.870 70.448 70.159 71:027 70.738 71.316 71.606 71.895 72.184 68.616 68.903 69.190 69.477 69.784 70.052 70.339 70.626 70.913 67.077 66.795 67,360 67.925 67.642 68.298 59.490 68.773 59.055

ELECTRODE TEMPERATURE DISTRIBUTION Starting Time -330.00

OF POOR QUALITY

•
ENDING TIME +360.00 AUTRAGE VEMPERATURE + 56.403 FRESURE= 3500.0 KP3 REYNOLD'S NUMBER= 0.61670E+04 COOLANT:WATER

81.415	81.116	80.817	80.519	80.220	79.921	79.622	79.323	79.024
80.610	80.311	80.012	79.714	79.415	79.116	78.819	78.519	78.229
74 164	74.086	73.308	73.530	73.251	72.972	72.695	72.417	72.139
-1 697	71.426	71.155	70.884	70.614	70.343	70.072	69.801	69.531
<0.715	69 449	69.183	68.917	68.651	68.386	68.120	67.854	67.588
	67 508	57.247	65.986	66.725	66.464	65.203	55.942	65.681
(1.10) (5.367	65 677	65.370	65.114	64.858	64.602	. 64.345	64.089	63.833
().505 ().436	62 585	63.334	63.084	62.033	62.582	62.331	62.081	61.830
63.630	e: e.s.	61 509	E1.352	61.106	60.860	60.613.	60.367	60.121
62.092	01.042	20 877	59.630	59.389	59.147	58.995	58.663	58.401
50.350	50 254	57.074	58.174	58.235	57.995	57.755	57.516	57.276
59.194	53.954	50.714	56 770	56 494	56.259	56.024	55.789	55.554
\$7.434	21.133	30.904						• .

ELECTRODE TEMPERATURE DISTRIBUTION STAFTING TIME =360.00 ENDING TIME =350.00 AVERAGE TEMPERATURE = 53.632 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.61670E+04 COOLANT:WATER

69.925	69.668	69.411	69.155	68.898	68.641	68.385	68.128	67.871
69.226	68.959	68.713	52.456	68.200	67.943	67.687	67.430	67.17;
62.925	62,690	62.455	62.219	61.984	61.748	61.513	61.278	51.041
60.375	60.147	59.919	59.691	59.463	59.235	59.007	58.779	58.551
58.491	58.268	58.045	57.822	57.599	57.376	57.153	56.930	56.707
56.648	56.430	56.212	55.993	55.775	55.557	55.339	55.121	54.903
54.569	54.656	54.443	54.229	54.015	53.803	53.589	53.375	53.157
52.935	52.727	52.520	52.312	52.104	51.896	51.608	51.480	51.272
51.308	51,104	50.901	50.697	50.493	50.290	50.086	49.883	49.679
49.693	49.494	49.294	49.095	48.896	48.697	48.498	48.299	48.099

ORIGINAL PAGE IS OF POOR QUALITY

*

LING LANDIN ----

11 () · ·

Ē

1

. 6 . 546	48.449	48.252	48.035	47.958	47.661	47.464	\$7.2ć7	47 670
45.040					46 057	45 859	45.567	45.412
.; 013	46.821	45.529	46,436	40.249	40.052	17.055		

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME - J90.00 ENDING TIME - 420.00 Average temperature - 45.958 PRESURE- 3500.0 KPa Reynold's Number- 0.61670e+04 Cuolant:Water

			50 501	58 173	58.255	58.037	57.819	57.602
59.344	59.126	58.909	20.091	50.475	•••••		e	67 001
58.744	58.526	58.309	38.091	57.973	57.656	57.438	5/.229	37.001
52 546	52.349	52.153	51.956	51.760.	51.563	51.366	51.170	50.973
50.156	49.967	49.777	49.588	49.398	49.209	49.020	48.830	48.641
45 345	48.213	48.029	47.844	47.560	47.475	47.291	47.106	46.921
46 685	45.505	46.325	46.146	15.966	45.786	45.606	45.477	45.247
45.040	44.865	41.689	44.514	14.339	41.164	43.989	43.814	43.639
42.040	43.079	42.910	42.740	42.570	42.409	42.230	42.060	41.890
	21 564	<u> </u>	41.262	41.057	40.931	40.765	KO.650	40.434
AG 335	60 175	19.963	39.802	35.640	39 479	39.317	33.156	28.991
30 350	0.1x1	39.040	3E.HE1 -	38.722	38.562	38.403	38.244	35 03-
27.357	22.100	17.566	37.411	37.256	37.101	36.945	36.791	36.636
31.013	∨ن ۲ . ۲ د	2			•	· .		

· .. · ELECTRODE TENPERATURE DISTRIBUTION STARTING TIME -420.00 ENDING TIME -450.00 Average temperature - 37.450 Presure- 3500.0 KPa Reynold's Number- 0.61670e+04 Coolant:Water

49.768	49.585	49.402	49.220	49:037	48.854	**49.672	48.489	48.306
49.258	49.075	42.893	48.710	48.528	48.345	48.16?	47.980	47.79 8
43.301	43.139	42.977	42.515	42.553	42.491	42.329	42.167	42.005
41,105	10 950	40.795	40.639	40.484	46.329	40.174	40.018	39.853
39.495	39 344	39.193	39.043	38.892	38.742	38.591	38.440	38.290
37.932	37.786	37.640	37.494	37.348	37.202	37.056	36.910	36.754

ORIGINAL PASE IS

14.439	36.297	36.156	36.014	35.872	35.731	35.599	35.447	35.300
34.815	34.673	34.541	34.405	34.268	34.131	33.994	33.850	33.721
33.477	33.345	33.212	33.079	32.946	32.813	32.631	32.548	32.415
32,159	32.031	31.902	31.773	31.644	31 (515	31.385	31.257	31.125
31.352	31.225	31.098	30.972	30.845	30.718	30.591	30.464	30.337
30.031	29.908	29.786	29.663	29.540	29.417	29.294	29.171	29.049

SLECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =450.00 ENDING TIME =480.00 AVERAGE TEMPERATURE = 30.105 FRESURE= 3500.0 RPa REYNOLD'S NUMBER= 0.61670E+04. CCOLANT:WATER

.

.

41.242	41.090	43.939	40.787	-40.536	40.485	40.333	40.162	40.03:
40.814	40.683	40.511	40.36*	40.2.9	40.058	39.906	39.755	39.604
25.213	35.082	34. 550	24.815	34.687	34.555	- 34.423	34.291	34.190
33.233	33.105	32.982	32.857	32.731	32.605	32.480	32.355	32.229
31.785	31.664	31.543	31.422	31.300	31.179	31.058	30.937	30.816
30.387	30.270	30.153	30.036	29.919	29.802	29.685	29.568	29.451
29.057	28.944	28.831	28.718	28.605	28.492	28.379	28.266	28.153
27.612	27.504	27.395	27.287	27.178	27.070	26.961	26.853	26.74-
26.434	26.330	26.225	26.120	26.015	25.910	25.805	25.700	25.895
25.279	25.177	25.076	24.975	24.873	24.772	24.671	24.569	24.468
24.588	24.488	24.389	24.289	24.190	24.090	23.990	23.891	23.791
23.435	23.340	23.244	23.148	23.052	22.956	22.860	22.764	22.652
					-			

ORIGINAL FORME IS OF POOR GUALIN

.

_

Table XII. Shut-Down Process with Water Coolant (P=0 KPa, Re=6167).

LLECTROPE TEMPERATURE DISTRIBUTION STARTING TIME =120.0G ENDING TIME =150.00 AVERAGE TEMPERATURE =151.337 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.61670E+04 COOLANT:WAIER

165.347 164.709 164.071 163.434 162.796 162.150 161.520 160.882 160.245 161.122 160.485 159.847 159.209 161.760 158.571 163.673 163.036 162.398 159.402 158.767 158.132 157.497 155.862 136.227 161.307 160.572 160.037 156.125 155.491 134.858 154.224 157.392 156.759 159,293 158.659 158.026 157.443 156.811 156.178 155.545 154.912 154.279 153.647 153.014 152.381 155.596 154.964 154.332 153.700 153.068 152.436 151.804 151.172 150.540 149.968 149.337 148.701 153.755 153.124 152.493 131.362 151.230 159.549 149.395 149.364 148.734 148.104 147.473 145.847 151.886 151.255 150.625 150.061 149.431 148.802 148.172 147.543 146.913 146.283 145.654 145.024 148.235 147.605 146.377 146.348 145.726 145.391 144.462 143.833 143.204 166.501 145.372 145.244 144.516 143.967 143.359 142.730 142.102 141.473 144.567 144.039 143.413 142.764 942.155 9141.528 140.901 140.273 133.545

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =150.00 ENDING TIME =180.00 AVERAGE TEMPERATURE =139.760 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.61670E=04 COOLANT:WATER

1

154.374153.779153.183152.588151.992151.397150.802150.206149.611152.805152.209151.614151.019150.423149.828149.232148.637148.042149.751149.161148.572147.982147.393146.803146.214145.624145.035147.505146.918146.331145.744145.158144.571143.984143.398142.811145.569144.984144.399143.814143.229142.644142.058141.472140.836143.639143.056142.472141.889141.305140.722140.138139.555138.971141.723141.141140.553139.977139.395138.813136.268135.688135.105

OF POOR QUALITY

÷ ..

NECESING PACE BLANK NOT FILMED

Table XII. Continued.

. 9.365	119.880	118.406	117.927	117.447	116.957	115.487	116.000	115.879	
::7.3:1	116.835	116.359	115.882	115.405	114.929	114.452	113.976	113.499	
:15.286	114.813	114.340	113.867	113.393	117.920	112.447	111.973	111 500	
:13.149	112.630	112.210	i11.740	111.271	110.801	110.332	109.862	109.392	
:11.200	110.733	110.267	109.800	109.333	108.867	108.400	107.934	107.467	
:09.249	108.786	108.322	107.859	107.395	106.932	106.468	106.005	105 541	
107.674	107.212	106.750	106.298	105.827	105.365	T 04.903	104.441	103.979	
:05.696	105.238	104.779	104.321	103.862	103.403	102.945	102.485	102.025	

ELECTRODE TEMPERATURE DISTRIBUTION STANTING TIME -240.00 * ENDING TIME -270.00 AVERAGE TEMPERATURE -101.179 PRESURE- 0.0 KPa AEYNOLD'S NUMBER- 0.61670E+04 CCOLANT:WAIEP

114.704 114.253 113.802 113.352 115.360 116.509 116.058 115.607 115.135 114.396 113.945 113.494 113.043 112.592 112.141 115.740 115.298 114.847 110.655 110.230 109.795 109.359 108.923 108.188 105.052 107.616 107.181 104.957 104.225 107.967 107.534 107.104 106.675 106.245 205.816 165.386 125 864 105.438 105.013 104.357 104.152 103.736 103.311 102.085 103.465 :03.785 103.363 102.941 102.520 102.098 101.677 101.255 100.834 100.410 100.491 100.073 99.655 98.820 95.401 101.744 101.326 100.909 99.238 99.571 97.504 97.091 96.678 96.253 99.157 98.744 98.331 97.918 97.625 95.987 94.758 34.342 96.396 95.577 95.168 97.216 95.805 25.680 94.057 93.651 93.245 92.839 92.433 35.274 94.369 94.463 94.196 93.782 93.378 92.974 92.570 92.166 91.762 91.357 90.953 92.212 90.612 90.212 89.811 89.411 89.011 91.812 91.412 91.012

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =270.00 ENDING TIME =300.00 AVERAGE TEMPERATURE = 88.344 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.61670E+04 COGLANT:WATER

OF POOR QUALITY

	102 710	103.329	102.907	102.506	102.104	101.702	101.301	100.899
.4 114	103.710	102 223	101.921	101.420	101.019	100.517	100.216	39.81:
.13.02ē	102.624	102.223	D6 787	95,903	95.520	95.136	94.753	94.369
u7 438	2°.034	99.071	07 567	93.165	92.809	92.432	92.055	91.679
9¢ 692	94.315	93.938	33.30 2	e1 107	90.734	30.362	89.990	89.618
92.595	92.223	91.851	91.479	40 054	88 686	88,313	87.951	87.553
90.523	90.157	89.789	89.421	07.047	96 683	86 320	85:957	85.594
88.501	88.137	87.774	87.411	87.047	00.000	64 180	83.522	93.464
65.330	85.972	85.613	85.255	24.897	84,330	01.100	91 940	81.586
84.419	84.065	83.711	83.357	83.003	82.648		01.540	79 71*
22.512	82.162	81.812	81.462	61.112	80.762	80.412		78 376
51.112	83.764	SC.415	80.068	79.720	79.372	79.024	10.012	76 479
79.176	78.833	76.489	78.146	77.802	77.459	7.115	76.112	/0.420

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -330.00 ENDING TIME -330.00 AVERAGE TEMPERATURE - 75.071 PRESURE- 0.0 KPa REYNOLD'S NUMBER- 0.61670E+04 COOLANT:WATER

01 177	21 773	90.370	90.517	90.164	33.810	69.457	89.104	36.751
34.377	90.260	89.907	89.554	79.201	88.548	88.495	88.142	87.785
34 663	5V.20V	81 996	83.663	83.329	82.996	82.663	82.329	81.996
84.002	01.347	e1 781	80.955	80.629	80.303	79.977	79.651	79.325
01.932 30 n-4	01.007	79 737	78.911	78.590	75.268	77.947	77.626	77.305
79.874	79.333	77 714	76.898	76.582	76.266	75.949	75.633	75.31-
77.847	77.530	75 251	74.939	74.629	7:.315	71.004	73. 693	73.381
12.3/4	15,302	72 134	77.828	72.522	72.216	71.910	71.604	71.298
73.747	/3.441	71 200	70.998	70,696	70.395	70.093	69.791	69.490
71.903	/1.001	60 477	69.174	68.877	62.580	68.283	67.985	67.688
£0.000	63.703	CA 181	67.886	. 67.591	67.296	67.001	66.706	65.411
66.909	56.619	66.329	66.038	65.748	65.458	65.168	64.877	64.587

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =330.00

ORIGINAL PARE IS OF POOR QUALITY

ENDING TIME = 360.00 AVERAGE TEMPERATURE = 64.001 PRESURE= 0.0 KPA DEYNOLD'S NUMBER= 0.61670E404 COOLANT:WATER

79.596	79.289	78.982	78.575	78.368	78.061	77.754	77.447	77.140
76.750	79.444	78.137	77.830	77.523	77.216	76.909	75.602	76.296
72.594	72.309	72.023	71.737	71.451	71.106	70.880	70 594	70.308
69.937	69.659	69.381	69.103	69.824	68 546	68.268	67.990	67.712
67.951	67.677	67.404	67.131	66.858	66.585	66.312	66.039	63.766
56.001	65.733	65.465	65.197	61.929	64.651	64.393	64.125	63.857
54.112	63.849	63.586	63.323	63.059'	62.790	62.533	62.270	62.007
62.969	61.811	51.554	61.296	61.038	60.791	60.523	60.256	60.008
£0.322	60.069	59.810	59.362	59.309	.59.036	58.805	59.550	58.297
58.555	58.337	58.082	57.840	57.551	. 57.342	57.034	56.845	56.597
57.406	57.160	56.913	55.567	55.421	56.175	55.928	55.652	55.436
55.649	55.408	55.166	54.925	54.683	54.442	34.201	53.955	53.718

ELECTRODU TIMPERATURE DIGTRIBUTION STARTING TIME =360.00 ENDING TIME =390.00 AVERAGE TEMPERATURE = 54.108 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.61670E+04 COOLANT:WATER

68.362 68.098 67.833 67.571 67.307 67.044 66.780 66.516 66.253 57.629 67.365 57.102 65.838 66.575 66.311 66.048 65.784 65.521 51.428 61.186 60.944 60.702 60.461 60.219 59.977 59.735 59.493 58.893 58.659 58.425 58.191 ⁷57.956 57.722 57.488 57.254 57.019 57.011 56.782 56.552 56.323 56.094 55.865 55.536 55.407 55.178 53.170 54.946 54.722 54.498 54.274 54.050 53.826 \$3.602 53.378 33.395 53.176 52.957 52.737 52.518 52.299 52.085 51.860 51.641 51.470 51.257 51.043 50.829 50.402 50.616 50.189 49.975 49.761 19.845 49.636 49.427 49.218 49.009 48.800 48.590 48.381 48.172 48.235 48.030 47.825 47.621 47.416 47.211 47.007 46.802 46.598

OF POER COMMY

			46 570	45.367	46.165	45.963	45.760	45.558
17	16.975	40.772	40			e a 367	44.169	43.971
. 5. 552	45.355	\$5.157	4: 960	44.762	44.30*			

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 390.00 ENDING TIME = 420.00 AVERACE TEMPERATURE = 44.70J PRESURE = 0.0 KPa REYNOLD'S NUMBER = 0.61670E+04 COOLANT:WATER

÷. - 7

•								
	67 794	57.570	57 347	57.123	56.899	56.675	56.452	56.228
58.018		55 947	56.718	55.494	56.271	56.047	55.924	55.600
11.388	57,105	20.342	53 689	50.488	50.286	50.084	49.882	49.650
5295	51.093	20.831	20,.007			47 757	47.563	47.368
48.925	48.730	49.536	48.341	49.147	47.952			
	46 584	45.794	46.601	45.415	46.225	46.036	45.840	45.859
1 • • • • • •		12 1104	44.913	44.729	44.544	44.359	44.175	43.990
45 457	45.283	45.055			A7 933	42.750	42.570	e2.390
43.829	43.649	43.470	.43,290	~3.110			40 321	40 656
42.052	41.878	41.703	41.529	41.354	41.180	41.005	40.231	401000
	40 300	40 229	40.059	39.883	39.718	39.548	39.378	33.208
40.259	40.399			78 440	38.275	38.109	37.943	37.77
39.130	35.928	38.772	30.000				150 76	36.861
38.171	38.007	37.843	37.019	37.516	37.352	37.188	31.024	
	16 579	36 380	36.221	36.062	35.902	35.743	35.584	35.425
30:693	20.337	20.200						

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =420.00 ENDING TIME =450.00 AVERAGS TEMFERATURE = 36.428 PRESURE= 0.0 KPB REYNOLD'S NUMBER= 0.61670E+04 COOLANT:WATER

324 84	48 468	48.280	48.092	47.905	47.717	47.529	47.342	47.104
48 177	47 034	47.747	47.559	47.372	47.184	46.997	46.809	45.621
43 371	47.334	41.938	41.771	41.605	41.439	41.272	41.106	40.939
40.096	30 027	39.777	39,618	39.458	39.299	39.139	38.980	38.829
38 405	39.937	38 186	38.031	37.876	37.722	37.567	37.412	37.257
36.433	30.340	36.643	36.493	36.343	36.193	36.043	35.893	35.743

ORIGINAL PAGE IS

35 ×00	35.314	35.163	35.023	24.878	34.732	34.566	34.441	34.298
33.851	13.731	33.570	33.430	33.289	33.149	33.008	32.868	31.721
32.523	32.367	32.250	32.114	31.977	31.041	31.704	31.565	31.432
31.216	31.085	30.951	30.819	30.686	30.554	30.421	30.289	30.156
30.406	30.275	30.145	30.014	29.884	29.753	29.623	29.497	29.362
29.098	28.972	28.646	28.719	28.593	28.467	26.341	28.214	25.088

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =450.00 ENDING TIME =480.00 AVERAGE TEMPERATURE = 29.285 PRESURE- 0.6 NFA REYNOLD'S NUMBER- 0.61670E+04 COOLANT:WATER

39 076 39.698 39.542 39.337 39.231 46.320 40.009 39.853 40.164 38.940 38.785 38.630 39.251 39.096 39.717 39.562 39.406 39.872 33.699 33.564 33.428 33.293 33.970 33.834 34.375 34.105 34.240 32.033 . 31.902 31.773 31.644 31.515 21.366 32.289 32.160 32.416 30.358 36.234 30.109 29.985 30.732 50.607 30.483 30.381 30.856 28.532 28.073 28.753 29.234 . 29.113 28.993 29.594 29.474 29.354 28.044 27.928 27.812 27.696 27.579 27.463 27.347 28.276 28.160 26.179 26.068 25.95é 26.513 26.402 26.291 25.848 26.736 · 25.625 24.819 25.142 25.035 24.927 25.358 25.250 25.681 25.573 25.466 23.808 23.704 . 24.121 24.016 23.912 24.225 24.537 24.433 24.329 23.02* 23.436 23.334 23.231 23.129 23.538 23.845 23.743 23.541 22.116 21.917 22.707 22.609 22.510 22.412 22.313 22.215 22.018 ۰.

OF POOR QUALITY

Chapter VI

CURRENT DENSITY DISTRIBUTION

In this chapter, the modified computer code was employed to simulate the current density distribution during the considered transient processes. The procedure used divides the considered cell plate into symmetrical finite reactant concentration grids with small difference difference. Initial conditions and boundary conditions are then utilized within an iterative process to obtain a solution for each grid that is subjected to the prespecified restrictions of the average boundary operation conditions and the input data, refer to Chapter V and Appendix, which can be listed as follows:

- (a) Fuel flow rate and temperature
- (b) Process air flow rate and temperature
- (c) Coolant flow rate
- (d) Oxygen utilization rate
- (e) Hydrogen utilization rate
- (f) Average cell plate temperature

The electrode current density variation is affected mainly by the concentration of oxygen and hydrogen inside the fuel cell during any transient process. However, the current density distribution is a function of the transient

temperature distribution of the electrode. As concluded in Chapter V the electrode temperature distribution is a function of the stack pressure, coolant volumetric flow rates and thermophysical properties.

This chapter is devoted to study the variation of the transient electrode current density distribution during start-up and shut-down process. For the sake of comparison the same cooling fluids flow rates and applied stack pressure used in the previous chapters results were utilized. The affects of these two important parameters on the electrode current density distribution were then presented by utilizing two-dimensions and three-dimensions contours figures.

6.1 <u>Transient Electrode Current Density Distribution During</u> <u>a Start-Up Process</u>

Figure 115 to Figure 120 exhibits the variation of the current density distribution with time in (Ampere/cm**2) for water Re=1250 and P=3500 Kpa which is the most critical case due to high thermal energy accumulation inside the fuel cell which causes the highest temperature increase rate in the electrode average temperature. Comparing Figure 121 to Figure 126, which represents the current density when water is used for the equal time intervals during a starting process the following is observed.

 The highest local current densities are located close to fuel entrance upper edge during the start-up process but will shift slightly toward

the center of the electrode. During the startup process the increase in the temperatures, before reaching the steady-state, will increase the generation rate of free electrons.

- 2. During a start-up process the increase in the coolant mass flow reduced the peak current density value and area and caused the peak area to shift further toward the upper edge close to fuel entrance side, as shown in Figure 127 to Figure 132 which represents the case where water was used with Re=6167 and P=0 Kpa.
- 3. The transient average current density for the electrode was affected negatively by the higher Re number and particularly with higher stack pressure after the first 20 minutes during the start-up process, before reaching the steady state, as shown by Figure 113. That also was related to the effect of the local temperature distribution.
- 4. When oil was used as a coolant similar observations were recorded. However, higher current density peak values and larger areas were noticed since oil as a cooling fluid with the law velocity restrictions was less efficient in removing thermal energy from the electrode plate and that caused the higher average current densities.

Note: Each time interval represents 10 minutes.

<u>8</u>22

-

-

ORIGINAL PAGE 15

TRANSIENT CURRENT DENSITY DISTRIBUTION

「「「ない」、「ころ」

Fuel

ORIGINAL PAGE IS OF POOR QUALITY

Figure 117.

ORIGINAL PAGE POOR QUALITY

Fuel

TRANSIENT CUPRENT DENSITY DISTRIBUTION

original page is of poor quality

ORIGINAL PAGE IS OF POOR QUALITY

BAT R. MARCONSTR.

COOLING FLUID: WATER START- UP PROCESS

Transient Current Density Distribution During a Start-Up Process (Water Coolant. P=0 KPa, Re=1250, T.I.=6). TIME INTERVAL NO.6 Figure 126.

ORIGINAL PAGE IS OF POOR QUALITY

「二日かる」は「本法

A TOTAL AND

Transient Current Density 3D Contour

TIME INTERVAL NO.3

START-UP PROCESS

-

ないの法が法

Transient Current Density Distribution During a Start-Up Process (Water Coclant, P=0 KPa, Re=5157, T.I.=4). Figure 130.

TIME INTERVAL NO.4

START-UP PROCESS

6.2 <u>Transient Electrode Current Density Distribution During</u> <u>A Shut-Down Process</u>

The same cases examined in the previous section are considered during a shut-down process in this section to determine the effect of the clamping pressure, coolant flow rate and thermophysical properties on the current density distributions. Referring to Figure D-1 to Figure D-13 in the Appendix, for water with Re=1250 and clamping pressure of 3500 KPa, and Figure D-14 to Figure D-27 for the same flow rate and cooling fluid but with zero applied stack pressure, the following can be observed:

- 1. The current density decrease rate is higher than the accompanied temperature decrease rate.
- 2. The peak areas of the current density shifted to the center of the plates and with maximum clamping pressure.
- 3. Figure 133 which exhibits the variation of the average current density of the plate, demonstrates the reduction of that value for the most extreme case considered, minimum flow rate and maximum clamping pressure, when compared to the minumum flow rate and zero applied stack pressure case. This can be related to the effect of the electrode plate temperature distribution.

4. The increase in the average current density when increasing the mass flow rate was not

å.,

ORIGINAL PAGE IS OF POOR QUALITY

097 260

ORIGINAL PARE IS OF POOR QUALITY
as high as that when reducing the clamping pressure during the shut-down process.

5. Similar observations were recorded when oil was used as a cooling fluid. However, the average transient current density drop rate was higher than that when water was used as a coolant due to the coolant volumetric flow restriction which affected negatively the efficiency of the cooling system in heat removal during the shutdown process as shown in Figure 134.

CHAPTER VII

DISCUSSION OF RESULTS AND ACCURACY ANALYSIS

devoted to the analysis This chapter is and interpretation of the experimental and theoretical results obtained in the previous chapters. These analyses and interpretations will be mostly concerned with the effects of clamping pressures, cooling fluid flow characteristics, thermophysical properties and the transient heat transfer characteristic on the performance of a PAFC power plant operating under transient conditions.

÷.....

And the second state of th

A good method of presenting the gathered information and forming a clear picture of the effects of each considered parameter on the fuel cell transient heat transfer rates is experimental and analytical results comparison.

Figure 135 shows the overall heat transfer coefficient as a function of time for both cooling fluids for a startup and shut-down cases respectively, with average (Re) number and stack pressure conditions. An obvious increase in the values of the overall heat transfer coefficient was noticed with higher applied stack pressure as mentioned in Chapter IV, however, that increase in the case of water was higher than that of oil. The average difference was 28.392%

-

Comparisons of the Experimental Overall Heat Transfer Coefficient. Figure 135.

during a start-up process and approximately 16.524% during a shut-down process. The higher U value for water was not solely due to the different cooling fluid thermophysical properties but also due to the large difference of the fluid velocity. That difference affected the results since the transient overall heat transfer is a function of the convection heat transfer coefficient which is dependent on the flow characteristics. It should be noticed that the data obtained for water was for mass flow rates covering laminar and turbulent flows but only the laminar flow condition was considered in the oil case.

間の見ている

The effect of pressure on the reduction of the thermal contact resistance is significant for all the cases considered for each coolant, as demonstrated in Chapter IV. This reduction in the thermal resistance is mainly due to the increase of the contact common surface area between the fuel cell plate and the cooling plate which was caused by the plastic deformation of the two surfaces and the surfaces reduction of the air-occupied gaps due to roughness. The significant effect of the thermal contact heat transfer the overall transient resistance on coefficient can be demonstrated clearly by monitoring the variation of the ratio I(t) with time, where I(t) can be defined as:

I(t) = U(t)/V(t) = transient overall heat transfer coefficient of the fuel cell model transient overall heat transfer coefficient neglecting the effect of the thermal contact resistance.

or

$$I(t) = \frac{\left[\left(\frac{x_1}{K} \right) + \left(\frac{x_2}{K} \right) + \left(\frac{1}{h(t)} \right) \right] \right]}{\left[\left(\frac{x_1}{K} \right) + \left(r_c \right) + \frac{x_2}{K} \right] + \left(\frac{1}{h(t)} \right) \right]}$$

Utilizing the experimental correlation to generate the results for both U-values a remarkable difference was noticed, as shown by Figure 136 and Figure 137 for water during start-up and shut-down process respectively, for several considered applied stack pressure. It was noticed that the difference reached a maximum of 10.383% for the considered start-up process and 10.109% for the considered shut-down process. In the case of oil coolant the maximum difference was 9.921% for start-up conditions and 9.844% for the shut-down conditions for the same pressure ranges.

An increase in the values of the Nusselt number was noticed for both cooling fluid with high applied stack pressure, (please refer to Appendix A and B). That is mainly due to the effect of the stack pressure on the surface temperature. Also, the Nusselt number increased with increasing the coolant volumetric flow rate for both coolants. However, the increase in the oil Nusselt number case was higher than that for water. This can be shown by dividing the average difference of the Nusselt number values measured during a start-up process for the maximum and minimum coolant volumetric flow rate by the total difference in the Re number. That non-dimensional ratio was $7.692*10^{-3}$ for oil and 9.152*10⁻⁶ for water. Figure 138 represents a comparison between the transient variation of the experimental Nusselt number for both coolants with average operation conditions during a start-up and shut-down process respectively.

This is because higher stack pressure results in decreasing the thermal contact resistance between the heating elements and the electrode plate. This in turn results in an increase in the electrode internal energy and electrode temperature. However, the rate of heat transfer electrode from the electrode plate to the coolant is not equivalent to the rate of increase of the electrode internal energy. This is because of a significant thermal contact resistance between the electrode plate and the cooling plate even after increasing the stack pressure. This results in the accumulation of internal energy in the electrode plate which results in an increase of the electrode plate temperature.

The increase in the average cell temperature rate was greater and the average temperature measured was higher in the case of oil coolant during the considered start-up process due to the lower Re number used in the case of oil as demonstrated in Chapter V. On the other hand during shut-down process the average transient temperature drop rate was slower for oil than that for water. That is basically due to the higher accumulation rates of the internally generated thermal energy when oil is used as a

ORIGINAL PAGE IS OF POOR QUALITY

U(t)/V(t) %

897 268

U(t)/V(t) %

湯高部に行う

Figure 138. Comparisons of Experimental Nusselt Numbers.

coolant. Typically, as expected, the peak temperature areas were located in cell portions remote from the entrance side of the coolant during the start-up process. Considering the heat flux of the electrode, we notice that in general the heat flux is more uniform with higher stack pressure due to the homogeneous temperature distribution profiles of the electrode.

Considering the current density distribution, it is noticed that during the start-up process, the increase in the electrode temperature during the start-up process increased the fuel utilization rate and the chemical reaction between the reactants and consequently the production and travel of free electrons as demonstrated by the 2-D and 3-D contour profiles presented in Chapter VI. Also, the increase of the applied clamping pressure caused the electrode temperature to rise and that affected electron production rate while increasing the Re number will reduce the current density during a start-up process as shown in Figure 139. On the other hand, during the shut-down process three opposing factors were working against each other and affecting the transient current density distribution. The first factor, the thermal energy positive effect on the chemical reaction rate of the reactants, the second factor, effect of the temperature peak areas on the free electrons' travel ability and the third factor, the effect of the reduction of the fuel flow rate. Therefore, the effect of increasing the stack pressure and increasing the cooling

fluid Re number and the fluid thermophysical properties effect could not be isolated, as shown in Chapter VI.

In comparing experimental results with results obtained analytically, the observed difference was found to be within acceptable range. Referring to Figure 140 we notice that differences between the reported experimental results and the analytical results of the transient overall heat transfer coefficient did not exceed the maximum of 8.25% and on the average the difference was 5.322% during the considered start-up and shut-down process for both coolant for the average operation condition, P = 1400 and Re = 3321for water and Re=47 for oil. Also referring to Chapter V Figures we notice that the average deviation between the experimental and analytical transient average electrode temperature results was 6.351%.

By comparing the results of runs with identical conditions and considering the accuracy of the used equipment, the experimental results error should not exceed a maximum of 10%. The major source of errors in the experimental work, refer to Chapter III, can be summarized as follows.

- (a) accuracy of the experimental instrumentation especially the thermocouples, flow meters and electrical power supply measurement equipment used.
- (b) Cooling system configuration, the affect of this factor is important due to the fact that

Figure 140. Comparisons of Experimental and Analytical U(t) Results.

1.100

あままちんちん いろう うちのうちょう うちょう

Ì

ł

the serpentine cooling fitting of the configurations and surface roughness of the areas of the tubes can cause internal turbulant flow and high pressure drop even with relatively low Re numbers. It was beyond the capability of the used instrumentation and this study to determine how scope of significant was the effect of such factor on the overall heat transfer coefficient. The observed influence of this factor on the accuracy of experimental results in similar experimental set-ups was mainly related to the relationship between convective heat transfer coefficient which is a function of the mixed flow temperature (T_s) versus the bulk friction coefficient which is a function of the mean flow velocity.

- (c) Heat losses to the surrounding environment: Although additional insulation was used to reduce the heat transfer from the control volume, unavoided heat transfer by radiation and convection occurred during the lengthy experimental run time intervals.
- (d) A correction factor was used when oil is used as a coolant to eliminate or reduce the error caused by the efficiency of the secondary cooling process for the closed cooling systems

that affected the temperature of the return coolant.

- (e) The effect of two-phase flow when water was used as a coolant was a contributor in the marginal error of the experimental results. The cooling tube temperature exceeded 100°C during several runs and that can easily cause the generation of the gaseous phase at least in the case of water.
- (f) Human error factor should also be taken into account inspite of the fact that most of the monitoring process was done automatically. However, the gradual variations of the power supplied to the cell plate was controlled manually and checked by a secondary set of amperage and voltage measuring instrumentations.

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

<u>.1 Conclusions</u>

The following can be concluded from the experimental investigation and the comparison with the theoretical results.

- (a) The effects of the clamping stack pressure on the surpentine cooling system performance: increasing pressure on the PAFC system will increase the transient overall heat transfer coefficient and consequently the heat transfer to the cooling fluid and this in turn improves the efficiency of the cooling system, whether it is an open system or a closed system with a secondary cooling system. This effect is mainly due to the plastic deformation of the cooling plate and cell plate that will cause the increase of the common contact surface and reduce the thermal contact resistance significantly.
- (b) The general transient performance of the serpentine cooling system: the transient performance of both experimental serpentine

cooling systems used can be described as reliable and effective provided that the electrode peak temperature is always kept below 210 degrees C to prevent any damages to thermocouples adhesive material or the resistive heating elements. This reasonably good performance is basically due to the fact that cooling fluids in their liquid phase have high heat capacity and can transfer additional thermal energy by means of the latent energy that is observed during the phase change process when pressurizing is not available as in the considered experimental setup. On the other hand, several serious problems were noticed with the use of such systems, which can be summarized as follows:

(a-1) Leaks from the cooling coil inside the control volume caused by corrosion, long fluid travel path inside the cooling coil, and high pressure difference through fittings. The cooling system leak can negatively influence the electrode chemical reaction and cause irreversible damages. But this rísk be reduced effectively can by improving the cooling system design to reduce the number of fittings used and employing non with high corrosive materials thermal conductivity.

(1-2) Coolant effective contact area: This problem can be reduced by combining long travel paths with the flexibility of serpentine systems to be expanded on large cooling areas. But larger numbers of independent coils with shorter total travel distance should be used to compensate for reducing the tube diameters in order to maintain a reasonable pressure drop. This method will also improve the transient electrode temperature distribution uniformity.

(a-3) High initial cost and maintenance of the serpentine cooling systems: the high initial cost is usually due to the design complexity and the use of a non-corrosive tube material. The high maintenance cost is normally observed when a closed cooling system is used with a cooling tower as part of the cooling system.

(c) The transient current density distribution: Three factors will affect the transient current density profiles, the transient temperature distribution, the flow rate of the reactants and efficiency of the chemical reactions, and its relationship with the thermal energy. These factors will determine the phase density at a certain area.

(d) The accuracy of the modified computer code:

The comparison between the experimental and theoretical results generated by the modified computer code revealed a significant improvement in the accuracy of theoretical results because of the consideration of the effect of thermal contact resistance as a function of stack pressure and other important experimental conditions such as the return cooling fluid temperature.

8.2 <u>Recommendations</u>

In the light of the results obtained from the presented experimental and theoretical study, the following is recommended to enlarge the scope of the gained knowledge in this field for any further scientific work utilizing similar experimental methods or set-up:

- (a) The effect of two-phase flow on the transient heat transfer should be recognized and studied carefully to modify the computer code to be sensible to that important factor.
- (b) The effect of pressurizing the cooling system on the PAFC efficiency and cooling system performance should be studied carefully.
- (c) The heat loss by radiation and convection can be reduced by containing the considered control volume in a sealed reflective space.
- (d) The effect of the cooling tube roughness and the configuration on the cooling system performance, turbulant flow effect, and unaccounted for pressure drop, should be analyzed.
- (e) More actual simulation of the temperature distribution can be created if the number of

resistive heating element coils is increased and their center location is shifted toward the fuel entrance side. This should be done in conjunction with the suggested cooling system modifications described in the previous section.

- (f) The closed cooling system should be modified to provide higher oil volumetric flow rates than it is presently capable of, Re=15 to Re=80. This can be done by eliminating the flexible joints and fittings and increasing the horsepower of the circulating pump.
- (g) The C.S.U. experimental set-up should be connected to the VAX computer center utilizing the 1200 BUAD rated modum available to facilitate the time consuming monitoring process and obtain more accurate results. This modification will allow efficient testing of the transient performance of other cooling systems such as the gasious straight channeling cooling system utilizing a variety of compressible fluids.
- (h) The existing PAFC experimental models should be modified to use Hydrogen as a fuel and a cooling system, including a cooling tower, or an air condensor, and tested as a

practical co-generation prototype to reduce the KWH and KWD consumption that can be further developed for commercial applications such as hospitals and refrigeration warehouses.

(i) The effect of applying a perpendicular magnetic field on the cooling system's performance by influencing the flow and heat transfer characteristics of a magnetohydrodynamic, MHD, coolant such as hard and sea water is extremely important and should be tested for the considered PAFC model. Another advantage of using the magnetic will be to reduce the scaling factor which will consequently cause the increase of the thermal efficiency of the cooling system.

REFERENCES

- [1] Alkasab, K.A., Lu, C.Y., "Phosphoric Acid Fuel Cell Power Plant Performance Model and Computer Program", NASA CR-174638, 1984.
- [2] Baker, B.S., Gidaspow, D. and Wasan, D., "Thermal Phenomena in Fuel Cells and Batteries", in Tobias, C.W. (ed.), Advances in Electrochemistry and Electrochemical Engineering, Vol. 8, p. 63, Wiley, New York, NY, 1971.

- [3] Baker, B.S., Maru, H.C., Chi, C., Patel, D., and Burnes, D., "Heat Transfer in Phosphoric Acid Fuel Cell Stacks", proceedings of the 13th Intersociety Energy Conversion Engineering Conference, Vol. 1, p. 723-731, San Diego, California, August, 1978.
- [4] Hoover, D.Q., "Cell Module and Fuel Conditioner Development", Final Report of Westinghouse Corporation to NASA Lewis, Contract No. DEN 3-161, February 14, 1979.
- [5] Hoover, D.Q., "Cell Module and Fuel Conditioner Development", Final Report of Westinghouse Corporation to NASA Lewis, Contract No. DEN 3-161, February 1982.
- [6] Alkasab, K.A., Presler, A.F., and Lu, C.Y., "Thermodynamic and Performance Model for Phosphoric Acid Fuel-Cell System", PRoceedings Sixth IASTED International Symposium on Energy '83, San Francisco, California, May 16-18, 1983.
- [7] Boyle, R.J., "Heat Transfer in Serpentine Passages with Turbulence Promoters", NASA Lewis Research Center, Cleveland, Ohio, ASME Transactions, 1984.
- [8] Buggy, J.J., et. al., "Effects of Alternate Fuel on the Performance and Economics of Dispersed Fuel Cells", EPRI-1936, July, 1981. Prepared by the Westinghouse Electric Corporation.
- [9] Technology Development for Phosphoric Acid Fuel Cell Power Plant, Phase I", Quarterly Reports to NASA under Contract DEN3-67, September, 1979 to November, 1980.

- [10] Warshay, M., Prokopius, P. Simons, S. and King, R. "Status of Commercial Phosphoric Acid Fuel Cell System Development", NASA TM-81641, 1981. Presented at the 19th Aerospace Sciences Meeting, (Am. Inst. Aeronautics & Astronautics), St. Louis, January 12-15, 1981.
- [11] Crawford, M.E., Kays, W.M. and Moffaat, R.J., "Full-Coverage Film Cooling on Flat Isothermal Surfaces: a Summary Report on Data and Predictions", NASA CR-3219, January 1980.
- [12] "Improvement in Fuel Cell Technology Base Phase II", Final Report to Department of Energy under Contract No. DE-AC-03-79ET11301, March 31, 1977.

「「「「「「「「」」」」」

- [13] Abdul-Aziz, A., "Effects of Cooling Systems Performance on Heat Transfer in PAFC Stack", Dr.E. Dissertation, Cleveland State University, 1985.
- [14] Applications of Fuel Cells, Philip H. Abelson (ed.) v248, Science June 22, 1990, p. 1469(1).
- [15] Conway, Arthur, "European Fuel Cell Body Forms, (European Fuel Cell Group), v. 10, Modern Power Systems, October, 1990, p. 23(2).
- [16] Makansi, Jason, "Fuel Cells Extend Boundaries of Process/Power Integration. (Power Generation), v. 134, Power May 1990, p. 82(4).
- [17] PAFE Fuel Cells (Fuel Cell Technological Developments), v. 9 Modern Power Systems, December, 1989, p. 23(3).
- [18] Kawahara, Haruo, Toshiba Fuel Cell Technology, (Toshiba Corporation, v. 35.
- [19] Dunbar, Mark, "Fuel Cells and Cogeneration 2000. (Technology Report: Fuel Cells), v. 16, Energy User News, February 1991, p. 32(2).
- [20] Singer, Robert, F., "Flat Plate Solid Oxide Fuel Cells", Modern Power Systems, v. 10, October, 1990, p. 19(2).
- [21] Pool, Robert, "Electricity by Serendipity", Science, v. 247, March 2, 1990, p. 1034(2).
- [22] Naphtha Used for Fuel Cells. (Various Japanese Corporation's Research on Fuel Cells), v. 35, Business Japan, November, 1990, p. 112(1).
- [23] Parkinson, Gerald, (Fuel cell to be installed at Dow Chemical's chlor-alkali plant in Sarnia, Ontario, Chemical Week, v. 143, NOvember 9, 1988, p. 20(2).

[24]	Haggin, Joseph, "New Type of Gaseous Fuel Cell Developed, Chemical and Engineering News, February 12, 1990, p. 5(1).
[25]	Mallouk, Thomas, E., "Miniaturized Electrochemistry, Nature, v. 343, February 8, 1990, p. 515(2).
[26]	Furukawa, Nobuhiro, "Sanyo Relies on Long Experience in Fuel Cell Research", v. 35 Business Japan, November, 1990, p. 104(2).
[27]	Molton Carbonate Fuel Cell, Modern Power Systems, v. 10, November, 1990, p.11(1).
[28]	
[29]	Sano, Akira, "IHI Large Capacity Stacks", Business Japan, v. 35, November 1990, p. 108(2).
[30]	Okano, Kazukiyo, "Phosphoric Acid Fuel Cells,
[31]	Naphtha Used for Fuel Cells, (various Japanese corporation's research on fuel cells) (Fuel Cell) V. 35, Business Japan, November 1990, p 112(1).
[32]	Research Assn. Investigates MCFC. (Technology Research Association for Molten Carbonate Fuel Cell Power Generation System) by Nagayuki Horiuchi il V. 35, Business Japan, November 1990, p. 110(2).
[33]	Applications of Fuel Cells. (editorial) by Philip H. Abelson V. 248, Science, June 22, 1990 p. 1469(1).
[34]	Cell Feature Internal Reforming. (Mitsubishi Electric Corp.) (Fuel Cell) by Enju Nishiyama il V 35, Business Japan, November 1990, p 101(1).
[35]	Subsystem Advance Brighten Outlook for Utility-Scale Fuel Cells. V. 30, Research & Development, May, 1988, p. 60(1).
[36]	White, F.M., <u>Viscous Fluid Flow</u> , McGraw Hill, 1974.
[37]	Karlekar, B.V. and Desmond, R.M., <u>Heat Transfer</u> , West Publishing Company, U.S.A. 1982.
[38]	Bajang A., <u>Convection Heat Transfer</u> , John Wiley & Sons, Canada, 1984.
[39]	Hooie, D.T., "Fuel Cells: Technology Stations and Applications", GRI, Chicago, Illinois, 1981.

.

.

.

and the same of the same state of the same of the same state of th

のないないのである

مياكين فليناز أتكف

Rivide

ASTALLS.

- [40] United States Congress. Senate. Committee on Energy and Natural Resources, Subcommittee on Energy Research and Development. Fuel Cell Research and Development, and Utilization Policy, and Hydrogen Research and Development. Hearing before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress.
- [41] Fuel Cell Systems II; 4th Biennial Fuel Cell Symposium sponsored by the Division of Fuel Chemistry at the 154th meeting of the American Chemical Society, 1969.
- [42] American Chemical Society, Division of Fuel Chemistry. Fuel Cell Systems. Symposia sponsored by the Division of Fuel Chemistry at the 145th and 146th Meetings of the American Chemical Society, New York, NY, Sept. 12-13 and Philadelphia, PA, April 6-7, 1964. George J. Young and Henry R. Linden, symposia Chairmen. Washington, American Chemical Society, 1965.
- [43] American Chemical Society, Division of Fuel Chemistry. Fuel Cells: A Symposium held by the Gas and Fuel Division of the American Chemical Society at the 136th National Meeting in Atlantic City, September, 1959, Edited by G.J. Young. New York, Reinhold Pub. Corp.
- [44] H.A. Liebhafsky and E.J. Cairns, Fuel Cells and Fuel Batteries; a Guide to their Research and Development, New York, Wiley, 1968.
- [45] Fuel Cells for Public Utility and Industrial Power, Edited by Robert Noyes, Park Ridge, NJ, Noyes Data Corp., 1977.
- [46] Vielstich, Wolf, "Fuel Cells: Modern Processes for the Electrochemical Production of Energy", translated from German by D.J.G. Ives, Chichester, England; New York, NY: Wiley-Interscience, 1970.
- [47] D.P. Gregory, Fuel Cells, London, Mills & Boon, 1972.
- [48] Ranney, Marucie William, "Fuel Cells: Recent Developments", 1969, Park Ridge, NJ, 1969.
- [49] Crowe, Bernard J., "Fuel Cells: A Survey", Washington, Technology Utilization Office, National Aeronautics and Space Administration, 1973.
- [50] Austin, L.G., "Fuel Cells: Review of Government Sponsored Research, 1950-1964, NASA, 1967.
- [51] Hart, Anthony Bernard, "Fuel Cells: Theory and Applications, London, Chapman & Hall, 1967.

- [52] "Fuel Cells: Trends in Research and Applications", Edited by A.J. Appleby, Washington: Hemipshere Pub. Corp.; Berlin; New York: Distribution outside North America, Springer-Verlag, 1967.
- [53] "Heat Transfer Equipment Design", edited by R.K. Shah, E.C. Subbarao, R.A. Mashelkar, New York: Hemisphere Pub. Corp., 1988.
- [54] "Handbook of Heat Transer Fundamentals" edited by Warren M. Rohsenow, James P. Hartnett, Ejup N. Gani⁻C. 2nd Ed. - New York: McGraw-Hill, 1985.
- [55] "Heat Transfer-Houston, 1988, edited by Salim B. Yilmaz, New York, NY: American Institute of Chemical Engineers, 1988.
- [56] "Heat Transfer in Energy Problems", edited by Tokuro Mizushina and Wen-Jei Yang, Washington D.C. Hemisphere Pub. Corp., 1983.
- [57] "Heat Transfer in High Technology and Power Engineering", edited by Wen-Jei Yang and Yasuo Mori, New York: Hemisphere Pub. Corp., 1987.

- [58] Azbel, David, "Heat Transfer Applications in Process Engineering" Park Ridge, New Jersey, USA, Noyes Publications, 1984.
- [59] Ahlert, R.C., Kenneth L. Adler, John C. Chen and M.L. Griebenow, editors, "Heat Transfer Aspects of Commercial Power Generation, New York, Ameican Institute of Chemical Engineers, 1971.
- [60] Parrot, John Edwin, "Thermal Conductivity of Solids", London, Pion, 1975.
- [61] Pomerantsev, Aleksei Aleksandrovich, "Thermal Stresses in Solids of Revolution of Arbitrary Shape", Translated by E. Goldberg, New York, Gordon and Breach Science Publishers, 1970.
- [62] Sandborn, Virgil A, "Resistance Temperature Transducers", Fort Collins, Colorado, Metrology Press, 1972.
- [63] Brunot, A.W. and F.F. Bucklani, F.F., "Thermal Contact Resistance of Laminated and Machined Joints", Trans. ASME, Vol. 71, No. 3, April, 1949, pp. 253-256.
- [64] Barzelay, M.E., Tong, K.N. and Holloway, G.F., "Thermal Conductance of Contacts in Aircraft Joints", NACA T N3167, 1954.

- [65] Barzelay, M.E., Tong, K.N. and Holloway, G.F., "Effect of Pressure on Thermal Conductance of Contact Joints", NACT T N3295, May, 1955.
- [66] Omega Instrumentation Handbook, 1990.
- [67] Bailey Control Tech. Study, 1989.

APPENDIX A-1

WATER COOLANT

HEAT TRANSFER CHARACTERISTICS

Start-Up Process: Table (A-1-1) - (A-1-2)

Shut-Down Process: Table (A-1-3) - (A-1-4)

FLUID :WATER TIME NU1 **U**1 % U1/V1 _ _ _ --------0.000E+00 0.100E-09 0.000E+00 0.100E+03 0.100E+01 0.336E-02 0.357E+00 0.100E+03 0.716E+00 0.200E+01 0.674E-02 0.100E+03 0.300E+01 0.102E-01 0.108E+01 0.100 ± 03 0.400E+01 0.136E-01 0.100E+03 0.144E+01 0.500E+01 0.171E-01 0.181E+01 0.100E+03 0.600E+01 0.206E-01 0.217E+01 0.999E+020.700E+01 0.241E-01 0.999E+02 0.254E+01 0.800E+01 0.276E-01 0.292E+01 0.999E+02 0.900E+01 0.312E-01 0.329E+01 0.999E+02 0.100E+02 0.348E-01 0.367E+01 0.998E+02 0.405E+01 0.998E+02 0.110E+020.385E-01 0.120E+02 0.422E-01 0.443E+010.998E+020.130E+02 0.459E-01 0.481E+01 0.997E+02 0.140E+02 0.496E-01 0.520E+01 0.997E+02 0.150E+02 0.534E-01 0.558E+01 0.995E+02 0.160E+02 0.572E-01 0.996E+02 0.597E+01 0.170E+02 0.610E-01 0.636E+01 0.995E+02 0.180E+02 0.649E-01 0.675E+01 0.994E+02 0.190E+02 0.6872-01 G.715E+01 0.994E+C2 0.200E+02 0.727E-01 0.754E+01 0.993E+020.210E+02 0.766E-01 0.794E+01 0.992E+02 0.220E+02 0.806E-01 0.834E+01 0.991E+02 0.2305+02 0.846E-01 0.8745+01 0.9902+02 0.240E+02 0.887E-01 0.914E+01 0.989E+02 0.250E+02 0.928E-01 0.954E+01 0.988E+02 0.969E-01 0.260E+02 0.994E+01 0.987E+02 0.270E+02 0.101E+00 0.103E+02 0.986E+02 0.280E+02 0.105E+00 0.108E+02 0.985E+02 0.290E+02 0.109E+00 0.112E+02 0.984E+02 0.300E+02 0.114E+00 0.116E+02 0.982E+02 0.310E+02 0.981E+02 0.118E+00 0.120E+02 0.320E+02 0.122E+00 0.124E+02 0.980E+02 0.330E+020.127E+00 0.128E+02 0.978E+02 0.340E+02 0.131E+00 0.132E+02 0.977E+02 0.350E+02 0.136E+00 0.136E+02 0_975E+02 0.360E+02 0.140E+00 0.140E+02 0.974E+02 0.370E+02 0.145E+00 0.144E+02 0.972E+02 0.380E+02 0.149E+00 0.148E+02 0.970E+02 0.390E+02 0.154E+00 0.152E+02 0.968E+02 0.400E+02 0.158E+00 0.157E+02 0.966E+02 0.163E+00 0.410E+02 0.161E+02 0.964E+02 0.420E+02 0.168E+00 0.962E+02 0.165E+02 0.430E+02 0.172E+00 0.169E+02 0.960E+02 0.440E+02 0.177E+00 0.173E+02 0.958E+02 0.450E+02 0.182E+00 0.177E+02 0.956E+02 0.460E+02 0.187E+00 0.181E+02 0.953E+02 0.470E+02 0.192E+00 0.185E+02 0.951E+02 0.480E+02 0.197E+00 0.189E+02 0.949E+02 0.490E+02 0.193E+02 0.202E+00 0.946E+02

Table A-1-1. Heat Transfer Characteristics During Start-Up Process (Water Coolant, P=0 KPa, Re=15).

0.943E+02

0.941E+02

0.938E+02

0.935E+02

0.932E+02

0.929E+02

0.926E+02

0.923E+02

0.920E+02

0.917E+02

0.197E+02

0.201E+02

0.205E+02

0.209E+02

0.213E+02

0.217E+02

0.221E+02

0.225E+02

0.228E+02

0.232E+02

RE = 15.00 PRESSURE (KPa)= 0 FLUID :WATER

0.500E+02

0.510E+02

0.520E+02

0.530E+02

0.540E+02

0.550E+02

0.560E+02

0.570E+02

0.580E+02

0.590E+02

0.207E+00

0.212E+00

0.217E+00

0.222E+00

0.227E+00

0.232E+00

0.238E+00

0.243E+00

0.248E+00

0.254E+00

RE = 15.00 PRESSURE (KPa)= 3500. FLUID :WATER

上の三人間出活用の

TIME	NU5	υ5	1 U5/V5
0.000E+00	0.000E+00	0.100E-09	0.100E+03
0.100E+01	0.517E-02	0.549E+00	0.JOOE+03
0.200E+01	0.104E-01	0.110E+01	0.100E+03
0.300E+01	0.156E-01	0.166E+01 0.221E+01	0.1000+03
0.400E+01	0.209E-01 0.263E-01	0.2210+01 0.277E+01	0.100E+03
0.6002+01	0.317E-01	0.334E+01	0.100E+03
0.700E+01	0.371E-01	0.390E+01	0.999E+02
0.800E+01	0.426E-01	0.447E+01	0.999E+02
0.900E+01	0.481E-01	0.504E+01	0.999E+02
0.109E+02	0.53/E-U1	0.501E+01	0.9995+02
0.1100+02 0.1200+02	0.5936-01	0.0192+01 0.677E+01	0.998E+02
0.130E+02	0.707E-01	0.735E+01	0.998E+02
0.140E+02	0.764E-01	0.793E+01	0.998E+02
0.150E+02	0.822E-01	0.851E+01	0.997E+02
0.160E+02	0.881E-01	0.910E+01	0.99/E+02
0.1702+02 0.1805+02	0.9402-01	0.303E+01 0.103E+02	0.997E+02
0.190E+02	0.106E+00	0.109E+02	0.996E+02
0.200E+02	0.112E+00	0.115E+02	0.995E+02
0.210E+02	0.118E+00	0.121E+02	0.995E+02
0.220E+02	0.124E+00	0.127E+02	0.994E+02
0.230E+02	0.1306+00	0.133E+02 0 139E+02	0.9946+02
0.240E+02 0.250E+02	0.137E+00 0.143E+00	0.135E+02 0.145E+02	0.992E+02
0.260E+02	0.149E+00	0.151E+02	0.992E+02
0.270E+02	0.156E+00	0.157E+02	0.991E+02
0.280E+02	0.162E+00	0.163E+02	0.990E+02
0.290E+02	0.169E+00	0.169E+02	<0.989E+02
0.3002+02	0.1/55+00	0.1752+02 0.1815+02	0.9300+02 0.9876+02
0.320E+02	0.139E+00	0.187E+02	0.987E+02
0.330E+02	0.195E+00-	0.193E+02	0.986E+02
0.340E+02	0.202E+00	0.199E+02	0.985E+02
0.350E+02	0.209E+00	0.205E+02	0.984E+02
0.3000+02	0.2105+00	0.212E+02 0.218E+02	0.981E+02
0.380E+02	0.230E+00	0.224E+02	0.980E+02
0.390E+02	0.237E+00	0.230E+02	0.979E+02
0.400E+02	0.244E+00	0.236E+02	0.978E+02
0.410E+02	0.251E+00	0.242E+02	0.976E+02
0.4202+02	0.250E+00 0.266E+00	0.240E+02 0.254E+02	0.973E+02
0.440E+02	0.273E+00	0.260E+02	0.972E+02
0.450E+02	0.281E+00	0.266E+02	0.971E+02
0.460E+02	0.288E+00	0.273E+02	0.969E+02
0.470E+02	0.296E+00	0.279E+02	0.968E+02
0.480E+02	0.303E+00 0.311E+00	0.285E+02 0.201F±02	0.900E+02
0.500E+02	0.319E+00	0.297E+02	0.963E+02
0.510E+02	0.326E+00	0.303E+02	0.961E+02
0.520E+02	0.334E+00	0.309E+02	0.959E+02
0.530E+02	0.342E+00	0.315E+02	0.957E+02
U.54UE+02	0.350E+00 0.350E+00	U.3218+U2 A 3278±02	0.955E+U2 0.955E+U2
0.5502402	0.3665400	0.332E+02	0,951E+02
0.570E+02	0.375E+00	0.338E+02	0.949E+02
0.580E+02	0.383E+00	0.344E+02	0.947E+02
0.590E+02	0.391E+00	0.350E+02	0.945E+02

TABLE A-1-2.

Heat Transfer Characteristics During Start-Up Process (Water Coolant, P=3500 KPa Re=15). RE = 15.00 PRESSURE (KPa)= FLUID :WATER 0

.

TIME	NU1	U1	\$ 01/VI	
0.120E+0	3 0.336E+0	0 0.249E+0	2 0.915E+02	
0.125E+0	3 0.318E+0	0 0.240E+0	0.919E+02	
C.135E+0	3 0.286E+0	0 0.232E+02	0.924E+02	
0.140E+0	3 0.271E+0	0.216E+02	0.928E+02	
0.145E+03	0.256E+0(0.208E+02	0.935E+02	
0.150E+0.000	0.243E+0(0.200E+02	0.939E+02	
0.160E+03	0.230E+00	0.193E+02	0.942E+02	
0.165E+03	0.206E+00	0.100E+02	0.945E+02	
0.170E+03	0.196E+00	0.172E+02	0.949E+02 0.951E+02	
0.1758403	0.185E+00	0.166E+02	0.954E+02	
0.185E+03	0.1/58+00	0.159E+02	0.957E+02	
0.190E+03	0.157E+00	0.1536+02	0.959E+02	
0.195E+03	0.149E+00	0.141E+02	0.962E+02 0.964E+02	
0.200E+03	0.141E+00	0.136E+02	0.966E+02	
0.205E+03 0.210E+03	0.134E+00	0.131E+02	0.968E+02	•
0.215E+03	0.1272+00 0.1202+00	0.125E+02	0.970E+02	
0.220E+03	0.114E+00	0.120E+02 0.116E+02	0.971E+02	
0.225E+03	0.108E+00	0.111E+02	0.975E+02 0.975E+02	
0.2355+03	0.102E+00	0.106E+02	0.976E+02	
0.240E+03	0.907E-01 0.917E-01	0.102E+02	0.978E+02	•
0.245E+03	0.868E-01	0.930E+01 0.940E+01	0.979E+02	
0.250E+03	0.822E-01	0.902E+01	0.980E+02 0.981E+02	1
0.255E+03	0.779E-01	0.865E+01	0.982E+02	1
0.265E+03	0./38E-01	0.829E+01	0.984E+02	i
0.270E+03	0.652E-01	0.795E+01	0.985E+02	Ĉ
0.275E+03	0.627E-01	0.730E+01	0.985E+02	F
0.280E+03	0.594E-01	0.700E+01	0.987E+02	
0.2852+03 0.290E+03	0.563E-01	0.671E+01	0.988E+02	
0.295E+03	0.505E-01	0.643E+01	0.989E+02	
0.300E+03	0.479E-01	0.590E+01	0.989E+02	
0.305E+03	0.453E-01	0.565E+01	0.990E+02 0.991E+02	
0.315E+03	0.430E-01	0.541E+01	0.991E+02	
0.320E+03	0.407E-01 0.385E-01	0.518E+01	0.992E+02	
0.325E+03	0.365E-01	0.4972+01 0.476E+01	0.992E+02	
0.330E+03	0.346E-01	0.455E+01	0.993E+02 0.993E+02	
0.335E+03 0.340F+03	0.328E-01	0.436E+01	0.994E+02	
0.345E+03	0.310E-01 0.294E-01	0.418E+01	0.994E+02	
0.350E+03	0.279E-01	0.400E+01	0.994E+02	
0.355E+03	0.264E-01	0.366E+01	0.995E+02	
0.360E+03	0.250E-01	0.351E+01	0.995E+02	
0.370E+03	0.237E-01	0.336E+01	0.996E+02	
0.375E+03	0.213E-01	0.321E+01	0.996E+02	
0.380E+03	0.201E-01	0.294E+01	0.996E+02	
0.385E+03	0.191E-01	0.282E+01	0.9902+02 0.997E+02	
0.390E+03	0.181E-01	0.270E+01	0.997E+02	
0.400E+03	0.1/1E-01 0.162E-01	U.258E+01	0.997E+02	
0.405E+03	0.000E+00	0.24/5+01 0.000F±00	U.997E+02	
0.000E+00	0.000E+00	0.000E+00	0.000E+00	
v.UUUE+00	0.000E+00	0.000E+00	0.000E+00	•

TABLE A-1-3.

Heat Transfer Characteristics During Shut-Down Process (Water Coolant, P=0 KPa, Re=15).

RE = 15.00 PRESSURE (KPa)= FLUID :WATER

いたのである

ىنى يىڭ ئۇ<mark>يلامە</mark> مەركەر.

TIME	NU5	U 5	% U5∕V5
0 1205.03	0 5675,00	0 3755402	0.0445.02
0.1202+03 0.1252+03	0.537E+00	0.375E+02 0.362E+02	0.9446+02
0.130E+03	0.508E+00	0.349E+02	0.949E+02
0.135E+03	0.482E+00	0.337E+02	0.952E+02
0.140E+03	0.456E+00	0.325E+02	0.955E+02
0.145E+03	0.432E+00	0.314E+02	0.957E+02
0.1508+03	0.4096+00	U.302E+02	0.960E+02
0.160E+03	0.367E+00	0.2910+02 0.2810+02	0 9645+02
0.165E+03	0.348E+00	0.270E+02	0.966E+02
0.170E+03	0.330E+00	0.260E+02	0.968E+02
0.175E+03	0.312E+00	0.250E+02	0.970E+02
0.180E+03	0.296E+00	0.241E+02	0.971E+02
0.105E+03	0.280E+00 0.266E+00	0.2322+02 0.2235+02	0.9736+02
0.195E+03	0.252E+00	0.214E+02	0.976E+02
0.200E+03	0.238E+00	0.206E+02	0.977E+02
0.205E+03	0.226E+00	0.198E+02	0.979E+02
0.210E+03	0.214E+00	0.190E+02	0.980E+02
0.2156+03	0.2032+00	0.1036+02	0.9818+02
0.225E+03	0.192E+00	0.169E+02	0.983E+02
0.230E+03	0.172E+00	0.162E+02	0.9845+02
0.235E+03	0.163E+00	0.155E+02	0.985E+02
0.240E+03	0.155E+00	0.149E+02	0.986E+02
0.2458403	0.1408+00	0.1438+02	0.987E+02
0.255E+03	0.131E+00	0.1372+02 0.1322+02	0.988E+02
0.260E+03	0.124E+00	0.126E+02	0.989E+02
0.265E+03	0.118E+00	0.121E+02	0.990E+02
0.270E+03	0.112E+00	0.116E+02	0.990E+02
U.2/5E+U3	0.106E+00	0.111E+02	0.991E+02
0.285E+03	0.949E-01	0.107E+02 0.102E+02	0.9916+02
0.290E+03	0.899E-01	0.981E+01	0.992E+02
0.295E+03	0.8525-01	0.940E+01	0.993E+02
0.300E+03	0.807E-01	0.901E+01	0.993E+02
0.305E+03	0.764E-01	0.864E+01	0.994E+02
0.315E+03	0.724E-01	0.0278+01	0.9945+02
0.320E+03	0.650E-01	0.759E+01	0.995E+02
0.325E+03	0.616E-01	0.728E+01	0.995E+02
0.330E+03	0.583E-01	0.697E+01	0.995E+02
0.335E+03	0.552E-01	0.667E+01	0.996E+02
0.340E+03	0.5252-01 0.496E-01	0.039E+01 0.612F+01	0.990E+02 0 096F+02
0.350E+03	0.470E-01	0.586E+01	0.996E+02
0.355E+03	0.445E-01	0.561E+01	0.997E+02
0.360E+03	0.421E-01	0.538E+01	0.997E+02
0.365E+03	0.399E-01	0.515E+01	0.997E+02
0.3755+03	0.3/8E-01 0.358F_01	0.493E+01 0.472E+01	0.99/E+02
0.380E+03	0.339E-01	0.452E+01	0.998E+02
0.385E+03	0.322E-01	0.432E+01	0.998E+02
0.390E+03	0.305E-01	0.414E+01	0.998E+02
0.395E+03	0.289E-01	0.396E+01	0.998E+02
0.400E+03	U.2/3E-01	U.3/9E+01	0.998E+02
0.4035+03 0.0008±00	0.0008+00	0.0008+00	0.000E+00
0.000E+00	0.000E+00	0.000E+00	0.000E+00

TABLE A-1-4.

Heat Transfer Characteristics During Shut-Down Process (Water Coolant, P=3500 XFa, Re=15).

3500.

APPENDIX A-2

WATER COOLANT

THERMAL CONTACT RESISTANCE AND AFFECTIVE

TEMPERATURE DROP

Start-Up Process: Table (A-2-1) - (A-2-2)

Shut-Down Process: Table (A-2-3) - (A-2-4)
RE = 15 PRESSURE (KPA FLUID :WATER	a)= 0	
TIME	D1	R1
TIME 0.000E+00 0.100E+01 0.200E+01 0.300E+01 0.400E+01 0.500E+01 0.500E+01 0.700E+01 0.700E+01 0.900E+01 0.100E+02 0.110E+02 0.120E+02 0.130E+02 0.130E+02 0.150E+02 0.160E+02 0.210E+02 0.210E+02 0.210E+02 0.220E+02 0.230E+02 0.230E+02 0.260E+02 0.260E+02 0.300E+02 0.400E+02 0.400E+02 0.400E+02 0.400E+02 0.400E+02 0.400E+02 0.500E+02	D1 0.000E+00 0.989E-01 0.199E+00 0.300E+00 0.403E+00 0.507E+00 0.612E+00 0.719E+00 0.826E+00 0.105E+01 0.139E+01 0.150E+01 0.150E+01 0.150E+01 0.162E+01 0.162E+01 0.236E+01 0.236E+01 0.236E+01 0.248E+01 0.261E+01 0.248E+01 0.301E+01 0.315E+01 0.357E+01 0.357E+01 0.366E+01 0.357E+01 0.366E+01 0.461E+01 0.461E+01 0.461E+01 0.461E+01 0.574E+01 0	R1 $$ $0.000E+00$ $0.423E-04$ $0.852E-04$ $0.129E-03$ $0.172E-03$ $0.217E-03$ $0.262E-03$ $0.307E-03$ $0.353E-03$ $0.402E-03$ $0.447E-03$ $0.494E-03$ $0.591E-03$ $0.691E-03$ $0.691E-03$ $0.741E-03$ $0.792E-03$ $0.844E-03$ $0.897E-03$ $0.87E-03$ $0.950E-03$ $0.100E-02$ $0.117E-02$ $0.122E-02$ $0.122E-02$ $0.122E-02$ $0.134E-02$ $0.152E-02$ $0.164E-02$ $0.170E-02$ $0.164E-02$ $0.170E-02$ $0.170E-02$ $0.122E-02$ $0.202E-02$ $0.222E-02$ $0.222E-02$ $0.236E-02$ $0.236E-02$ $0.236E-02$ $0.236E-02$ $0.272E-02$ $0.272E-02$ $0.272E-02$ $0.236E-02$ $0.236E-02$ $0.318E-02$ $0.318E-02$ $0.334E-02$
0.570E+02 0.580E+02 0.590E+02	0.832E+01 0.852E+01	0.350E-02 0.359E-02

TABLE A-2-1.

Effective Temperature Drop and Thermal Contact Resistance During Start-Up Process (Water Collant, P=0 KPa, Re=15).

STORE OF LOT

States and a state of the states and a state of the states of the states

296

15. RE = 3500.

PRESSURE (KPa)= FLUID :WATER

TIME	D5	RS
TIME 0.000E+00 0.100E+01 0.200E+01 0.300E+01 0.400E+01 0.500E+01 0.600E+01 0.700E+01 0.800E+01 0.900E+01 0.100E+02 0.110E+02 0.120E+02 0.130E+02	D5 0.000E+00 0.573E-01 0.115E+00 0.234E+00 0.294E+00 0.355E+00 0.415E+00 0.479E+00 0.542E+00 0.606E+00 0.671E+00 0.736E+00 0.803E+00 0.803E+00	R5 0.000E+00 0.186E-04 0.374E-04 0.564E-04 0.756E-04 0.951E-04 0.115E-03 0.135E-03 0.155E-03 0.175E-03 0.196E-03 0.217E-03 0.238E-03 0.259E-03 0.259E-03
0.140E+02 0.150E+02 0.160E+02 0.170E+02 0.18CE+02 0.200E+02 0.210E+02 0.220E+02 0.220E+02 0.230E+02 0.240E+02 0.250E+02 0.260E+02 0.270E+02	0.870E+00 0.938E+00 0.101E+01 0.108E+01 0.115E+01 0.122E+01 0.129E+01 0.136E+01 0.151E+01 0.151E+01 0.157E+01 0.175E+01 0.182E+01	0.2012-03 0.303E-03 0.325E-03 0.370E-03 0.393E-03 0.416E-03 0.440E-03 0.464E-03 0.464E-03 0.464E-03 0.512E-03 0.512E-03 0.562E-03 0.587E-03 0.587E-03
0.280E+02 0.290E+02 0.310E+02 0.320E+02 0.330E+02 0.330E+02 0.340E+02 0.350E+02 0.360E+02 0.360E+02 0.380E+02 0.380E+02 0.390E+02 0.410E+02	0.190E+01 0.198E+01 0.207E+01 0.215E+01 0.232E+01 0.240E+01 0.249E+01 0.258E+01 0.267E+01 0.267E+01 0.285E+01 0.285E+01 0.294E+01 0.294E+01	0.6122-03 0.6382-03 0.6642-03 0.7172-03 0.7172-03 0.7722-03 0.8002-03 0.8282-03 0.8282-03 0.8562-03 0.8852-03 0.9142-03 0.9142-03 0.9732-03
0.420E+02 0.430E+02 0.440E+02 0.450E+02 0.460E+02 0.460E+02 0.470E+02 0.480E+02 0.490E+02 0.500E+02 0.510E+02 0.520E+02 0.530E+02	0.313E+01 0.323E+01 0.333E+01 0.342E+01 0.352E+01 0.362E+01 0.373E+01 0.383E+01 0.394E+01 0.404E+01 0.415E+01 0.426E+01	0.100E-02 0.103E-02 0.106E-02 0.110E-02 0.113E-02 0.116E-02 0.119E-02 0.122E-02 0.126E-02 0.132E-02 0.136E-02 0.139E-02
0.540E+02 0.550E+02 0.560E+02 0.570E+02 0.580E+02 0.590E+02	0.4372+01 0.459E+01 0.471E+01 0.482E+01 0.494E+01	0.143E-02 0.146E-02 0.150E-02 0.154E-02 0.157E-02

TABLE A-2-2.

Effective Temperature Drop and Thermal Contact Resistance During Start-Up Process (Water Coolant, P=3500 KPa, Re=15).

RE =

15.

PRESSURE (KPa)= FLUID :WATER

TIME	Dl	Rl
TIME 0.120E+03 0.125E+03 0.135E+03 0.145E+03 0.145E+03 0.155E+03 0.165E+03 0.165E+03 0.175E+03 0.175E+03 0.175E+03 0.180E+03 0.185E+03 0.190E+03 0.195E+03 0.205E+03 0.205E+03 0.215E+03 0.215E+03 0.225E+03 0.225E+03 0.235E+03 0.245E+03 0.245E+03 0.245E+03 0.255E+03 0.255E+03 0.255E+03 0.265E+03 0.265E+03 0.265E+03 0.265E+03 0.275E+03 0.265E+03 0.275E+03 0.265E+03 0.275E+03 0.275E+03 0.265E+03 0.275E+03 0.265E+03 0.275E+03 0.265E+03 0.275E+03 0.265E+03 0.275E+03 0.255E+03 0.255E+03 0.255E+03 0.255E+03 0.255E+03 0.255E+03 0.255E+03 0.255E+03 0.305E+03 0.315E+03 0.315E+03 0.315E+03 0.315E+03 0.315E+03 0.355E+03	D1 0.867E+01 0.848E+01 0.829E+01 0.774E+01 0.774E+01 0.756E+01 0.739E+01 0.739E+01 0.706E+01 0.690E+01 0.675E+01 0.660E+01 0.645E+01 0.616E+01 0.575E+01 0.575E+01 0.550E+01 0.550E+01 0.513E+01 0.513E+01 0.480E+01 0.480E+01 0.448E+01 0.428E+01 0.428E+01 0.428E+01 0.428E+01 0.428E+01 0.428E+01 0.428E+01 0.428E+01 0.428E+01 0.438E+01 0.438E+01 0.438E+01 0.438E+01 0.373E+01 0.365E+01 0.365E+01 0.365E+01 0.326E+01 0.227E+01 0.	R1 0.360E-02 0.353E-02 0.346E-02 0.339E-02 0.320E-02 0.320E-02 0.314E-02 0.302E-02 0.302E-02 0.296E-02 0.296E-02 0.279E-02 0.274E-02 0.269E-02 0.269E-02 0.263E-02 0.263E-02 0.253E-02 0.253E-02 0.253E-02 0.253E-02 0.234E-02 0.234E-02 0.230E-02 0.217E-02 0.217E-02 0.208E-02 0.208E-02 0.217E-02 0.208E-02 0.208E-02 0.204E-02 0.208E-02 0.204E-02 0.208E-02 0.208E-02 0.196E-02 0.196E-02 0.195E-02 0.185E-02 0.165E-02 0.165E-02 0.165E-02 0.155E-02 0.155E-02 0.155E-02 0.155E-02 0.155E-02 0.155E-02 0.155E-02 0.144E-02 0.144E-02 0.144E-02 0.136E-02 0.128E-02
0.405E+03	0.000E+00	$0.000E \div 00$

TABLE A-2-3.

Effective Temperature Drop and Thermal Contact Resistance During Shut-Down Process (Water Coolant, P=0 KPa, Re=15).

0.

1

RE =

15. PRESSURE (KPa)= 3500 FLUID :WATER

TIME	D5	R5
0 1205 02		
0.1208+03	0.659E+01	0.158E-02
0.130 ± 03	0.633E+01	0.1558-02
0.135E+03	0.628E+01	0.1522-02
0.140E+03	0.614E+01	0.149E-02 0.146E-02
0.145E+03	0.600E+01	0.143E-02
0.150E+03	0.587E+01	0.140E-02
0.155E+03	0.574E+01	0.138E-02
0.160E+03	0.561E+01.	0.135E-02
0.165E+03	0.548E+01	0.132E-02
0.170E+03	0.536E+01	0.130E-02
0.1/5E+03	0.524E+01	0.127E-02
0.1802+03	0.512E+01	0.125E-02
0 1005+03	0.3008+01	0.122E-02
0.195E+03	0.4092+01	0.1202-02
0.200E+03	9.467F+01	0.110E-02
0.205E+03	0.457E+01	0 1135-02
0.210E+03	0.446E+01	0.111E-02
0.215E+03	0.436E+01	0.109E-02
0.220E+03	0.427E+01	0.107E-02
0.225E+03	0.417E+01	0.105E-02
0.230E+03	0.408E+01	0.103E-02
0.235E+03	0.398E+01	0.101E-02
0.240E+03	0.389E+01	0.988E-03
0.2436+03	0.381E+01	0.968E-03
0.2502+03	0.3728+01	0.950E-03
0.2552+03 0.260E+03	0.3546+01	0.931E-03
0.265E+03	0.347E+01	0.9136-03
0.270E+03	0.340E+01	0.878E-03
0.275E+03	0.332E+01	0.861E-03
0.280E+03	0.324E+01	0.845E-03
0.285E+03	0.317E+01	0.828E-03
0.290E+03	0.310E+01	0.812E-03
0.295E+03	0.303E+01	0.797E-03
0.300E+03	0.296E+01	0.781E-03
0.3056403	0.290E+01	0.766E-03
0.3158+03	0.283E+U1 0.2775,01	0./51E-03
0.320E+03	0.2776+01 0.2706+01	0./3/E-03 0.737E-03
0.325E+03	0.264E+01	0.7236-03
0.330E+03	0.258E+01	0.695E-03
0.335E+03	0.253E+01	0.681E-03
0.340E+03	0.247E+01	0.668E-03
0.345E+03	0.241E+01	0.655E-03
0.350E+03	0.236E+01	0.643E-03
0.355E+03	0.231E+01	0.630E-03
0.3606+03	0.225E+01	0.618E-03
0.3035+03	0.220E+01	0.606E-03
0.375E±03	0.4138401 0.2108±01	U.374E-U3
0.380E+03	0.2065+01	0.3038-03 0 572= A3
0.385E+03	0.201E+01	0.561-03
0.390E+03	0.197E+01	0.550E-03
0.395E+03	0.192E+01	0.539E-03
0.400E+03	0.188E+01	0.529E-03
0.405E+03	0.000E+00	0.000E+00

TABLE A-2-4.

Effective Temperature Drop and Thermal Contact Resistance During Shut-Hown Process (Water Coolant, P=3500 KPa, Re=15).

APPENDIX B-1

OIL COOLANT

HEAT TRANSFER CHARACTERISTICS

Start-Up Process: Table (B-1-1) - (B-1-2)

Shut-Down Process: Table (B-1-3) - (B-1-4)

RE = 1250.00 PRESSURE (KPa)= 0. FLUID :OIL

TIME	NU1	U1	% U1∕V1	
				•
0.000E+00	0.009E+00	0.100E-09	0.100E+03	
0.100E+01	0.3055-01	0.7502+00	0.100E+03	
0.2008+01	0.6128-01	0.1502+01	0.100E+03	
0.300E+01	0.922E-01	J.226E+UI	U.100E+03	
0.400E+01	0.124E+00	0.302E+01	0.999E+02	
0.500E+01	0.155E+00	0.378E+01	0.999E+02	
0.600E+01	0.18/5+00	0.4546+01	0.999E+02	
0.7002+01	0.2198+00	0.530E+01	0.9986+02	
U.800E+01	0.2516+00	0.607E+01	0.9986+02	
0.9002+01	0.2848+00	0.0832+01	0.9976+02	
0.100E+02	0.31/E+00	0.760E+01	0.9976+02	
0.1108+02	0.3508+00	0.83/E+01	0.9965+02	
0.1202+02	0.3842+00	0.914E+01	0.9952+02	
0.1302+02	0.4182+00	0.9916+01	0.9946+02	• •
0.1402+02	0.452E+00	0.10/E+02	0.9936+02	
0.1502+02	0.48/2+00	0.1146+02	0.992E+02	
0.100E+02	0.5216+00	0.1226+02	0.9916+02	
0.1705+02	0.5502+00	0.1302+02	0.9900+02	
0.1006+02	0.5922+00	0.13/6+02	0.9000+02	
0.1902+02	0.0202+00	0.1436+02	0.30/6+02	
0.2000+02	0.0045+00	0.1556+02	0.3035+02	т۸
0.2100+02	0.7000+00	0.1602+02	0.9046+02	17
0.2202+02	0.7372400	0.1000+02	0.9026+02	14
0.2202+02 0.2405+02	0.8115+00	0.1935.07	0.9002402	Ch
0.2402+02	0.849E+00	0 1915+02	0.9765+02	- Cu
0.260E+02	0.887E+00	0.198E+02	0.974E+02	Dw
0.270E+02	0.925E+00	0.206E+02	0.972E+02	
0.280E+02	0.964E+00	0.213E+02	0.970E+02	
0.290E+02	0.100E+01	0.221E+02	0.967E+02	re
0.300E+02	0.104E+01	0.228E+02	0.965E+02	
0.310E+02	0.108E+01	G.235E+C2	0.962E+02	
0.320E+02	0.112E+01	0.242E+02	0.960E+02	
0.330E+02	0.116E+01.	0.250E+02	0.957E+02	
0.340E+02	0.120E+01	0.2572+02	0.954E+02	
0.350E+02	0.124E+01	0.264E+02	0.951E+02	
0.360E+02	0.129E+01	0.271E+02	0.948E+02	
C.370E+02	0.133E+01	0.278E+02	0.945E+02	
0.380E+02	0.137E+01	0.285E+02	0.941E+02	
0.390E+02	0.141E+01	0.292E+02	0.938E+02	
0.400E+02	0.146E+01	0.298E+02	0.935E+02	
0.410E+02	0.150E+01	0.305E+02	0.931E+02	
0.420E+02	0.154E+01	0.312E+02	0.927E+02	
0.430E+02	0.159E+01	0.318E+02	0.923E+02	
0.440E+02	0.163E+01	0.325E+02	0.920E+02	
0.450E+02	0.168E+01	0.331E+02	0.916E+02	
0.460E+02	0.172E+01	0.337E+02	0.911E+02	
0.4/0E+02	0.177E+01	0.344E+02	0.907E+02	
0.480E+02	0.181E+01	0.350E+02	0.903E+02	
0.4905+02	0.1866+01	0.3568+02	0.8996+02	
0.5006+02	0.1916+01	0.3016+02	0.0946+02	
0.3108402 0 5208±03	0.17324V1 0.2008±01	0.30/6+02 0.372e±02	0.0305+92 0.885=+07	
0.3208402	0.2005401	0.3785+02	V.00354V2 A 8805±A3	
0.5302402	0.2036401	0.3/05+V2 0 38/F±02	0.0005+V2 A 87551A7	
0.5505+02	0.2155+01	0.3895+02	0.8705+02	
0.560E+02	0.220E+01	0.394E+02	0.8655402	
0.570E+02	0.225E+01	0.400E+02	0.860E+02	
0.580E+02	0.230E+01	0.405E+02	0.855E+02	
0.590E+02	0.235E+01	0.409E+02	0.850E+02	-

TABLE B-1-1.

Heat Transfer Characteristics During Start-Up Process (Oil Coolant, P=0 KPa, Re=1250). RE = 1250.00 PRESSURE (KPa)= 3500. FLUID :OIL

TIME	NU5	U 5	% U5/V5	
0.000E+00	0.000E+00	0.100E-09	0.100E+03	
0.100E+01	0.490E-01	0.120E+01 0.241E+01	0.100E+03	
0.2008+01	0.1486+00	0.361E+01	0.100E+03	
0.400E+01	0.199E+00	0.481E+01	0.100E+03	
0.500E+01	0.249E+00	0.602E+01	0.9996+02	
0.600E+01	0.300E+00 0.352E+00	0.722E+01 0.842E+01	0.999E+02	
0.700E+01 0.800E+01	0.404E+00	0.962E+01	0.998E+02	
0.900E+01	0.457E+00	0.108E+02	0.998E+02	
0.100E+92	0.510E+00	0.120E+02	0.9986+02	
0.110E+02	0.5638+00	0.132E+02 0 144E+02	0.997E+02	
0.1202+02 0.1302+02	0.672E+00	0.156E+02	0.996E+02	
0.140E+02	0.727E+00	0.168E+02	0.995E+02	
0.150E+02	0.782E+00	0.179E+02	0.994E+02	
0.160E+02	0.8386+00	0.1910+02 0.2030+02	0.993E+02	
0.1702+02 0.1802+02	0.8942+00 0.951E+00	0.215E+02	0.992E+02	
0.190E+02	0.101E+01	0.226E+02	0.991E+02	
0.200E+02	0.107E+01	0.238E+02	0.990E+02	
0.210E+02	0.113E+01 0.118E+01	0.2502+02 0.261E+02	0.989E+02	
0.2202+02	0.124E+01	0.272E+02	0.987E+02	
0.240E+02	0.130E+01	0.284E+02	0.985E+02	TABLE B-1-2.
0.250E+02	0.136E+01	0.295E+02	0.984E+92	
0.260E+02	0.143E+01 0`149E+01	0.318E+02	0.981E+02	Heat Transfer
0.280E+02	0.155E+01	0.329E+02	0.980E+02	Characteristics
0.290E+02	0.161E+01	0.340E+02	0.978E+02	During Start-Up
0.300E+02	0.167E+01	0.351E+02	0.9768+02	Process (011) Coolant P=3500
0.310E+02 0.320E+02	0.1742+01 0.180E+01	0.373E+02	0.973E+02	KPa, Re=1250).
0.330E+02	0.187E+01	0.383E+C2	0.971E+02	•
0.340E+02	0.193E+01	0.394E+02	0.969E+02	
0.350E+02	0.200E+01	0.4058+02	0.9676+02	
0.360E+02 0.370E±02	0.2072+01 0.213E+01	0.425E+02	0.963E+02	
0.380E+02	0.220E+01	0.436E+02	0.961E+02	
0.390E+02	0.227E+01	0.446E+02	0.958E+02	
0.400E+02	0.234E+01	0.456E+02 0.466E+02	0.954E+02	
0.4102+02 0 4202+02	0.248E+01	0.476E+02	0.951E+02	
0.430E+02	0.255E+01	0.486E+02	0.949E+02	
0.440E+02	0.262E+01	0.495E+02	0.946E+02	
0.450E+02	0.269E+01 0.277F±01	0.505E+02 0.514E+02	0.941E+02	
0.4002+02 0.470E+02	0.284E+01	0.524E+02	0.938E+02	
0.480E+02	0.291E+01	0.533E+02	0.935E+02	
0.490E+02	0.299E+01	0.542E+02	0.932E+92 0.939F±02	
0.500E+02	0.3002+01 0.314E+01	0.5512+02 0.559E+02	0.926E+02	
0.520E+02	0.322E+01	0.568E+02	0.923E+02	
0.530E+02	0.329E+01	0.577E+02	0.920E+02	
0.540E+02	0.337E+01	0.585E+02	0.917E+02	•
0.550E+02 0.560F±07	0.3436+VI 0.3536+01	0.601E+02	0.910E+02	
0.570E+02	0.361E+01	0.609E+02	0.906E+02	
0.580E+02	0.369E+01	0.617E+02	0.903E+02	•
0.590E+02	0.377E+01	0.625E+02	U.899E+02	

RE = 1250.00 PRESSURE (KPa)= FLUID :OIL Ο.

TIME	NU1	U1	€ U1∕V1	
0.120E+03	 0.961E+00	0.421E+02	0.850E+02	
0.125E+03	0.910E+30	0.409E+02	0.856E+02	
0.130E+03 0.135E+03	0.852E+00 0.817E+00	0.397E+02 0.386E+02	0.863E+02	
0.140E+03	0.774E+00	0.374E+02	0.875E+02	
0.145E+03 0.150E+03	0.733E+00	0.363E+02	0.881E+02	
C.155E+03	0.658E+00	0.341E+02	0.892E+02	
0.160E+03 0.165E+03	0.6235+00	0.330E+02	0.897E+02	
0.170E+03	0.559E+00	0.319E+02	0.902E+02 0.907E+02	
0.175E+03	0.530E+00	0.298E+02	0.912E+02	
0.185E+03	0.302E+00 0.475E+00	0.288E+02 0.278E+02	0.916E+02 0.920E+02	
0.190E+03	0.450E+00	0.269E+02	0.924E+02	
0.195E+03 0.200E+03	0.427E+00 0.404E+00	0.259E+02 0.250E+02	0.928E+02	
0.205E+03	0.383E+00	0.241E+02	0.935E+02	
0.210E+03 0.215E+03	C.363E+00	0.232E+02	0.939E+02	
0.220E+03	0.325E+00	0.216E+02	0.942E+02 0.945E+02	
0.225E+03	C.308E+00	0.208E+02	0.948E+02	
0.235E+03	0.277E+00	0.200E+02 0.193E+02	0.951E+02 0.953E+02	
U.240E+03	0.2622+00	0.185E+02	0.956E+02	1
0.245E+03 0.250E+03	0.248E+00 0.235E+00	0.178E+02 0.171E+02	0.958E+02 0.961E+02	(
0.255E+03	0.223E+00	0.165E+02	0.963E+02	1
0.260E+03 0.265E+03	0.211E+00 0.200E+00	0.158E+02 0.152E+02	0.965E+02	Ċ
0.270E+03	0.1895+00	0.146E+02	0.969E+02	F
0.275E+03 0.280E+03	0.179E+00 0.170E+00	0.140E+02	0.970E+02	
0.285E+03	0.161E+00	0.129E+02	0.972E+02 0.974E+02	
0.290E+03	0.153E+00	0.124E+02	0.975E+02	
0.300E+03	0.137E+00	0.114E+02	0.9/6E+02 0.978E+02	
0.305E+03	0.130E+00	0.110E+02	0.979E+02	
0.315E+03	0.123E+00 0.116E+00	0.105E+02 0.101E+02	0.980E+02 0.981E+02	
0.320E+03	0.110E+00	0.969E+01	0.982E+02	
0.325E+03 0.330E+03	0.104E+00 0.989E-01	0.930E+01 0.891E+01	0.983E+02	
0.335E+03	0.937E-01	0.855E+01	0.985E+02	
0.340E+03 0.345E+03	0.888E-01 0.841E-01	0.819E+01	0.986E+02	
0.350E+03	0.797E-01	0.753E+01	0.987E+02 0.988E+02	
0.355E+03 0.360E+03	0.755E-01	0.721E+01	0.988E+02	
0.365E+03	0.677E-01	0.691E+01 0.662E+01	0.989E+02 0.990E+02	
0.370E+03	0.642E-01	0.634E+01	0.990E+02	
0.380E+03	0.608E-01 0.576E-01	0.608E+01 0.582E+01	0.991E+02	
0.385E+03	0.545E-01	0.558E+01	0.992E+02	
0.390E+03 0.395E+03	U.517E-01 0.489E-01	0.534E+01	0.992E+02	
0.400E+03	0.464E-01	0.490E+01	0.993E+02	
U.405E+03 0.000E+00	0.000E+00 0.000E+00	0.000E+00	0.000E+00	
0.000E+00	0.000E+00	0.000E+00	0.000E+00 0.000E+00	

TABLE 8-1-3.

Heat Transfer Characteristics During Shut-Down Process (Oil Coolant, P=0 KPa, Re=1250).

RE = 1250.00

0.000E+00

.

APPENDIX B-2

OIL COOLANT

THERMAL CONTACT RESISTANCE AND AFFECTIVE TEMPERATURE DROP

Start-Up Process: Table (B-2-1) - (B-2-2)

Shut-Down Process: Table (B-2-3) - (B-2-4)

RE = 1250. PRESSURE (KPa)= 0. FLUID :OIL

Local Series

TIME	D1	Rl
		0.0005+00
0.00000000	0.0002+00	6.428E-04
0.100E+01	0.9902-01 0.1945+00	0.861E-04
0.300E+01	0.293E+00	0.130E-03
0.400E+01	0.394E+00	0.174E-03
0.500E+01	0.495E+00	0.219E-03
0.600E+01	0.598£+00	0.265E-03
0.700E+01	0.702E+00	0.311E-03
0.800E+01	0.807E+00	U.358E-03
C.900E+01	0.914E+00 0 102E+01	0.4036-03
0.1000+02	0.1026+01	0.452E=03
0.120E+02	0.124E+01	0.550E-03
0.130E+02	0.135E+01	0.599E-03
0.140E+02	0.147E+01	0.6502-03
0.150E+02	0.158E+01	0.700E-03
0.160E+02	0.170E+01	0.752E-03
0.170E+02	0.181E+01	0.804E-03
0.180E+02	0.1935+01	0.0506-03
0.1902+02	0.2050+01	0.9105-03
0.2000+02	0.2102+01 0.230E+01	0.102E-02
0.220E+02	0.242E+01	0.107E-02
0.230E+02	0.255E+01	0.113E-02
0.240E+02	0.268E+01	0.119E-02
0.250E+02	0.281E+01	0.124E-02
0.260E+02	0.294E+01	0.13CE-02
0.270E+02	0.307E+01	0.136E-02
0.280E+02	0.3212+01 0.324E+01	0.1426-02
0.2902+02	0.3346+01	0.140E-02
6.310E+02	0.362E+01	0.160E-02
0.320E+02	0.376E+01	0.167E-02
0.330E+02	0.390E+01	0.173E-02
0.340E+02	0.405E+01	0.179E-02
0.350E+02	0.419E+01	0.186E-02
0.360E+02	0.434E+01	0.192E-02
0.3/0E+02	0.449E+01 0.464E+01	0.1992-02
0.3005+02	0.4046401	0.2002-02 0.212E-02
0.390E+02	0.495E+01	0.219E-02
0.410E+02	0.511E+01	0.226E-02
0.420E+02	0.527E+01	0.233E-02
0.430E+02	0.543E+01	0.240E-02
0.440E+02	0.559E+01	0.248E-02
0.450E+02	0.576E+01	0.255E-02
0.460E+02	0.593E+01	0.2026-02
0.4/05+02	0.6092+01	0.2702-02
0.4006+02	0.6272+01	0.285E-02
0.500E+02	0.662E+01	0.293E-02
0.510E+02	0.679E+01	0.301E-02
0.520E+02	0.697E+01	0.309E-02
0.530E+02	0.716E+01	0.317E-02
0.540E+02	0.734E+01	0.325E-02
0.550E+02	0.753E+01	U.333E-UZ
0.560E+0Z	U.//2E+UI 0 701=+01	0.3428-02
0.5/05+02	0./JIE+VI 0.810F±01	0.3595-02
0.5008+02 0.5908±02	0.830E+01	0.367E-02

TABLE B-2-1.

Effective Temperature Drop and Thermal Contact Resistance During Start-Up Process (Oil Coolant, P=0 KPa, Re=1250). RE = 1250. PRESSURE (KPa)= 3500. FLUID :OIL

TIME	D5	RS
0.000E+00	0.000E+00	0.000E+00
0.1005+01	0.560E-01	0.188E-04
0.300E+01	0.170E+00	0.570E-04
0.400E+01 0.500E+01	0.228E+00 0.287E+00	0.765E-04
0.60CE+01	0.3465+00	0.116E-03
0.700E+01 0.800E+01	0.407E+00 0.468E+00	0.136E-03 0.157E-03
0.900E+01	0.529E+00	0.177E-03
0.110E+02	0.592E+00 C.655E+00	0.198E-03 0.220E-03
0.120E+02	0.719E+00	0.241E-03
0.140E+02	0.849E+00	0.285E-03
0.150£+02 0.160£+02	0.916E+00 0.983E+00	0.307E-03 0.330E-03
0.170E+02	0.105E+01	0.352E-03
0.180E+02 0.190E+02	0.112E+01 0.119E+01	0.375E-03 0.399E-03
0.200E+02	0.126E+01	0.422E-03
0.220E+02 0.220E+02	0.1336+01	0.446E-03 0.471E-03
0.230E+02	0.148E+01	0.495E-03
0.250E+02	0.163E+01	0.545E-03
0_260E+02 0.270E+02	0.170E+01	0.571E-03 0.596E-03
0.280E+02	0.186E+01	0.622E-03
0.290E+02 0.300E+02	0.194E+01 0.202E+01	C.649E-03 0.676E-03
0.310E+02	0.210E+01	0.703E-03
0.330E+02	0.226E+01	0.758E-03
0.340E+02 0.350E+02	0.234E+01 0.243E+01	0.786E-03
0.360E+02	0.252E+01	0.843E-03
0.370E+02 0.380E+02	0.260E+01 0.269E+01	0.872E-03 0.902E-03
0.390E+02	0.278E+01	0.931E-03
0.410E+02	0.296E+01	0.992E-03
0.420E+02 0.430E+02	0.305E+01 0.315E+01	0.102E-02 0.105E-02
0.440E+02	0.324E+01	0.109E-02
0.450E+02	0.343E+01 0.343E+01	0.112E-02 0.115E-02
0.470E+02 0.480E+02	0.353E+01 0.363E+01	0.118E-02
0.490E+02	0.373E+01	0.125E-02
0.500E+02 0.510E+02	0.383E+01 0.394E+01	0.128E-02 0.132E-02
0.520E+02	0.404E+01	0.135E-02
0.540E+02	0.415E+01 0.425E+01	0.139E-02 0.143E-02
0.550E+02	0.436E+01 0.447E+01	0.146E-02
0.570E+02	0.458E+01	0.154E-02
U.580E+02 0.590E+02	U.469E+01 0.481E+01	0.157E-02 0.161E-02

TABLE B-2-2.

Effective Temperature Drop and Thermal Contact Resistance During Start-Up Process (Oil Coolant, P=3500 KPa, Re=1250).

RE = 1250. PRESSURE (KPa)= FLUID :OIL

TIME	Dl	R1
0 1205+03	 0 893F+01	 0 375F-02
0.125E+03	0.880E+01	0.368E-02
0.130E+03	0.862E+01	0.362E-02
0.135E+03	0.844E+01	0.3565-02
0.140E+03	0.827E+01	0.350E-02
0.1458+03	0.8108+01	0.3446-02
0.155E+03	0.777E+01	0.3336-02
0.160E+03	0.761E+01	0.327E-02
0.165E+03	0.745E+01	0.322E-02
0.170E+03	0.730E+01	0.316E-02
0.1752+03 0 1805+03	0.7152+01 0.700E+01	0.3112-02 0.306E-02
0.185E+03	0.686E+01	0.300E-02
0.190E+03	0.672E+01	0.295E-02
0.195E+03	0.658E+01	0.290E-02
0.2000+03	0.645E+01 0.631E+01	0.2866-02
0.210E+03	0.618E+01	0.276E-02
0.215E+03	0.605E+01	0.271E-02
0.220E+03	0.593E+01	0.267E-02
0.225E+03	0.581E+01	0.262E-02
0.2302+03 0.235E+03	0.557E+01	0.254E-02
0.240E+03	0.546E+01	0.249E-02
0.245E+03	0.535E+01	0.245E-02
0.250E+03	0.524E+01 0.513E+01	0.241E-02 0.237E-02
0.260E+03	0.502E+01	0.233E-02
0.265E+03	0.492E+01	0.229E-02
0.270E+03	0.482E+01	0.225E-02
0.2/58+03	0.472E+01 0.462E+01	0.221E-02 0.218E-02
0.285E+03	0.453E+01	0.214E-02
0.290E+03	0.443E+01	0.210E-02
0.295E+03	0.434E+01	0.207E-02
0.3002+03 0.3055+03	0.4256+01	0.203E-02 0.200E-02
0.310E+03	0.408E+01	0.197E-02
0.315E+03	0.400E+01	0.193E-02
0.320E+03	0.391E+01	0.190E-02
0.3236+03 0 3306+03	0.335+01 0.375E+01	0.187E-02
0.335E+03	0.368E+01	0.181E-02
0.340E+03	0.360E+01	0.178E-02
0.345E+03	0.353E+01	0.175E-02
0.350E+03 0 355F±03	0.3408+01 0 338E+01	0.172E-02 0.169E-02
0.360E+03	0.331E+01	0.166E-02
0.365E+03	0.325E+01	0.163E-02
0.370E+03	0.318E+01	0.160E-02
0.3/32+03	0.3112+01 0.3052+01	0.156E-02
0.385E+03	0.299E+01	0.153E-02
0.390E+03	0.293E+01	0.150E-02
0.395E+03	0.287E+01	0.147E-02
0.400E+03 A 405F±A2	0.281E+01 0.281E+01	0.145E-02 0.000F±00
0.000E+00	0.000E+00	0.000E+00
0.000E+00	0.000E+00	0.000E+00

TABLE B-2-3.

Effective Temperature Drop and Thermal Contact Resistance During Shut-Down Process (Oil Coolant, P=0 KPa, Re=1250).

308

Ο.

RE = 1250. PRESSURE (KPa)= 3600. FLUID :OIL

TIME	D5	RÞ
TIME 0.120E+03 0.125E+03 0.130E+03 0.135E+03 0.140E+03 0.145E+03 0.150E+03 0.155E+03 0.160E+03 0.165E+03 0.165E+03 0.175E+03 0.175E+03 0.180E+03	D5 0.692E+01 0.677E+01 0.663E+01 0.636E+01 0.623E+01 0.623E+01 0.598E+01 0.598E+01 0.574E+01 0.562E+01 0.550E+01 0.539E+01	R5 0.160E-02 0.158E-02 0.155E-02 0.152E-02 0.150E-02 0.147E-02 0.145E-02 0.145E-02 0.140E-02 0.138E-02 0.135E-02 0.131E-02
0.1932+03 0.190E+03 0.200E+03 0.205E+03 0.210E+03 0.215E+03 0.225E+03 0.225E+03 0.225E+03 0.235E+03 0.235E+03 0.240E+03 0.245E+03	0.325E+01 0.517E+01 0.496E+01 0.486E+01 0.476E+01 0.456E+01 0.456E+01 0.438E+01 0.429E+01 0.420E+01 0.411E+01	0.126E-02 0.124E-02 0.122E-02 0.120E-02 0.118E-02 0.116E-02 0.114E-02 0.112E-02 0.110E-02 0.109E-02 0.105E-02
0.250E+03 0.255E+03 0.260E+03 0.265E+03 0.275E+03 0.280E+03 0.280E+03 0.290E+03 0.295E+03 0.295E+03 0.300E+03 0.305E+03	0.403E+01 0.395E+01 0.386E+01 0.379E+01 0.371E+01 0.363E+01 0.356E+01 0.348E+01- 0.341E+01 0.327E+01 0.321E+01	0.103E-02 0.101E-02 0.998E-03 0.921E-03 0.964E-03 0.948E-03 0.932E-03 0.917E-03 0.901E-03 0.886E-03 0.871E-03 0.857E-03
0.310E+03 0.315E+03 0.320E+03 0.325E+03 0.330E+03 0.340E+03 0.345E+03 0.350E+03 0.355E+03 0.355E+03 0.360E+03	0.314E+01 0.308E+01 0.295E+01 0.289E+01 0.283E+01 0.277E+01 0.271E+01 0.266E+01 0.255E+01	0.842E-03 0.828E-03 0.814E-03 0.800E-03 0.787E-03 0.774E-03 0.761E-03 0.748E-03 0.735E-03 0.723E-03 0.711E-03
U.365E+U3 O.370E+O3 O.375E+O3 O.380E+O3 O.385E+O3 O.390E+O3 O.395E+O3 O.400E+O3 O.405E+O3 O.000E+O0 O.000E+O0	0.250E+01 0.245E+01 0.235E+01 0.235E+01 0.225E+01 0.221E+01 0.216E+01 0.000E+00 0.000E+00	0.699E-03 0.687E-03 0.676E-03 0.664E-03 0.653E-03 0.642E-03 0.631E-03 0.621E-03 0.000E+00 0.000E+00 0.000E+00

TABLE B-2-4.

Effective Temperature Drop and Thermal Contact Resistance During Shut-Down Process (Oil Coolant, P=3500 KPa, Re=1250).

「「「「「「「「」」」」」

Amilian tanjar

PART 1: EXAMPLES OF TEMPERATURE DISTRIBUTION DURING START-UP PROCESS WITH OIL COOLANT

TABLE (C-1) - TABLE (C-2)

TABLE C-1. Examples of Temperature Distribution During Start-Up Process with Cil Coolanc (P=0 KPa, Re=15).

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 10.00 ENDING TIME = 20.00 AVERAGE TEMPERATURE = 72.456 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:OIL -

91.029	89.919	88.810	87.701	86.592	85.483	84.374	83.264	82.155
89.009	87.897	86.785	85.673	84.562	83.450	82.338	81.226	80.114
86.839	\$5.726	84.614	83.501	82.388	81.276	80.163	79.050	77.937
84.756	83.641	82.527	81.412	80.297	79.182	78.067	76.953	75.838
82.622	81.506	80.389	79.273	78.157	77.040	75.924	74.808	73.692
80.588	75.468	78.349	77.230	76.111	74.991	73.872	72.753	71.634
78.346	77.227	76.107	74.988	73.268	72.749	71.630	70.510	69.393
75.310	14.202	73.094	71.986	70.878	69.771	68.663	67.555	66.447
73.040	71.933	70.826	69.718	68.611	67.504	66.397	65.289	64.182
70.741	69.635	68.529	67.423	66.317	65.210	64.104	62.998	61.892
67.414	66.326	65.238	61.149	63.051	61.972	60.884	59.795	58.707
62.700	61.654	60 608	59.561	58.515	57.469	56.422	55.376	54.330

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 20.00 ENDING TIME = 30.00 AVERAGE TEMPERATURE = 81.694 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:01L

102.898	101.644	100.390	99.137	97.883	96.629	95.375	94.121	92.868
100.838	99.578	98.319	97.059	95.799	94.540	93.280	92.021	90.761
98.457	97.195	95.933	94.672	93.410	92.149	90.887	89.626	88.364
96.265	94.998	93.732	92.466	91.200	89.934	88.668	87.402	86.135
93.956	92.687	91.417	90.148	88.878	87.609	86.340	85.070	83.801
91.877	90.601	89.325	88.049	86.773	85.497	84.221	82.945	81.669
89.370	88.093	86.816	85.539	84.263	82.986	81.709	80.432	79.155
85.023	83.773	82.522	81.271	80.020	78.770	77.519	76.268	75.017

TABLE C-1. Continued.

82.417	81.167	79.918	78.668	77.419	76.170	74.920	73.671	72.421
79.744	78.497	77.250	76.003	14.756	73.509	72.262	71.015	69.768
74.767	73.560	72.353	71.146	69.939	65.732	67.525	66.317	65.110
66.855	65.737	64.623	63.508	62.392	61.275	50.161	59.045	57.929

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 30.00 ENDING TIME = 40.00 AVERAGE TEMPERATURE = 92.659 PRESURE- 0.0 KP3 REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

116.999	115.574	114.148	112.722	111.297	109.871	105.445	107.020	105.594
114.890	113.454	112.019	110.584	109.149	107.714	106.279	104.844	103.409
112.263	110.824	109.386	107.947	106.509	105.070	103.632	102.193	100.755
109.947	108.501	107.055	105.609	104.153	102.717	101.271	99.824	98.378
107.432	105.980	104.529	103.077	101.626	100.175	98.723	97.272	95.820
105.313	103.850	102.388	100.925	93.462	98.000	96.537	95.074	93.612
102.537	101.072	99.607	98.142	95.677	95.212	93.747	92.282	90.817
96.546	95.126	93.70E	92.285	90.865	89.445	58.025	85.504	85.184
93.536	92.118	90.700	89.282	87.864	86.446	55.028	63.610	82.192
90.413	85.000	87.586	86.172	84.758	83.344	81.931	80.517	79.103
83.396	82.050	80.703	79.357	78.011	76.664	75.318	73.971	72.625
71.698	70.501	69.305	68.108	66.912	65.715	64.519	€3.322	62.126

ELECTRODE TEMFERATURE DISTRIBUTION STARTING TIME = 40.00 ENDING TIME = 50.00 AVERAGE TEMPERATURE =105.720 PRESURE = 0.0 RPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:OIL

133.615132.185130.554128.924127.293125.663124.032122.402120.771131.645130.001128.356126.712125.067123.423121.779120.134118.490128.732127.083125.433123.784122.134120.485118.835117.186115.536126.277124.616122.955121.294119.634117.973116.312114.651112.990

TABLE C-1. Continued.

111022	-							
		120 178	118.509	116.840	115.172	113.503	111.834	110.165
123.515	121.84/	120.170		114 673	112.937	111.252	109.566	107.881
121.365	119.679	117.994	116.308	114.013		104 187	106.491	104.800
	116.635	114.944	113.253	111.543	109.872	100.101		
110.34-			105 400	103.778	102.156	100.534	93.912	97.290
110.267	108.645	107.023	102.000		98 678	97.059	95.441	93.822
106.771	105.153	103.534	101.915	100.297	30.070		01 219	90.207
	101 461	99.880	98.268	96.650	95.044	93.431	33 0 4 3	
103.195	101.455			87.511	86.001	84.490	82.980	81.469
93.553	92.043	90.532	89.022		70 854	69.594	68.303	67.013
77.337	76.047	74.756	73.466	72.175	/0.004			

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 50.00 ENDING TIME = 60.00 AVERAGE TEMPERATURE =121.337 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:01L

153.949 152.073 150.197 148.321 146.446 144.570 142.594 140.818 138.942 151.703 149.809 147.913 146.019 144.124 142.229 140.334 138.439 136.544 148.457 146.555 144.652 142.750 140.848 138.946 137.043 135.141 133.239 145.841 143.925 142.007 140.089 138.171 136.252 134.334 132.416 130.495 142.787 140.858 138.929 137.000 135.070 133.141 131.212 129.283 127.354 140.619 138.656 136.713 134.760 132.807 130.854 128.901 126.948 124.995 137.337 135.374 133.412 131.450 129.488 127.525 125.563 123.601 121.639 126.667 124.804 122.941 121.077 119.214 117.350 115.487 113.624 111.760 122.586 120.728 118.869 117.011 115.152 113.294 111.436 109.577 107.719 118.260 116.411 114.561 112.712 110.863 109.014 107.164 105.315 103.466 91.914 95.322 93.618 97.026 105.547 103.842 102.138 100.434 98.730 72.703 74.103 75.503 76.904 78.304 79.704 81.104 82.504 83.904

OF POOR QUALITY

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 60.00 ENDING TIME = 70.00 AVERAGE TEMPERATURE =140.085 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:OLL

314

TABLE C-1. Continued.

178.154 175.983 173.812 171.641 169.470 167.300 165.129 162.958 160.767 175.814 173.618 171.422 169.225 167.029 164.833 162.637 160.441 158.245 172.177 169.971 167.755 165.559 163.352 161.146 158.940 156.734 154.528 169.384 167.156 164.928 162.701 160.473 158.245 156.017 153.789 151.561 165.972 163.730 161.487 159.245 157.002 154.760 152.518 150.275 148.033 163.806 161.531 159.256 156.981 154.706 152.431 150.156 147.881 145.606 -160.327 158.036 155.745 153.455 151.164 148.873 146.583 144.292 142.001 146.351 144.198 142.045 139.892 137.739 135.586 133.433 131.280 129.127 141.559 139.413 137.267 135.121 132.975 130.829 128.683 123.537 124.391 136.429 134.295 132.162 130.029 127.895 125.762 123.629 121.495 119.362 119.758 117.825 115.891 113.958 112.024 110.091 108.157 106.224 104.290 91.557 90.029 88,501 86.973 85.445 83.917 82.390 80.862 79.334

OF POOR QUALITY

TABLE C-2. Examples of Temperature Distribution During Start-'Jp Process with Oil Coolant (P=3500, Re=15).

SLECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 10.00 ENDING TIME = 20.00 AVERAGE TEMPERATURE = 74.505 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:GIL

91.029	20.107	89.186	88.264	87.343	86.421	85.500	84.578	83.657
89.197	88.273	87.350	86.426	85.502	84.578	83.655	82.731	81.807
87.216	86.291	85.367	84.442	83.518	82.594	81.669	80.745	79.820
85.322	84.396	83.470	82.544	81.617	80.691	79.765	78.839	77.913
83.377	82.450	81.522	80.595	79.668	78.740	77.813	76.886	75.958
81.534	80.605	79.675	78.745	77.815	76.385	75.955	75.025	74.096
79.482	78.552	77.622	75.692	75.762	74.832	73.502	72.972	72.043
76.622	75.792	74.781	73.861	72.940	72.020	71.100	70.179	69.259
74.539	73.619	72.699	71.779	70.859	69.939	69.020	68.100	67.180
72.426	71.507	70.588	69.669	68.750	67.831	66.912	65.993	65.074
69.256	€8.352	67.447	66.543	65.639	64.735	63.830	62.926	62.022
54.648	63.778	52.909	62.040	61.171	60.301	59.431	58.523	57.593

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 20.00 ENDING TIME = 30.00 AVERAGE TEMPERATURE = 83.995 PRESURE- 3500.0 KPa REYNOLD'S NUMBER- 0.15000E+02 CCOLANT:011

٠.

99.773 98.731 97.690 96.648 95.606 94.565 102.898 101.856 100.815 96.865 95.819 94.772 93.726 92.579 101.051 100.004 98.958 97.912 91.547 90.499 94.691 93.643 92.595 95.739 98.883 97.835 96.787 92.700 91.648 90.596 89.544 88.492 95.855 93.752 96.907 94.803 92.706 91.651 90.597 89.542 88.487 87.433 86.378 94.815 93.760 87.656 85.536 89.776 88.716 86.596 84.475 32.956 91.896 90.836 85.362 87.484 86.423 84.301 83.241 82.180 90.666 89.606 88.545 83.387 82.348 81.309 80.270 79.231 78.192 86.505 85.466 84.427

TABLE C-2. Continued.

H. LACKING IN INC.

84.105	83.070	81.032	80.994	79.956	78.918	77.880	76.842	75.80:
81.643	80.607	79.571	78.535	77.499	76.463	75.427	74.391	73.35
76.810	75.807	74.804	73.801	72.798	71.795	70.793	69.790	68.787
68.931	68.004	67,077	6ö.151	65.224	64.297	63.370	62.443	61.515

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 30.00 ENDING TIME = 40.00 AVERAGE TEMPERATURE = 95.257 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:011

116.999	115.815	114.630	113.446	112.262	111.077	109.893	108.708	107.524
115.132	113.940	112.748	111.556	110.363	109.171	107.979	106.786	105.594
112.749	111.554	110.35)	109.164	107.969	196.774	105.579	104.384	103.189
110.681	109.480	108.279	107.077	105.876	101.674	103.473	102.271	101.070
108.414	107.208	106.002	104.797	103.591	102.385	101.179	99.973	98.757
106.550	105.335	104.120	102.905	101.690	100.474	99.259	98.044	96.829
104.024	102.807	101.590	100.373	99.155	97.938	96.721	95.504	94.287
98.229	97.049	95.869	94.689	93.509	92.329	91.149	89.969	88.789
95.456	94.277	93.099	91.921	90.743	89.565	88.387	87.209	86.031
92.566	91.392	90.217	89.043	87.868	86.693	85.519	84.344	83.170
85.675	81.556	83.437	82.319	81.200	80.081	78.963	77.844	75.725.
73.925	72.931	71.937	70.943	69.948	68.954	67.960	65.966	65.972

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 40.00 ENDING TIME = 50.00 AVERAGE TEMPERATURE ~108.672 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:011

 133.815
 132.461
 131.106
 129.752
 128.397
 127.042
 125.688
 124.333
 122.978

 131.923
 130.557
 129.191
 127.825
 126.459
 125.092
 123.726
 122.360
 120.994

 129.290
 127.920
 126.550
 125.179
 123.809
 122.438
 121.068
 119.697
 118.327

 127.120
 125.740
 124.360
 122.981
 121.601
 120.221
 118.841
 117.451
 116.081

ORIGINAL PAGE IS OF POOR QUALITY TABLE C-2. Continued.

「「「ない」」と Michael . Landa . In the

ан Т. Ж

•

.

124.645	123.258	121.872	120.486	119.099	117.713	116.326	114.940	113.554	
122.791	121.391	119.990	118.590	117.189	115.789	114.389	112.988	111.585	
120.042	118.637	117.232	115.828	114.423	113.019	111.614	110.210	102.805	
112.188	110.840	109.493	108.145	106.797	105.450	104.102	102.754	101.407	
108.962	197.617	106.273	104.928	103.583	102.238	100.894	99.549	98.204	
105.560	104.221	102.881	101.542	100.202	98.863	97.523	96.184	94.844	
96.109	94.854	93.599	92.344	91.089	89.834	88.579	87.325	86.070	
79.739	78.657	77.595	76.523	75.451	74.378	73.306	72.234	71.162	

. .

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 50.00 ENDING TIME = 60.00 AVERAGE TEMPERATURE =124.712 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:011

86.510	85.347	84.184	83.021	81.857	80.694	79.531	78.368	77.204
108.430	107.014	105.598	104.183	102.767	101.351	99.935	98.520	97.104
121.076	119.539	118.003	116.467	114.930	113.394	111.858	110.321	108.785
125.101	123.557	122.013	120.470	118.926	117.382	115.838	114.294	112.750
128.874	127.326	125.778	124.230	122.682	121.134	119.586	118.038	116.489
139.329	137.698	136.068	134.438	132.808	131.178	129.547	127.917	125.287
142.271	140.648	139.026	137.403	135.781	134.158	132.536	130.913	129.291
144.093	142.490	140.887	139.284	137.682	136.079	134.476	132.674	131.271
146.817	145.224	143.630	142.036	140.443	138.849	137.255	135.662	134.068
149.101	147.520	145.940	144.359	142.779	141.199	139.618	138.038	136.458
152.024	150.450	148.875	147.301	145.727	144.152	142.578	141.004	139.429
153.949	152.391	150.832	149.274	147.715	146.157	144.598	143.040	141.481

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 60.00 ENDING TIME = 70.00 AVERAGE TEMPERATURE =143.966 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:011

ORIGINAL PAGE IS OF POOR QUALITY

. .

.

.

.

TABLE C-2. Continued.

178.154	176.350	174.547	172.743	170.940	169.136	167.333	165.529	163.725
176.185	174.361	172.536	170.712	168.887	167.063	165.238	163.414	161.589
172.924	171.091	169.258	167.425	165.592	163.759	161.925	160.093	158.251
170.515	168.664	166.813	164.962	163.111	161.260	159.410	157.559	155.708
167.490	165.627	163.764	161.901	160.038	158.175	156.312	154.449	152.586
165.731	163.841	161.951	160.061	158.171	156.280	154.390	152.500	150.610
162.652	160.749	158.846	156.943	155.040	153.137	151.234	149.331	147.427
148.901	147.112	145.323	1<3.535	141.746	139.957	138.169	136.380	134.591
144.464	142.681	140.898	139.115	137.332	135.549	133.766	131.983	130.291
139.677	137.905	136.133	134.360	132.588	130.815	129.043	127.271	125.498
123.030	121.423	119.817	118.211	116.604	114.998	113.392	111.785	110.179
94.401	93.131	91.862	90.592	89.323	88.054	\$6.784	85.515	84.246

ORIGINAL PAGE IS OF POOR QUALITY

PART 2: EXAMPLES OF TEMPERATURE DISTRIBUTION DURING SHUT-DOWN PROCESS WITH OIL COOLANT

e ker stiller i Gurrig für mit

. .

TABLE (C-4) - TABLE (C-5)

TABLE C-3. Example of Temperature Distribution During Shut-Down Process with Oil Coolant (P=0 kPa, Re=15).

ELECTACDE TEMPERATURE DISTRIBUTION STARTING TIME -120.00 ENDING TIME -150.00 AVERAGE TEMPERATURE -185.641 PRESURE- 0.0 KPa PEYNOLD'S NUMBER- 0.15000E+62 COCLANT:01L*

206.054206.636205.219203.802202.384200.967199.550198.133196.715205.684204.267202.850201.432200.015198.598197.181195.764194.346202.446201.034199.623198.212196.801195.390193.979192.568191.157199.555198.242196.834195.426194.018192.610191.202189.794186.356197.062195.656194.250192.843191.437190.031188.625187.218165.812194.478193.073191.669190.264188.860187.455186.051184.646193.242191.902190.499189.096187.694186.291184.888183.485182.082180.680189.291187.890186.490185.089183.588182.287190.887179.465176.485186.737185.338183.929162.539181.140179.741178.342176.943175.544184.182182.784181.387179.989178.592177.194175.797174.400173.002181.741180.345178.948177.551176.155174.758173.362171.965170.569179.177177.782176.387174.993173.598172.203170.809169.414168.019

ELECTROPE TEMPERATURE DISTRIBUTION STARTING TIME -150.00 ENDING TIME -180.00 AVERAGE TEMPERATURE -171.446 PRESURE- 0.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

194.247192.924191.600190.277188.954187.631186.308184.964183.661192.026190.703189.380188.057186.734185.410184.087182.764181.441187.942186.632185.322184.012182.702181.392180.082178.772177.462184.875183.571182.268180.964179.660178.356177.052175.749174.445182.200180.899179.599178.299176.999175.699174.398173.098171.798179.533178.236176.940175.643174.346173.050171.753170.457169.160176.884175.591174.298173.005171.712170.419169.126167.833166.540174.164172.875171.586170.297169.008167.720166.431165.142163.853

TABLE C-3. (Continued)

171.561170.276168.990167.705166.419165.134163.849162.563151.276168.957167.675166.393165.112163.830162.548161.266159.984138.702166.591165.311164.031162.751161.471160.190158.915157.630156.350163.975162.694161.417160.141158.864157.583156.312155.035153.759

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -180.00 ENDING TIME -210.00 AVERAGE TEMPERATURE ~156.126 PRESURE- 0.0 KPB ReyNOLD'S NUMBER- 0.15000E+02 COOLANT:CIL

				-				160 441
			175 544	174.324	173.103	171.882	170.001	103.441
179.207	177.986	176.705	113.344		171 045	169.825	168.604	167.383
177.148	175.927	174.707	173.486	172.200	1/1.043			162.581
		160 787	168.582	167.382	165.182	164.982	163./41	10110-0
172.182	170,98-	199.701		164 177	162.931	161.740	160.549	159.350
168.886	167.695	166.504	165.313	104.12-			157.838	136.652
	164.951	163.766	162.580	161.395	160.209	733.014		
100.13/	1000000	-	159.862	158.682	157.501	156.321	155.141	123.301
163.402	162.222	161.042	1000000		154 872	153.648	152.473	151.298
160.696	159.521	158.346	157.172	155.337	134.000	-	140 705	146.536
	1.56 715	155 546	154.378	153.210	152.041	150.873	143.102	
157.883	120./12	100.000		150.597	149.434	148.270	147.107	145.944
155.250	154.086	152.973	151.760	130.000		145 658	144.510	143.352
187 616	151.458	150.300	149.142	147.984	140.820			141 098
197.0.0		1 0 0 30	146.875	145.719	144.564	143.409	142.253	141.010
150.340	149.185	T40.030			141.934	140.785	139.635	138.486
147.682	146.533	145.383	144.233	743.004			•	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -210.00 ENDING TIME -240.00 AVERAGE TEMPERATURE =140.193 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:OIL

163.371 162.258 161.145 160.032 158.919 157.807 156.694 155.581 154.468 161.484 160.371 159.259 158.146 157.034 155.921 154.808 153.696 152.583 155.669 154.584 153.499 152.414 151.329 150.244 149.159 148.074 146.989 152.201 151.128 150.054 148.981 147.908 146.834 145.761 144.688 143.614

> ORIGINAL PAGE IS OF POOR QUALITY

TABLE C-3. (Continued).

4
; <
57
33
2
53
58

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -240.00 ENDING TIME -270.00 AVERAGE TEMPERATURE -124.137 PRESURE= 0.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

147.169146.167145.164144.162143.159142.157141.154140.152139.149145.459144.457143.455142.452141.450140.448139.446138.443137.441138.889137.921136.953135.985135.017134.048133.080132.112131.144135.315134.361133.407132.453131.498130.544129.390126.636127.661132.503131.557120.612129.666128.721127.775126.830125.884124.939129.719128.782127.845126.909125.972125.035124.096123.161122.224126.987126.056125.130124.202123.274122.345121.417120.489119.560124.092123.174122.255121.337120.419119.501118.582117.664116.746121.485120.575119.665118.755117.844116.934116.024115.114114.203118.583117.981117.079116.177115.275114.373113.471112.569111.667116.842115.944115.046114.148113.250112.353111.455110.557109.659114.209113.320112.431111.542110.653109.764108.875107.986107.097

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =270.00 ENDING TIME =300.00 Average temperature =108.397 Presure= 0.0 KPa ReyNold's Number= 0.15000E+02 COOLANT:OIL

OF POOR QUALITY

	~ ~		
TADIC	1 2		
	(. -).		-
	<u> </u>	[001102110000]	•

131.003	130.110	129.218	128.325	127.433	126.541	125.648	124.756	123.853
129.470	128.578	127.686	126.794	125.901	125.009	124.117	123.225	122.333
122.287	121.435	120.583	119.730	118.878	118.025	117.173	116.321	115.468
115.682	117.545	117.008	116.171	115.334	114.497	113.660	112.823	111.985
115.896	115.069	114.242	113.414	112.587	111.760	110.933	110.106	109.279
113.145	112.328	111.511	110.694	109.877	109.060	108.243	107.426	106.698
110.457	109.650	108.843	108.035	107.228	105.420	105.613	104.805	103.998
107.591	106.794	105.998	105.202	104.406	103.610	102.813	102.017	101.221
105.052	104.265	103.478	102.691	101.904	101.117	100.329	99.542	98.755
102.522	101.744	100.966	100.168	99.410	98.532	97.854	97.077	96.299
100.623	99.850	99.076	98.303	97.530	96.757	95.984	95.210	94.437
98.064	97.301	96.537	95.774	95.011	94.247	93.484	92.721	91.957

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -300.00 ENDING TIME -300.00 AVIRAGE TEMPERATURE - 93.345 FRESURE- 6.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

115.230	114.445	113.660	112.875	112.090	111.305	110.520	109.735	108.950	
113.871	113.086	112.302	111.517	.110.733	109.948	109_163	108.379	107.594	
105.254	105.513	104.773	104.032	103.291	102.551	101.810	101.069	100.329	
102.690	101.966	101.242	100.518	99.793	99.069	. 98.345	97.621	96.897	
99.973	99.259	98.546	97.833	97.119	96.406	95.692	94.979	94.266	
97.299	96.597 ·	95.894	· 95.191	94.489	93.786	93.083	92.381	91.678	
94.698	94.005	93.313	92.621	91.929	91.237	90.544	89.852 [.]	89.160	
91.908	91.228	90.548	89.868	89.188	88.508	87.528	87.147	86.467	
89.476	88.806	88.136	87.465	86.795	86.124	85.454	84.784	84.113	
87.057	86.396	85.736	85.075	84.415	83.754	83.094	82.433	81.773	
85.314	84.658	84.003	83.347	82.692	82.036	81.381	80.725	80.069	
82.871	62.225	81.580	80.935	80.290	79.645	. 79.000	78.355	77.710	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME = 330.00

TABLE C-3. (Continued).

ENDING TIME -360.00 AVERAGE TEMPERATURE - 79.277 PRESURE- 0.0 KPa REYNOLD'S NUMBER- 0.150G0E+02 COOLANT:OIL

100.154	9 9.472	96.790	98.107	97.425	96.743	96.061	95.378	94.696
98.964	98.282	97.600	96.918	96.236	95.554	94.872	94.190	93.509
91.105	90.473	89.838	89.203	88.568	87.933	87.298	86.653	86.028
87.656	87.038	86.419	85.001	85.183	84.565	83.947	83.329	82.710
85.050	84.443	83.836	83.229	82.622	82.015	61.408	80_891	80.194
82.494	81.898	81.303	80.707	80.111	79.515	78.920	78.324	77.728
80.019	79.434	78.849	78.264	77.679	77.094	76.309	75.924	75.339
77.355	76.782	75.210	75.637	75.065	74.493.	`73.920	73.34E	72.775
75.065	74.502	73.940	73.377	72.815	72.253	71.690	71.128	70.565
72.792	72.240	71.687	71.135	70.583	70.030	69.478	68.976	68.374
71.215	76.667	70.120	69.573	69.C26	62.478	67.931	67.384	66.837 [.]
68.924	68.388	67.851	67.315	66.778	66.242	65.705	65.169	64.632

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =360.00 ENDING TIME =390.00 AVERAGE TEMPERATURE = 66.407 PRESURE= 0.0 KPa REYNOLD'S NUMBER= 0.35000E+02 COOLANT:OIL

86.019	85.433	84.847	84.261	83.675	8,3.089	82.503	81.917	81.331
84.987	84.402	83.816	83.231	82.645	82.060	81.474	80.883	80.303
77.094	76.556	76.019	75.482	74.944	74.407	73.870	73.332	72.795
73.814	73.293	72.773	72.252	71.732	71.211	70.691	70.170	69.650
71.357	70.848	70.338	69.829	69.320	68.811	68.302	67.792	67.283
68.957	68.459	67.961	67.463	66.965	66.467	65.969	65.471	64.973
66.642	66.155	65.668	65.181	64.694	64.206	63.719	63.232	62.745
64.146	63.671	63.197	62.722	62.247	61.772	61.298	60.823	60.348
62.028	61.563	61.098	60.634	60.169	59.704	59.239	58.775	58.310
59.931	59.477	59.022	58.567	53.112	57.658	57.203	56.748	56.294

325

TABLE C-3. (Continued). \$5.827 55.377 51.927 56.726 56.277 57.626 57.176 58.075 58.525 54.662 54.223 53.784 53.345 51.906 55.102 55.541 56.419 55.989 ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -390.00 ENDING TIME -420.00 AVERAGE TEMPERATURE - 54.867 PRESURE- D.O KPa REYNOLD'S NUMBER- G.15000E-02 COOLANT: OIL 70.019 69.522 69.925 71.51İ 71.014 70.517 72.009 72.506 73.003 68.641 68.144 70.132 69.635 69.136 70.628 71.125 71.622 72.119 60.737 63.031 62.582 62.133 61.685 61.236 64.377 63.928 63.480 57.861 58.726 58.293 60.455 60.023 59.590 59.158 61.320 60.888 56.094 55.673 56.516 57.358 56.937 58.201 57.730 58.622 59.044 53.545 53.956 55.598 55.187 54.777 54.367 56.829 56.419 56.008 51.504 51.904 53.104 52.704 52.304 53.904 53.504 54.703 54.304 49.694 49.306 50.082 50.857 50.469 51.245 52.021 51.633 52.409 48.593 48.215 47.837 47.459 49.350 48.972 50.106 49.728 50.485 45.638 46.006 47.481 47.112 46.743 46.375 47.649 43.587 48.218 44.441 45.169 44.805 45.533 46.261 45.897 47.352 46.989 46.625 42.522 43.330 42.976 44.038 43.684 44.391 45.453 45.099 44.745 . ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -420.00 Ending Time -450.00 AVERAGE TEMPERATURE - 44.717 PRESURE- 0.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL 57.886 59.554 59.137 58.720 58.303 60.388 59.971 61.222 60.805 57.557 57.140 58.807 58.390 57.973 59.223 60.473 59.640 60.057

50.462 56.093 51.572 51.202 50.832 52.311 51.942 53.051 52.681 48.837 48.483 48.128 47.774 47.419 49.191 49.546 50.255 49.900 45.775 45.431 46.463 46.119 47.494 47.151 46.807 48.182 47.838 43.507 44.841 44.507 44.174 43.840 45.508 45.174 46.175 45.841

OF POOR QUALITY

326

÷

A walk of an

TABLE	C-3.	(C	ontinued	۱.
		· · -		, -

.•

44.258	43.934	<3.611	43.287	42.964	42.640	42.315	41.993	<u> </u>	
42.188	41.876	41.563	41.251	40.939	40.627	40.315	40.002	35.600	•
40.472	40.169	39.866	39.562	39.259	38.956	38.653	38.349	36.046	
38.786	38.491	38.197	37.903	37.609	37.314	37.020	36.726	36.431 -	•
37.719	37.430	37.140	36.850	36.560	36.270	35.980	35.691	35.401	
36.040	35.759	35.478	35.198	34.917	34.637	34.356	34.076	32.795	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -450.00 ENDING TIME -480.00 AVERAGE TEMPERATURE - 35.953 PRESURE - 0.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

50.734	50.388	50.043	49.697	49 352	49.006	48.660	48.315	47.965
50.107	49.761	49.416	49.071	48.726	48.380	48.035	47.690	47.345
43.142	42.842	42.541	42.240	41.939	41.639	41.338	41.037	40.737
40.631	40.344	40.058	39.771	39.485	39.198	38.912	38.625	38.339
38.777	38.500	38.223	37.947	37.670	37.393	37.116	36.840	36.563
36.989	36.722	36.455	36.188	35.921	33.654	35.387	35.119	34.851
35.291	35.033	34,775	34.517	34.259	34.001	33.743	33.485	33.227
33.460	33.212	32.964,	32.717	32.469	32.222	31.974	31.726	31.475
31.958	31.718	31.479	31.239	31.000	30.760	30.521	30.282	30.042
30.487	30.256	30.024	29.793	29.562	29.331	23.099	23.868	25.637
29.581	29.354	29.126	28.899	28.672	28.445	28.217	27.990	27.763
28.124	27.905	27.686	27.467	27.248	27.029	26.811	26.592	26.373

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -480.00 ENDING TIME -510.00 AVERAGE TEMPERATURE - 28.519 PRESURE- 0.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

41.544	41.261	40.978	40.695	40.412	40.129	39.846	39.563	39.280
41.024	40.742	40.459	40.176	39.894	39.611	39.328	39.046	38.763

ORIGINAL PASE IS OF POOR QUALITY

TABLE	C-3.	(Conti	nued).					
34.623	34.362	34.140	33.899	33.658	33,416	33.175	32.934	32.692
32.407	32.179	31.950	31.722	31.493	31.265	31.036	30.807	30.579
30.777	30.558	30.338	30.118	29.899	29.679	29.460	29.240	29.020
29.214	29.003	28.792	28.581	28.370	-28.159	27.948	27.737	27.526 /
27.737	27.534	27.331	27.128	25.926	26.723	26.520	26.317	26.115
26.146	- 25.953	25.759	25.566	25.372	25.179	24.985	24.792	24.598
74.855	24.669	24.483	24.297	.24.110	23.924	23.738	23.552	23.365
23 597	23.418	23.243	23.060	• 22.881	22.702	22.523	22.344	22.165
22 840	22.664	22.489	22.313	22.138	21.962	21.787	21.611	21.435
21.600	21.432	21.264	21.096	20.928	20.760	20.591	20.423	20.255

ORIGINAL PAGE IS OF POOR QUALITY

TABLE C-4. Example of Temperature Distribution During Shut-Down Process with Oil Coolant (P=0 KPa, Re=15).

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =120.00 ENDING TIME =150.00 AVERAGE TEMPERATURE =187.700 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:CIL

205.786 204.652 203.518 202.385 201.251 200.117 198.933 208.054 206.920 203.511 202.377 201.243 200.110 198.976 197.842 196.706 205.779 204.645 202.634 201.505 200.376 199.247 198.118 196.989 195.860 194.732 193.603 199.932 198.805 197.679 196.553 195.426 194.300 193.173 192.047 190.921 197.437 196.312 195.187 194.062 192.937 191.812 190.687 189.562 188.437 194.946 193.822 192.699 191.575 190.452 189.328 188.204 187.081 185.957 192.453 191.341 190.219 109.096 187.974 186.852 185.730 164.507 183.485 187.704 186.583 185.462 184.342 183.221 182.101 180.930 189.945 188.824 185.244 184.125 183.006 181.887 180.767 179.648 178.529 187.483 186.364 178.312 177.194 175.077 185.020 183.902 182.784 181.666 180.548 179.430 187.672 181.555 180.438 179.321 178.203 177.086 175.969 174.852 173.734 180.200 179.084 177.968 176.852 175.737 174.621 173.505 172.389 171.274

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -150.00 ENDING TIME -180.00 AVERAGE TEMPERATURE -173.345 PRESURE- 3500.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

192.130 191.071 190.013 188.954 187.895 186.837 185.778 194.247 193.188 189.997 188.939 187.880 186.822 185.763 184.705 183.645 192.114 191.056 181.829 180.781 179.733 186.021 184.973 183.925 182.877 188.117 187.069 183.050 182.007 180.964 179.921 178.878 177.835 176.792 185.136 184.093 180.466 179.426 178.386 177.346 176.305 175.265 174.225 182.546 181.506 177.890 176.853 175.816 174.779 173.741 172.704 171.667 179.965 178.928 177.401 176.367 175.332 174.298 173.264 172.229 171.195 170.160 169.126 174.765 173.734 172.703 171.672 170.641 169.610 168.579 167.548 166.517

•

ORIGINAL PAGE IS OF POOR QUALITY

TABLE C-4. (Continued).

172.247	171.218	170.190	169.162	168.133	167.105	166.077	165.948	164.020
169.727	168.701	167.675	166.650	165.624	164.599	163.573	162.548	161.523
167.445		165.396	164.372	163.348	162.324	161.300	160.276	159.232
164.906	163.885	162.864	161.843	160.822	159.801	158.779	157.758	156.737

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -180.00 ENDING TIME -210.00 AVERAGE TEMPERATURE -157.852 PRESURE- 3500.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

179.207178.230177.253176.277175.300174.324173.347172.370171.394177.229176.253175.276174.300173.324172.347171.371170.394169.418172.342171.382170.422169.462168.502167.542166.582165.622164.661169.124168.172167.219166.266165.313164.360163.408162.455161.502166.453165.505164.556163.608162.659161.721160.762159.814159.865163.795162.851161.907160.963160.019159.075158.131157.187156.243161.166160.226159.286158.346157.407156.467155.527154.587153.648158.428157.494156.559155.624154.690153.755152.320151.886150.951155.870154.942154.009153.078152.148151.217150.287149.356148.426153.311152.384151.458150.532149.605148.679147.752146.825145.900151.111150.186149.262148.338147.414146.490145.565144.641143.717148.525147.606146.686145.766144.847143.927143.007142.088141.168

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =210.00 ENDING TIME =240.00 AVERAGE TEMPERATURE =141.741 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:OIL

163.371162.481161.590160.700159.810158.919158.029157.139156.249161.558160.668159.778158.888157.998157.108156.213155.327154.437155.814154.946154.078153.210152.342151.474150.606149.738148.870152.416151.557150.698149.840148.981148.122147.264146.405145.546
149.687	148.834	147.981	147.128	146.276	145.423	144.570	143.717	142.854
145.979	146.132	145.285	144.437	143.590	142.743	141.895	141.049	140.202
144.310	143.468	142.527	141.785	140.944	149.102	139.261	138.420	137.575
141.502	140.667	139.832	138.997	138.162	137.328	136.493	135.658	134.823
138.931	138.101	137.272	136.442	135.613	134.783	133.954	133.124	132.295
136.360	135.536	134.712	133.868	133.064	132.240	131.416	130.592	129.768
134.259	133.438	132.617	131.796	130.975	130.153	129.332	128.511	127.690
131.658	130.842	130.027	129.212	128.397	127.581	126.766	125.951	125.136

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -240.00 ENDING TIME -270.00 AVERAGE TEMPERATURE -125.505 PRESURE- 3500.0 KPa REYNOLD'S NUMBER- 0.15000E+02 CCOLANT:OIL

147.169146.367145.565144.763143.961143.159142.357141.555140.753145.526144.724143.922143.120142.319141.517140.715139.913139.111139.018138.244137.469136.695135.920135.146134.371133.597132.822135.506134.743133.980133.216132.453131.685130.926130.162125.365132.755131.999131.242130.486129.729128.973128.217127.460126.704130.031129.282128.532127.783127.034126.284125.535124.785124.036127.358126.615125.873125.130124.387123.645122.902122.160121.417124.521123.786123.051122.317121.582120.847120.113119.378118.644121.971121.243120.514119.786119.058118.330117.602116.873116.145119.424118.702117.981117.259116.537115.816115.094114.373113.651117.440116.722116.004115.286114.567113.849113.131112.412111.694114.861114.150113.439112.727112.016111.305110.594109.883109.171

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -270.00 ENDING TIME -300.00 AVERAGE TEMPERATURE -109.588 PRESURE- 3500.0 KPa RESYNCLD'S NUMBER- 0.15000E+02 COOLANT:01L

> ORIGINAL PAGE IS OF POOR QUALITY

121 003	130 289	129.575	128.861	128.147	127.433	126.719	125.005	123.291
131.003	170 816	128 102	127.388	126.675	125.961	125.247	124.534	123.520
129.525	110.010	121 037	120.355	119.673	118.391	118.310	117.628	116.546
122.401	116 186	117 510	116.841	116.171	115.501	114.832	114.162	113.493
118.047	116.150	114 793	114.131	113.470	112.808	112.146	111.485	110.823
110.110	113.435	112 110	111.457	110.803	110.149	109.496	108.842	108.188
113.417	110.135	100 489	108.843	108.197	107.551	106.905	106.259	105.613
110.780	110.135	106.688	196.051	105.414	104.777	104.140	103.504	102.857
101.902	107.313	104.213	103.583	102.953	102.323	101.694	101.064	109.434
105.472	107.744	101.744	101.121	100.499	99.877	99.255	98.632	98.010
102.988	100 570	99 901	99.283	98.664	98.046	97.427	96.808	96.190
101.130	98 013	97.402	96.792	96.181	95.570	94.960	94.349	93.738
102.985 101.138 98.624	102.366 100.520 98.013	101.744 99.901 97.402	101.121 99.283 96.792	100.499 98.664 96.181	99.877 98.046 95.570	99.255 97.427 94.960	98.632 96.808 94.349	98.01 96.19 93.73

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =300.00 ENDING TIME =330.00 AVERAGE TEMPERATURE = 94.368 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:OIL

115 230	114.602	113.974	113.346	112.718	112.090	111.462	110.834	110.295
113.923	113,296	112.665	112.040	111.413	110.785	110.157	109.530	108.907
106.353	105.760	105.168	104.575	103.983	103.390	102.796	102.205	101.613
107.835	102.256	101.676	101.097	100.518	99.938	99.359	98.780	98.200
100.163	99.592	99.022	98.451	97.880	97.310	96.739	96.168	95.597
97.534	96.972	96.409	95.847	95.285	94.723	94.161	93.599	93.03£
94.975	94.421	93.867	93.313	92.759	92.206	91.652	91.098	96.544
92.226	91.682	91.138	90.593	90.049	89.505	88.961	86.417	87.873
89.834	89.298	88.761	88.225	87.689	87.152	86.516	86.080	85.543
87.453	86.925	86.396	85.868	85.340	84.811	84.283	83.754	83.226
85.751	85.227	84.702	84.178	83.653	83.129	82.604	82.080	\$1.355
83.344	82.623	82.311	81.795	81.279	80.763	80.247	79.731	79.215

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =330.00

ENDING TIME -360.00 AVERAGE TEMPERATURE - 80.144 PRESURE- 3500.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

		80 067	00 517	97 971	97.425	96.879	96.334	95.788	
106.154	33.009	33.003	96.317	37.3.2	,				
99.009	98.464	97.918	97.373	96.827	96.282	95.736	95.191	94.545	
91.193	90.685	90.177	89.669	89.161	B8.65 3	88.145	87.637	87.129	
87.779	87.285	86.790	86.296	85.801	85.307	84.812	84.318	83.823	
85.211	84.725	84.240	83.755	83.269	82.784	82.298	81.813	81.327	
82.693	82.216	81.740	81.263	80.786	80.310	79.833	79.357	76.880	
80.253	79.785	79.317	78.849	78.381	77.913	77.445	76.977	76.509	
77.622	77.164	76.706	76.248	75.790	75.332	74.874	74.416	73.959	
75.365	74.915	74.465	74.015	73.565	73.115	72.665	72.215	71.765	
73.123	72.681	72.240	71.798	71.356	70.914	70.472	70.030	69.589	
71.560	71.142	70.704	70.266	69.828	69.391	68.953	68.515	68.077	
69.318	68.889	68.459	68.030	67.601	67.172	66.742	66.313	63.884	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =360.00 ENDING TIME =390.00 AVERAGE TEMPERATURE = 67.130 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:OIL

86.019	85.550	85.082	84.613	84.144	83.675	83.207	82.738	82.269
85.026	84.558	84.090	83.621	83.153	82.684	82.216	81.747	81.279
77.165	76.736	76.306	75.876	75.446	75.016	74.586	74.156	73 726
73.918	73.502	73.085	72.669	72.252	71.836	71.419	71.003	70.587
71.493	71.085	70.678	70.271	69.863	69.456	69.048	68.641	68.234
69.123	68.724	68.326	67.928	67.529	67.131	66.732	66.334	65.936
66.837	66.447	66.058	65.668	65.278	64.888	64.499	64.109	63.719
64.367	63.988	63.608	63.228	62.848	62.469	62.089	61.709	61.329
62.276	61.904	61.532	61.160	60.788	60.417	60.045	59.673	59.301
60.204	59.840	59.477	59.113	58.749	58.385	58.022	57.658	57.294

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

. . •

(Continued). TABLE C-4. 38.465 58.825 58.106 57.746 57.386 57.026 56.666 56.307 55.947 55.336 54.984 54.633 54.282 \$3.930 56.741 56.390 56.038 55.687 ٠. ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -390.00 ENDING TIME -420.00 AVERAGE TEMPERATURE - 55.463 PRESUPE- 3500.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

73.003	72.605	72.208	71.810	71.412	71.014	70.616	70.218	69.821
72.152	71.755	71.357	70.960	79.562	70.165	69.767	69.370	68.972
64.437	64.078	63.719	63.360	63.001	62.642	62.283	61.924	61.565
61.407	61.061	60.715	60.369	50.023	59.677	59.331	58.985	58.639
59.156	58.819	56.482	58.145	57.898	-57.471	57.134	56.797	56.459
56.966	56.638	56.309	55.981	55.653	55.324	54.996	54.668	54.339
54.863	54.544	54.224	53.904	53.584	53.264	52.944	52.624	52.304
52.590	52.279	51.969	51.659	51.348	51.038	50.728	50.418	50.107
50.686	50.384	50.081	49.779	49.476	49.173	48.871	48.568	48.266
43.805	48.513	48.218	47.923	47.528	47.333	47.038	46.743	46.445
47.595	47.304	47.013	46.722	46.431	46.139	45.849	45.537	45.256
45.712	45.429	45.146	44.863	44.580	44.297	44.014	43.731	43.448

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =420.00 ENDING TIME =450.00 AVERAGE TEMPERATURE = 45.201 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:OIL

61.222	60.889 _	60.555	60.221	59.888	59.554	59.221	58.887	58.553
60.501	60.168	59.835	59.501	59.168	58.834	58.501	58.168	57.834
53.100	52.804	52.509	52.213	51.917	51.621	51.325	51.029	50.734
50.326	50.042	49.759	49.475	49.191	48.908	48.624	48.341	46.057
48.274	47.999	47.724	47.449	47.173	46.898	46.623	46.348	46.073
46.286	46.019	45.752	45.485	45.219	44.952	44.685	44.418	44.152

ORIGINAL PAGE IS OF POOR QUALITY

たのがたからたちです。

44.387	44 128	43.869	43.511	43.352	43.093	42.834	42.575	42.314	
42.332.	42.084	41.834	<1.554	41.334	<1.0e5	40.835	40.585	40.335	
40.634	40.391	40.149	39.906	39.663	39.421	39.178	36.936	38.692	
38.962	38.727	38.491	30.256	38.021	37.785	37.550	37.314	37.075	
37.913	37.681	37.449	37.217	36.985	36.753	36.521	36.290	36.058	
36.245	36.021	35.796	35.572	35.348	35.123	34.899	34.674	34.452	

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME -450.00 ENDING TIME -480.00 AVERAGE TEMPERATURE - 36.340 PRESURE- 3500.0 KPa REYNOLD'S NUMBER- 0.15000E+02 COOLANT:OIL

50.458	50 181	40 016	40 630				
		43.303	43.979	49.352	49.075	48.799	48.522
49.853	49.577	49.301	49.025	48.749	48.472	48.196	47.92:
42.942	42.701	42.461	42.220	41.980	41.739	41.498	41.252
40.459	40.230	40.000	39.771	39.542	39.313	39.084	38.85:
38.629	38.408	38.186	37.965	37.744	37.522	37.301	37.030
36.863	36.651	36.437	36.224	36.010	35.79 6	35.582	35.769
35.188	34.982	34.775	34.569	34.363	34.156	33,950	33.72
33.377	33.179	221981	32.783	32.585	32.387	32.189	31 000.
31.894	31.702	31:511.	31,319	31.128	30.936	30.744	30.553
30.441	30.256	30.071	29.886	29.701	29.516	29.331	29 145
29.551	29.369	29.187	29.005	28.823	28.642	28.460	78 778
28.109	27.934	27.759	27.584	27.409	27.234	27.059	26.884
	50.458 49.853 42.942 40.459 38.629 36.863 35.188 33.377 31.894 30.441 29.551 28.109	50.458 50.181 49.853 49.577 42.942 42.701 40.459 40.230 34.629 38.468 36.663 36.651 35.188 34.982 33.377 33.179 31.894 31.702 30.441 30.256 29.551 29.369 28.109 27.934	50.45850.18149.90549.85349.57749.30142.94242.70142.46140.45940.23040.00038.62938.40838.18636.86336.65136.43735.18834.98234.77533.37733.17922.98131.89431.70231.51130.44130.25630.07129.55129.36929.16728.10927.93427.759	50.45850.18149.90549.62849.85349.57749.30149.02542.94242.70142.46142.22040.45940.23040.00039.77138.62938.40838.18637.96536.86336.65136.43736.22435.18834.98234.77534.56933.37733.17922.98132.78331.89431.70231.51131.31930.44130.25630.07129.88629.55129.36929.18729.00528.10927.93427.75927.584	50.45850.18149.90549.62849.35249.85349.57749.30149.02548.74942.94242.70142.46142.22041.98040.45940.23040.00039.77139.54238.62938.40838.18637.96537.74436.86336.65136.43736.22436.01035.18834.98234.77534.56934.36331.89431.70231.51131.31931.12830.44130.25630.07129.88629.70129.55129.36929.18729.00528.82328.10927.93427.75927.58427.409	50.45850.18149.90549.62849.35249.07549.85349.57749.30149.02548.74948.47242.94242.70142.46142.22041.98041.73940.45940.23040.00039.77139.54239.31338.62938.46838.18637.96537.74437.52236.86336.65136.43736.22436.01035.79635.18834.98234.77534.56934.36334.15633.37733.17922.98132.78332.58532.38731.89431.70231.51131.31931.12830.93630.44130.25630.07129.88629.70129.51629.55129.36929.18729.00528.82328.64228.10927.93427.75927.58427.40927.234	50.458 50.181 49.905 49.628 49.352 49.075 48.799 49.853 49.577 49.301 49.025 48.749 48.472 48.196 42.942 42.701 42.461 42.220 41.980 41.739 41.498 40.459 40.230 40.000 39.771 39.542 39.313 39.084 38.629 38.468 38.186 37.965 37.744 37.522 37.301 36.863 36.651 36.437 36.224 36.010 35.796 35.582 35.188 34.982 34.775 34.569 34.363 34.156 33.950 33.377 33.179 22.981 32.783 32.585 32.387 32.189 31.894 31.702 31.511 31.319 31.128 30.936 30.744 30.441 30.256 30.071 29.886 29.701 29.516 29.331 29.551 29.369 29.187 29.005 28.823 28.642 28.460 28.109 27.934 27.759 27.584 27.409 27.234 27.059

ELECTRODE TEMPERATURE DISTRIBUTION STARTING TIME =480.00 ENDING TIME =510.00 AVERAGE TEMPERATURE = 28.825 PRESURE= 3500.0 KPa REYNOLD'S NUMBER= 0.15000E+02 COOLANT:OIL

41.544	41.318	41.091	40.865	40.639	40.412	40.186	39.959	39 773
41.043	40.817	40.591	40.365	40.139	39.913	39.686	39,460	39 736

ORIGINAL PASE IS OF POOR QUALITY

TABLE	C-4.	(Continued)	•
-------	------	-------------	---

34.655	34.462	34.269	34.076	33.883	33.690	33.497	33.304	33.111
32.453	32.270	32.087	31.904	31.722	31.539	31.356	31.173	30.990
30.835	30.660	30.485	30.309	30.133	29.957	29.782	29.606	29.430
29.284	29.115	28.947	28.778	28.609	28.440	28.272	28.103	27.934
27.818	27.656	27.493	27.331	27.169	27.007	26.845	26.682	26.520
26.236	26.082	25.927	25.772	25.617	25.462	25.308	25.153	24.998
24.955	24.806	24.657	24.508	24.359	24.210	24.061	23.912	23.763
23.704	23.561	23.418	23.275	23.131	22.958	22.845	22.702	22.558
22.957	22.516	22.676	22.535	22.395	22.255	22.114	21.974	21.833
21.724	21.589	21.455	21.320	21.186	21.051	20.916	20.782	20.547

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX D

k and so

CURRENT DENSITY DISTRIBUTION DURING

SHUT-DOWN PROCESS FOR:

(D-1) THROUGH (D-13): WATER COOLANT (P=3500 KPa, Re = 1250)

(D-14) THROUGH (D-26): WATER COOLANT (P=0 KPa, Re = 1250)

(D-27) THROUGH (D-39): WATER COOLANT (P=0 KPa, Re = 6167)

al substitutes

1. S. J. Merry

• • • • • • •

:

.

Transient Current Density 3D Contour

COOLING FLUID: WATER SHUT-DOWN PROCESS

Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P = 0 KPa, Re = 1250, T.I. = 5). TIME INTERVAL NO.5

TABLED-18.

Transient Current Density Distribution During a Shut-Down Process (Water Coolant, P = 0 KPa, Re = 1250, T.I. = 7).

adam. Tak

١

ļ

.

A BOOM OF B

C-5.

いたいとう

ORIGINAL PAGE IS OF POOR QUALITY

÷,

Transient Current Density Distribution During a Shut-Down Frocess (Water Coolant, P = 0 KPa, Re = 6167, T.I. = 1). TABLE D-27.

Í

. -

ļ

TRANSIENT CURRENT DENSITY DISTRIBUTION

TRANSIENT CURRENT DENSITY DISTRIBUTION

1.11日本の日本の

たいないであ

TRANSIENT CURRENT DENSITY DISTRIBUTION

APPENDIX E

EXPERIMENTAL (T_w) TEMPERATURES

TABLE (E-1) WATER COOLANT AT (t=120 MIN)TABLE (E-2) OIL COOLANT AT (t=120 MIN)

WATER COOLANT	(t.	==	120	min)	ł
---------------	-----	----	-----	------	---

T ₃ C°	т _г с°	T _g C ^c
92.13	90.46	88.71
89-98	87.61	84.91
82.31	79.11	76.91
97.25	94.51	91.01
88.25	85.71	82.71
84.11	8C - 44	78.9).
97.01	94 - 98	92.12
88.24	86.98	83.91
86.91	89.11	81.91
83.87	81.91	78.98
73.01	71.81	68.01
73.02	70.10	67.23
	T ₃ C° 92.11 89.98 82.31 97.25 88.25 84.11 97.01 88.24 86.91 83.87 73.01 73.02	T_3 C° T_2 C° 92.11 90.46 89.93 87.01 82.31 79.11 97.25 94.51 88.25 85.71 84.11 86.44 97.01 94.98 88.24 86.98 86.91 89.11 83.87 81.91 73.01 71.81 73.02 70.10

.7

OIL COOLANT (t = 120 min)

OPERATION CONDITION	T ₃ C°	T ₂ C°	T ₁ C°
Re = 15 E.E. = 3000 W/m ₂ P = 0 KPa	129.01	128.77	126.99
Re = 43 E.E. = 3000 W/m ₂ P = 0 KPa	1.22.04	122.10	120.9
Re = 80 E.E. = 3000 W/m ₂ P = 0 KPa	119.81	118.34	117.01
Re = 15 E.E. = 3000 W/m ₂ P = 1400 KPa	186.10	184.71	183.16
Re = 43 E.E. = 3000 W/m ₂ P = 1400 KPa	121.05	119.87	118.1
Re = 80 E.E. = 3000 W/m ₂ P = 1400 KPa	116.13	114.81	113.71
Re = 15 E.E. = 3000 W/m ₂ P = 2800 KPa	168.33	165.87	162.71
Re = 43 E.E. = 3000 W/m ₂ P = 2800 KPa	141.01	139.89	138.00
Re = 80 E.E. = 3000 W/m ₂ P = 3500 KPa	113.01	111.82	108.11
Re = 15 E.E. = 3000 W/m ₂ P = 3500 KPa	113.01	111.87	108.11
Re = 43 E.E. = 3000 W/m ₂ P = 3500 KPa	136.1	134.89	131.98
Re = 80 E.E. = 3000 W/m ₂ P = 3500 KPa	104.07	102.11	99.89

,

.

··___

A state of the sta