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Abstract. An atlas of time _ries of ultraviolet spectra is pre-
sented for 10 bright O stars. The spectra were obtained with

the hzternational Ultraviolet Explorer during seven observing

campaigns lasting several days over a period of 6 years. The UV

P Cygni lines in 9 out of the 10 studied stars exhibit a charac-

teristic pattern of variability in the form of discrete absorption
components (DACs) rmgrating through the absorption troughs

on a umescale of a day to a week. This pattern is significantly

different for each star, but remains relatively constant during

the tram span of our observations for a given star. A quantita-
tive evaluation of the statistical significance of the variability is

given.

The winds of a number of stars appear Io vary over the

full range of wind velocities: from 0 km s-_ up to velocities

exceeding the terminal velocity vo¢ of the wind as measured

by the as.vmptotic velocity reached by' DACs. The amplitude

of variability reaches a maximum at about 0.75 vo: in the un-

saturated resonance lines of stars showing DACs. In saturated

resonance lines we find distinct changes in the steep blue edge.

This edge variability is also found, although with smaller am-
plitude, in unsaturated resonance lines. The subordinate line of

N ]v at 1718 A in ( Per shows weak absorption enhancements

at low velocities in the blue-shifted absorption that are clearly
associated with the DACs in the UV resonance lines. We in-

terpret these three manifestations of variation as reflecting a

single phenomenon. The DACs are the most conspicuous form

of the variability, while the changes at the edge velocity are

interpreted as DACs, but superposed on a saturated underlying
wind profile, and the low velocity absorption enhancements in
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the subordinate lines a.s the precursors of DACs when they arc

formed to the star.

The constancy of the pattern of variability over the years

and the (quasi-)periodic recurrence of DACs strongly' suggesL'_
that rotation of the star is an essential ingredient for controlhng

wind variability, The observation of low-velocity vanauons in

subordinate lines, which are supposedly formed at the base of
the stellar wind, indicate an origin of wind variability close to

or at the photosphere of the star.

Key words: Stars: early, type - Stars: mass loss - Ultraviolet:

stars

1. Introduction

The International Ultraviolet Explorer (IUE) has proved

to be a powerful tool for the study of variability' of the su-

personically expanding winds of early-type stars. In particular,
the blue-shifted absorption part of the P Cygni-shaped profiles

of strong ultraviolet resonance lines such as Si w. C _\', and
N v shows dramatic changes with tune. Some of these profiles

contain "'narrow" absorption components, first recognized in

Copernicus spectra of OB-type stars, at velocities close to the
terminal velocity, *:o_,of the wind (e.g. Underhill 1975, Morton

1976, and Snow & Morton 1976). Lamers et at. (LGS, 1982)

reported the presence of narrow components in 17 out of 26 OB
stars at a typical blue-shifted velocity of 0.75 voo and a mean

width of about 0.18 v_. Later time-resolved studies with the

IUE Observatory. (e.g. Hennchs 1984, Pnnja & Howarth (PH)
1986, lqennchs 1988) showed that these narrow components

are variable in velocity' and profile. The P Cygni profiles also

change at lower outflow velocities, but over a wider velocity'

range. These absorption enhancements were initially differenti-
ated from the narrow absorption components and called "broad"

components. Continuous ume series of ultraviolet spectra (cf.

Prinja et at. 1987, Prinja & Howarth 1988) revealed that these



Table1.Programstarswithstellarparameters;Notes:(a) Bright Star Catalogue 1982; (b/Walborn 1972. except HD210839 Walborn 1973: (c)
Conti & Ebbet._ 1977; (d) Gles & Bohon 1986; (e) Gies 1987 and Blaauw 1992

HD Name V ° Special v sm i" t'_,_ Remarks'
(mag.) Type b (kin s -_) (kin s -I)

24912 _¢Per 4.04 07.5 lIl(nX(f)) 200 60 Runaway
30614 a Cam 4.29 09.5 la 85 11 Runaway

34656 6.79 O7 ll(fl 106 -9 Aur OBI
36861 A On A 3.66 08 II]{(f)) 53 33 Ori OB]
37742 _ On A 1.75 O9.7 Ib 1 I0 23 (hi OB
47839 15 bton 4.66 07 V((f)) 63 2a Mon OB1

203064 68 Cyg 5.(gJ 07.5 I/d:n((fJ) 274 8 Runa_'a)
209975 ]9Cep 5.11 O9.5 lb 75 -15 Cep OB2
210839 A Cep 5.04 06 ](n)fp 214 -75 Runaway
214680 10 hac 4.88 09 V 32 -9 Lac OBI

broad components gradually evolve into narrow components on

a timescale of a few days, resulting in the currently accepted

nomenclature discrete absorption components (DACs).

In many cases DACs can be readily identified in single
observations, which allowed Howarth & Prinja (HP, 1989) to

detect DACs m more than 80% of a sample containing 203

O stars, essentially all O stars which are accessible with the

ILIE spectrograph in high dispersion mode. This underlined the

ubiquity of DACs and established that variability is a very fun-

damental characteristic of O-star winds. However, in spite of the

near universality of wind variability, the origin of the variability

has proved elusive due to the large amount of multi-wavelength,

time-resolved data needed. There are only a very few O stars

for which detailed ume series of DACs have previously been

recorded, for obvious logistical reasons. The available case stud-

ies clearly showed that monitonng of these stars on an appropri-
ate ttmescale, which is different for each star, is necessary (see

e.g. Henrichs 1988 and Henrichs 1991 for reviews). Because

our current progress in understanding the cause of this variabil-
it3' is clearly data limited, we have made a systematic effort to

construct the best possible datasets for 10 critically selected O

stars. This international project was begun in 1986, with typi-

call3' 3 to 6 days per year of nearly continuous observations with

the RYE satellite. We report here on seven such campaign over
a period of 6 years, resulting in 633 high-resolution spectra_

Such an extensive homogeneous dataset is unique, and enabled

us to follow both the short time (days) behavior, and long-term

trends (years). Almost all these campaigns were simultaneously

covered with ground-based spectroscopy of high -resolution and

high signal-to-noise ratio, photometry, and polanmetry, using 1

- 2.2m class telescopes. In this paper we present the first of two

parts describing the ultraviolet spectroscopic results. The opti-

cal data will be presented separately. A number of significant

results from these coordinated campaigns have been summa-
rized by Hennchs (1991) and Kaper et at. (1995a).

In the first pan (this paper) we present the data of the 10

stars in the form of a time series atlas of ultraviolet spectra for

essentially all the variable spectral lines in the short-wavelength

range of the IUE camera (1200-2000_,). A detailed itwestiga-

lion of the statistical significance of the detected variations is

presented for each star and each spectral line considered, along

with the line profiles. We summarize the main ch,'u'acteristics

of the progran_ stars, and describe the main results of the vari-

ability study. In the second part (Kaper et at. 1995b, paper II)
we present a procedure to disentangle the variable pan of the

profile from the underlying P Cygni profile, which provides a

reference template for each star. This enables a detailed quan-
titative modeling of quotient spectra and a determinauon of

individual DAC properties, such as central velocity, column

density and recurrence timescale. A complete description of

the analysis and interpretation of these results can be found in

Kaper (1993).

In the next section we describe the target lisz and _e re-

duction method of the observauons, followed by a statistical

description of the signal-to-noise ratio of IUE spectra of the

program stars. In section 4 we collect the observational history'
of the individual stars, ordered by HI) number, and summarize

the main results from the atlas. Information on individual spec-

tra can be found in the Appendix. In section 5 we discuss the

variability in the form of DACs and in the blue edge. In the last
section we summarize our conclusions.

2. Observations

2.1. 771e Target list

We applied the following criteria to select the O stars for our

program:

1. The sample stars were chosen to be spectroscopically single

stars, or in the case of the presence of a nearby detached

visual binary companion, the secondary.' had negligible flux.
This selection was to avoid tidal interaction on the photo-

sphere of the sample star. The multiplicity of O stars is
discussed by Garmany et at. (1980), Gies & BoRon (1986)

and Musaev & Snez.hko (1988).
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2. In order to achieve the necessary time resolution, the sample
stars were required to have exposure times of less than 15

minutes to ob_n optimally expo.wzl high resolution IUE

spectra with a signal-to-noise ratio of approximately 25 and

optical spectra with a signal-to-noi_rauo of approxtmately
200 with the available instruments.

3. Only Northern hemisphere objects were selected to insure

sufficient coverage from the various ground-based observa-
tories.

runaway wa__originally a member of a binary system in which

the companion underwent a supernova explosion resulting in a

kick-velocaty to the system, this would imply that runaway stars
are evolved objects which have ginned mass from their previ-

ous companion (Blaauw t992). This difference in evolutionary

history might perhaps cause other effects in the atmosphere and

winds of these stars, but we did not consider this aspect in the

current stud)'.

2.2. Observing campatgns

Table 2. The stellar parameters of our program stars, obtained from

Howarth & Pnn.la (HI:'.1989): Notes: (a) the mass-loss rate is predicted
from the empirical relation between Ixt and L based on radio obser-

vations of OB stars (cf. HP); (b) the terminal velocity of the wind is
taken from Prinja et al. (1990/

Name R, T_n log L, M" v_ _'
ire! Iff) (L.e) (Me/yr) (krn s-_)

c Per 11 36000 5.3 4 × 10-7 2330

c_Cam 22 29 900 5.5 8 x 10 -7 1590
HD34656 10 36800 5.2 2 x 10 -'r 2155

A Ori A 12 35000 5.3 4 x 10 -7 2125
( Ori A 29 30000 5.8 3 × 10 -6 1860
15 Mon 10 41 000 5.4 5 × 10-7 2055
68 Cyg 14 36000 5.5 8 x 10 .7 2340
19 Cep 18 30200 54 5 × 10-7 2010
A Cep 17 42000 5.9 4 x 10 -e 2300

lOLac 9 38000 5.1 2 x 10 .7 1120

The requirement of coordinated space- and ground-based
observations during 24 bours per day maplied a choice tO be

made between the Northern and Southern hemisphere. For

logistical reasons we have chosen the Northern Hemisphere,

because we needed at least three large observatories with the

proper instrumentation, approximately equally separated in lon-

gitude around the globe. Japan, North America, and Europe

were the most easily accessible locations with the proper facil-
ities.

In Table ] we list the program stars which fulfilled the

above selection criteria, along with some of their kinematical

propemes. The sample comprises 2 main sequence stars, 3
giants, and 5 supergiants, ranging from spectral type O6 to
09.7. All spectral types are taken from Walborn (1972,1973).

The adopted stellar parameters of the 10 target stars are
listed in Table 2. The listed terminal velocities are not corrected

for the radial velocities of the stars (Prinja et al. 1990). We

note that 40% of our stars do not belong to a cluster or as-
sociation, and are considered to be runaway stars (Gies 1987,
Blaauw 1992), whereas this fracuon is about 20% for the to-

tal number of O stars (Blaauw 1992). This might be caused

by small-number statistics (Conti, priv. comm.). Runaway stars

tend to have higher v sin i values and a higher helium abun-

dance in their atmosphere, as compared to cluster stars. If a

The nature of our program required continuous coverage of

24 hours during several days, which was only possble by suc-

cessfully applyin_ for both NASA and ESAJSERC IUE Ume. In

Table 3 we list the targets obsern,ed with IUE m e_cb camp_ugn

and the number of high-resolution SWP specmt obt,°aned for

each star. in spite of tremendous effort on the part of the staff at
both IUE Observatories to schedule uninterupted blocks of ob-

serving time for this program, a few gaps in the coverage exist

in most of the campaigns of 4-8 hours due to the need to inte-

grate scheduling of longer time resolved monitonng campaigns
of by other observers or technical difficulties.

The exposure times for ultraviolet spectra depend on the
interstellar reddening, and were initially esumated from Iluxes

measured by previous _tellites (ANS, $59) and later adjusted

to obtain opumum exposure. It is known that temperature con-
ditions on the IUE spacecraft are directly related to the distor-

tion of the im_e and ultimately to the resulung signal-to-noise

ratio of the data. The parameter used to monitor temperature

conditions on the spacecraft, THDA, was evaluated constantly
in real-time during the acquisition of the obse_,ations for these

campaigns. The onboard deck heaters were used whenever nec-

essary to keep the THDA value within a few degrees of the

optimal value. As a result of these efforts the datasets acquired

are of pamcularly high quality and homogeneous.

Sm'tultaneous optical observations from different sites

spread over the Northern hemisphere were arranged during five

of the campaigns, resulting in 24 hours optical coverage. Dur-
ing the campaign from 5 to 8 September 1987 we had optical

coverage for 68 Cyg (for preliminary results, see Fullerton et

al. 1991). For the other campaigns, 17 to 19 October 1989, 1 to
5 February 1991, 22 to 26 October 1991, and 7 to 12 Novem-

ber 1992, we collected stmultaneous optical observations for

all PUE targets. In addition to short tame scale variability which

could be studied for each star in each individual campaign,

long (yearly) timescale variability could be studied for ( Per,

68 Cyg, 19 Cep(includedin 5 campaigns), and .X Cep(included
in 6 campaigns).

2.3. Spectral reduction

Spectrum extraction was performed using the ILrEDR (Star-

link) software package written by Giddings (1983a, 1983b).

The program starts with the photometrically corrected image;
a cross-dispersion scan is made to locate an echelle order and

to determine the geometric shift of the echelle spectrum. The



._:numberof high-resoluuon/UE speca'a obtained during seven observing campaigns from 1986 to 1992. The total number of spectra
•n the last column we list the average exposure tm_e per high-reso}ut_on SWP maage (the total spacecraft tame needed for one image is

_;.45 minutes)

,.as Aug. 86 Sep. 87 Oct. 88 Oct. 89 Feb. 91 Oct. 91 Nov. 92 Total t,w

: Per 33 23 23 7 36 122 lmlOs

n Cam 31 31 lm50s
HD 34656 29 29 15m00s
A On A 27 27 0m20s

C on A 26 26 Om05s
15 Mon 20 20 0m43s
68 Cyg 33 29 24 23 40 149 2m20s
19 Cep 29 11 12 14 17 83 5m30s

Cep 14 10 12 23 24 40 123 10mO0s
10 Lac 23 23 I m(YOs

individual echelle orders are scquendally extracted using thc

_qSEDR centroid tracking "algorithm It center accurately the
"extraction slit'" on each order. The extraction is performed by

area integration, using a sampling rate equivalent to one sam-

ple per diagonal pixel along the direction of dispersion (i.e. a

rate of _ pixel). All pixels flagged as affected by mturation,

fiducial marks, ITF truncation, or otherwise identified ax faulty

are rejected at this stage.

The wavelength-scale calibration is improved by measuring

the central wavelength of three selected interstellar lines fS ]l
1253.812/_, Si tl 1304.372 A, C1 1560.310/_) and computing

the mean deviation AA of these lines with respect to their
laboratory wavelength; a mean wavelength shift of the form

mAA = constant is applied to the spectrum, where n_ is the

echelle order number. The obtained accuracy is better than the

instrumental resolution of about 0.1 A, which is equ',d to our

sampling width.

Sbortward of about 1400 A the echelle orders are very

closely spaced and overlap. This may lead to an overestimz-

t.ion of the interorder background level. A first-order correction

to the cross-dispersion order overlap problem is made using the

algorithm ofBianchi & Bohlin (1984) and a standard value (for

early-type stars) of 0.15 is used for the parameter HALC (ha-

lation correction). This algorithm does not give perfect results,

as can be seen in regions of saturation, which sometimes have

negative fluxes.

Echelle ripple correction is performed by optimizing the

ecbelle ripple correction parameter k using Barker's method

(1984). This procedure causes the spectra of the different or-

ders to join and overlap properly. The individual echelle orders

are combined by mapping them on an evenly spaced wavelength

_id, using weights inversely proportional to the optimized rip-

ple correction factors in regions of order overlap. Reseau marks

are removed from the spectrum by linear interpolation, The

spectra were smoothed using a tfiree-point running mean. Be-
cause there exists no reliable absolute flux calibration for IUE

high-resolution spectra, the flux level is given in arbitrary units

of flux numbers per second (FN/s). Finally, for a given star, the

fluxes of all spectra were multiplied by a number fbetween 0.9
and 1. l ) such that the continua outside the well-known variable

lines coincide.

3. Statistical significance of variabilily in/UE spectra

The statistical significance of the variability has been deter-

mined for each extracted flux point in the specctral regions of

interest for the 10 stars in the sample. The technique compares

the standard deviation of each point in the spectrum expected
based on the noise characteristics of the instumentation with

the actual observed deviation. The formulation of this statis-

tical significance is described fully in Henrichs et al. (1994),

based on a method developed by Fullenon f1990). A good ap-

proximation of the ratio of the observed flux to the expected
standard deviation is found to be of the form

F,_ .4 n_lh F_, (1)
6":xp t3 '

wbere A corresponds m themaximum S/N for the highest fluxes,

and/3 is a sealing factor. These parameters are determined for

each star with a X: fit to more than 4000 points in the average

spectrum, excluding the regions containing resonance lines or
order overlaps. The values obtained for the 10 datasets are

collected in Table 4. In all cases the accuracy in the parameters
is better than 2%.

The deviation of each actual observed point is measured

with respect to the averaged spectrum for each star, which in-

cludes all spectra from a given observing campaign. The ratio

aobs/_cxp should be unit), if no significant variations are de-
tremble at the resolution of the instrument.

4, Notes on individual stars

Earlier systematic studies on the variable nature of individual
O stars can be found in PH, Hem'icbs CHKZ, 1988), HP, and

Fullenon (i 990). Below we highlight the observational history

ORIGINAt. P)_E IS
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Fig. 1. N \', Si w. and C Ix' resonance lines and subordinate N Ix' line of the 07.5 m(n)((f}) star ( Per in September 1987. Tbe grey-scale

pictures consist of 33 higb-resolution IUE spectra with time running upwards. The minimum (black) and maximum (white) cuts in flux are

given at the side bar that represents the grey-scale conversion. The mid-exposure epochs are indicated by arrows. The individual spectra are

overplotted in the middle parcel/n the upper panel the variations m the spectra are quantified by the _,-mtio (thick line. see text). The thi_ line

depicts the average spectrum. Note the strong variations in the form of DACs m the Si Ix, doublet and the edge vanabilit3' m the saturated N v

and Ctv imes. Also the subordinate N rv line shows variations, but at much lower velocity than in the other lines
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Fig. 2. As in Fig. l: ( Per October 1988.25 spectra. At Day 8.1 a newly formed DAC jolns a previous one at a velocity, of -1900kin s-_ m

the Si IX:resonance doublet which seemed to have reached its fioal velocity. The new DAC further accelerates to a veloci_' of -2200 km s -_.

The saturated N v and C IX' lines show simultaneous variability, in the blue edge. The N Ix, line does not manifest much variability, in contrast

with the two subsequent series in Figs. 3 and 4. Its correlation with the DAC behavior is not obvious.



Table 4. Best fit parnmeters for the arose descrtpuon of IUE spectra.

The flux dependenceof a,:_ was parametenzed using a funcuon of the

form F_/ac_r = A tanh {F_,/B). which is obtmned using a _.: fit The

accuracy nf the fitted parameters is better than 2_.

Star A B

c Per 29.6 321
a Cam 28.4 ]62

HD3a656 29.8 2.4.

A Ori 28.0 921
( Or_ 29.0 3959
15 Mon 28.9 554

68 Cyg 29.3 150
19 Cep 28.8 69
._Cep 34.5 39
10 Lac 30.3 33,1

of our program stars and describe the observed variability in
ultraviolet spectra. The morphology of the variations is clearly

demonstrated by showing the time series of the observed spec-

tra in a form where flux is converted into levels of Grey. For each

star we present the data of the N v (laboratory wavelengths at
1238.821 and 1242.804 A), Si iv (1393.755 and 1402.770 A),

and C ]v (1548.185 and 155(I.77,:1 ,&) resonance doublets, for

each year of observauon in separate figures. For ( Per we also

show the N iv subordinate line at 1718.551 ]k. The y-axis of

the time series figures is in units of days, calculated as the he-
liocentric Julian Date of the observation minus an offset Julian

Date in next lower tens of days for each ume series. The offset

Julian Date for each tmae series is recorded on the relevant fig-

ure and in the associated table in the Appendix. We use the term
"'Days" to refer to this differential Jul:an Date for each ume se-

ries. Arrows to the right of each figure indicate the time of each

observation, with the grey scale representation of each spectrum
expanded vertically to fill the time between successive obser-

vations. We caution the reader to be aware of regions where the
gap between successive observations is relatively large and an

individual spectrum has been expanded to fill a disporuonately
large vertical space in a figure.

The observing dates, exposure umes, and other information

on the presented spectra in the figures are listed in the Appendix

(the numbering of the tables corresponds to the numbenng of
the figures). In the upper panels of the time series the amplitude
of variability, is quantified using the a-ratio (thick line), as

described in the previous section.

4.I. HD24912 (c Per) 07.5 lll(n)((f))

( Per is a welt-tmown runaway star, which probably originates
from the nearby parent Per OB 2 association (distance about 350
pc.). Its runaway nature follows mainly from the relative radial

velocity of 36 -k.m s -1 with respect to the remmning stars of
Per OB2 (Blaauw 19921. Garmany et at. (19801, Gies & Bolton

(1986"), and Jarad et al. (19891 have reported small-amplitude

radial velocity variations, but no convincing periodicity has
been identified. Bariow (1979) noted that the infrared flux var-

ied substantiallyon at least one occasion, a circumstance that he

attributed to episodic mass loss. Fullerton ( 19901 reported sig-

nificant line-profile variability (lpv) in optical spectra of ( Per,

directly attributable to changes in line strength on time-scales

between a few hours and a few days (similar to the UV van-

ability, see below).

Snow (19771 reported variations in the C ]n lines at 1176 A
and in the Si iv resouance lines m two Copermcus spectra

obtained four years apart. LGS detectexl discretc absorption
componem.s at mean velocities of -2190 and - 1860 kqn s-_ in

the O xq, N v, and Si I\' profiles. Extensive ultraviolet obser-

vations (1978-1984) of ,_ Per were canned out by' Pnnja et al.

[ 1987), showing the morpl_ology and evolution of the variations
in UV resonance lines was ch,'tracterized by' broad low-velocity

DACe gradu_dl)' evoh,ing into narrow high-velocity DACe. The

highest central velocity reached by DACe (which is a memsure
of v,o) m the Si fv resonance lines was about -2250 kin s-_ .

In Figs. I---4we show time series of the ultraviolet reson,'mce

lines of ( Per observed in September 1987, October 1988, Oc-
tober 1989 and October 1991, respectively. In the top panels

the average spectrum is drawn as a thin line. The e-ratio (thick

line), which is a measure of the amplitude of the variations

per wavelength point, is overplotted. The middle pzmels contain

an overplot of the individual spectra that are used to construct

the grey-scale figures given in the bottom panels. The spectra

shown in the Grey-scale pictures are ordered with tune (increa,-

ing upwards), and the tlux va.lues are corn, cried into levels of
grey: the minimum (black) and maximum (whitel cuts in flux

are indicated by the side bar. The cut values were held constant

for all spectral lines in a given image.

The pattern of variability in ¢ Per is qualitatively similar

during the other campaigns. The detailed behavior of the DACe

in the Si iv line differs remarkably from year to year. The

amplitude of the variations (especially with respect to the N IX.'

hne) depends on the observed event. In general, a new (strong)

DAC develops about every, day. In the following we summarize
the results in chronological order.

HKZ gave a preliminary, overview of the September 1987

campaign on ,{ Per and confirmed the findings of Pr'inja et al.

(19871. The Si J\' doublet exhibits the largest amplitude of

variability: the absorption strength in the doublet components
changes with time, due to both the evolution of DACs and van-

ations in the steep blue edge of the P Cygni profile. In the N v

profile some variations occur at low velocit); as is indicated by

the a-ratio, and are most likely related to the DACs obsen'ed

in the Si Ix, doublet. At higher velocities the profile is satu-

rated, prohibiting the detection of enhancements in absorption

strength. The blue edges of both profiles are about -2600/kTns.

The dramatic change in the blue edge around Day 5.5 was al-

ready reported by HKZ, and is a very clear example of this Iond

of variability. The subordinate N ]v line of ( Per is varying in
concert with the DACs in the Si t\, resonance lines. This is most

protmnent in the spectra of 1989 and 1991 (Figs. 3 and 4, see
also Hennchs et al. 1994 and Kaper et at. 1995a).
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Fig. 3. As in Fig. l : _ Per October 1989, 23 spectra. These observations are described by Henrichs et al. (1994). Variations occur over the full

range of wind velocities (,,- -100 to -2750 k.m s -_) , from almost zero (m Si Iv and N IV), to intermediate (m si iv and N v) and the highest

velocities (in N v aud C Iv). Note the "crossing" of DACs at about Day 8.1
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Per 07.5 m ln)((D, Octob_ 1991
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Fig. 4. As m Fig. 1: _ Per October 1991, 36 spectra. The DAC behavior is almost identical m that observed in October 1989. except that the

absorpuon components are stronger than we have found previously for this star. At -2250 k.m s -_ the remammgs of a DAC are visible at the

start of our run and a strong DAC develops at Day 3.2 in N Ix,' and Si Iv. This DAC reaches only - 1900 km s-_, just like hag of the components

in 1988 and 1989. indeed, the next new DAC becomes visible after about two days. followed in about bag a day by a faint one, and moves up

to -2150 km s -_
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Fig. 5. As in Fig. l: n Cam 09.5 la in February 1991. The resonance lines of a Cam are heavily saturated and do not vary significantly. This

supergiant is the only O star m our sample that does not show variability in its ultraviolet spectrum

The results for ( Per from the October 1989 campaign (Fig.
3) are described by Hennchs et at. (1994). Variations occur over

the full range of wind velocities, from almost zero fin the Si tv
and N Ix, lines), to intermediate (in Si tv and N v lines) and the

highest velocities (in the N v and C ]v profiles) as measured

by' the asymptotic velocity reached by a DAC, which exceeds

the ternuna/velocity of the wind.

An interesting phenomenon only observed for ,_ Per is the

"crossing" of DACs. In the data.sets obtmned in October 1988,
October 1989 and October 1991, a DAC in the Si _v doublet

seems to settle at a velocity of -1900 Ima s -] (e.g. Fig. 3
around Day 8.1) and is joined by' a newly developed DAC. The

new DAC overtakes the previous one and accelerates further to

a final velocity of about -2200 tma s- _. The repetition of this

phenomenon during other campaigns suggests that in _ Per suc-
cessive DACs can have different as.vmptotic velocities (-1900
and -2200 Iron s- ] ).

The October 1991 observations (Fig. 4) show the evolution

of DACs in the Si _v doublet (accompanied by additional ab-

sorption in the N ]_, line) in great detail. The 36 spectra include

the strongest absorption components we have encountered for

this star; the absorption enhancements in the N _x, line are verb,

pronounced and last about one day. Clearly, the relatively long

tame coverage during this campaign provides better insight into

the evolution of DACs. The shortward doublet component of

theN v profile shows some signs of the development of the first
DAC at intermediate velocities (_ -1000 km s-l). The steep

blue edges of the C ]v and N v profiles change in concert, but

a connection with the variations in the other lines (i.e. the DAC

behavior) at lower velocities is not straightforward. Most of
the ume both an "old'" DAC and a "'new" DAC arc present.

Therefore objects like c Per with a rapid variability pattern are
not good candidates to reveal a clear relation between DAC

behavmr and absorption edge variability.

4.2. HD30614 (o Cam) 09.5 la

The supergiant o Cam is a runaway star (cf. Gies 1987, Blaauw

1992) with presumed parent the young open cluster NGC 1502

at a distance of about 1 kpc. The high relative speed of a Cam
in the cluster (about 48 kTn s-]) causes a bow-shock effect in

the interstellar medium (De Vries 1985). This bright star has

been monitored extensively for variability in the optical wave-

length domain. Ebbets (1980,1982) found dramatic night-to-
night changes in the shape of the low-velocity part of the broad

emission feature at Ha, as well as subtle lpv in He _ 6678/k.

Fullerton (1990) repone.d significant variability in all lines he

studied in the optical spectrum of or Cam, where the strong He
line at 5876 A, exhibits the largest amplitude. Hayes (1984) and

Lupie & Nordsieck (1987) detected systematic, but aperiodic,

variations in optical continuum polanmetry of o Cam; they at-

tributed these fluctuations to "puffs" of matter in the stellar
wind.

Gathier et al. (1981) reported narrow absorption compo-
nents in Copernicus data of the Si H_, SJ _v, N v, and 0 v]

lines, but gave all their measurements low weight. Lamers et
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al. (1988) presented observational evidence for variations in

high-resolution IUE spectra of o Cam obtmned in September

1978. Changes were reported in the strong and _turated reso-

nance lines, both in emission and in absorption at three velocity
regions near -1800, -700, and +700 km s-_. The authors in-

terpreted the variations as a result of the clumpiness of the

stellar wind. However. PH could not confirm the presence of

these features at the velocities reported in the same ckmaset.

We observed a Cam during five days in Februar?, 1991.

The resonance lines of this supergiant are strongly saturated

and tile P Cygni emission ha,s a triangle-shaped peak (Fig. 5).

Except for small variations at the blue edge of these profile.,,

(see the or-ratio in the lop panel of Fig. 5) we could not de-

tect significant variability. The position of the blue edge for the
three resonance lines is the same, namely - 170(I km s-1 {mea-

sured at half intensity of the estimated continuum level). The

ultraviolet obsera,auons were covered by high-resolution optica/
spectroscopy of the Ha line (Kaper et al. 1992l of a Cam: like

Ebbets, we found large changes m the line profile from night

to night, and also within a night. But, as shown m this paper,
these variations in the base of the wind arc not reflected m the
UV resonance lines.

spectra indicate the presence of line-variability (Jarad et al.
1989, Fullerton 19901. Snow (19771 detected a strong narrow

component in the N v {and less clear in the Si IX,'}lines at -2000

s -; in Copernicus spectra. LGS found a strnilar component
m the O vl resonance doublet. PH reported variable DACs in

the ultraviolet N v and C iv profiles of ,X On around -2I,_Kt

kin s-:. The), found strong evidence that the strengths of the
DACs in these two ions arc correlate, l.

Also in our datasct of k Ori obtained in November 1992

(Fig. 7), a strong displaced absorption component is present a!
-20(t(I km s-1 in both N \ ;rod Si iv (although in the latter

less pronounced}. This component remmns unchanged dunng

the full ob_,ing period of live days. The absorption in the
C ix, line also seems It) be enhancexl around this velocity. The

persistent absorption componem could be a DAC at its final ve-

locity. The (r-ratio indicates some variability at the position of

the absorption components. A migrating absorption enhance-

ment was found for N v. Analysis of quotient spectra using

a template have revealed the naturc of these charades (see pa-

per II 1.The recurrence timescale of DACs is most likely longer

than five days for this star. The spectrum is very, similar to that
observed for/mon/(see below}.

4.3. HD34656 07 11(39

HD34656 is the faintest star in our sample, and was included

because Fullerton (1990) tentatively identified the lpv observed

in optical spectra of this star with a pulsation in the radial

fundamental mode, which is exceptional for such a star. He

compares the pulsational behavior of I-[D34656 with that of a

3 Cephci star, although the found period of 8.21 hours seems

to be quite long. Conti (1974) noted the presence of a peculiar
broad emission reversal in the center of the Ha line. HP mention

the presence of a narrow DAC in an archival IUE spectrum of
HD34656.

We observed the star during the February.' 1991 campaign
(Fig. 6). The Si ]v line clearly, shows the magration of several

DACs on quite a short t.unescale (about 1 day). The maximum
velocity reached by these DACs is about -1900 kin s -I . Tl_e

morphology, of the variations is, however, vem, complicated.

On top of the "'rapid" DAC pattern additional at_sorption seems
to be superposed. Wind variability extends from almost zero

velocity to -2600 kTn s- _, i.e. the full range of velocities in the

stellar wind. Tlae N v doublet is close to saturation, but does

clearly indicate variability. The additional absorption around

~ -1700 kin s -z is strongest between Day 11 and 13 in both

the Si Iv and N v lines. The C zv edge shows variations around

-2400 km s-_, which do not seem to be present in the blue
edge N v.

4.4. HD36861 (), Ori A) 08 111((19)

This star is member of a visual binary. (separation about 5

arc_econds). Star A (our target) is considered spectroscopically
single (Garmany et at. 1980). Although star B would fall within

the IISE large aperture, its conmbution is negligible. The opucal

4.5. HD37742 (( Ori A) 09,7 lb

( Ori, the most eastern star in Orion's belt, is also a member of a

wide visual binary system (separation about 2 arcseeonds), and

spectroscopically single according to Garmany et al. (19801. it

has been subject to extensive monitoring for variability. Ebbets

(1982) detected large changes m the shape of the low-velocity

pan of the broad emission feature at Ha. These changes were

accompanied by significant chmlges m line strength. Fullerton
(1990) found some evidence for Ipr in optical spectra of ( On.

In Copervaicus spectra of this star Snow (1977) obserwed

variable emassion in _e C zt] and N \' profiles. He also de-

tected a narrow absorption feature at a displacement of - 1630
kin s-1 in N v, which wa_ also present in O \'I, Si t]I. and Si] v,

according to LGS. PH identified DACs in the N v resonance
lines, while both Si Iv and C _v were saturated at velocities

corresponding to the expected positions of the DACs.

In late September 1992 (i.e. two months before our observa-
tions) a rise in X-ray flux from ( Ori by' about 30% over a period

of 48 hours was observed by the ROSAT satellite (BerghtSfer

and Schmitt 1994), Although hot stars are "known soft X-ray

sources, this kind of X-ray variability is not commonly ob-
served. Since the X-rays are most likely produced the stellar

wind, this suggests that the observed X-ray flare is related a

particular event in the wind.

The time series of the wind lines of ( Ori resulting from our
November 1992 campaign are shown in Fig. 8. The N v line

shows the development of a DAC in the N v profile, starting at

a velocity of about -800 l,a:n s -j . This component accelerates

dunng the last two days of our observations towards the velocity,
of the steady absorption component at - 1700 k_mas- _.The DAC

does also show up in the Si ix, doublet, but here. and in the C _v

profile, the edge variability, is more pronounced. The strange
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Fig. 8. As m Fig. 1: _"Ori 09.7 lb in November 1992. At Day 7.5 a DAC appears in the N v doublet and slowly accelerates through the profile.

In the Si Iv and C I\' P Cygni lines the edge vanabilily (around -2000 km s -1 ) is more pronounced
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feature.s in the emission peak of some Si Ix' spectra are artifacts

of unknown origin, perhaps caused by saturation of the camera

in this part of the spectrum (( Ori is a first magnitude star!).

Close inspection shows that at the beginning of our campaign, at
Day 4.5, additional absorption is present around - 140(I km s- I

in the N x' line. This means that we can estimate a lower limit

for the recurrence timescale of DACs for this star, which is

about three days.

4.6. HD47839 (15 Mon) 07 V((f) )

This O main sequence star (also known as S Mon) has been

subject to extensive obsera'ational studies. In our stud)', we have

considered 15 Mon to be a single star. Recently, however. Gies

et al. (1993) discovered a speckle binary, compamon to 15 Mon.

Optical ,and ultraviolet spectroscopy suggests that the star is

also a spectroscopic binary with a period of 25 years and a

large eccentricity. Gies et at. derive masses of 34 and 19 Me..:
for the primary ,and secondary. (probably an 09.5 Vn star),

respectively. Fu llerton (1990) considers the optical line profiles

to be constant in shape, but the spectrum of 15 Mon may vary

on a timescale longer than covered by his observations. This star

emits X-rays and the X-ray flux is found to change significantly
over intervals as short as 5 days (Snow et at. 1981).

The N v and O x,j resonance lines in Copernicus spectra of

15 Mon contain strong narrow absorption components, short-
wardly displaced by about 2000 _ s -1 (Snow 1977, LGS).

Grady et al. (1984) accounted for variations in v_t_¢ in mod-
eling the ultraviolet P Cygni profiles, but PH did not include

this and still obtained good fits. The changes near the blue edge

of the profiles are considered by them to be due to changes in

width and central velocity of DACs at lower negative velocities.
The UV spectrum of 15 Mon is similar to that of A Ori,

described above. Also in this star a strong persistent absorption

component is present in the N v and Ctv doublets at -2000
Ion s-_. The Si ix, line is probably too weak to show wind

absorption and we see only the photospheric components. The
variability as reflected by the a-ratio also looks similar to that

observed for A Ori but the amplitudes of variability are even
smaller. Although the small variations in the N v line could be

due to bad flux calibration in this part of the spectrum, some
enhancements in the blue-shifted absorption seem to occur in

the profile o_ionally. Some marginal changes in the blue

edge of the C jx' and the N v P Cygni line cannot be excluded.

4.7. HD203064 (68 Cyg) 07.5 lll:n((f))

The runaway star 68 Cyg is associated with a ring nebula (AI-

duseva et al. 1982) and is member of the Cyg OB7 association
0-Iumphreys 1978). The measured vsin i of 274 tan s-j indi-

cates that this giant star is rotating rapidly. The broad photo-
spberic lines do show statistically significant and qualitatively

similar line profile variations fFultenon 1990). The strongest

variations in the form of transient absorption enhancements oc-

cur in the stronger optical lines, like the He i triplet at 5876/_,
He _! 4686 A, and Ha.

Toe regular variability of the UV re_e.onance lines of 68 Cyg

in the August 1986 datset (see below) has been independently

analyzed by Prinja & Howarth (1988). They conclude that the

DACs in the wind of 68 Cyg are not due to "'shells" or "'puffs" of

matter, but instead arise from material passing through pertur-

bations in the flow, which can be illustrated in terms of spirally

wound-up streams. Kaper et al. (1990) reported the remarkable
constants., of the DAC pattern over many years. The first result.,,

from the September 1987 campaign of simultaneous optical and

UV obse_'ations of 68 Cyg were presented by Fullerton et at.

(1991). There was only one indication thal photospheric and
wind variability in this star might be related, namely a simulut-

neous decrease in v_¢ of the ultraviolet C iv wind line and the
equivalent width of the Hc 11 line at 4686/_. Tills helium line

is partly formed at the base of the wind.

In Fig. 10 we present the tuneseries of ultraviolet spectra
obtained in August 1986. The variations in the Si ix, doublet are

described by Prmja & Howarth (1988). The time resolution is
insufficient to resolve rapidly evolving DACs in the early part

of the timeseries; in the later part three event.`, can be recog-

nized. The first two are separated by half a day, followed by a

third after another day. The asymptotic velocity of the DACs
is about -2350 kTn s -_ . The characteristic pattern formed by

these three events also appears in the October 1988 observations
(see Fig. 12). The extent of variability m the Si l\, doublet, as

indicated by the e-ratio, ranges from about -700 to -2600
s- _ (cf. Table 5). The N v doublet is variable over the same

range of wind velocities, but here the edge variability is most
pronounced, with maximum amplitude at -2500 km s-1 . The

edge variability in the C 1\' P Cygni profile is even more evi-

dent. The C 1\, edge is at minimum displacement on Day 11; at
that epoch a Si 1\, DAC is approaching its terminal velocity.

In September 1987 the nugration of DACs in the Si Ix, pro-

file is quite r_ular; from Fig. 11 it is obvious that all DACs reach
the same asymptotic velocity (approximately -2350 l,Tn s-_),

and provide strong support for the idea that this velocity corre-

sponds to the termanal wind velocJty (HK.Z. Prinja et at. 1990).

The velocity corresponding to the blue edge in the saturated
C zv and N v lines is about 350 kTn s -_ larger. The recur-

rence timescale of DACs is about 1.2 days, but between the

DAC events at Days 5.4 and 6.8, a DAC develops half a day

before the appearance of the latter DAC. If one defines the re-
currence timescale as the time elapsed between two successive

strong DACs. one has to conclude that often a weaker absorp-

tion component appears within half this time interval. A similar

conclusion can be drawn from the UV observations of_ Per and

19 Cep (below). Although the variations take place within the

same range as in August 1986 (and later years, see below), the

amplitude of variability clearly changes over the years. Again

the edge of the N v and the Ctv profile gradually changes its

position.

The characteristic pattern of DAC variability in the Si iv
doublet of 68 Cyg is clearly recognized in the observations of

October 1988 (Fig. 12). in this year the amplitude of variability

is at its maximum, both in the Si Iv line in the form of migrating

DACs and in the saturated C tv line due to the varying steep
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Fig. 10. As in Fig. 1:68 Cyg 07.5 II1:n((f)) in August 19g6. Tbe evolufon of DACs in the Si [v doublet is described by Pnnja & Howarth

(19881. in the upper pa.rt of the time series three events are found: the first _'o are separated by half a day. followed bv a third one a dav later

The DAC's asymptotic velocity is about -2350 km s -I. The fom_ed pattern can be recognized in the October 1988 dataset. The extent of

variability m the Si ix' doublet, as indicated by' the cr-raUo, ranges from about -700 to -2600 km s -_ . Note the constancy of the interstellar

S: Ix' Lines. The N \' doublet is variable over the same range of wind velociues, but hme the edge vanabkhtv is most pronounced, v,'h_ch _s even

more evident in the C I\' P Cygni profile

edge. Tbe edge of C _\' is at minimum displacement when
a narrow component at its terminal velocity is getting weaker
Tbe 1986 dataset provides a similar trend. Tbe time sequence of

October 1989 is rather short (2.5 day, s) and allows the detection

of four DAC events, which means that ever3' 0.6 dab' a new

DAC develops. The edge of C ]\' and N v is changing with

time; the P Cygni emission is constant, which is the case for

all other timeseries included in this stud.',' as well. Our most

recent campaign on this star in October 1991 (Fig. 14) resulted

in a very, homogeneous series of spectra. From this series we

can confirm tbat the strong DACs appear ever), 1.2 day, with
sometimes the occurrence of a weak component in between.

4.8.HD209975 (19 C_?) 09.5 Ib

This supeNiant is a member of the Cep OB2 associauon. VeD'

little is k_own about its variability; Ebbets (1982) found changes

in the absorption strength of Ha, which were confirmed by re-

cent Ha _monitoring of this star by' Raper et al. 1995a_ Fullerton

(1990) detected significant variability in the He I 5876 _ line.

The projected rotational velocity v sin i of 19 Cep is 75 kma s- _,

which results in a rotation period of about I2 day, s (if tbe ro-

tation axis is reclined by 90 degrees with respect to the line of

sigbL see section 5),

HKZ and Prinia (1988) presented the relatively' slow migra-
tion of a DAC in the Si iv resonance doublet, obtmned dunng

the August 1986 campaign. Here we further sbow tbe umesenes

of the N v and C iv P Cygni lines. From Fig. 15 we conclude

that both tbe Si _\' and the N v P Cygni line exhibit significant

changes in the b}ue-shifted absorption part from about -500

up to -2300 lan s -:, with maxtmum amplitude around - 1500

lan s-_ . A strong and broad DAC (with initial width more than

500 lma s-_, cf. paper 1I) migrates through the almost saturated
Si Iv and N v lines and accelerates slowly towards its asymp-

totic velocity (-1750 _ s -_) during the following 5 days.

This is the velocity, reached by the narrow DAC present since

the start of the obsen, ations. The blue edge of the three shown
profiles is varying, being at minimum displacement at Day' 10

when the narrow DAC at the terminal velocity disappears. The

timescale of variability for 19 Cep is much longer than for ,_ Per
or 68 Cyg. The slower acceleration of DACs seems to be ac-

companied by' a longer tame interval before recurrence. For the
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Fig. 11. As in Fig. l : 68 Cyg 07.5 El:n(Cf)) in September 1987. The migration of DACs in the Si ['+:profile is vel%.'regular. Each DAC reaches

the asymptolJc ve]ocity of about -2350 km s -I. The velocity corresponding to the blue edge in the saturated C lv and N v line+_ is some 350

km s -+ higher. The recurrence mnescale of DACs is about 1.2 days. but in between the DAC event.,; at Days 5.4 and 6.8. a DAC develops half

a day before the appearance of the latter DAC

Fig. 12. As m Fig. 1:68 Cyg 07.5 m:nf(f)) m October 1988. A similar charactenstic pattern (see Fig. 113 of DAC variability in the Si Iv

doublet of 68 Cyg is clearly recogmzed. The amplitude of variability, given by the o--ratio _s at its maximum, both in the Si _v line because of

migrating DACs and in _e saturated C rv line due m the varying steep edge. The edge of C zv is at m.mimum displacement (Day 9) wben a

narrow component at its terminal velocity is about to disappear.
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Fig. 13, As in Fig. 1: 68 Cyg. 07.5 IIl:n((f)) in October 1989. in this relauvely short tame series the global patten) of variability has not changed,

but the amphtude of the variations is smaller than in the previous years
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Fig. 14. As in Fig. 1: 68 Cyg 07.5 IE:nC{f)) m October ] 99J. This year _e variations have the lowest amplitude, but DACs appear verT regularly,

the stronger ones about eyeD, 1.2 day. This provides support for the conclusion that the recurrence tamescale of DACs should be measured by

• e t/me h_/e/'-,'a2 between m'o successive strong components



Fig. 15. As m Fig. 1:19 Cep 09.5 lb in August 1986. The slow rotator 19 Cep exhibits a slowly migrating and very strong DAC in both the
N v and the Si I',' LrV resonance lines. Tbe DAC present since the start of the obse_'ing campaign has reached iL_terminal velocity of -- 175(I
km s-_ . The blue edge of the three profiles is variable, being at mintmum displacement at Day 10 ',,,,hen the narrow DAC at its terminal vetocity
disappears

latter we can in this case only provide a lower limit of about 5

days.

Because of the long timescale of variability in August 1986,

we could expect beforehand that the timeseries obtmned in

September 1987 (Fig. 16) and October 1988 (Fig. ]7) are too

short to witness a complete evolution cycle of a DAC. Although
some DACs seem to be present at (or close to) their terminal

velocity in the Si _\, and N v doublets, only in 1988 the devel-

opment of a new DAC (but by no means as strong as the DAC

in 1986) is detected. No variations are found in the blue edge of

the saturated C _v profile in 1987, but in 198_ we note signifi-

cant changes: again the edge is at minimum displacement when
a high-velocity component is getting weaker. The saturation of

the N v and Si iv doublets in August 1986 results from the

presence of a strong DAC, assuming in 1987 and 1988 these
profiles are not saturated.

The October 1991 observations were covered by simultane-

ous optical obserwations (cf. Kaper et ai. 1995a). In the center of

the Ha absorption line a strong and variable emission compo-

nent is found, just before the appearance of a moderately strong

DAC in the SJ jv line at Day 4 (Fig. ]8). Our las_ campaign

on 19 Cep was organized in November 1992. In Fig. 19 the
development of a DAC at Day 5 is observed, which is similar

to the DAC in 1986 but not as strong. Close to the end of our

campaign a new DAC seems to develop, which would set the

recurrence timescale to be approximately 5 days. The dip ob-

served at - ] 750 lma s-_ in the c-ratio describing the variability

of the Si _x, line indicates that a_ this velocity the changes in

absorpuon strength are relatively small. From the umesenes we

see that at this position a DAC is continuously present. There-

fore, a dip in the a-ratio, if presenu rmght be used as a diagnostic

to measure the asymptotic velocity of DACs. The C IV edge is

at minimum displacement at Day 5.6. and shifL_ towards higher

velocity when the newly formed DAC accelerates through the

Si _v profile. This underlines the difficulty in finding a one-

to-one correlation between DAC behavior and edge variability,

even for a given star.

4.9. HD210839 (), Cep) 06 l(n)fT

The observational histo_, of this bright runaway Of star, origi-

nating from the parent Cep OB2 cluster with a radial velocity of
-75 lma s-_(Gies & Bohon 1986), is well documented. Many

observers have reported variability in the shape and strength of

the emission features in the optical spectrum of A Cep. In par-
ticular the double-peaked emission line of He ]_ at 4686 A has
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Fig. 17. As m Fig. l: 19 Cep 09.5 Ib in October 1988. Also in this dataset the variations occm-rmg m the unsaturated P Cygni lines are not very.

pronounced. Probably. a new DAC starts to develop at the end of the campaign
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Fig. 18. As in Fig. l: 19 Cep 09.5 Ib in October 1991. At Day 4 a DAC appears in the Si iv profile

Fig. 19. As m Fig. 1:19 Cep 09.5 rom November 1992. A strong DAC appears m this series of observations. At the end of the campaign a

second DAC starts to develop. This sets the recurrence umescale to about 5 days for 19 Cep. It is difficult to establish a one-to-one correlation

between edge variabili D' and DAC behavior. The umesenes of 19 Cep provide s_ong suppor_ for our conclusion that slow stellar rotation is

linked with a long recurrence tune and slow acceleration of DACs
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Fig. 20. As m Fig. 1: ,XCep 06 I(n)fp m August 1986. Only the top part of the grey-scale figure has sufficient time resolution (note the arrows

at the fight axis) to resolve the nmgration of a DAC m the Si IX.'doublet. The DAC accelerates within one day towards its tenmnal velocity
(approximately' -2000 k.m s-_ , derived from the nearly saturated right doublel component of the Si _\' resonance lines). The er-raUodoes not
indicate significant variations in the N \' doublet, but shows a very pronounced edge va_ability in the Si }v and C Ix, IJnes, with maximum
amphtude at -2300 and -2500 km s -1 , respectively

been extensively studied for variability. Conti & Leep (19741
interpreted the changes in strength of _e violet and red emis-

sion peak and the variable central absorption of this profile in
terms _f the revolution of an inbomogeneous wind around the

star. This behavior was very well observed during our Octo-
ber 1989 -campmgn (see Henrichs 19911. The Ha emission line

shows stmilar variability (Conti & Frost 1974, Ebbets 19821.

Ful_erton (19901 found dramatic lpt' in optical He _ and C _,

lines. According to Hennchs et al. (19911 the variations in the

d_p .pbotgspheric He I line at 4713,2_ are most likely, caused by'

non radi:v! pulsations. The rapid rotation of ), Cep is indicated
by, t_e large value for vsin / (214 tan s-_).

H},Z,Zreported for the first time the presence of DACs in

the partly saturated Si rv doublet obtained in August 1986 (see

Fig. 20), tatting advantage of representing the spectra by' means
of grey-scale figures. Mso the position of the blue edge of the

stronely saturated UV resonance lines gradually changed with
time (on a timescale of about 2 days) which strongly correlates

with equivalent-width changes in the He _ 4686 _ line at ve-

locities below 400k-m s -_ (Hen_,-ichs 199]). Fonunately, during
the August 1986 campaign we obtained six IUE spectra within
1.5 days and were able to resolve the evolution of a DAC in

ume. The DAC accelerated within one day towards its termi-

nal velocity at approxtmately -2000 tma s-_ , derived from the

nearly saturated red doublet component of the Si ix, resonance

lines. The e-ratio does not indicate significant vanauons in the
N v doubleu but shows a ver-y pronounced edge variability in

the Si I\' and C iv lines, with maximum amplitude at -2300

and -2500 k-m s -_, respectively. Around Days 5 and 8,5 the

C rv edge is shifted towards its maxtmum position at -2500
lmas -_.

In the campaigns in September 1987 (Fig. 211 and October

1988 CF]g.22) we obtmned a dozen LPv' spectra which show the

rapid evolution and reappearance of DACs with a recurrence

timescale about 1.4 days (see below), but the high saturation

level of the profiles frustrates a detailed overview of their evolu-

tion. The red component of the Si ]\' resonance doublet shows
that the variations extend from -600 to - 1700 l,.mas- _, and the
edge variability occurs at -2450 kTn s -_ in the C 1\" doublet.

"I'be emission peak of the C rv P Cygni profile has a triangular

shape (as was the case for a Cam). In 1988 the e-ratio has a
peak in the N \' profile, but this is due to one incorrectly cali-

brated spectnm_, which shows up in the overplot in the n'uddle
panel of Fig. 22. The saturated part of the C t\' profile _s found
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Fig. 21. As in Fig. ]: A Cep 06 ](n)fp in September ]987. We cannot resolve the rapid evoluuon of DACs in this ttmeseries because of
insufficient ume resolution. Note the triangular shape of the P Cygni emission in the C IX: doublet

tO have a a-ratio smaller than one: this is caused by the fact that
the esumation of the expected variance at these low Ci.e. zero)

flux levels is based on the region around Lyman o where the

flux calibration is uncertain (cf. Henrichs et al. 1994), resulting
in an overestimation of _r,xp at these flux levels. The October

1989 IUE observations were covered by optical observations

fHertricbs et al. 1991 ); significant variations appear only in the
edge of the Si _v and C _\' profiles, on a timescale of about two

days (Fig. 23).

In 1991 we observed A Cep twice; in February we mon-

itored this star during 5 days and found dramatic changes in

the blue edge of the Si ]v and C ]\' lines (Fig. 24). Several

DACs migrate through the Si _\' profile; a remarkably strong
component appears at Day 11 when a previous DAC (which

developed at about Day 10) arrives at its asymptotic velocity

of -2000 lan s-_ . During this occasion the C ]v edge shifts

shortward more than 200 k-an s-_ . Although m October 1991
the amplitude of the variations is much smaller than observed

in February 1991, the higb time-resolution of this series enables

the detection of five migrating DACs in the Si ix, lines. From
these observations (Fig. 25) we conclude that the recurrence

time,scale of DACs is about 1.4 days for A Cep, which is again

about equal to the time needed for a DAC to approach its ter-

minal velocity. The edge of the saturated profiles (the edge of

N v is partly obscured by the Lyman c_interstellar absorption)

is quite stead3; showing an increase in velocity around Day 4.

4.10. HD214680 ( lO Lac) 09 V

This well-known main sequence star most-likely is a slow rota-
tor (v sin i = 32 krn s- _), although it maght be that it is pole-on.

It exhibits very subtle lpv in its optic.a] spectrum (Smith 1977.

Smith attributed this Ipv to low order non-radial pulsations with

a period of 4.9 hours, and classified 10 Lac as a 53 Per van-

able. The ultraviolet spectrum of 10 Lac contains only weak

stellar-wind features, but LGS reported the presence of narrow
absorption components in the O vj and N v resonance lines at

about -900 kTn s-_ . PH did not detect an)' DACs in the un-

saturated C ix, profile. Although unsaturated, this profile has

a remarkable shape, probably because of blending by the un-

derlying photospheric spectrum ¢see Fig. 26). The N x, doublet
shows some blue-shifted absorption up to -800 kTn s-_ where

the profile reaches the continuum.

During the November 1992 campaign the strongest mani-

festation of variability in the wind of l 0 Lac is found in the N v
resonance doublet. From -700 to -1000 lan s-_ the a-ratio

shows a peak, with maximum amplitude at -900 km s-_. In

the Umeseries of this line we note tlae development and subse-

quent acceleration of a DAC at Day 7, starting at a velocity of

about -700 l,Tn s -_ . The corresponding DAC in the C _v line

is also visible. The acceleration of the DAC ends at a velocity
of approximately -1000 _ s-_ in about three days. This is
the fi.rst tame that the evolution of a DAC has been followed in

ultraviolet spectra of 10 Lac.
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Fig. 22. As in Fig. 1: _ Cep 06 I(n)fp in October 1988. Several DACs migrate througb the Si i',' profile The a-ratio has a peak in the N \'

profile, but this is due to one wrongly calibrated spectrum, which shows up in the overplot in the middle panel. The saturated part of the C [v

profile is found to have a a-ratio smaller than one: this is caused by the fact that the estimated crc_r at these lc_w (i.e. zero) flux levels is based

on the region around Lyman o where flux calibration is uncertain (cf. Hennchs et al. 1994L resulting m an overesumauon of trc,_rat these flux
levels

Fig. 23. As in Fig. 1: A Cep 06 Ifn)fp m October 1989. Tbe C Ix' and Si Ix' profile sbow a significant change in the blue edge on a tamescale of

about two days. Simultaneous optical spectroscopy (Henricbs et al. 1991) reveals that the He I14686 A line vanes in concert with the C ]v and

N v' blue edge. The deep-pbotospberic He ] 4713 A line exhibits lpv that migbt be attributed to non-radial pulsations
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5. Characteristics of observed variability 5.2. DAC behavior and edge variability

In thi._ secuon we sumnmnze the characteristics of wind van-

ability in our sample of 10 O stars which follow directly from
the prescmed obse_'ations. In general we can conclude that

the UV resonance lines of the O stars in this study show vari-

ability to some extent, except in cases when the saturation of

the line prohibits detection. In unsaturated P Cygni lines the

chm_ges in blue-shifted absorption are mainly due to migrating

discrete absorption components, which accelerate from low ve-

locity towards the terminzd velociQ' of the wind. In saturated
lines the steep blue edec vanes in all cases when DACs ,arc

found in other hnes. Obviously, the amplitude of the vanauons
is different from sta to suLr. a._ is the observed timesczde.

5.1. Extent of variabili 0,

In Table 5 wc have listed the velocity range (in knn s-_) for
which wind v_u'iability is observed in each individual star, based

on the a-ratio displayed in the top panel of the figures. Some

stars (like ( Per and HD34656) vary over the full range of wind

velocities, and the maximum amplitude is always found at a ve-

locity larger than half the terminal velocity of the wind (see the

,-r-ratio displayed in the upper panels of the grey-scale figures).

The highest velocity reached by DACs is also indicated in the

table, if we were able to follow the cvolution of a DAC during at
least one of the obsen, ing campagns. For 15 Mon and A on we

assumed that the central velocity of the persistent component is
a good representation of the temlinal velocity of the wind. Since

the central velocity of the absorption components is one of the

three parameters used to model the DACs (cf. paper II), the

highest velocity reached by DACs can be precisely detemuned.

For 15 Mon and 10 Lac we did not detect an), variability in the
Si 1\, doublet, probably due to the photospheric nature of this
line in main sequence stars (cf. Walbon_ & Panek 1984).

rUE observations of the 04 l(n)f star _ Pup (vsin i = 230
lart s -1) were analysed by Pr'inja et at. (1992). Time series of

the ultraviolet resonance lines revealed the wide range in veloc-
ity of wind variability in the Si )v (_ 750 - 2300 kn:n s-l) and

C ix, (_ 2600 - 2900 k.mas -l) doublets, and also the subordi-

nate N Iv line (_ 500 - 1500 km s- _). The latter line exhibits,
just like the Si Ix' profile, the development and fur_er evolu-

tion of DACs up to a maximum velocity of 2450 kalt s -_. The

observed recurrence time is about 15 hours. The saturated N v

and C Ix, profiles show fluctuations in blue-edge velocities up
to 200 l,Tn s -a . The rapidly rotating (vsini = 400 k.mas-l )

and non-radially pulsating 09.5 V star ( Oph has been studied

by Howarth et al. (1993). For this star the observed range of
variability is very limited (~ 1200 - 1600 k.q:ns-_in the N v

and C iv resonance lines), although the blueward migration of

DACs is very pronounced. The recurrence ttmescale of the phe-

nomenon is ~ 20 hours and the asymptotic velocity reached by
DACs is 1480 k.q:ns -_ .

For 7 out of 10 O stars we could identify the evolution of

DACs m one or more umesenes. For A On mid 15 Mona

persistent absorplaon component is visible it) the spectra at a
constant velocity of -2000 km s -1, which we interpreted as

the terminal velocity reached by DACs. The strongly ,saturated

P Cygni profiles of _JCam prohibited the detection of any DAC

(if present). All detected DACs move from low to high veloc-

ity on a timescale comp:u-able to the rccurxence timescale tsec
next subsecuon), which means that DACs m the wind of stars

with higher _'sin i accelerate faster towards their terminal ve-
locity. For some stars (c Per and 6_ Cyg) the velocity reached

by DACs differs from event to event: for ,_ Per this difference
is about 350 km s-_ .

Although the recurrence and accelermion timescales remmn

the s;une over many years, we note that the strength of the DACs

is not constant (e.g. 19 Cep) and differs from event to event.
The width of a DAC becomes smaller when its central velocity

increases. This is similar to what has been found for other well-

studied ca,_es (e.g. Prinja et at. (19S7) in the case of _ Per and

Prinja & Howarth (1988) m the c,xse of 68 Cyg).

The position of the steep blue edge in the ultraviolet P Cygni

profiles changes gradually with tame showing shifts in velocity
on a 10_ level. In some timeseries the edge shifts to a mini-

mum in velocity when a DAC (visiblein an unsaturated P Cygni

line) at its terminal velocity disappears (e.g. 19 Cep). The edge

sometimes shifts towards higher velocity when a newly formed

DAC approaches its terminal velocity. The amount of change

in position of the blue edge could depend on the strength of

the DACs. The search for a possible relation between DAC be-

havior and edge varxability is hampered by the fact that severa/

DACs can be present in the P Cygni profiles simultaneously.

Close inspection of the variations in the presented umeseries

suggests, however, that edge variability and DACs reflect the

same phenomenon. The morphology of these changes depends

on the optical depth of the underlying P Cygni profile of the
considered line. If the optical depth is sm',dl, the profile is un-

saturated and one observes DACs (and someumes also edge

variability, see e.g. _ Per and 19 Cep) magraung through the

profile. If the optical depth is sufficiendy large, the profile is

saturated, obscunng an.,,, changes in column density. At veloc-

ities which exceed the temunal velocity of the wind (which is

identified as Vb_:k by Pnnja et at. 1990) the profile is not satu-

rated and therefore will show similar variability as in the edge

of the unsaturated lines (see also Fig. 7 in Henrichs et at. 1994).

5.3. Recurrence timescales

In Table 6 we compare the observed recurrence timescale of

the DACs with the expected rotation period of the star. An

upper and a lower limit for the rotation period of the star can
be calculated from the observed v sin i and the critical rotation

velocity v=i,, respectively. The values for the stellar radius are

taken from Table 2 and the escape velocities ",,,'ereobtmned from
HI='.lfthe recurrence timescale of DACs reflects the corotation
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Fig. 2A. As in Fi_. l : 3, Cep Ob It n)fp in Febma_' 199 l. Several DACs migrate through the Si lv profile. A strong DAC appears m the Si 1\' lmc

at Day 11 while an evolved component (which appeared at Day 101 arrives at iL_ asymptoUc velocity of --2000 kn/ :-i. Dunng this occasion

the C Iv edge shifts more than 200kin s -_ towards _e blue. The amplitude of the edge varlabiJit' in this dataset is the largest wc encountered

for .X Cep

Table 5. The extent of wind variability (in km s -_. thc given values represent negative velociues) m the sample of O stars as derived from

the a-ratio. Listed are the range of variability in the subordinate N Iv linc (for _ Per only) and the N v, S) Iv. and C I\' rcsonance lines. The

maximum value measured for the a-ratio (or=_ ) indicates the amplitude of vanabihty. The maximum veloc:y reached by DACs (if presentl is

tabulated in the last column. For detaiJed information about DAC parameters we refer to Kaper et aI. ( 1995b. paper I11

SLaI" N IX' Si IX' N V C 1\' t.rrna_ I_DACsm=_

Per 200-700 0-2500 300-2700 2400-2700 6 2250
a Cam 1800-1950 2

HD 34656 200-2400 1400-2400 2200-2600 5 ] 850

), on A 1800-2100 300-2300 (1800-19001 "_ 2000

Ori A 700-2300 700-2100 1800-2300 3 1700

15 S Mon 400-2500 2100-2400 1 1950

68 Cyg 700-2600 800-2700 2400-2800 4 2350

19 Cep 500-2300 1000-2200 2000-2400 6 1750

A Cep 600-1700 2100-2600 5 (2000)

10 Lac 700-1000 700-1000 l 1000

of matter around the star, the observed recurrence timescale

should be a direct measure of the stellar rotation period. The

stars with low v sin i show a relatively ]on_ recurrence (and

acceleration, see above) timescale for the DACs. On the other

hand, stars with high v sin i value show a rapid recurrence of

DACs, including the rapid rotators ( Pup (Pl"inja et al. 19921

and ( Oph (Howarth et al. 19931. The recurrence ttmescale

never exceeds the maxtmum rotation period as indicated in

Table 6. From this, and the fact that the "pattern" of variability

is constant over many years, we conclude that stellar rotation

plays a crucial role in the observed development and dynamacal

evolution of DACs. The evidence presented here considerably

substantiates the earlier similar suggestion independently made

by Prinja (19881 and HK7_..
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Fig. 2_. As in Fig. 1: ._ Cep 06 l{n}fp in October 1991. Five DAC event._ can be distinguished in the partly saturated Si I\' doublet
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Table 6. The recurrence tmaescale of discrete absorptaon components
is listed for each target These results are consistent with the values

obtained after detailed modeling af the DACs (paper Ill The recur-

rence ttmescalc is compared to the minimum and maxunum rotation

period, estamated from the stellar paramemrs given m Table 2; the es-

cape velociues needed m calculate the critmal velocities were fallen

from Howartb & Prinja (1989). The stars are ordered by P_,_

Name _;,_, P,_, v sm _ /-',_ t.,

(kin s -I ) Idaysl ('hl_ s -_ ) [daysl (days!

68 Cyg 631 1.i 274 2.6 1.4

,_ Per 711 0.8 200 2.8 2.(I

A Cep 709 1.2 214 4.0 1.2

HD34656 726 0.7 106 ,1.8 0.9

15 Mon 785 06 63 8.1 > 4.5

A Ori A 654 0.9 53 I 1.5 > 5

/gCep 511 1.8 75 12.2 _5

o Cam d83 2.3 85 13.2

(" On A ,151 3.3 l lO 134 _ 6

10 Lac 757 (I.6 32 14.3 > 5

5.4. Subordinalc lines

For ,5 Per we detected sieniIicant variations in blue-shifted ab-

sorp0on in _e subordinate N rv line at 171S A. These variations

are directly related to the DACs present in the Si I\' line, but oc-

cur at lower velocity. Prin.ja et al. (1992) detected variability at

low velocitiy in the N 1v profile of the 04 l(n)f star _" Pup, with

the difference that they could resolve the blueward migration of

DACs such as observed in the Si Iv line. Since subordinate lines

arise from excited levels, the N _v iotas producing the 1718 A

line are not in the ground state (in contrast to the resonance

lines). Therefore, the 1718 A line of Njx' is only formed in

a relatively dense part of the (expanding) atmosphere. Hence,

we consider these low-velocity variations in the subordinate

N i\, line as evidence that wind variability originates close to

the stellar surface. In paper II we will show that low-velocity

variations are also found in subordinate lines of other O stars

in this study, making use of a template spectrum to enhance the

spectral contrast.

6. Conclusions and discussion

The most obvious conclusions from the quantified results pre-

sented are the strong confirmation of the ubiquitous variability

of winds of O stars, and the critical correlation between rotation

of the star and the behavior of DACs.

Several suggestions have been put forward to explain the

variability of stellar winds: corotating interacting regions of

the solar wind (-Mullan 1984), magnetic loops releasing mat-

ter just above the stellar surface (Underhill & Fahey 1984),

or the episodic ejection of a high-density shell (Lamers et al.

1978, Henrichs et a/. 1983). Prinja & Howarth (198S) argued

on grounds of a self-consistent phenomenological model de-

scribing the observed opacity depth enhancements in the line

of sight that DACs do not propagate from the photosphere.

Howarth (1992) further questioned their possible photospheric

origin based on the absence of infrared ermsston at 1(I um dur-

ing the appearance of a DAC m the UV resonance lines of the

07.5 giant 68 Cyg; this IR emission should be observed if the

shell model is correct.

A ve_' prom/sing ingredient was added to the discussion

by Owocki mid coworkers (e.g. Owocki et al. 19881 showing

that the unstable character of the accelerauon mech_m_sm m

a radiation-driven wind can result in a highly structured _md

variable llou. Thc time evo]u|iol) of such a clumpy wind cal_

m principle expl_un the variable P Cygm profiles (Pulset at.

1993), but the observed slow acceleration of DACs (e.g. Prinja

& Howarth 1988) and their recurrcncc timescales m'c no_ con-

sistent with the clumpy wind model. C',dculations show tcf.

Owocki 1992) that Om inclusion of scattering suppresses the

line instability at the base of the flow. resulting m a structured

wind only from a few stellar radii above the stellar surface to

further out m the wind, possibly, expl;uning why the largest :m_-

plitude of v;mabilit.v is found at velocities exceeding 0.5 yd...

Waldron et at. (1993) nole, however, that the IR emission as

predicted by the Owocki model calculations is also not consis-

tent with observations, and obviously much _s still to be done.

We stress that in all calculations the stellar rotation has not been

taken into account, because of the very high degree of complex-

it)'. We defer a further discussion of the DACs to paper II. which

contmns the quantitative results of model fits of DACs,
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L. ' ....... ._ L vari_',A,']' "" O-st_-r wines.

A. Log of obser_'ations

Table Ah ( Per. September _987

# SW'P Date Star_ texr JI:
h:m (L'1"! ra:s - 24.t7f_n

31716 5 &26 I:]_' 3.L_2

2 31719 11:19 l:211 3Q72

3 31721 13:[)2 1:15 4.(u_

4 31726 23:39 1:15 4486

5 31728 6 0:56 h15 4.54(I

6 31731 3:17 1:15 4.(3_

7 317_ 6:52 1:15 4787

8 31737 9:17 1:2(' 4.881,

9 31730 10:58 h21, 495_"

1o 31741 12:32 1:15 5t2g

13 317,-_ l4-46, I:2H 5.117

12 31746 16:14 l:lO 5.177

13 31749 183-I 1:10 5274

14 3175(! 20:07 1:10 53%9

15 31752 21.2r: 1:10 5.3_ r_

IL "q754 224"_ I:l(I 5447

17 31757 7 1:05 1:20 5.546

I1` 31767 10:33 1:20 5940

19 31770 12:55 1:20 6fW.2

20 31773 15:21` 1:10 6.145

21 31775 16:59 1:10 6.201`

22 31780 23:19 h20 6472

23 31782 1` 1:02 t:20 6.543

24 31784 2:25 1:2(1 6.601

25 31787 ,1:38 1:20 6.69-1

26 31790 8:1-1 h20 6,gaa

27 31792 9:31 1:10 6.897

28 31795 11:42 h10 6.988

29 31798 13:46 1:113 7.074

30 31800 15:2I 1:10 7.140

31 31802 18:22 1:10 7.266

32 31805 20;43 1:10 7.363

33 31807 22:36 1:10 7 4-42

Table A2: ( Per. October 1988

,, SWP Date Star', _:exr Jb

h:m (UT_ m:s - 2a47450

l 34524 22 6:30 1:10 6792

2 __527 9:16 1:01 6,886

7 34530 11:51 1:I5 6.994

4 __533 14:33 1:15 7.107

5 34536 16:41 1:!5 7.195

6 34539 !9:19 1:15 7.305

7 __542 22:00 1:15 7.417

8 34545 23 0:28 1:15 7.521

9 _M548 2:50 1:15 7.619

10 34551 5:20 1:!5 7.723

1! ?.455a 7:37 1:15 7.818

I2 3.a,559 14:39 hl5 gall

13 M562 17:05 h15 8.212

14 34565 19:25 1:15 8.310

15 3,4566 21:16 1:15 8.386

16 _'M569 23:33 h15 8481

17 .'54572 24 h54 1:15 8.580

1[_ M575 4:07 1:15 8.673

19 .'54578 6:29 1:15 8.772

20 34581 8:50 1:15 8.869

21 _%45gz 11:11 1:15 8.966

22 34587 13:42 1:15 9.071

23 34590 16:10 1:15 9.174

24 3"1593 19:55 1:15 9.330

25 M597 25 6:29 1:15 9.770

T_,le A3: ( Per,Oembef 1989

* S WP Date

1 3732_. i7

2 37331

3 3733a

4 37337

5 37%4(!

6 37.'543

7 373,46

1` 377,49

e 37352 1_,

10 37355

11 37351,

12 %736]

14 37367

15 37370

It_ 37374

17 37376 I v

18 %737_

19 37382

20 37395

21 37388

22 37391

23 37393

Star'. lexp JD

h:m (I71" _ m:t -- 2._17810

5:37 hlO 6735

8:1 I 1:18 6847

11:05 1:10 6.963

] 3:5{/ 1:10 7.077

15:55 1:10 7.164

]7:58 1:10 7.249

20:10 1:10 7,M]

23:05 1:10 7463

1:39 1:10 7.563

3:52 1.10 7.662

6.2] 1:10 7 765

_5I, ] In 786 _

it:l!, I 1_' 7c72

17:2{, t:lO 8.22t,

19:.-1-a 1:1{] 8322

22:13 1:10 8.42_

0:34 i:10 b.524

2:59 Ilu _b24

5:29 i:10 872'e.

7:55 l:10 8 831

1(!:55 h10 8952

13:1 a 1:11, 9.051

17:3(, I:10 9.233

Table A4: _[ Per, October 199I

_, SWP Date Start text II)

h:m (ITf} m:s - 2448550

1 42788 23 00:4t" h I U 2.5._

2 42791 03:40 h10 2.574

3 42795 07:07 1:10 2798

4 42791, 09:59 1:10 2916

5 42803 1:10 3.114

6 42806 1:10 3217

7 42812 22:21 1:10 3433

8 42815 2.1 01:08 1:10 3.548

o 42819 04:22 1:10 3.683

10 42_22 00:46 hid 3.783

11 42_27 10:51 1:10 3.953

1..2 42830 I:IU 4.05{"

13 42833 1:10 4.1ot,

1.1 42836 hl0 4263

15 42840 I:10 4412

It, 42843 25 I:10 4.513

17 42M6 l:lO 460.1

18 42850 1:10 4.731

19 42853 0%49 1:10 4.826

20 42858 11:40 1:10 4.987

21 42861 I:10 5.101,

22 42864 I:10 5,20-1

23 42870 21:36 h10 5.40!

2-1 42873 26 00:05 1:10 5.50.:

25 42876 02:25 I:10 5.607

26 42880 05:23 l:lO 5325

27 42483 67:38 hid 5.8!9

28 42888 11:_34 1:10 5.983

29 42891 1:10 6087

30 42894 hlO 6.197

31 42900 21:06 1:10 6.381

32 42903 23:28 hi0 6479

33 42906 27 01:41 1:10 6.57!

M 42910 04:39 1:10 6691

35 42913 07:00 h10 6.793

36 42918 10:51 hlO 6.953
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T_ale A5: o Catm. r-'et_u_ 1991

* Image Date Start [czr, .ID

$_,"p h:mio m:s -2448280

i 40726 3 i 21:06 3:06 $.%$2

2 407%0 ] 0:4_ 1:3(' 8.535

3 40733 6:43 1:40 8.78]

4 40736 9:46 1:40 890[,

5 4074(' 14:03 1:40 9.087

6 40744 17:52 1:45 9.246

7 40748 21:19 1:45 9.390

g 40752 2 0:55 1:45 9.540

G 40756 7:12 1:50 9.800

10 40761 12:09 1:50 10.005

11 4096 "a 144{._. 1:5{'t 10/187

12 40767 1{,411 1 :'if} 10.26f'

1% 40771 21456 1:50 10415

la 40775 3 hll h50 10.551

15 40778 6:05 145{.I 1(1754

16 40781 1£33 1:50 10.857

17 40786 12:46 1:50 11.0__,

18 40790 I t,443 1:5(} 11.198

t9 40794 20:23 145(] 11.351

20 40798 23:37 t:50 11.486

21 40801 4 2:19 1.50 I 1.599

22 408(14

23 40807

24 40810

25 40814

26 40818

27 40822 5
28 40823

29 40825

30 40828
3I 40832

6:49 1:50 11.785

9:30 1:5(t 11.897

14:30 1:50 12.112

18:11 1:50 12.260

22412 h50 12.426

1:27 1:50 12.562

1:59 1:50 12.584

14:07 hSO 13.09(I

18:36 I:50 13.277

22:14 1:50 13.428

Table A6: HD34656.F¢bruary 1991

. SWt' Date Sum _.c_ .ID
h:m 0JTI m:s -2448280

1 4072_ 31

2 40732 l

3 40735

a 40739

5 40742
6 40746

7 40750

{, 40754 2

9 40757

10 40762

l] 40765

12 40769

13 40773

14 40777 3

15 40780

1( 40785

17 40785

18 40792

19 40796 4

20 40800

21 40803

22 40806

23 40809

2: 40812

25 40816

26 40820

27 40827 5

2_ 40830

29 4083.4 6

23:02 15:00 8.471

05:24 15400 8.730

08441 15:00 1t.867

I3:05 15:00 9.057

15:48 15:00 9.169

19:34 15:00 9.327

22:56 15:00 9.468

05:17 1540(! 9326

08:02 15400 9.84(1

13:06 15:00 10.057

16:15 15:00 10.189

20:0g 15:00 10.352

23:35 15:00 10.494

05:08 15:00 10.719

07:36 15:00 10.822

11:28 15:00 10.993

14:49 15:00 I1.128

18:3a 15:00 11285

00:15 15:00 ] 1.425

01427 15400 11.571

05:53 15:00 11.751

08:22 15:00 11.85-1

13:41 15:00 12.076

10418 15400 12.191

20:26 15:00 12.362

23:47 15400 12.502

t7437 15:00 13.245

20:28 15:00 13.364

00:46 15400 13.543

T_,I= A7: _ Or;,November 1992

* S_,T Dart S_ Ic_ ID
h:m gOT! m:_ - 24.48939

i 46156 g 05:56 0.20 4.751

,_ 46159 08:46 0.2(' 4 866

3 1.6163 12409 0;20 4.98_

,a 40169 20:4(" (h20 5.365

5 46172 23:33 0;2(_ 5.482

t_ 46177 9 04:57 0.2U 5 7( 6

7 46180 07:40 0:20 5.820

I_ 46184 11:0 c_ 0:20 50ha

0 46180 22:00 0:2(} 6417

I0 46192 10 0144{. _ 0:2[_ 6.570

] _ 46t 96 06:24 (!:2 (_ ('-76_

1." 4610c 0_,48 (!.2 f' 6or<

13 46201 15.24 {<2 c' 7.142

14 46207 20:29 (}:20 7.354

15 4621(; I ] 00:03 0:20 7.5(13

16 46216 07:43 0:20 7.822

17 4622(I I 1:33 0:20 7.982

18 46223 I5:2{., 0:20 _la-I

It_ 46227 19:55 0:20 8331

20 46230 23418 0:20 8.472
21 46234 12 03:24 0:20 8.642

22 462%7 0o416 0.20 _.762

23 46241 09:56 0:20 8.915

24 46245 14:29 0:20 9.103

25 46247 1(,:13 0;20 9.I76

26 46253 13 02:4{" 0:20 9.612

27 46257 06:26 0:20 9.761"

Table Ag: ( Ori, No_,ember 1992

, SWP Date S_n texp JD

h:m (IYF_ m:s - 24a1_930

1 46157 {, 06:40 0:07 4.779
2 4616( I 09:27 0:07 4.804

3 46164 12452 0:05 5.018

4 46166 14:59 0:05 5.10t,

5 46171 22:51 0:05 5.453

6 46174 9 01:58 0:05 5.583

7 46195 05:33 0:05 5,732

g 46181 08:25 0:05 5,849

9 46185 12:02 0:05 6.000

10 46190 22:59 0:05 6.458

11 46193 10 02:37 0:05 6.610

12 46197 07:13 0:05 6.801

13 46200 10:4"7 0:05 6.950

14 46202 14427 0:05 7.103

15 4620['; 21418 0:05 7.38{,

16 46211 11 00:56 0:05 7.540

17 46217 08:3[' 0:05 7.860

18 46221 12:3[' 0:05 8.027

19 46224 16:12 0:05 8.!75

20 4622{` 20:42 0:05 8.353

21 46231 I2 00:04 0:05 _.5( _:

22 46235 04:00 0:05 8.574

23 46238 06:57 0:05 879(

24 46242 10:36 0:05 8.942

25 46246 15:25 0:05 9.142

26 46254 13 03431 0:05 9.6-47



-' -Long-andsho_:_."mv__n_b!_!.rymt_._ta___-_,L.Kape_et*u.. - .............................

TabteA9:15 Mot< Febm,_,' 1991

• SW'P Dale Sum tc_ JI')

h:m (I.'T t m:* - 2,t.4$280

1 40725 3',

[ 4(',72 c 1

"., 40737

4 4(1743

5 4(1747
6 40751 2

7 40759

40766

9 40770

1( 40774 3

i'. 40783

17 4078 (_

!3 40707`

1.4 40797 4

15 4U811

It 40M7

17 40821 5

18 40831

1_ 40[',35 o

2C 4083_,

2!_:0u 0:37 L'MI

00:00 0"40 8.50?

10:33 0:43 8940

16:54 0:43 9.206

20:33 0:43 9.357

23:59 0:43 9.500

10:02 0:43 9.918

17:21 (1:43 10.224

21:13 0:43 10.385

0(t:2c_ 0:43 10.522

09:58 0:4"_ 10715

15:55 fv4", 1116.4

19:36 04", 11.31_.

22:52 0:43 11.454

17:21 0:43 12.224

21:21 0'43 12.391

{10:a4 0:43 12532

21:24 (!:43 13 393

01:38 0:4"_ 13.56 t_

02:11 0:43 13.50_

"lableAlO:68 Cyg August 1986

• SWt' Date Star_, text JD

h:m ft']-) m:_ - 2446660

28909 23 7:Ib 2:0(I 5.80[_

2 28973 10:34 2:15 5.941

3 28976 12:45 2:00 6037.

4 28983 24 9:59 2:15 6.917

5 28986 12:43 1:55 7 030

6 28992 25 9:55 2:20 7.914

7 28095 12:13 2:2{! 8.010

[, 28097 13:30 1:45 8.063

29003 26 8:55 2:20 g.872

1(' 29(107 12:16 2:2(1 9.012

11 29011 15:43 2:20 9.156

12 29015 19:13 2:20 9.302

13 29019 23:05 2:20 9463

]4 29023 27 2:00 2:20 9.584

!5 29027 08:09 2:20 9.840

1_ 29031 11:07 2:20 9.964

17 29035 14:11 2:10 10.092

18 29039 I7:28 2:2(I 10.228

!9 29043 21:00 2:20 10.376

20 29047 2[:, 6:42 2:20 10.780

21 29051 10:02 2:20 10.919

22 29055 12:59 2:15 11.042

23 29059 17:51 2:20 11.24.a

24 29063 21:32 2:20 11.398

25 29064 22:00 2:20 11.418

26 2907(I 29 9:32 2:20 I 1.898

27 29072 10:58 2:20 11.957

29 29074 !2:39 2:20 12.02F

29 29076 14:13 2:30 12.093

30 29078 15:45 2:50 12.157

3i 29080 17:39 2:50 I2.236

32 29082 19:1(1 2:50 I2.299

33 29084 20:59 2:50 12.375

"fable AI 1:68 Cyg, September 1987

SWP Date Su_ texr
h:m (I."T ! m:s - 2447&10

l 31717 5 9:3b 2:50 3.002

,2 3172(, 12:10 2 45 4.008

3 31723 14:46 2:4(/ 4116

4 31725 224# 2:5(1 4.45fl

5 3173(I {, 2:27 2:50 4.603

6 31733 5:58 2:5t_ 4.75(I

7 31736 8;27 2:5 (1 4.853

8 31740 11 ''a'a 2:50 499(1

o 31743 140"; 245 5.086

10 31747 It_:54 220 5.205

II 3174tj 10.2l 2:21" 53(C

12 31751 20:4-_ 22 ¢_ < %¢"
"- 54Y'

14 31756 7 01C' 25i' 5.513

15 31759 2:2b 2:5(' 5(,84

16 31761 4.24 2 51: 5.685

17 31764 6:31 2:50 5773

18 M 7t, e, 8:23 2 s _ _.85

It; 317,8 11:1 u 2:5{: 5.073

2lb 3177 13:41 2:50 O.07l
. .._[ 6 "_4c'

21 31776 17:'_2 "_ " _ -- -
22 31771, 19'48 22 _ 6.326

23 31781 8 0:14 2:5 t_ 6.51 l

24 31785 %:1 1 2:50 6.633

25 3178_ 0:11 2:5f' 6 758

26 31793 1(!:I5 2:3(1 6...1_

27 31796 12:25 2:30 7.019

28 31799 ',4:21' 2:4fl 7.1( w"

29 31803 10:04 2:20 7.295

Table A12:68 Cyg. (')ember 1988

a SWP [)ate Sum t(xr Jl)
h:m CL,'T I m:_ -- 24"47451!

1 M523 22 5:3v 2:5(' 6.7.M

1923 2:20 6.850

10:51 2:20 6.953

13.40 ,:_0 7.076

15:59 2:20 7.167

18:3.4 2:20 7.275

.:_0 7._8'_21:13 "_ - -

23:36 2:20 7484

1:59 2:20 7.583

4:28 2;20 7.687

6:4c_ 2:20 7.785

t3:55 2:20 8080

16:12 2:20 8.176

184.4 -:-(' -- '

22:46 -.-(

1:06 2:25 8.5_7

_ _(.....

5:39 2:25 8.736

7:59 2:25 '6.833

10:22 2:25 [<933

1245 2:25 9.032

15:24 2:25 9.i42

19:07 2:25 9.297

7:18 2:25 9.805

2 34526

3 _'34529

4 34532

5 34535

6 3,4538

7 ".-,.154t

8 34544

9 34547 23

I0 34550

11 34553

12 34558

13 M561

14 34564

15 34568

16 .M571 24
17 34574

18 M577

19 34580

20 34583

21 M586

22 _'54589

23 34592

24 3.4598 25



TaMe AI3: 6g Cyg, October 1989

SWP Date St_ tc_r ID

h:m OJrJ m:s - 24-17B10

] 3"r%2 c 17 6;3 c 2:2¢ 6.7%

2 37332 9:t3 "_.'_ , 6.885

37335 Ih54 2.2_ 6.997

4 37338 14:28 2:20 7.103

5 37.541 16:31} 2:2(' 7.188

6 37_%_ lg:M 2:20 7.274

7 37M7 2h21 2:20 7.390

[, 37350 18 23:52 2:20 7495

_', "_.'m 7.598Q Z7a_% ...0

I[ 37356 4:36 2:2(' 7692

I 1 "_7358 7:12 2:2(' 7 8{ 1

12 "_7%62 0"37 2:2u 7.orll

13 _"% _ 1_0"_ 2:20 g.0m,. .k _.

la 37%68 18:04 2:20 8.253

15 37371 20:25 2:20 g.351

16 37374 23:00 .:.0 g.459

17 37377 19 1:16 2:21.! 8.553

18 3"7"_8_ %:46 2:21! 1`.6%

19 %738_ 0:16 2:21! 8762

20 q7386 8:47 2:20 1`.867

21 37389 11:38 2:20 8.985

22 373Q4 18:15 2:2(1 9.261

23 37396 20:04 2:20 9337

Table AI4:68 Cyg. October 1991

a ,RW[' Date Star: lexr J_)
h:m (Lrr] m:s -2,148550

1 42787 22 23:-I-I 2:2o 2490

2 42790 23 02:31, 2:20 2.612

3 42704 06:13 2:20 2.761

4 42797 09:06 2:20 2.881

5 42802 2:20 3.082

6 42805 2:20 3.185

7 42809 2:20 3.319

8 42811 21:23 2:2"_ 3.393

9 42814 24 00:16 2:20 3.513

10 42818 03:35 2:20 3.652

1 l a2821 05:53 2:20 3.747

12 42826 09:59 2:20 3,918

13 42829 12:24 2:20 4.019

14 42832 2:20 4.135

15 42835 2:20 4.2.'_

16 42839 2:20 4.371

17 42842 2:20 4.479

l 8 42845 25 2:20 4.572

19 42849 2:20 4.702

20 42852 2:20 4.796

21 42857 10:48 2:20 4.952

22 42860 2:20 5.('75

23 42863 2:20 5.176

24 42866 2:20 5.265

25 42869 2:20 5.365

26 42872 23:16 2:20 5.472

27 42875 26 01:39 2:20 5.571

28 42879 04:40 2:20 5.697

29 42882 06:50 2:20 5.787

30 42887 10:39 2:20 5.946

31 42890 2:20 6.050

32 42893 2:20 6.160

33 42896 2:20 6.251

3-4 42899 2:20 6.349

35 42902 22:40 2:20 6.aa7

3t 42905 27 00:52 2:20 6.538

37 42909 03:52 2:20 6.663

38 42912 06:11 2:20 6.760

39 42917 10:02 2:20 6.92121

40 42920 12:17 2:20 7.014

latqe A!5 1Q Ce¢ Augum 1986

# SV, T Date Sum _¢Kr J'D

h:m _'TI m:s - 2z4666_

1 28967 2 a

2 28970

3 28975

4 28981 24

5 28988

6 28Q89

7 2899(t 2_

1` 28996

9 28998

10 2899c

II 2ont_4 2_

12 2o¢ff)_

1_ 29012

14 29011,

I5 29020

16 29024 27

17 29028

I _ 29{)32

19 29036

20 29(M_

21 29044

22 29_ 2_

23 29052

24 29056

25 20060

26 29071 29

27 29075

21` 29079

29 29083

3.42 5:00 5.657

8:;,4 5:00 5 83 c.

12:0] 4:30 6.004

821 5:0(' 6.851

14:D4 3:30 7.089

14:38 4:B(i 7.112

g:37 5:0(I 7.862

12:54 3 45 8(ua0

14:06 3:15 8090

14% 3:35 8.112

125¢. _:l _ ca41

20:05 5:00 9.3411

23:46 5:00 9493

2'40 5:(It_ 9.614

h:45 5:00 9.867

11:48 4:15 99_4

14:50 4:1', 10.121

18:18 5:00 10.266

21:52 5:00 10.414

7:22 5:00 10.810

10:39 5:011 10.947

13:41 3:45 11.072

1845 5:00 ] ].284

I1):0t_ 5:00 11.926

13:21 3:45 12.05 c
16:30 5:30 12.197

19:57 5:3{_ 12.335

Table A16:19 Cop. September 987

SWP Date Slart text, J1._l

h:m (UTI m:s --2 "147 tu'I(I

1 31722 5 13:58 5:00 4.083

2 31729 6 1:41 5:311 4.572

3 31735 7:37 5:30 4.819

4 31742 13:18 5:00 5.056

6 31762 5:01 5:45 5.711

7 31769 12:11! 5:45 6009

8 31777 1[';:40 6:0(1 6.280

O 31786 8 3:50 6:00 6.662

10 31794 10:56 5:30 6.958

11 3181_ 19:51 6:00 7.329

Table AIT: 19 Cep. October 988

¢_ SWP Date Start _¢x_ JD

h:m (UTI m:_ - 2447450

1 34525 22 10:07 6:00 6.924

2 34534 15:I2 5:45 7.135

3 345,1.0 20:18 5:45 7.__8

4 34546 23 1:20 5:30 7.556

5 34552 6:06 5:30 7.756

6 M560 15:22 5:45 8.142

7 .54567 22:05 5:30 8422

8 M573 24 2:41 5:30 8.613

9 .M579 7;19 5:30 8.806

lO .%4585 12:02 5:30 9.003

II 3-1591 11`:15 5:45 9.262

12 M599 25 7:59 5:3(' 9.834



L.t/..... ._1._at._j ,_t ,u.. Long- and -':bo_4er',m- x.-'_"azb_ m U-s*___r wmc_s ............................ 7_7 ._

Tab)e Alg: 19 C_p. O¢_b¢_ 1_I

# SWT' Date Sum t=_ J'D
h:m CUT1 re:r- - 2a.48550

J 42792 27' 4:31 5:30 2.653

2 4270c 10:47 5:30 2.952

3 42808 5:% 3.285

4 42811, 24 1:56 5:3t_ 3.584

5 42824 8:31/ 5:3('1 3.857

6 42837 5:30 4.297

7 42848 5:30 4.674

8 42856 10:0.0 5:30 4.924

9 42867 5:30 5.301

lO 42878 3:58 5:3f _ 5.668

11 42886 9:5z 5:30 5.916

12 42897 5:3fl 6.285

13 4299,_ 27 3:12 5 3{r 6.636

14 42915 8:41 5:30 6.866

Table AIg: 19 Cep. November 1992

# _r1_ l)alc ,%ta_ Zcxp J])

hem 0.ST) m:s -24.48930

1 46154 l, 04:15 5:30 4.681

2 46161 10:27 5:30 4.030

3 4616_, 19:44 5:30 5.326

4 46175 9 03:11 5:30 5.637

5 46182 09:2 t_ 5:30 5.899

6 46181, 2047 5:3(! 6.37<1

7 46104 1{' D4:17 5:30 6683

8 46201 11:59 5:30 7.002

9 46205 17:56 5:30 7.25(I

10 4621-" 11 02:26 5:3(I 7.605

11 46218 09:42 5:30 7.908

12 46225 19:17 5:15 8.223

;3 46232 i2 0i:25 5:I5 8.563

14 46239 07:59 5:15 8837

15 46249 18:27 5:15 9.271

16 46253 13 00:J7 5:15 9.516

Table A20: A Cep, August 1986

, SWP Date bran text, JD

h:m (UT) m:s --24-46660

i 28965 22 6:17 8:20 4365

2 28974 Ii:17 9:00 4.973

3 28977 13:20 6:00 5.058

•_ 28982 23 9:10 9:30 5.885

5 28987 13:23 6:30 6.060

6 28991 24 9:i4 9:00 6.88l,

7 29005 25 10:15 9:30 7.930

8 29013 17:28 9:30 8.231

9 29021 26 0:24 6:30 8.519

10 29029 9:23 9:30 8.894

1i 29037 15:34 8:45 9.151

12 29045 22:42 9:30 9,.1-19

13 29053 27 1h20 7:.15 9.975

14 29061 19:31` 9:30 10.322

Table A2,1: X Cep. September 1987

SWP Date Stt_ t¢_ JD

hem ('l_l m:s - 2_:_7040

1 31711` 5 10:26 9:4(_ 3.938

2 31732 6 3:56 I0:0C, 4.667

3 32738 _,0:05 10:OC 4.923

4 31755 23:27 10:30 5.481

5 31763 7 5:45 10:30 5.743

6 31772 14:24 11:00 6.104

7 31779 22:II 11:00 6.428

8 31788 8 5:22 11:00 6.727

9 31797 13:02 9:30 7.046

10 31806 21:3-.: 11:00 7.402

Table A22: A Cep, October 1988

*, SWP Date Start t¢ m, JD

hem (Lr'l ") met, -2a4745n

i 34525 22 7:26 10:00 6.809

2 34531 12:42 10:00 7.032

3 34537 17:42 10:0f_ 7.241

4 34543 22:51 10:00 7.455

5 34549 23 3:42 10:00 7.657

6 34555 8:25 10:00 7.854

7 34563 17:45 10:00 8.243

g %457(1 2,1 0:19 10:00 g.51 "_

c 34576 4:51 10:0(, 8705

lfl _M582 9:35 10410 8.903

11 ":t4_'88 _4:1 _" 10:(if' ¢t I flP

1" %46(10 2 C' 8.-1A II,:(Ul 9.g('-

Tab)e A23: A Cep. October J 98 t_

SWP ba_e Start _¢xr .1'b
hem O_'I" _ m:s -2.4,47810

2 373_",t! 17 721_ 10:00 6.813

2 47333 1(}:09 I (l:0I_ 6.92(,

3 37336 13:00 10:0(I 7.045

4 3733_ 15:ll Ill:O0 7.136

5 3TM2 17:15 10:0(3 7.222

6 373.45 19:18 10:0(* 7.308

7 37_'348 22:10 10:0f! 7.427

1` 37351 18 [!:38 II):ll() 7.5%0

9 37354 3:02 10:00 7.630

10 37357 5:24 10:09 7.721,

Ii 37360 7:54 10:00 7.833

12 37363 10;25 10:00 7.938

13 37366 12:44 10:0(/ 8.034

14 37369 18:56 10:00 8.292

15 37372 21:16 10:00 8.391'

lb 37375 23:4(1 10:flO 8,190

I7 %737F 1c 2:06 10:0O 8.59]

18 37381 4:37 10:00 8.696

19 373l¢4 6:59 I 0:00 8.79..;

20 37387 9:51 10:00 8,914

21 37390 12:15 10:00 9.014

22 37395 19:02 10:00 9.297

23 37397 20:46 8:00 9.368

Table A24: A Cep, February 1991

._ SWP Date Star', text JD

hem (L"I'i m:s - 24.48280

1 40727 31 22:04 lO:O[i 8.427

2 4(!73] l 1:39 10:00 8.5[;1

3 40738 i2:(14 10:00 9.010

4 40741 14:54 9:30 9.12/,

5 40745 18:39 9:30 9.285

6 40749 22:06 9:36 9.42[',

7 40753 2 1:52 9:3/_ 9585

g 40760 11:03 9:30 9.96.z

9 40764 15:16 9:30 10.1 "

1(, 40765 19:i3 9:30 10.309

11 40772 22:4.4 9:30 10.454

I2 40776 3 2:03 9:30 10.592

13 .10784 10:47 9:3C 10.952

14 ..10787 13:43 9:3f) 11.079

15 40791 i7:35 9:30 11.241

16 40795 2h10 9:39 11.389

17 40799 4 (1_:2- 9:30 I 152-;

18 4080_, 12:40 9:30 12.036

19 40811 15:24 9:30 12.1.19

20 40815 19:10 9:30 12.313

21 40819 22:55 9:30 12462

22 40826 5 16:36 9:30 13.200

23 40829 19:32 9:30 13.321

24 40833 23:52 9:30 13.502



34- L.Kaperet4i2i_ng-andsnOrt-termvanabihtymO-starwinds

TnbleA25:), C_._. Oc_b_- 1991

* S_T Date Stem text _)
h:m O."1"+ m:t -24.48550

] 4278e 27. 22:43 10:06 245.;

2 4278¢ 2% 1:4i 10:00 2.577

a 4279_ 5:19 10:00 872 c

4 4279_ 8:05 10:00 284.4

5 428C] 12:33 10:00 3.031

6 428,q4 10:00 3.149

7 42807 10:00 3.249

8 42_1f 10:00 3.3_5

c 42_] 3 23:06 ] ():00 346";

1o 421_17 24 2'4f lO:Ofl 3623

I ] 4282!, 5:0"_ I(l:O' 372:

12 42_23 7:32 10:6(_ % _"22

13 4282_ 11:3 _ 10:0(', 3.9:2

14 42831 10:00 4.101

15 42834 I0:00 4.201

If, 42_:3[, I0:00 4.331

17 42841 ] 0:0f) 4449

18 42844 | 0:f)f) 4.543

19 42847 10:00 4.¢,4 l

20 42851 10:00 a,767

21 42854 8:37 10:00 4.867

22 4285 c 12:M I0:00 5.031

23 42862 10:(1() 5.142

24 42865 10:00 5,233

25 4286,_ 10:0(' 5.332

2C 42871 22:29 10:0(b 544.4

27 42874 26 0:51 10:00 5.542

2_ 42877 3:07 10:00 5.633

29 42881 6:00 10:00 5.763

30 428ba 8:24 10:00 5.857

31 4288Q 12:19 1(1:00 6.021

32 42892 10:00 6.121,

33 42895 10:00 6.2t6

34 42891_ 10:00 631_

35 42902 21:53 10:00 6.419

3(, 429(_ 0:07 10:00 6.512

37 42907 2:23 10:00 6,607

38 42911 5:23 lO:OO 6.731

39 42914 7:52 lO:O0 6.835

40 42919 11:33 10:00 6.98,8

Table A26; I0 L,zc, November 1992

*, SWP Date Sta_, _*xT, JD

h:m (L'T_ m:s -24.18936

i 46155 8 05:0i 1:00 4.720

2 46158 07:47 1:10 4.825

3 46162 11:18 1:05 4.971

4 46165 t3:54 1:00 5.061

5 46170 21:49 1:00 5.409

6 46173 9 00:5i 1:00 5.536

7 46176 03:58 1:00 5.666

8 46179 06:41 1:00 5.779

9 46183 I0:13 1:00 5.927

10 46187 19:21 1:00 6.307

11 46191 10 00:29 1:00 6.521

12 46195 05:20 I:00 6.723

13 46198 08:2= 1:00 6.851

14 46206 19:14 I:00 7.302

16 46215 11 06:40 1:00 7.779

17 46219 112:32 1:00 7.940

18 46226 18:50 1:00 8,285

20 46233 12 02:21 1:00 8,598

21 46236 05:18 1:00 8.722

22 46240 08:54 1:00 8.872

24 46248 I7:24 1:00 9.226

26 46256 13 05:24 1:00 9.726

This arucle was processed by the author using, Sprmger-Verlag LATEX

A&A s t'yle file L-AA version 3.



I Form Approved
REPORT DOCU M ENTATIOI t    E OMBNo.ozo4-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arlincjton, VA 22202-4302, and to the Office of Mana_;ement and Bud_let, Paperwork Reduction Proiect I0704-01881, Washin_lton, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April199/#
4. TITLE AND SUBTITLE

Simultaneous UV and Optical Study of O Star Winds and

UV and Optical Covariability of O Star Winds--Final Report

6. AUTHOR(S)

Joy S. Nichols

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Computer Sciences Corporation

System Science Division

4061 Powder Mill Road

Calverton, MD 20705

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASA Aeronautics and Space Administration

Washington, D.C. 20546-0001

Contractor Report

5. FUNDING NUMBERS

Code 684. I

/t/. :-:,

 3/7/
8. PERFORMING ORGANIZATION

REPORT NUMBER . )

/ '_

NAS5-32473

10, SPONSORING/MONITORING
AGENCY REPORT NUMBER

CR-189424

!11. SUPPLEMENTARY NOTES

Technical Monitor: D. West, Code 684.1

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category: 89

Report available from the NASA Center for AeroSpace Information,

800 Elkridge Landing Road, Linthicum Heights, MD 21090; (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

Simultaneous ultraviolet and optical observations of 10 bright O stars were organized in several observing

campaigns lasting 3-6 days each. The observing campaigns included 12 observatories in the Northern hemisphere obtaining

high resolution spectroscopy, photometry, and polarimetry, as well as 24-hour coverage with the IUE observatory. Over 600

high dispersion SWP spectra were acquired with IUE at both NASA and VILSPA for the completion of this work. The

massive amount of data from these observing campaigns, both from IUE and the ground-based instruments, has been reduced

and analyzed. The accompanying paper describes the data acquisition, analysis, and conclusions of the study performed.

The most important results of this study are the strong confirmation of the ubiquitous variability of winds of O stars, and the

critical correlation between rotation of the star and the wind variability as seen in the ultraviolet and optical spectral lines.

14. SUBJECT TERMS

Stars: early-type, Mass loss, ultraviolet

17. SECURITY CLASSIRCATION
OF REPORT

18.SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIRCATION
OF ABSTRACT

]Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

34
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std, 239-18. 298-102



L- ---"


