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Abstract

The development of implicit schemes for obtaining steady state solutions to the Euler and

Navier-Stokes equations on unstructured grids is outlined. Applications are presented that

compare the convergence characteristics of various implicit methods. Next, the development

of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed.

Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in

an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for

partitioning unstructured grids among processors and for extracting parallelism in explicit

and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are

useful in adaptive transient computations, are presented.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





IMPLICIT SCHEMES AND PARALLEL

COMPUTING IN UNSTRUCTURED GRID CFD

V. Venkatakrishnan

Institute for Computer Applications in Science and Engineering

MS 132C, NASA Langley Research Center

Hampton, VA 23681-0001

United States

Contents

1 Summary 2

2 Governing equations 2

3 Spatial discretization methods 3

4 Steady state solution techniques 6

4.1 Explicit schemes ...................................... 6

4.1.1 Acceleration techniques .............................. 7

4.2 Implicit schemes ...................................... 7
4.2.1 Direct methods ................................... 8

4.2.2 Standard iterative methods ............................ 9

4.3

4.4

4.5

4.2.3 Line-implicit methods ............................... 10

4.2.4 Incomplete LU factorization methods ...................... 11
4.2.5 Advanced iterative methods ............................ 11

4.2.6 Preconditioning ................................... 13
Data structures ....................................... 15

Newton-Krylov methods .................................. 16

Applications ......................................... 17

Solution techniques for unsteady flows
5.1

5.2

5.3

5.4

5.5

5.6

22

Finite volume discretization ................................ 22

Explicit schemes ...................................... 23

Implicit schemes ...................................... 24
Treatment of the mass matrix .............................. 26

Grid adaptation for transient problems .......................... 27

Applications ......................................... 29

6 Parallel computing issues
6.1

6.2

6.3

6.4

6.5

6.6

34

Partitioning of grids .................................... 35
Communication issues ................................... 41

Parallelism in explicit schemes .............................. 43

Parallelism in implicit schemes .............................. 44

Performance on the Intel iPSC/860 ............................ 46

Adaptive grids ....................................... 49



1 Summary

The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-

Stokes equations on unstructured grids is outlined. Following a brief review of spatial discretization

methods, the principal time discretization techniques that are available are reviewed. The tech-

niques for unstructured grids are contrasted with those used for structured, body-fitted grids.

Applications are presented that compare the convergence characteristics of various implicit meth-

ods.

Next, the development of explicit and implicit schemes to compute unsteady flows on unstruc-

tured grids is discussed. Methods to improve the efficiency of explicit methods for time-accurate

computations are reviewed. The development of an implicit scheme that makes use of nonlinear

multigrid techniques to compute unsteady flows is outlined. The resulting method allows for arbi-

trarily large time steps and is efficient in terms of computational effort and storage. The issue of
mass matrix that arises with vertex-based finite volume schemes is addressed.

Lastly, the issues involved in parallelizing finite volume schemes on unstructured meshes in

an MIMD (multiple instruction/multiple data stream) fashion are outlined. The techniques for

partitioning unstructured grids among processors are discussed. Parallelism in the flow solvers is

addressed next. As a candidate explicit scheme, a four-stage Runge-Kutta scheme is used to com-

pute steady two-dimensional flows. Implicit schemes are also investigated to solve these problems,

where the linear system that arises at each time step is solved by preconditioned iterative methods.

The choice of the preconditioner in a distributed-memory setting is discussed. The methods are

compared both in terms of elapsed times and convergence rates. It is shown that the implicit

schemes offer adequate parallelism at the expense of minimal sequential overhead. Following do-

main decomposition ideas, the use of a global coarse grid to further minimize this overhead is also

investigated. The schemes are implemented on distributed-memory parallel computers. Finally,

some dynamic load balancing ideas, which are very useful in adaptive transient computations, are

presented.

2 Governing equations

The equations governing compressible fluid flow in integral form for a control volume 1;(t) with

boundary S(t) are given by

w v+ s VW,n)]da=O, (1)
Ot (t) (t)

where

W = [p, pV, pe] T

F(w, s) = (v -  ).nw

G(W, VW, n) = [0, t,t.V- q.n] T,

t = n.T

In the formulas given above p is the density, V is the velocity vector with Cartesian components

V_, e is the specific total energy, n is the outward unit normal vector of the boundary S(t) and

s is the velocity vector of the boundary. Also, # is the molecular viscosity,_ ), is the bulk viscosity

related to # by Stokes' hypothesis, A = -2/3#, _ is the identity tensor, T is the stress tensor and

D is the deformation tensor given by

1
D_j = _(l_,j + Vj,_) (2)



whereVi,j denotes the partial derivative of the ith component of V with respect to the Cartesian

coordinate xj, i.e., _,j = oy,b-_;" 0 stands for the divergence of V given by V_,i with the usual
summation convention, q is the heat flux given by Fourier's law

q = -KVT, (3)

where K is the thermal conductivity of the fluid and T is the temperature. These equations are

augmented by the equation of state, which for a perfect gas is given by

P = (7 - 1)(pe- _p[V] 2) (4)

Eqn. (1) represents the conservation laws for the mass, momentum (the Navier-Stokes equations)

and energy. It holds for any volume and in particular, holds for a specific volume associated with

each grid point or a cell, termed the control volume.

3 Spatial discretization methods

The computational domain is first tessellated using a grid composed of simplices, which are trian-

gles in two dimensions and tetrahedra in three dimensions. Unstructured grids provide flexibility

for tessellating about complex geometries and for adapting to flow features, such as shocks and

boundary layers. They are generated by using any of a number of techniques reviewed in [118, 82].

It is also possible to use hybrid grids, which include in addition structured, body-fitted quadrilat-

eral grids in two dimensions and prismatic grids in three dimensions in the vicinity of the solid

boundaries for resolving viscous regions as opposed to using stretched triangles and tetrahedra. In

three dimensions, the prismatic grids near the boundaries are typically generated by marching-out

procedures [93, 67].

On a given grid, one has the option of locating the variables at the cell centers or at the vertices

of the grid, giving rise to cell-centered and cell-vertex schemes. Alternatively, it is possible to deal

strictly with averages defined over volumes [11, 27]. This approach has certain advantages for higher

order schemes, but is not considered in the present work. In the case of finite volume schemes,

the governing equations in integral form (Eqn. (1)) are discretized. This allows discontinuities

to be captured as part of the solution. Eqn. (1) expresses the rate of change of the conserved

quantities (mass, components of momentum and energy) to be the negative of the net flux out of

the control volumes. This net flux through the control volume boundary is termed the residual.

For steady-state computations, this residual vanishes over all control volumes. Starting from an

initial guess, typically freestream conditions, Eqn. (1) is marched in time until the solution W

does not change. Thus global conservation in space is guaranteed because of cancellation of the

interior fluxes, resulting in flux contributions only at the physical boundaries. The control volume

for a cell-centered scheme is typically the triangle or the tetrahedron itself, whereas for a cell-vertex

scheme it is taken to be the median dual, composed of segments of the median. The control volumes
and the stencils associated with first order cell-centered and cell-vertex schemes in two dimensions

are illustrated in Figures 1 and 2. The definition of the median dual as the control volume in a

cell-vertex scheme comes about by showing the equivalence with a Galerkin finite element method

employing piecewise linear basis functions while computing the gradient of a function [107, 9].
An alternative definition of a control volume for a cell-vertex scheme is a Voronoi cell which is

composed of perpendicular bisectors drawn between pairs of grid points. The Voronoi cell of a site

(grid point) is defined as that region of space containing points which are closer to the site than

to any other site. The dual to the Voronoi tessellation is the well-known Delaunay triangulation.

The Voronoi cell is guaranteed to be convex, but the approach imposes a Delaunay triangulation

and requires care at the boundaries. Another alternative is the containment dual [142, 13] which

has nice properties for stretched triangulations.
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Figure 1: Control volumeand stencilfor a
first orderaccuratecell-centeredscheme.

Figure 2: Control volumeand stencil for a
first orderaccuratecell-vertexscheme.

An excellentreviewof spatial discretizationmethodsfor advection-dominatedflowsmay be
foundin [1]. Herewewill briefly outlinesomeof the popularmethods.Theinterestherewill be
confinedto thebearingtheyhaveon the choiceof timeintegrationmethods.In [64,79] a Galerkin

finite element scheme using piecewise linear basis functions is augmented with a blend of dissipative

terms made up of Laplacian and biharmonic terms. The first order Laplacian term acts only in

the vicinity of shocks whereas the third order biharmonic term used away from shocks serves as

background dissipation to eliminate odd-even decoupling. This scheme can be thought of as an
extension of the scheme of Jameson et al. [65] to unstructured grids. A space-time formulation has

been derived by Donea [35] called the Taylor-Galerkin family of schemes for the linear advection

equation. Adopting an FEM approach, he has shown how a Galerkin scheme (a centered scheme)
0,, similar to thecould be stabilized by using a Taylor-series expansion for the time derivative _-_,

procedure used to derive the Lax-Wendroff scheme. He demonstrated that the resulting schemes

had good phase error and dissipation properties and that they could be easily extended to multi-

dimensions. Morgan et al. in [1] have used such a procedure for discretizing the Euler equations.

Another method of realizing higher order accuracy is provided by adopting the MUSCL formulation

of Van Leer [121] as outlined by Barth and Jespersen [12] for unstructured grids. In this approach,

first a piecewise polynomial reconstruction is performed from the given data within each control

volume and the polynomial is then interpolated to the its faces. The jumps that occur at the

control volume faces are reconciled by using an approximate Pdemann solver such as Roe's solver

[106]. During the reconstruction stage, monotonicity principles are invoked so that oscillation-free
solutions can be obtained. Another way to design higher order accurate schemes is to construct

schemes of the form
dui
d---(= _ Cij(uj - _,), (5)

j e¢di

where the Cij's are non-negative, and Afi denotes the set of neighbors of i. It is easy to see that
under these conditions, the maxima can never increase and the minima can never decrease. If

the Cij's are constants, the scheme is linear and hence, only first order accurate. Higher order

versions of such schemes have been developed [38, 28, 63] which add limited amounts of anti-

diffusive fluxes to the lower order fluxes. Higher order accuracy in the case of cell-vertex schemes

can also realized by using the fluctuation-splitting approach [31, 96]. These schemes consider the

average time evolution of a complete cell (a triangle or a tetrahedron) with the unknowns located
at its vertices, and then update the values at the vertices by the effect of linear wave solutions

evolving the piecewise linear data over a cell. Finite element methods, such as SUPG and Galerkin

least-squares methods [60, 59], and discontinuous Galerkin methods [73] also permit higher order

accuracy to be realized by utilizing appropriate basis functions.

It is assumed that a spatial discretization has been performed by using one of the approaches

outlined above. The typical stencils for the higher order cell-centered and cell-vertex schemes on
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triangularmeshesareillustratedin Figures3 and4. Thestencilfor the ceLl-vertexschemeinvolves
all the nearest-neighborsand the next-to-nearestneighbors.Whereasa first order cell-centered
schemeinvolvesonly the threenearestneighbors,note that the higherorder schemeemploysa
stencilthat is comparableto that of a cell-vertexscheme[12,48]. Themorecompactstencilsfor
cell-centeredschemesoutlinedin [130,38]havedifficultiesdealingwith gefieraltriangulations.The
viscoustermsarediscretizedin cell-vertexschemesbyusingaGalerkinfiniteelementapproximation
andonlyinvolvethenearestneighbors.In the caseof cell-centereddiscretizations,Frinket al. [48]
computethefirst derivativesat the verticesof the triangulation,whicharethenaveragedto obtain
the viscousfluxesat the faces. The stencilsshownin Figures3 and 4 are thus unalteredwhen
(laminar)viscoustermsareincluded.Oneof the advantagesof the fluctuation-splittingapproach
is that thestencilfor the secondorderaccurateschemeonly involvesthe nearestneighbors.

Figure 3: Stencilfor a secondorderaccurate Figure 4: Stencilfor a secondorderaccurate
cell-centeredscheme, cell-vertexscheme.

All thespatialdiscretizationmethodsoutlinedaboveonlyutilizedatafromalocalneighborhood
in orderto computethe residualat a point/cell. Thusthe operationsinvolvedin computingthe
residualinvolvecompactstencils.The residualis computedby summingthefluxes.This operation
canbevectorizedin oneof twoways.Thiswill beexplainedin the contextof cell-centeredschemes
in threedimensions.Thefirst methodcomputesthefluxesat thetriangularfacesandstoresthem.
This is followedby aloopoverthetetrahedralcellsto accumulatethefluxesto form theresiduals.
This schemewould requireface-to-celland cell-to-facepointers. Alternatively, it is possibleto
calculatethe fluxesand accumulatethe residualsin oneloop over the faces,whichwouldonly
requireface-to-cellpointers. This operationcanbe vectorizedby coloringthe triangular faces
whichgroupsthe facessuchthat no two membersof the grouppoint to the samecell. With an
outer (sequential)loop over the numberof colors,the inner loop over the membersof the color
canbe vectorized.In the caseof cell-vertexschemes,Barth [10]and Mavriplls [81]haveshown
that evenin threedimensions,the computationof the residualscanbe cast asloopsoveredges
in inviscidcomputations.Therefore,edgesare coloredin both two and threedimensionsin the
caseof cell-vertexschemessothat no two edgeswithin the samegrouppoint to the samevertex.
It is important to keepthe numberof colorsassmallaspossibleto maximizevectorlengthsand
minimizethe numberof vectorstartups. Coloringis a problemin graphtheory. Seesection6.1
for somedefinitions. The minimumnumberof colorsrequiredto color theedgesof a graphis A

or A + 1, where A is the maximum degree of a vertex in the graph. This is known as Vizing's

theorem [50]. For graphs arising from grids, the minimum number of colors is A. The graph for

a cell-vertex scheme is the grid itself, whereas for the cell-centered scheme it is the dual graph,



whereeachtetrahedronis representedby a vertexand eachtriangularfaceis representedby an
edge. The minimumnumberof colorsrequiredin a cell-vertexschemeis then A, which can be

arbitrarily large. In a cell-centered scheme, on the other hand, the minimum number of colors is 3
in two dimensions and 4 in three dimensions.

4 Steady state solution techniques

After discretization in space, the following system of coupled ordinary differential equations results:

d(VMW)
dt

+ R(W) = o. (6)

Here W is the vector of unknowns over the grid points for a vertex-based formulation and over cells

for a cell-based formulation, and V is the volume of the polyhedral control volume associated with

the grid point/cell. In the case of a cell-vertex scheme, M is the mass matrix which represents the

relationship between the average value in a control volume and the values at the vertices (the vertex

representing the control volume and its nearest neighbors). It arises from adopting a strict finite

volume viewpoint since the update as given by the residual should be made to the time derivative of

the average value within a control volume. It is only a function of the mesh and hence, a constant

matrix for a static mesh. If a steady state solution is sought, time-accuracy is not an issue and

M can be replaced by the identity matrix. This technique, known as mass-lumping, yields the

following system of ordinary differential equations for the vector of unknowns W :

dt + R(W) = 0. (7)

Assuming that the grid is static, cell-centered schemes (up to second order accuracy) and schemes

dealing strictly with cell-averages (to any order of accuracy) do not yield a mass matrix and thus

lead to Eqn. (7) for steady and unsteady problems. The effect of the mass matrix in time-accurate

flow simulations is addressed in Section 5.1. Time-space formulations, such as the Taylor-Galerkin

schemes, do not lead to the system of ODE's of Eqn. (6). Rather, they result in coupled system of

nonlinear equations which involve previous time levels depending on the order of accuracy of the

schemes. The easiest way to solve these equations is by using explicit methods, discussed in the

next section.

4.1 Explicit schemes

The simplest means of integrating the system of ODE's in Eqn. (7) is by the use of the explicit

schemes. In their simplest form, the time derivative is discretized using a finite difference formula

at time step n, and the residual R(W) is evaluated at time step n as well. Thus, explicit schemes

possess the advantage of requiring only simple updates. Given that the residual computation is

vectorizable, explicit schemes are therefore vectorizable (paraUelizable as well). For example, using

forward differences in time, we obtain:

_ W n
v W +l + R(W = o. (8)

At

Higher order accurate difference formulas that make use of previous time levels may also be used for

discretizing the time derivative at time step n. For reasons of stability, it is necessary to consider a

sequence W °, W 1, ..W N, N --* _ in Eqn. (8). The topic of stability of difference schemes is covered

extensively in texts. Therefore, it is assumed, that a proper discretization of the time derivative

has been performed so that the resulting scheme is stable. Typically, the nondimensional time

step permitted by explicit schemes is O(1). Perhaps the most popular method used to integrate
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the systemof ODE's in CFD is the Runge-Kuttamethod. The classicalform of Runge-Kutta
methodsrequiressolutionsfrom previouslevelsto be stored.The followingform of an m-stage

Runge-Kutta scheme is preferred for solving the system of ODES's given by Eqn. (7):

Qo = w n

VQk = VQo-akAtR(Qk-1)

vom = VQo-amAtR(Om_l)

W TM = Qm

(9)

For consistency, we require am = 1 and the scheme is second order accurate in time for linear and

nonlinear problems if am-1 = 1/2. The coefficients ak's can be optimized to expand the stability

region so as to allow for the maximum time step with a particular spatial discretization [61]. They

can also be optimized so that the resulting explicit scheme acts as a good multigrid smoother

[61, 123].

4.1.1 Acceleration techniques

For steady-state computations, several acceleration strategies are often employed in concert with

explicit schemes. Local time stepping allows each cell to take the maximum possible time step;

as a result the scheme is no longer consistent in time. It is also possible to use characteristic

time stepping. Viewing the Euler equations as a superposition of waves, each wave is allowed to

propagate at its own maximum allowable time step. This is highly effective in one dimension. Van

Leer et al. [122] have extended this concept to deal with two-dimensional Euler equations. Another

technique is to introduce a moderate degree of implicitness in the scheme by using the technique

of residual averaging [61]. Residual averaging is covered in Section 5.2. It leads to a system of

linear equations that is solved by a few Jacobi iterations on unstructured grids [79]. Finally, for

constant-enthalpy steady solutions it is possible to use the technique of enthalpy damping provided

that the spatial discretization allows for a constant-enthalpy solution [61].

In spite of these acceleration techniques, explicit schemes are not competitive. Convergence to

steady state is usually unacceptably slow, especially as the problem sizes and complexities grow.

Therefore, either multigrid methods or implicit schemes are required to accelerate the convergence.

Multigrid methods for unstructured grids are covered in the chapter by Mavriplis.

4.2 Implicit schemes

We return to Eqn. (7) which represents a system of ODE's. R(W) is in general a nonlinear vector

of the components of the solution vector W:

V dW
--d-i- + R(W) = O. (10)

After employing a backward Euler discretization in time we obtain:

V Wn+l - W'_
dt + R(W TM) = 0. (11)

Linearizing R about time level n, we obtain

Xi + = -R(W (12)

AW = (W '_+1 - W '_)



Eqn. (12) represents a large sparse linear system which needs to be solved at each time step. As

At tends to infinity, the method reduces to the standard Newton's method which yields quadratic
oR symbolically represents theconvergence for isolated roots of the nonlinear system. The term Y-W

implicit side upon linearization and involves the Jacobian matrices of the flux vectors with respect

to the conservative variables. Based on the work of Mulder [92], the time step in Eqn. (12)

is allowed to vary inversely proportional to the L2 norm of the residual, so that the time step

increases rapidly as the steady state solution is approached.

In the case of structured, body-fitted grids, the linear system Eqn. (12) is seldom solved;

indeed it is seldom even assembled. Instead, approximations are made to the linear system itself.

For example, the Alternating Diagonal Implicit (ADI) method [23] and Approximate Factorization

(AF) [19] result in a product of simpler factors. Each of the factors can be easily solved by direct

methods. For example, ADI results in nested block tri-diagonal systems which are solved by Thomas

algorithm. In addition, lower order discretizations and approximations to the flux Jacobians are

often employed in approximating the left hand side. As a result of these approximations, these

methods are only moderately implicit. Typically they allow for CFL number (the nondimensional

time step) of the order of 10-100.
In the case of unstructured grids, one has no recourse to techniques such as AF or ADI. Instead

one has to deal with the solution of the sparse linear system. The system of equations can be solved

by direct or iterative means. We will first review the direct methods applicable to general sparse
matrices.

4.2.1 Direct methods

The linear system of Eqn. (12) has been solved by Gaussian elimination for the two-dimensional

compressible Euler and Navier-Stokes equations using structured grids [126, 17, 20, 95]. For logically

rectangular regions, the matrix assumes a banded form, that can be solved efficiently by banded

solvers or by employing direct methods for general sparse matrices. The complexity for a n x n grid

with a banded solver is O(Nm 2) where m is the half-bandwidth and N = n 2 is the number of grid

points. For example, if a first order discretization is employed, the stencil involves only the nearest

neighbors and therefore, m = n. Thus, the number of operations is O(n4). The storage required is

O(n 3) since for a banded matrix, almost the entire region between the bands gets filled in during the

Gaussian elimination. Some sparse-matrix methods result in more favorable operation counts and

require less storage because they try to minimize fill-in. Nested dissection [49], for example, only

requires O(n 3) operations and O(n21og_n) storage for this problem. By solving the linear system

using direct methods, quadratic convergence has been demonstrated for compressible Euler and

Navier-Stokes equations. Techniques to improve the convergence process such as grid-sequencing

to establish a good initial guess and super-convergence are outlined in [126]. Newton methods have

been used to solve difficult problems which are not amenable to conventional solution techniques

such as hysterisis phenomenon with airfoils [17] and high Reynolds number laminar flows [18].
OR

The Jacobian matrix Y-W can be evaluated analytically or numerically. The latter option, while

expensive, is attractive when dealing with nondifferentiable functions such as algebraic turbulence

models [17]. However, for most flux functions and field turbulence models, the Jacobian evaluation

can be done either analytically or by using symbolic packages.

On unstructured grids, direct solvers have been utilized in two-dimensions to solve the com-

pressible Navier-Stokes equations [130]. Use was made of the minimum-degree algorithm [49] to

minimize the fill-in during the factorization. It is also possible to use other techniques such as

spectral nested dissection [101] for this purpose. In [130] a cell-centered second order scheme was

used that only made use of 10-point stencils. A stencil such as the one shown in Figure 4 would

require far more computational effort and storage.

In summary, direct methods for compressible flow solvers are limited to two dimensions. Pro-



hibitive computationalcostsand largememoryrequirementsseverelylimit the usefulnessof the
methodin three dimensions.In addition, the gainthat canbe realizedwith techniquessuchas
nesteddissectionarenot asgreatin threedimensionsasin two dimensions.However,direct meth-
odsin canbeusedto study problemsin two dimensionsthat aredifficult to solveby othermeans.
The fact that unstructuredgrids havelarger stencilscomparedto structuredgrids makedirect
methodsevenlessattractive.

4.2.2 Standard iterative methods

Iterative methods are often used to solve the linear system given by Eqn. (12). Due to storage con-

siderations and computational complexity, typically only a lower order representation is employed

in the left hand side of Eqn. (12). This matrix is also better conditioned compared to the higher

order discretization. A consequence of this approximation is that the resulting can never approach

Newton's method (with its associated quadratic convergence property) due to the mismatch of the

right- and left-hand side operators. Therefore, it does not pay to solve the linear system well either.

Since there is a mismatch of operators in Eqn. (12), it is also necessary to limit the maximum time

step.

For solving the linear system

AX = b, (13)

the matrix A is first split as A = M + N so that

(M + N)X = b. (14)

A general iterative method is obtained as follows:

MX k+_ = -NX k + b. (15)

or equivalently,

M(X k+l - X k) = -AX k + b = -r k, (16)

where r k = AX k- b is called the residual for the linear system at kth step. The matrix M should be

close to matrix A in some sense while being easily invertible. Several well-known iterative methods

are obtained by making appropriate choices for M:

1. M = I - Richardson's method

2. M = D, D being the diagonal - Jacobi iteration.

3. M = D + E, D being the diagonal and E, the lower triangular part of A - Gauss-Seidel

iteration.

4. M = D + E step followed by M = D + F, F being the upper triangular part of A - Symmetric
Gauss-Seidel.

Variants of these basic schemes can be obtained by using relaxation factors. For unstructured

grids, all these techniques can be easily applied. Fezoui [43], Batina [15] and Slack et al. [113] have

used a Gauss-Seidel relaxation technique. It is also possible to generalize a red-black Gauss-Seidel

technique for unstructured grids leading to the multi-color Gauss-Seidel method. After coloring the

vertices (for cell-vertex schemes) and cells (for cell-centered schemes) the Gauss-Seidel algorithm

is applied to all the unknowns in each color. As the colors are processed sequentially, use is made

of the latest available values of the neighbors. This algorithm has been used by Anderson [5] to

compute compressible Euler flows on unstructured grids.

For efficient implementation on vector computers, the kernels that are of interest in Eqn. (16)

are the evaluation of b which is the negative of the the residual vector R k in Eqn. (12), the matrix



vectorproduct AX and the inversion of M. The vectorization of the residual has already been

covered in Section 3. The matrix vector product AX can be vectorized as explained in Section 4.3.

Regarding the inversion of M, vectorization for the Richardson's method and Jacobi procedure

is trivial whereas vectorization for the Gauss-Seidel method can be achieved by using wavefront

ordering [4] also described in Section 4.3. Vectorization of the multi-color Gauss-Seidel method is

straight-forward since all the entities (cells or vertices) belonging to the same color can be processed

simultaneously.

4.2.3 Line-implicit methods

As mentioned earlier, line-implicit methods are among the most successful implicit methods in use

for structured grids. However, ADI and AF are not appropriate for grids that possess no structure.

Hassan et al. [57] have developed a line-implicit procedure which we now describe for a cell-vertex

scheme. A line or a set of lines is passed through the grid such that each line passes through each

vertex exactly once. In graph theoretic terms, such a path or circuit which visits each vertex exactly

once is called a Hamiltonian tour [50]. For a given graph, there may exist many Hamiltonian tours

or none at all. Graphs arising out of triangulations in two and three dimensions appear to permit

multiple tours. Hassan et al. [57] have developed an efficient incremental algorithm to find these

lines. They specify in addition, the orientations of the lines, so that in two-dimensional applications

two lines result, one being 'vertical' and the other being 'horizontal'. The algorithm is then made

implicit along each line, thus yielding a tridiagonal approximation for matrix M in Eqn. (15) which

can be easily solved. At each time step, Morgan et al. in [1] only perform one iteration in Eqn.

(15) for each line. Vectorization is an issue for this scheme since there is no nesting of tri-diagonal

systems as in ADI methods. It is possible to achieve vectorization by using a cyclic reduction

method [52] at the expense of higher operation counts. Morgan et al. in [1] have demonstrated

the effectiveness of this algorithm over an explicit method for solving inviscid problems in two
dimensions.

Figure 5(a): A 'snake' with horizontal orien-

tation for an unstructured grid.

Figure 5(b): Linelets with horizontal orienta-
tion.

Martin and Lfhner [77] refer to the Hamiltonian tours as 'snakes'. They have observed that there

is a significant folding of these lines. This means that the flow of information in the predominant

direction may be slowed down. Rather than use multiple lines as done by Hassan et al. [57], in
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order to obtain a steadyflow of informationthey reconnectthe line in the directionof interest.
Thusthe line is brokeninto multiple lineletsand the schemeis madeimplicit alongtheselinelets.
Figure 5(a) and 5(b) taken from [77] illustrate a 'snake' and linelets, aligned roughly with the

horizontal direction. Martin and LShner describe a general algorithm that creates these linelets on

unstructured meshes. However, the matrix no longer has a tri-diagonal structure and therefore,

they carry out a direct factorization, processing multiple linelets simultaneously to improve the

performance on vector computers. They report that the vector performance is still unacceptably

low. They have used this technique as a preconditioner for a conjugate gradient method when

solving the Poisson equation for pressure in incompressible flows.

One shortcoming of the line-implicit methods is that the direction of propagation of information

is predetermined. Although the sensitivity to the orientation can be alleviated by using multiple

lines with different orientations, the approach is not satisfactory because the flow of information,

in general, varies locally. The methods advocated in the chapter by Mavriplis, may be attractive

in this regard. If the residual Ri at vertex i can be expressed as

= C j(uj - (17)
jex,

with Ci,j >__O, where Af_ is the set of neighbors of i, the coefficients Ci,j are interpreted as edge-

coefficients that signify the strength of the connection between vertices i and j. It may be possible

to use this information to decide how to group vertices so that these can be treated implicitly. It

may also be possible to extend these ideas to systems of equations, where Ci,j becomes a matrix.

4.2.4 Incomplete LU factorization methods

A family of iterative schemes arises out of an incomplete LU factorization and is referred to as

ILU(n) [88]. A symbolic viewpoint is adopted in that LU factorization is carried out with a

prespecified nonzero pattern. During the factorization, all the entries that fall outside of this

pattern are ignored. Here n represents the level of fill-in, n = 0 implies no fill-in beyond the

original nonzero pattern, n = 1 refers to a case where fill-in caused by the original nonzero pattern

is allowed but not the fill-in caused by the newly filled-in entries. In practice, n = 0 is often used

especially for general sparse matrices since it is quite robust and has lower storage requirements.

Note that in terms of the general iterative framework, this scheme does not explicitly define matrix

M in Eqn. (15); rather, the ILU factorization directly defines M -1. The Symmetric Successive

Over Relaxation (SSOR) iterative method with the relaxation factor set to 1 looks exactly like the

ILU(0) scheme, except that the lower and the upper factors are read off directly from the matrix A

rather than by an incomplete factorization. Incomplete factorization is a nonvectorizable procedure

(although paral]elizahle by using wavefront ordering described later); SSOR method dispenses with

this sequential procedure. ILU factorization and SSOR as iterative techniques by themselves will

be tested for solving the linear sub-problems at each time step.

In contrast to the symbolic factorization viewpoint adopted in the definition of ILU given above,

a second method of obtaining incomplete factorization relies on the numeric values of the entries.

Gaussian elimination is carried out and entries are dropped if they fall below a certain threshold

[144]. In general, it is more expensive compared to the symbolic procedure. Saad [108] has proposed

a method that combines the two approaches which makes use of simpler data structures and is also

less expensive.

4.2.5 Advanced iterative methods

Multigrid methods. Multigrid methods can also be used to solve Eqn. (12). Multigrid methods

require the operators to be defined on a sequence of coarser grids, an iterative method that evolves

the solution (called a smoother) and interpolation operators that transfer information between
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thegrids. Theprinciplebehindthe algorithmis that thehigh-frequencyerrorsaredampedby the
smootherona givengrid,whereasthelowfrequencyerrorsaredampedoncoarsergrids,wherethese
frequenciesmanifestthemselvesashighfrequencies.In the caseof unstructuredgrids, the coarse
grids caneither be formedindependently[79]or by usingagglomerationmethods[71,114,132]
by fusingfinegrid controlvolumes.The linear system is either determined by rediscretization or

by combining the fine grid equations as in algebraic multigrid. Multiple Jacobi or Gauss-Seidel

iterations perform the role of a smoother. Lallemand et al. [71] have used the agglomeration

procedure and Anderson [5] has used the nonnested multigrid procedure to solve the linear systems

arising out of two- and three-dimensional inviscid flows on unstructured grids. For a detailed

exposition on multigrid, see the notes in this lecture series by Mavriplis.

Krylov methods. One of the most effective ways of dealing with the solution of symmetric,

positive-definite matrix systems is by using a preconditioned conjugate gradient method devised

by Hestenes and Stiefel - see Strang [115]. The issue of preconditioning is covered in the next

section. The idea for conjugate gradient comes about from the observation that with a symmetric,

positive-definite matrix A, the solution X of the linear system

AX= b, (18)

minimizes the functional
1

F(z) = -_(Az, z)- (b, z). (19)

The steepest descent method for this problem is defined by a one-dimensional minimization of F

in the direction of the gradient of F, given by rk :

xk+l :F(xk+l) = min_F(zk- ark)

rk = Axk- b. (20)

In the step xk --* xk+l of the conjugate gradient method, instead, a (k+ 1)-dimensional minimization
is carried out:

xk+l : F(xk+l) = min_ 0....._kF(xk -- a0r0 ..... -- akrk) (21)

ri = Axi - b, i g k.

Because of the symmetry of A, an orthogonal basis of the ith Krylov subspace, defined below, can

be derived with only three-term recurrences. This is also sufficient for generating the residuals.

Thus, the residuals ri's and ai's need not all have to be stored. This results in constant work

and storage requirements at each iteration of the conjugate gradient method. Conjugate gradient

method overcomes the difficulties in convergence associated with steepest descent method and for

an n × n matrix A, it converges in n iterations in exact arithmetic.

For nonsymmetric systems, in some circumstances, it is possible to apply the conjugate gradient

method to the normal equations. The drawbacks are that the condition number worsens and that a

multiplication with the matrix transpose is required. It also eliminates the option of using matrix-

free methods discussed in Section 4.4. Several generalizations of conjugate gradient method to

solve nonsymmetric systems have been proposed in the literature. These can be classified into
Arnoldi-based methods and Lanczos-based methods. The Generalized Minimal Residual Method

(GMRES) [109] belongs to the first category whereas the Transpose-free Quasi-minimum Residual

method(WFQMR) [45] and Bi-conjugate Gradient Stabilized method (Bi-CGSTAB) [34] belong to

the second category. For nonsymmetric systems, the optimality condition of Eqn. (21) is replaced

by the minimization of the residual norm at each step. The Arnoldi-based methods maintain this

optimality condition but sacrifice the recursion relationships, whereas the Lanczos-based methods

relax the optimality condition. Compared with the Arnoldi-based methods, these methods require
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lessworkandstorageper iteration. GMRES is quite robust and is probably the most widely used
method and we describe it below.

Let x0 be an approximate solution of the system

Ax = b, (22)

where A is an invertible matrix. The solution is advanced from x0 to xk as

xk = x0 + Yk. (23)

GMRES(k) finds the best possible solution for yk over the Krylov subspace < vl, Avl, A2Vl , .... ,

A k-1Vl > by solving the minimization problem

tl,'ktl -- min llv, + AylI,

r0 = vl = Azo - b, rk = Axk - b.

(24)

(25)

Here I[c]] stands for the L2 norm of vector c. The GMRES(k) procedure forms an orthogonal

basis {vl, v2, ...... vk} (termed search directions) spanning the Krylov subspace by a modified Gram-

Schmidt method. The Gram-Schmidt process is a potential source of numerical error. An aJterna-

tive implementation of GMRES using Householder transformation is given by Walker [138]. The

search directions need to be stored. As k increases, the storage increases hnearly and the number of

operations, quadratically. Good solutions can however be found in small subspaces (k << n) if the

n × n matrix A is well-conditioned. To mitigate the storage requirements and the operation counts,

Saad and Schultz [109] also describe a GMRES(k, m), which is a restarted GMRES(k) where the

k search directions are discarded and recomputed every rn cycles. Substituting vl = r0 into Eqn.

(24) we obtain

Ilrkl] = minp(A)]]P(A)roll, (26)

where P(A) is of the form I + alA + a2A 2 + ...akA k. GMRES can be thought of as an optimal

polynomial acceleration scheme [141]. Some insight can be gained by considering the special case

of A being a diagonal matrix. Eqn. (26) then becomes

Ilrkll _<E(k)llroll, (27)

where E(k) = minp_p(k) max_ea(A)]p(_)] and a(A) is the eigenvalue spectrum of A. Like the
conjugate gradient method, GMRES also satisfies a finite-stopping criterion, i.e., in the absence

of roundoff errors, it will converge in at most n iterations for an n × n matrix. Preconditioning

greatly improves the performance of GMRES and other related methods. It decreases the size

of the spectrum so that the optimal polynomial generated by GMRES can annihilate the errors

associated with each eigenvalue. For most large scale CFD problems, preconditioning is essential

to achieve convergence of the hnear problem.

4.2.6 Preconditioning

Instead of Eqn. (22) the preconditioned iterative methods solve the following systems:

PAx = Pb, (28)

or

AQ(Q-1x) = b (29)

The systems of Linear equations in Eqn. (28) and Eqn. (29) are referred to respectively as, left

preconditioned and right preconditioned systems and P and Q as left and right preconditioners.

The role of the preconditioner is to cluster the eigenvalues around unity. Thus, we require the
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preconditionerto bea goodapproximationto A -1 (the ideal preconditioner) while being easy to

compute. Thus, the requirements for a preconditioner are not different from those for choosing M

in the general iterative method given by Eqn. (15). Thus all of the candidates for M fulfill the role

of a preconditioner.

There is an important difference between right and left preconditioning. In the iterative meth-

ods, one sets a tolerance and when the residual for the linear problem is reduced to this tolerance

relative to the initial residual, the linear system is declared solved. In the case of right precondition-

ing, this residual is the actual residual of the linear system Ax - b, whereas in left preconditioning

it is the scaled residual P(Ax - b). Therefore, when left preconditioning is employed, it is possible

that the actual residual is not reduced as well as the scaled residual. As a result, we could terminate

the solution procedure prematurely. Figure 6, taken from [127], shows the convergence histories

obtained using left and right preconditioned GMRES for laminar flow over an NACA0012 airfoil.

The flow conditions are Moo = 0.3, a = 3 ° and Reynolds number of 5000. The structured grid

computation employed grid sequencing and the convergence histories are plotted as a function of

CPU time on a Cray Y-MP. It is seen that on the fine grid (128 × 32) convergence deteriorates with

left preconditioning.
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Figure 6: Convergence histories with left and right preconditioning for laminar viscous flow over
an NACA0012 airfoil.

Preconditioned GMRES method has been used to solve the compressible Euler and Navier-

Stokes equations by a number of researchers. GMRES with block-diagonal preconditioning has been

used by Shakib et al. [110] to solve the linear systems arising out of a finite element discretization

of the Euler equations. Slack et al. [113] and Whitaker [140] have also used GMRES with block-

diagonal preconditioning in two and three-dimensional applications. Slack et al. [113] have observed

when solving the two-dimensional Euler equations, that the diagonally-preconditioned iterative

methods perform better than the other methods as the number of elements in the mesh increases.

Venkatakrishnan and Mavriplis [133] examined the use of GMRES with three preconditioners,

namely diagonal preconditioning, ILU factorization and SSOR for solving compressible Euler and

Navier-Stokes equations on unstructured grids. The discussion and results that follow are taken

from [133]. The preconditioners and the optimizations carried out to extract the best vector

performances out of them are described below.
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4.3 Data structures

In this sectionthe datastructuresand kernelsemployedaredescribedfor cell-vertexschemesin
two dimensions;thesecanbeeasilymodifiedto dealwith cell-centeredschemes.Theyarecritical
in reducingmemoryrequirementsandobtaininggoodperformance.In th_ courseof the GMRES
methodwith preconditioningasper Eqn. (29),two kernelsneedto be addressed.

Thefirst kernelis a sparsematrix - densevectormultiplicationto computeAx. The most com-

monly used data structures [49] are not suitable for this purpose since they have poor vectorization

properties. The compressed row-storage scheme that is suitable for LU factorization yields short

vector lengths because the vector lengths are limited to the number of nonzeros in each row. The

data structure that is used for storing the sparse matrix A is most easily explained by interpreting

the underlying triangular mesh as an undirected graph. Associated with each edge are the two

vertices, say nl and n2, which are incident to the edge. The spatial discretization operator typi-

cally utilizes this data structure and therefore, this information is already available. The two 4 × 4

matrices which contain the influence of n2 on nl (entry in block row nl and block column n2 in A)

and the influence of nl on n2 are stored. The diagonal blocks are stored separately. With such a

data structure, a matrix vector multiplication can be carried out efficiently by employing a coloring

algorithm to color the edges of the original mesh to get vector performance. Such a data structure

is possible since the graph of the sparse matrix for the lower order linear system is equivalent to

that of the supporting unstructured mesh.

The second kernel deals with the effect of the preconditioner Q on a vector. Q is D -1 for block-

diagonal preconditioning and (LU) -1 for ILU preconditioning, where the-indicates approximate

factors. For SSOR preconditioning, L and U are read off directly from the matrix A. The block-

diagonal preconditioner computes the inverse of the 4 × 4 diagonal block associated with a grid

point. Good vectorization when using this preconditioner is easy to achieve by unrolling the LU

decomposition of the 4 x 4 diagonal matrix as well as the forward and back solves over all the grid

points. The ILU and SSOR preconditioners require repeated solutions of sparse triangular systems.

By using a wavefront reordering algorithm [4] it is possible to obtain good vector performance.

Under this permutation of the matrix, unknowns within a wavefront are eliminated simultaneously.

The key step in this procedure is an off-diagonai rectangular matrix - vector multiplication. This

requires that L and /) be stored in a convenient form. A data structure similar to that for A
is chosen for L and U. In addition to the nonzero blocks and the block column numbers which

are provided by the compressed row storage scheme in the factorization, we store the block row

numbers. With this additional information, the data structure becomes similar to the edge-based

data structure employed for the A matrix except that we only store one block per edge. The off-

diagonal matrix vector multiplication can then be vectorized by interpreting the rectangular matrix

as a directed graph and coloring the directed edges. The performances are further enhanced by

performing all the operations on blocks of size 4 × 4.

The memory requirements for the implicit schemes are now given starting with the storage

requirements for the matrix A. A cell-centered scheme that makes use of the lower-order represen-

tation on the left-hand side of Eqn. (12) requires an array of size (a + 1) x 4 × 4N in two-dimensions

and (a + 1) x 5 x 5N in three dimensions, where N is the number of triangular or tetrahedral cells

and a is the number of neighbors of each cell. a = 3 in two dimensions and a = 4 in three dimen-

sions. In two dimensions, a cell-vertex scheme requires an array of size 7 x 4 x 4N = 112N to store

the nonzeros of the matrix, where N is the number of vertices. The factor of 7 arises from having 3

times as many edges as vertices (valid for all two-dimensionai triangular grids, neglecting boundary

effects); we store two blocks per edge plus the diagonal matrix for all the vertices. The factor of 7

can also be arrived at as (a + 1), where the average number of neighbors in a triangulation is 6. In

three dimensions /3, defined as the ratio of the number of tetrahedra and the number of vertices,

N, could be arbitrarily large; however in practice this ratio is 5 - 8. Meijering [87] shows that for
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a three-dimensionalDelaunaytriangulationof randomlydistributedpointsfl _ 6.77and that the
numberof edgesin the triangulationvariesas(_ + 1)N _ 7.77N. Thusthe memoryrequiredto
storethenonzerosof thematrix in threedimensionsisroughly2(_+ 1)4-1_ 17x 5× 5N = 425N.

This is prohibitive even given the large memory available on current supercomputers. Barth [13],

however, has proposed some interesting techniques that bring down the rSemory requirements for

dealing with the linear system derived from a higher order discretization. The standard iterative

methods require only one array of the sizes given above, namely to store the matrix A. ILU-

preconditioned GMRES method requires three such arrays. For our cell-vertex scheme, one of

these arrays stores the matrix A in the edge-based data structure that is suitable for computing

the matrix-vector product. A second copy stores the matrix in a compressed row format [49] that
is suitable for the factorization and a third contains the L and the U factors. The second array

is reused for storing the search directions in GMRES, permitting up to 27 search directions to
be stored in two dimensions. Block-diagonal as well as multi-color Gauss-Seidel preconditioners

dispense with one of these arrays.
We conclude this section with the topic of reordering of unknowns. The ordering of unknowns

has a bearing on the convergence properties of many iterative methods that involve a directional

bias such as the SSOR and ILU techniques. Batina [15] reordered the unknowns in the direction of

the freestream flow while using a Gauss-Seidel iteration on unstructured grids to great advantage.

For structured meshes it was found [37] that a column-major ordering which minimized the band-

width (the "most local" ordering) yielded the best convergence rates. For unstructured meshes
we have settled on the Reverse Cuthill-Mckee (RCM) ordering [49]. This is a standard ordering

used in sparse direct methods to reduce fill-in,

Various orderings based on coordinates of the

y coordinates or some combination of x and y

but it also appears to be the "most local" ordering.

vertices (sorting the vertices by the x coordinates,

coordinates) were also tested in the solution of the

compressible Navier-Stokes equations in [133]. The RCM ordering gave slightly better convergence

rates over a wide range of problems. RCM is also more efficient in that it creates fewer wavefronts,

thus producing longer vectors. Dutto [39] has carried out a systematic study of the effect of various

orderings on convergence and has reported similar results.

4.4 Newton-Krylov methods

All the iterative methods discussed so far sacrifice convergence properties by making a lower order

approximation on the left hand side of Eqn. (12). If on the other hand, a consistent second order

approximation were employed on the left hand side, the convergence rates in terms of iterations

would vastly improve although involving higher computational and storage costs at each iteration.

If the linear system is solved well at each time step, it is possible to realize quadratic convergence
associated with Newton's method. As discussed earlier, the memory requirements for the higher

order matrix representation are prohibitive. Therefore, unless one has access to very large-memory

computers, this is not a viable approach. The Newton-Krylov approach bypasses this issue by

never forming the matrix. Instead the effect of the Jacobian matrix on a vector is approximated

by one-sided finite differences:

0_-(x)p _ R(x + _p) - R(x) (30)

or by the more expensive central-difference approximation:

0__(x)p R(x + ep) - R(x - ep) (31)_' 2_ '

where E is the step size. Newton-Krylov methods, proposed by Brown and Saad [24], have been

investigated for compressible Euler and Navier-Stokes equations using unstructured grids by Tidriri
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[119],Johanet al. [66], Nielsenet al. [94] and for the full potential equationby Cai et al.
[26].Finite-differencingwith e makes the matrix-free methods somewhat susceptible to numerical

difficulties. To ensure that the derivative is reasonably well approximated, e cannot be too large.

It cannot be too small as the derivatives will be susceptible to precision errors. Guidelines for

choosing e are provided in the text by Dennis and Schnabel [33]. It aplSears that GMRES may

have an advantage over other Krylov methods when used in a matrix-free context because the

vectors p that arise in GMRES have unit-norm and are hence well-scaled. McHugh and Knoll [86]

have observed this to be the case when solving the incompressible Navier-Stokes equations. The

performance of GMRES did not degrade much when switching from a standard implementation to

the matrix-free implementation, whereas those of TFQMR and Bi-CGSTAB degraded.

Although the matrix-free method is attractive because it does not form the matrix explicitly,

the matrix is still required for preconditioning purposes. This is true for ILU, SSOR and multi-color

SOR preconditioners. Zohan et al. [66] settle for a compromise that uses a block-diagonal precon-

ditioner to enable them to solve three-dimensional problems. Therefore, for other preconditioners

that require the matrix, the advantage of the matrix-free methods comes not from a savings in

storage but from the fact that a true Newton's method can be approached. To this end, we can

use the lower order system to precondition the higher order system. In [26], ILU preconditioning

of the lower order system is employed in concert with a matrix-free GMRES in order to realize

fast convergence in the solution of nonsymmetric elliptic problems. Barth [13] and Nielsen et al.

[94] have employed an ILU preconditioning of the lower order system to solve three-dimensionals

Euler equations on unstructured grids. Whereas Barth uses a higher order matrix-based GMRES,

Nielsen et al. employ a Newton-Krylov framework.

4.5 Applications

The iterative methods discussed require a few parameters. The start-up CFL number (nondimen-

sional time step) and the maximum CFL number that can be used need to be specified. It is also

possible to freeze the ILU factorization after a few time steps (or after a prescribed reduction in

the residual) and increase the efficiency of the code, since it eliminates the assembly and/or the

approximate LU factorization of the matrix. This introduces an additional parameter. GMRES

requires a few parameters. It requires the maximum number of search directions k, the number of

restart cycles m and a tolerance level which specifies the desired order of reduction of the residual of

the linear sub-problem. In all the problems, the tolerance is set to 10 -s. The solution to the linear

system is terminated when the number of iterations exceeds the specified maximum whether or not

the tolerance criterion is met, opting to rely on the outer inexact Newton iteration for convergence.

Experience indicates that the tolerance criterion is easy to meet in the initial stages of the flow

solution, but becomes extremely difficult to satisfy in the latter stages.

We illustrate the applications of iterative methods for a variety of flows and problem sizes in

two dimensions. The first case studied is a standard airfoil flow, namely inviscid flow over the

ubiquitous NACA0012 airfoil at a freestream Mach number of 0.8 at 1.25 ° angle of attack. The

unstructured grid contains 4224 vertices or 8192 triangles. A close-up of the nearly uniform grid is

shown in Figure 7. The solution (not shown here) agrees with standard results. The computed lift,

drag and moment coefficients are 0.3523, 0.0226 and -0.0452 respectively. The convergence histories

of five different methods are shown in Figure 8 as a function of CPU time. Since we are dealing with

different methods which require varying amounts of work at each time step we believe that CPU

time is the only true measure for comparing them. Since there are quite a few parameters involved

in each of these methods, what we have shown is the "best" convergence history obtained with each

method. GMRES with ILU preconditioning (GMRES/ILU) uses 5 search directions, CFL 20- 106

and freezes the factorization after 30 time steps. GMRES/SSOR, wherein SSOR is used as the

preconditioner, employs 15 search directions, CFL 20-10 6 and freezes the matrix after 30 time steps.
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GMRES/DIAG,whichusesthe block-diagonalpreconditioner,employs25searchdirectionswith 3
restarts,CFL 10-500,000andfreezesthepreconditionerafter25timesteps.TheILU iterationuses
CFL 1-50andfreezesthe matrix after 25steps.Finally, the SSORiteration usesCFL 1-25and
freezesthematrix after 30 timesteps.Usingmultiple "inner" sub-iterationswith theILU andthe
SSORiteration schemesin orderto be ableto uselarger time stepsturn_out belessefficientfor
this problem.The numberof time stepstakenby GMRES/ILU,GMRES/SSOR,GMRES/DIAG,
ILU and SSORare75, 100,75,700 and 700 respectively. The parameters given above for the five

methods, we believe, are nearly optimal for this problem and yield the best convergence history for

each of the methods. Having to choose many parameters is a major drawback in using iterative

methods to solve the approximate linear systems arising from nonlinear problems. However, we

will be able to provide some guidelines for choosing these parameters for the best of these methods,

namely GMRES/ILU, by solving a few more representative problems. In Figure 8, we notice

that GMRES/DIAG is quite slow even for this simple problem, while ILU iteration appears to be

quite good. SSOR iteration and GMRES/SSOR have similar convergence histories. SSOR as a

preconditioner is not as effective as the ILU preconditioner; GMRES/ILU appears to be the best of

all the methods. As we shall see, as the problems get bigger and more stiff, GMRES/ILU performs

much better than the other four methods.
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Figure 7: Grid about an NACA0012 airfoil Figure 8: Convergence histories for inviscid

with 4412 vertices, flow over an NACA0012 airfoil (Moo = 0.8, a =

1.25°).

The next flow considered is inviscid subcritical flow over a four-element airfoil at a freestream

Mach number of 0.2 and angle of attack of 5°. The triangular mesh employed has 10395 vertices.

The grid is shown in Figure 9. The solution is not shown here and may be found in [78]. In Figure 10

we present the convergence histories of GMRES/ILU, GMRES/DIAG and ILU and SSOR iteration.

GMRES/SSOR had great difficulties in the initial stages and is not shown. GMRES/ILU converges

much better than the other methods. The parameters for GMRES/ILU are 10 search directions

and CFL 20- 106, the factorization being frozen after 30 time steps. GMRES/DIAG employs 25

search directions with 2 restarts, CFL 10- 5 × l0 s and freezes the preconditioner after 30 time

steps. ILU iteration uses CFL 1 - 50, freezes the matrix after 50 time steps and does not use
sub-iterations. SSOR iteration uses CFL 0.5 - 5 and freezes the matrix after 100 time steps. The

number of time steps taken by GMRES/ILU, GMRES/DIAG, ILU and SSOR are 100, 70,400 and

400 respectively. SSOR, either by itself or as a preconditioner, is clearly unsatisfactory for this
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problem.

Figure 9: Grid about a four-element airfoil
with 10395 vertices.
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Figure 10: Convergence histories for invis-

cid flow over the four-element airfoil (Moo =

0.2, a = 5°).
The performances of the methods are compared for transonic turbulent flow over an RAE2822

airfoil, referred to as Case 6. The flow conditions are M_ = 0.729, a = 2.31 ° and Reynolds number

6.5 X 10 6 based on the chord. The flow is computed on a mesh with 13751 vertices which contains

cells in the boundary layer and the wake region with aspects ratios up to 1000:1. For this turbulent

calculation, the unstructured mesh implementation of the Baldwin-Lomax model developed in

[80] is used. The grid is shown in Figure 11. The pressure plot and skin friction distribution

and experimental data are shown in Figures 12 and 13. The lift, drag and moment coefficients are

0.7342, 0.0132 and -0.0978. Figure 14 shows the convergence histories of the various methods. Only

GMRES/ILU and GMRES/DIAG converge, the latter doing so much more slowly. GMRES/SSOR

diverges for any reasonable CFL numbers at all and its convergence history is not shown. The

parameters for GMRES/ILU are 25 search directions and CFL 5-25000. The factorization is frozen

after 80 time steps. The turbulence model is also frozen after nearly six orders of reduction in the

residual; otherwise, the residual hangs and the convergence of the method slows down. The effect

of freezing the turbulence model in this fashion has minimal effect on the aerodynamic coefficients

(less than 0.02% change in lift coefficient). The parameters for GMRES/DIAG are the same as

for GMRES/ILU. The number of time steps taken by both GMRES/ILU and GMRES/DIAG is

150. The unstructured multigrid algorithm of Mavriplis [79] takes nearly 300 secs. on the YMP to

reduce the L2 norm of the residual to .3 x 10 -3 and GMRES/ILU takes about 450 secs. to get to

the same level (7 orders of reduction in residual) for this problem. In the full multigrid algorithm,

the problem is first solved on coarser grids, whereas GMRES/ILU starts from freestream conditions

on the fine grid. The ILU and SSOR iterations use 10 sub-iterations, CFL .5 - 2.5 and still do not

converge after 200 time steps.

Based on this study, we draw the following conclusions regarding the five candidate implicit

schemes. For inviscid problems, with a small number of vertices and grids with low cell-aspect ratios,

most of the methods work well, GMRES with ILU preconditioning performing the best. For larger

problems, especially at high Reynolds numbers, almost all the methods except for GMRES/ILU

converge extremely slowly, if at all. Regarding the parameters, for inviscid flows, we find that

5-10 GMRES search directions are usually sufficient, whereas the turbulent viscous flows require

25 search directions. The start-up CFL number is usually about 20 for inviscid flows and 5 for
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turbulent viscousflowsand the CFL numberis a].lowedto increaseup to 500-50,000fold. A non-
restartedGMRESis usedwheneverpossible.

Figure 11: Mesh for computing transonic tur-

bulent flow over an RAE2822 airfoil with 13,751

vertices.
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An application of the Newton-Krylov method to solve three-dimensional Euler equations is

presented. This result is taken from a forthcoming paper by Nielsen et al. [94]. The Euler code

employs linear reconstruction and uses Roe's approximate Riemann solver to compute the fluxes.

The Newton-Krylov method employs an ILU preconditioning of the lower order system. Figure 15

shows the surface grid for an ONERA M6 wing with 139,356 nodes. The freestream conditions are

Moo = 0.699 and _ = 3.06 °. The convergence histories of the Newton-Krylov and the multi-color

Gauss-Seidel iterative techniques are shown in Figures 16(a) and 16(b) in terms of iterations and

CPU times on the Cray Y-MP. The superior convergence of the Newton-Krylov method is apparent.

The multi-color Gauss-Seidel employed 20 iterations. The Newton-Krylov method used 15 GMRES
search directions.

Figure 15: Surface grid for inviscid flow over the ONERA M6 wing (139,356 nodes).
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5 Solution techniques for unsteady flows

While solution techniques for computing steady flows have evolved to a high degree of sophistication,

those for dealing with unsteady flows have lagged behind. A comprehensive survey of methods for

computing unsteady flows using structured grids may be found in the survey paper by Edwards

and Thomas [40]. In this section, we concentrate on techniques applicable for unstructured grids.

5.1 Finite volume discretization

After applying the finite volume procedure, the following system of coupled differential equations

is obtained:

d (YMW) + R(W) = O. (32)

Here W is the solution vector over the whole field, R(W) is the residual vector approximating the

boundary integral in Eqn. (1), V is the cell volume associated with the vertex and M is the mass
matrix.

The mass matrix arises because the update indicated by the residual R(W) should be made

to the average value in the control volume. It thus relates the average value of a control volume

associated with a vertex to the point value of the vertex and those of its immediate neighbors. Note

that this definition differs from the way the mass matrix is defined in finite element formulations

where the mass matrix arises naturally from requiring the PDE, with the solution expanded in a

set of basis functions, to be orthogonal to a set of trim functions; in a Galerkin method the trial
functions are also the basis functions. It is well known that the use of a consistent mass matrix

in a finite element method results in excellent phase properties [136, 35]. However, in the case of

finite volume schemes employing a reconstruction procedure and upwinding, such a definition does

not extend readily and therefore we will use an alternative definition. For those schemes employing

a polynomial reconstruction procedure within a cell, the mass matrix is determined by computing

the average of this polynomial over the cell. When cell-centered approximations are employed, the

average value in the control volume and the point value at the centroid of the cell match to second

order accuracy, and therefore the mass matrix may be omitted, decoupling the system of ODE's

in Eqn. (32). However, when cell-vertex discretizations are employed, in generM, the centroid of

the control volume is not represented by the vertex in question. The mass matrix M couples the

system of ODE's. The effect is that even when an explicit scheme such as a multi-stage Runge-Kutta

scheme is used, one has to deal with the solution of a coupled hnear system at each stage of the

Runge-Kutta scheme. A technique called "mass-lumping" often used in finite element approach

[116], replaces the matrix M by the identity matrix. While this has no effect on steady-state
solutions, for time-accurate computations, it would appear that such an approximation introduces

locally a first order spatiM error. This approximation is routinely adopted for unsteady flows as

well [16], and does not appear to adversely affect the quality of the solutions obtained. Davis and

Bendiksen [30] have observed little discernible differences in the unsteady solutions when using the

full and the lumped mass matrices. However, since they used an explicit scheme, the time steps

were quite small and furthermore, their grids appeared to be fairly uniform. For an equilateral grid,

the mass matrix can be lumped without any adverse impact, because the vertex locations coincide

with the centroids of the control volumes defined by the median dual. The technique employed

to solve the mass matrix (a few Jacobi iterations) is clearly not efficient, especially when larger

grids are used. Also, when higher order spatial discretizations are employed, the mass matrix has

to be reckoned with, even when using cell-centered discretizations. An efficient means of inverting

the mass matrix is yet to be found. Direct inversion will entail a substantial effort, and is clearly

unattractive, especially in three dimensions.

One way to avoid the mass matrix altogether is to never deviate from the concept of cell

averages. This would require that the reconstruction procedure only make use of cell averages and
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not point values.This is anattractivepropositionfor higherorderschemes.Higherorderaccurate
schemesbasedcellaverageshavebeenproposedandtestedin [11,27,55].

In the following,wewill reviewexplicit schemesfor unstructuredgrids andsomeacceleration
techniques.The techniquesof residualaveragingand temporaladaptationthat relax time step
restrictionsarebriefly reviewed.Finally,thedevelopmentof implicit schemesthat allow for arbi-
trarily largetime stepsis outlined.Muchof thediscussionon theimplicit schemefor unstructured
gridsis excerptedfrom a forthcomingpaper[134].

5.2 Explicit schemes

Explicit schemesare the schemesof choicefor certainunsteadyapplicationswhenthe time scales
of interestaresmallor moreprecisely,that they arecomparableto the spatialscales.The grids
shouldbe clusteredonly in regionsof interest;otherwise,the sizeof the explicit time stepcould
becomeunnecessarilysmall.However,whendealingmanylowfrequencyphenomenasuchasflutter,
explicit schemesleadto largecomputingtimes. Also, for a varietyof practicalviscousflows,the
time steprestrictionsimposedby smallcellsdeepinsidetheboundarylayerareexcessivelysmall.
Sincethe boundarylayeris quasi-steady,implicit methodswhichallow for larger time stepsmay
bemoresuitablemethodsfor suchflows.

Assumingthat the massmatrix hasbeenlumped,the explicit schemesreviewedin Subsection
4.1canbeappliedto solvethe systemof uncoupledODE's Eqn. (32)in a time-accuratemanner.
ThestandardRunge-Kuttaschemesareattractivesincethey canbe designedto havea temporal
order of accuracycomparableto the spatialorder of accuracy,without the needto storemany
solutionlevels.When the spatialdiscretizationpossessesthe TVD (Total VariationDiminishing)
or ENO (EssentiallyNonoscillatory)properties,the Runge-Kuttaschemesdesignedby Shuand
Osher[111]are often employedsincethey preservethesepropertieswhile maximizingthe CFL
number.

When the massmatrix is present,the systemof ODE's is coupled.Whenusinga two-step
explicit FiniteElement- Flux CorrectedTransport(FEM-FCT)algorithm,Parikh et al. [99]used
a few Jacobiiterationssincethe massmatrix is well-conditioned.DavisandBendiksen[30]when
employinga multi-stageRunge-Kutta algorithm have used a similar procedure at every stage of

the RK scheme. Donea [35] advocated a two-pass procedure where the beneficial effect of the mass

matrix is exploited in a lumped-explicit context. Splitting the mass matrix M = I A- B, the two

pass procedure for Eqn. (32) becomes

v(w? +1- w;)(1) = -R (W

y(w? - w;)(2) = -Ri(W n) - B(W;+1- (33)

Donea also showed that such a scheme possesses the same order of accuracy as the scheme employing

a consistent mass matrix, while suffering some degradation in phase properties on uniform grids.

One way to relax the stability restrictions of explicit schemes is by using the technique of

residual averaging [61]. However, in its original form it is only applicable for steady computations.

Venkatakrishnan and Jameson [131] proposed an extension of residual averaging for time-accurate

computations. This is outlined for a one-dimensional example. To solve

OW
0-_ A- R(W) = O, (34)

replace the residual R(W) by/_(W) given implicitly by the relation

- _i+,/2(/_i+1 -/_i) +/_i + ei-1/2(/_; -/_i-1) = Ri (35)
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e is required to satisfy the following inequality which can be derived by assuming a central difference

approximation to the first order spatial derivative, R(W) - ou

> - 1]. (36)

Here At is the global time step used and At* is the local time step allowed for the unsmoothed
scheme. This is similar to the implicit scheme of Lerat et ai. [72] where use is made of the spectral

radius of the Jacobian matrix which is inversely related to the local time step. However, Lerat et

al. [72] interpret their method as correcting the truncation error term in an implicit manner. They
were able to show unconditional stability for this implicit method. Even though unconditional

stability is proven for such implicit schemes, in practice only a CFL number of the order of 10 is

used. This practical limit arises out of convergence considerations for steady problems and temporal

truncation error in time-accurate computations. For steady state applications, _ is assumed to be

constant given by Eqn.. (36), with At replaced by A, the CFL number with residual averaging, and

At* replaced by A*, the CFL number of the unsmoothed scheme.

Another technique that can be used to improve the performance of explicit schemes is temporal

adaptation. Standard explicit schemes use a globally minimum time step for stability reasons.

This implies that many of the cells such as the cells having large volumes, are being advanced at a

fraction of maximum time steps permitted locally by stability considerations. Kleb et al. [70] have

derived a procedure that enables different cells to take varying number of local time steps to get

to a particular time level. The residual calculations make use of time-consistent fluxes which are

either available or are obtained via interpolation. Kleb et al. [70] have demonstrated savings in

computational effort of factors up to 10 over explicit schemes that employ globally minimum time

steps when solving a variety of two-dimensional transonic flows on unstructured grids.

Multigrid time-stepping schemes have been developed primarily to accelerate the convergence

to steady-state. They rely on approximations of the governing equations on a sequence of suc-

cessively coarser grids. In contrast to the elliptic viewpoint given in Section 4.2.5, the hyperbolic

interpretation of multigrid is that by using successively coarser grids and maintaining a constant

CFL number, and thereby taking increasingly larger time steps, the disturbances are rapidly dis-

patched out of the domain. One effort arising as a result of adopting the hyperbolic viewpoint is

the unsteady mnltigrid algorithm of Jespersen [46]. While he was able to show theoretically that

the solution obtained by using this procedure was time-consistent to a given order, he observed

experimentally that the quality of the solution deteriorated as the number of coarse grids used was
increased.

In spite of these acceleration techniques, explicit schemes are not viable for many unsteady

computations. An implicit method that allows for arbitrarily large time steps is desirable since

the time steps would then be solely determined by flow physics. Akin to a spatial grid refinement,

a temporal refinement should be done to ensure that the solution is converged in time. Such a
method is outlined in the next section.

5.3 Implicit schemes

When an implicit scheme is used to solve for unsteady flows, one has to drive the unsteady residual,

defined below, to zero or at least to truncation error. In the context of factored implicit schemes,

this is usually done by employing inner iterations [103, 102]. It is the role of these inner iterations

to eliminate errors due to factorization, linearization, and also errors arising from employing a lower

order approximation on the implicit side. The number of inner iterations required may be large

depending on the flow situation and the size of the time step employed.

Brennis and Eberle [22] and Jameson [62] have advocated a different approach for deriving an

efficient implicit scheme for unsteady flows. The idea is to define an unsteady residual, following

a backward difference approximation to the time derivative and then use the same method as for
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thesteadystateproblem.In [22]arelaxationmethodis usedwhereasin [62]amultigrid procedure
is usedas a driver for the fully implicit schemewhenusingstructuredgrids. The significant
advantageof the approachwhenmultigrid is usedto solvethe nonlinearproblemis that it incurs
nostorageoverheadsassociatedwith traditional implicit schemes,andis particularly attractivefor
unstructuredgrid computationsin threedimensions.It allowsthetimestepto bedeterminedsolely
basedon flowphysics.This methodhasbeenusedto computetwo- and three-dimensionalflows
overairfoilsand wings[62,89,3] usingstructuredgrids. Vassberg[125]hasappliedthis method
to computeflow solutionsoveroscillatingairfoils usingunstructuredgrids wherea sequenceof
triangulationswasgeneratedby removingpointsfrom thefinegrid triangulation.

Wefirst outline the implicit schemeasdevelopedby Jameson[62]for cell-centeredstructured
grids. Thereforethe massmatrix wasnot presentin his formulation. Replacingthe massmatrix
in Eqn. (32)by the identity matrix andmakinga 3-pointbackward-differenceapproximationfor
the time derivativeyields

1 vn_ 1 wn_ 1 R(wn+I3 V,_+ 1W,_+ 1 2 V,_W,_ + + ) = O. (37)
2At - A_ _-t

As argued in [62], when applied to a linear differential equation of the form,

dW
_ (3s)

dt

this particular discretization is A-stable i.e., stable for all values of aAt in the left-half of the

complex plane [29]. Eqn. (37) is now treated as a steady state equation by introducing a pseudo-

time t*. The multigrid scheme then solves the following system to steady state using local time

steps At*:
OVU

or-----= + R*(U) = 0, (39)

where U is the approximation to W TM. Here the unsteady residual R*(U) is defined as

R*(U) = 2----_YV -_-R(U) - S(ynwn, yn-lw n-l) (40)

with the source term

S(V'_W'_'Vn-IWn-1) = _ VnWn 2Atl V,__IWn_ 1 (41)

remaining fixed through the multigrid procedure. We would like to drive R" to zero at each time

step.

A multi-stage Runge-Kutta scheme is now applied to solve Eqn. (39). A low-storage second

order accurate m-stage Runge-Kutta scheme to advance U is given by

Qo = u I

V'_+IQk = V'_+lQo - akAt*R*(Qk-1) (42)

o*..

Ut+l = Q._

Starting with U 1 : W n, the sequence of iterates U l, l = 1,2, 3 .... converges to W n+l.

However, the way the scheme has been formulated has been observed by Arnone et al [6] to be

unstable for small physical time steps, At. This is counter-intuitive because when using small At,

the multigrid procedure should converge fast and ideally, in the limit of explicit time steps, the

multigrid procedure should converge in just a few iterations. Otherwise, one has to depart from the
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implicit frameworkfor smalltimestepsandswitchto anexplicit schemeand,this is not desirable.
Melsonet al. [89]showedthat theproblemis dueaninstability that ariseswhensmallAt is used.

They modified the scheme to get rid of this instability. The problem is that the unsteady residual

R'(W) includes the term 2-_VU and, is therefore, treated explicitly in the Runge-Kutta scheme.

Their analysis showed that if this term were treated implicitly in the Kunge-Kutta scheme, the

stability region would grow as At decreased. It is easy to treat the term implicitly since it is only

a diagonal term. Splitting the residual R*(U) as

R*(U) = 2-2 VU + R(U)- S,

the Runge-Kutta scheme now becomes,

Qo = U l

(43)

= Vn+IQ0- akAt'[R(Qk_l) - S] (44)

(45)

U TM = Qm

With the modified scheme, Melson et aJ. [89] have shown that arbitrarily large or small time steps

At may be employed.

As in [62, 89], we employ a full approximation storage multigrid scheme. The source term is

computed only on the fine grid and the coarse grids are driven by the fine grid residuals. For

the generation of coarse grids we follow the agglomeration multigrid procedure [71, 114, 132, 84,

85]. In this method, the sequence of coarse grids is generated a priori using efficient graph-based

algorithms. This method has certain advantages when dealing with rigidly moving or deforming

meshes. Since the edges that comprise the coarse grid volumes are subsets of the fine grid control

volume edges, when the grid moves rigidly or deforms, the projections of the control volume faces
onto the coordinate directions are easily computed from those of the fine grid. Also, as long as no

grid points are added or removed, and the triangulation remains valid, and the grid connectivity
remains the same, the interpolation operators stay the same. Multigrid schemes based on non-

nested triangulations would have to recompute the transfer operators when the grids deform.

5.4 Treatment of the mass matrix

When employing a vertex-centered approximation, making a 3-point backward-difference approxi-

mation for the time derivative yields

3 V_+IM,_+IW,_+I__2VnM_Wn+ I____V,__IM,__IW,__I+R(Wn+_)=O. (46)
2At At 2At

The multigrid scheme now solves the following system to steady state using local time steps At*:

OVU
Or------7- + R*(U) = 0, (47)

where U is the approximation to W TM where R*(W) now includes the mass matrix terms. Notice

that the first term _ does not involve the mass matrix uncoupling the system of equations. The

explicit Runge-Kutta scheme can be applied exactly as before. Thus, the inversion of the mass

matrix is thus accomplished indirectly during the multigrid procedure. However, the modified

scheme of Melson et al. [89] poses a serious problem. Their modification would require the term
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3 VMU to be treated implicitly which is no longer a diagonal term. A modification has been2z_t

devised that solves this problem and is detailed below. The implicit Runge-Kutta scheme that is

stable for all At is given by

Qo ---- U t

ul+l : Qm

where the source term S is now given by

S = -_ V'_M'_W'_ 2Atl V,__IM,__IW,__ 1 (49)

If we simply replace the mass matrix M by the identity on the left hand side of Eqn. (49), we

have observed that the instability at small time steps persists. In our modification, we first add

and subtract 2-_akAt*M_+lV_+lQk_l on the right hand side of Eqn. (49) to obtain

I+ akAt*M _+1 V'_+lQk = V'_+lQo-akA R (Qk-1)+ akAt*M_+lV_+lQk_l (50)

where use has been made of the equation

R*(U) = 2-_VMU + R(U) - S. (51)

Note that the same term 2-_TakAt*MVQ appears on the left and the right hand sides of Eqn. (50),

except that they are valuated at the k- 1 and k stages. Recall that R*(U) is being driven to zero.

The mass matrix M can now be replaced by 3I, where I is the identity matrix and fl is a constant

yielding the following equation:

[1+ 2_akAt*fl] vn+lok = V'_+lOo-akAt*R*(Ok_l)+ 2_akAt*flVn+lOk-1 (52)

The method can always be stabilized by increasing 3 and is akin to using a damped Jacobi method.

The implicit Runge-Kutta scheme no longer requires a matrix inversion. For small time steps of

the order permitted by the explicit scheme, we find that the choice of 3 = 2 stabilizes the scheme.

5.5 Grid adaptation for transient problems

One of the principal advantages of unstructured grids is the ease of adaptation. Adaptive grids

are increasingly being used to compute complex unsteady and steady flows. Grid adaptation is

particularly useful in transient flows, where features, such as shocks, move through the domain ; it

is impractical to refine the grid everywhere. There are three distinct ways the grid can be adapted

to the solution. These are r-refinement, h-refinement and p-refinement. In r-refinement, the nodes

are simply redistributed so that regions of importance are better resolved. In h-refinement or mesh-

enrichment, the cells are locally subdivided or merged or in some instances, a complete remeshing

is done to reduce the grid spacing in regions of interest. In p-refinement, the degree of the basis

function is adjusted locally to match the variation in solution.

R-refinement is probably the simplest in concept, but is burdened with practical difficulties in

multi-dimensions particularly when dealing with highly stretched grids customarily employed for

viscous calculations. The difficulties include excessive grid skewness, crossing of lines, arbitrarily
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small cell volumesetc. The advantageof r-refinementis that if a valid grid resultsfrom it, all
that is requiredis interpolationof variablesfrom the old to the newgrid. This couldbedonein
a conservativemannerif desired.A way to avoidthe interpolation,whichintroduceserrorsthat
couldaccumulate,is to introducethe grid movementtermsin the governingequationsEqn. (1).
Thesetermsneedto bediscretizedcarefullysothat freestreamispreserved.In otherwords,simply
movingthe grid throughthe domainshouldnot changethe freestreamsolution. The Geometric
ConservationLaw(GCL) [117,143]formalizesthis procedure.It canbederivedfromthecontinuity
equationin Eqn. (1) by assumingthe controlvolumesto be thesimplicesthemselves,both for ceLl-
vertexandcell-centeredschemes.Assuminga uniform velocityfield and a constantdensityfield,

weobtain 0])
+ _ IV -- s].n da = O, (53)

0----[ Js (t)

where V is the velocity field and s is the velocity of the boundary 8(t). Since V is constant and

the control volume is assumed to be closed at all times so that _s(t) n da = O, the equation becomes

s.n da = 0. (54)
Ot (t)

The discrete form of this equation should hold at all time steps and for all the simplices and is

called the GCL. Using a forward Euler approximation for the time derivative, we obtain

fs s.n At daV'}+1 - V_ = _(t)

= E£ s.nAtda,
j zj

(55)

where S1 = )"]j _l.j is the surface enclosing the volume V/of simplex I. As observed in [143], the
term inside the summation represents the volume swept out by the boundary _l,j as the grid points

forming that segment move. If grid points are allowed to move arbitrarily, the GCL enables the
velocities s to be determined so that the GCL is obeyed. Since simplices are convex, the volumes

_n, 12,_+1 are uniquely determined by the positions of the points at time levels n and n + 1. If the

velocity si for grid point i is computed by the simple formula

x7+'- x? (56)
si - At '

where X is the position vector, it turns out that the GCL is satisfied. Eqn. (56) simply means

that a linear motion of the grid points is assumed between time levels n and n + 1.

Recently, r-refinement has been used to great advantage with Roe's upwind scheme [106] to

obtain "fitted" shock resolution for steady and unsteady two-dimensional flows [98, 100, 124] by

aligning the edges of the triangulation with discontinuities. The "fitting" is done in a shock-

capturing framework by utilizing that property of Roe's scheme which allows isolated discontinuities

aligned with the mesh to be captured exactly. Many of the methods for moving grid points such

as the use of exponentially-varying scaling factors [30], tension spring analogies [14, 47, 56] create

valid triangulations only when small time steps are used. For large time steps, especially when

multiple bodies are present and also for highly clustered viscous grids, these methods usually

result in invalid triangulations with crossing grid lines. Retriangulation techniques proposed in

[47, 56] would have to be incorporated to recover valid triangulations, but could become expensive.

Palmerio [97] presents some interesting techniques for adapting the grid to flow solutions which

could be extended to deal with large scale motions of the bodies. A fast regridding procedure will

also have applications in design optimization, where the geometry changes during the design cycle.
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H-refinementis by far the most popular meansof adaptationin compressibleflows. This is
especiallytrue for inviscid flowsdominatedby interactionsof shockwaveswherep-refinement
techniquesareof limited value. The regionsof interestare first identifiedeither througha com-
bination of heuristiccriteria suchas densitygradients(undivided)or throughestimationof the
truncation error. For transientproblems,adaptationis performedfrequentlyand thereforethe
regriddingprocessisrequiredto beefficient.Efficienth-refinementtechniqueshavebeendeveloped
in [75,105]. The problemof flow past bodiesin relativemotion hasalsobeenaddressedin the
literature [74,44, 120,56,68,27]. Typically,meshpoint movementandefficientmeshrestructur-
ing areemployedto obtain valid, good-qualitygrids about the movingbodies.Many impressive
simulationsof flowsaboutbodiesin relativemotionhavebeencarriedout usingunstructuredgrids
e.g.,[16].

5.6 Applications

First, results from a one-dimensional example are presented illustrating the role of the mass ma-

trix. Observe that for a second order accurate scheme on a uniform mesh with constant Ax,

the vertex and the centroid of its control volume coincide. Therefore, the mass matrix can be

lumped without suffering any adverse consequences. The situation is different if a mesh with

variable mesh widths is considered. In particular, random perturbations about a uniform mesh

are considered. Starting with a uniform mesh with constant Ax, each vertex moves randomly

towards its left or right neighbor a random amount. The distribution of Ax is shown in Figure

17 with 100 grid points and displays a considerable deviation from the uniform mesh Ax = 0.01.
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Figure 17: Distribution of the grid spacing in

the non-uniform grid with 100 grid points.
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The spatial derivative _z_ is approximated in a MUSCL scheme [121] as

OU) 1 L= - (57)

The one-dimensional advection equation is solved first using a scheme that is spatially second order

accurate. It employs a linear reconstruction procedure:

(58)u_+l/_ u_ + (z,+_ _ ,(u_+_ - u__,
: -- xi)(gCi+l -- Xi_ 1
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On a uniform grid, this formulareducesto the _¢= 0 scheme.Recallthat the formulafor the
scheme[121]is givenby

L 1 -m l+m_
ui+ /2 = + --d-(u¢ - + - (59)

which on the random grid is only first order accurate for the spatial derivative. The initial condition

is a Gaussian and the profile is advected by marching to a fixed time. A grid refinement study is

carried out by using a constant CFL number of 0.5 and doubling the mesh size starting from 50

grid points. The mass matrix, which is tridiagonal, is inverted using Thomas algorithm. We have

experimented with two definitions of the mass matrix. The first one assumes a piecewise-linear

distribution of data. The entries in the mass matrix for vertex i are given by deriving the formula

for the average value _ in the interval [Xi_l/2, Xi+l/2]:

1 X i -- Zi_ 1 3 1 xi+l - zi (60)
4 (xi+l - xi-1) ui-I + _ui + 4 (zi+l - xi-1) u_+l

A second definition of the mass matrix is derived as the average of the reconstruction polynomial

within a cell which for this scheme is

u(x) = + (x - -
Xi+l -- zi-1

(61)

The mass matrix then becomes

1 xi-1 - 2xi + x_+l 1 xi-1 - 2xi + xi+l (62)
8 (Xi+l +Xi--1) tti-1 +Ui+ 8 (Xi+I "4-Zi-1) Ui--1

Figure 18 compares the errors in L2 norm with the mass matrices given by Eqn. (60) and Eqn.

(62), and with the lumped mass matrix. All the schemes exhibit second order accuracy and the

errors are larger with the mass matrix given by Eqn. (60). The results obtained with the lumped
mass matrix are almost identical to those obtained with Eqn. (62). As per the earlier discussion,

Taylor series expansion would imply a first order error with the lumped mass matrix, whereas

Figure 18 clearly indicates second order accuracy. The results therefore reveal the inadequacy of

local analysis. Figure 18 also shows the results when we assume a uniform grid just for evaluating

the mass matrix in Eqn. (60), so that the entries become 1/8,3/4, 1/8 and exhibits almost no

difference. Note that when such an assumption is made with Eqn. (62) it results in a lumped mass

matrix. The results obtained with the usual finite element mass matrix

1 4 1

_Ui-1 + _Ui "4- _Ui-1, (63)

are also shown in Figure 18 and again displays larger errors compared to the lumped mass approx-
imation. The reason for this is that the finite element mass matrix is consistent with a Galerkin

method which results central difference discretization, whereas the spatial differencing employed

here is upwind-biased. After experimenting with a one-parameter family of mass matrices, we have

found that the lumped mass matrix gives the lowest errors with this particular spatial discretization.

It is well known in finite element literature [116] that in some cases the lumping of the mass

matrix does not compromise the solution accuracy but that the mass matrix may play a crucial

role when higher-order discretizations are considered. To this end, the _; = 1/3 is used to discretize

spatial derivative to third order accuracy, on a uniform grid. The finite volume mass matrix with

a quadratic distribution within each cell now reads

1 11 1
-_ Ui--1 + -_ _2i "Jr _-_2/'i+1 (64)
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Figure19showstheerrorplots for the_;= 1/3 scheme with the lumped and the full mass matrices.

The use of the mass matrix degrades the scheme to second order accuracy whereas the lumped

mass matrix yields third order accuracy. At first glance, this would appear surprising. However,

if we recall that the _ formula assumes cell-averaged quantities, it is clear that the mass matrix

should be equal to the identity matrix. It is wrong to use any other mass matrix when dealing with

schemes based on cell-averaged values. To obtain a third order accurate scheme based on point

values, the following formula should be used:

L 1 3 3
u_+1/2 = --_u_-i + _u_ + -_ui+_ (65)

Figure 19 also shows the error plots for this third order accurate scheme with the full and the

lumped mass matrices. It shows that with the lumped mass matrix only second order accuracy

is achieved, whereas using the full matrix given by Eqn. (64) yields the third order accuracy of

the spatial discretization. We have observed that using any other definition for the mass matrix

degrades the accuracy to second order. The standard Runge-Kutta scheme that is fourth order

accurate in time is used for the higher order computations.
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Figure 19:L2 norms of the errors with higher-order schemes.

The implications for the scheme in multiple dimensions are clear. As long as only a second

order accurate scheme is used and we operate with either cell-vertex or cell-averaged data, the

mass matrix may be lumped without any loss of order of accuracy. The mass matrix can also be

ignored for third (and higher) order accurate schemes as long as only cell-averages are used. If point

values are used to construct third and higher order accurate schemes, the accuracy will degrade if

the mass matrix is lumped. For higher order accurate schemes based on point values, the indirect

mass matrix inversion technique discussed earlier will help preserve the order of accuracy of the
scheme.

We next present results from two-dimensional inviscid calculations over pitching airfoils. The

transonic flow is over a sinusoidally oscillating NACA0012 airfoil where the angle of attack a(t)

varies according to the formula

a(t) = am + aosin(wt) (66)
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_c 0.0814and the freestreamMachFor the test casechosen,a,_ = 0.016 °, C_o= 2.51 °, _ = 2u-----_=
number, Moo = 0.755. Computing this flow using an explicit scheme is very time-consuming

because of the low frequency. Flows are computed using two meshes, referred to as GRID1 and

GRID2, each having 6336 vertices. These are shown in Figures 20 and 21, respectively. GRID1 is

generated by drawing diagonals in a structured C-mesh and is fairly uniform. GRID2 is generated

by random perturbations on GRID1 by a procedure similar to that employed in the one-dimensional

example described earlier. Figure 22 shows the lift histories during the third cycle of oscillation.

Four curves are depicted, namely, the histories with the lumped and full mass matrices for GRID1

and GRID2. The mass matrix is derived by using a definition similar to Eqn. (60).

Figure 20:GRID1 about an NACA0012 air-
foil with 6336 vertices.

Figure 21:GRID2 about an NACA0012 air-
foil with 6336 vertices.
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Figure 22: Lift histories during the third

cycle of motion.
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Asexpected,themassmatrix haslittle impacton theintegratedquantitiesevenin the random
mesh.The differencesin the solutionsbetweenthe twogrids arelikewise insignificant. The CPU

time increases by about 15% when the full mass matrix is included. These examples have been run

with a maximum physical CFL number of 500, corresponding to using 54 time steps per sinusoidal

oscillation of the airfoil. The number of iterations for the inner multigrid ])rocedure is fixed at 30.

Figure 23 shows the convergence of the agglomeration multigrid procedure during a particular time

step with the lumped and the full matrices. The L2 norm of the unsteady residual R* is plotted

as a function of the multigrid cycles. The convergence improves slightly when the mass matrix is

included. The reason for this improvement is furnished by inspecting a one-dimensional situation.

The mass matrix for a second order accurate scheme given by Eqn. (60) becomes on a uniform grid

This can be rewritten as

1 3 1

_ui-1 + -_ui + -_ui+l (67)

1 2 1 [ ]ui + gu__l - -_ui +-_ui+l _, I+8 dx2j ui, (68)

where a centered second order accurate difference formula is used to approximate d2_' Written in47"
this form, the equation is similar to that used in residual averaging technique, discussed in Section

5.2. Finally, Figure 24 shows the effect of the physical time step size. Two lift histories are shown,

one for a CFL number of 500 and the other for 1000 using the lumped mass matrix. The integrated

quantities show slight discrepancies near the ends of the oval region. This may be due to two

causes - one, that the physical time step is too large and second, that the multigrid procedure is

not converged. The number of inner multigrid cycles is fixed at 30 and the convergence is worse

with the higher CFL number. This opens up the question of when to declare the inner iteration

converged. Ideally, this system should be solved only until the residual matches the truncation

error.
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Figure 24: Lift histories during the third cycle of motion with CFL = 500 and CFL = 1000.
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6 Parallel computing issues

Computational fluid dynamics (CFD) as its name implies is inevitably linked to computing is-

sues. Among these are processing power, memory technology, networking and accessibility. Ability

to compute the solutions to problems in finite time always being the goal, CFD has benefited

immensely from the revolution that has taken place in the last 15 years in these areas. Vector

supercomputers have provided much of the computing power that has been harnessed to compute

complex three-dimensional flows. It is anticipated that distributed-memory parallel computers will

offer the next cost-effective leap forward in terms of computing power. For the goal of sustained

high performance on these machines to be realized, however, many fundamental issues need to be

addressed. Among these are scalable algorithms and software.

In the case of unstructured grid computations on parallel parallel platforms, a number of issues

need to be addressed. Interfacing with geometry packages and grid generation should be ideally

done on the parallel computer itself. Following this, the grid and the data may need to repartitioned

so that communication is minimized. The next stage is the flow solver, which could be explicit or

implicit. Finally, the parallel aspects of flow visualization and other postprocessing techniques can-

not be overemphasized. Each of the areas mentioned above could become a sequential bottleneck,

limiting performance. Parallel unstructured grid generation has been investigated by a number

of researchers. L5hner et al. [76] have implemented advancing front grid generation algorithm

in two dimensions on Intel iPSC/860. Merriam [90] has implemented a Delaunay triangulation

method on the Intel iPSC/860 for three-dimensional point-sets. Still, parallel grid generation is

not commonplace. The reason for this seems to be that although grid generation is a complicated,

time-consuming procedure, the stumbling block is not excessive computational effort. Rather, in-

terfacing with geometry packages and ensuring high quality of grids are the pacing items. Thus,

modern workstations that can generate up to 1000 tetrahedra a second appear to be adequate

for the task of grid generation. Parallel grid generation may be of more importance in unsteady

simulations involving motion of bodies where the grids may have to be regenerated periodically.

Partitioning the grid among processors in a judicious manner is important since it has a significant

impact on the parallel performance of the flow solver. When unstructured grid computations are

carried out on parallel computers, extracting parallelism out of the flow solver is an important

task. In the case of adaptive grid computations, maintaining load balance among the processors

is also an important consideration. Finally, although it is possible to concatenate the data from

different processors on a workstation for post-processing and visualization, it is clearly not a viable

option as the memories of the processors and problem sizes continue to grow. Therefore, parallel

visualization techniques have to be utilized.

Explicit schemes used in computational fluid dynamics possess almost complete parallelism.

They require only simple update procedures that involve local dependencies. On a parallel com-

puter, such schemes typically require communication only to nearest neighbors. Implicit schemes,

on the other hand, require the solution of coupled equations which involves global dependencies.

On distributed-memory parallel computers, the design of implicit schemes is more difficult since

parallelism and load balance during the implicit phase are additional considerations. In reference

[129], the implicit schemes discussed in Section 4.2 were investigated for parallelism on the Intel

iPSC/860. The results from this study are reported in this section. In reference [66] an implicit

iterative solution strategy based on the diagonal-preconditioned matrix-free GMRES algorithm

[24] was implemented on the Connection Machine. Ramamurthi et al. [104] have developed and

tested on an Intel iPSC/860 an implicit incompressible flow solver that uses a "linelet-based" pre-

conditioner (see Section 4.2.3) Ajmani et al. [2] have investigated the use of a preconditioned

GMRES implicit method for the solution of the Navier-Stokes equations using structured grids

on the Intel iPSC/860. Venkatakrishnan et al. [135] and Das et al. [83] have shown that it is

possible to obtain supercomputer performance when solving explicit unstructured grid problems
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on theIntel iPSC/860.By payingcarefulattentionto the partitioningof themesh,communication
scheduleand data structures,they havebeenableto showthat nearly2-4 timesthe speedof a
CrayY-MP/1 couldbeobtainedwith 128processorsof the iPSC/860.Theeffectsof usingvarious
strategiesfor partitioning the unstructuredgridson communicationcostshavebeenexaminedas
well. Unsteadyand steadyviscousflowshavebeencomputedin [41]usiflganexplicit schemeon
unstructuredgrids. Morerecently,Barth [13]hasalsoobtainedexcellentperformancewhensolv-
ing the three-dimensionalEulerequationsusingtheimplicit schemediscussedin Section4.4on the
IBM SP2.

In this section,wefirst discussin detail, the problemof partitioningof the grid and the data
for parallelcomputers.Next, the issuesinvolvedin parallelizingfinite volumeschemesfor solving
the Euler equationson triangular unstructuredmeshesin MIMD (multiple instruction/multiple
data stream)fashionare outlined. As a candidateexplicit scheme,a four-stageRunge-Kutta
schemeis usedto solvetwo-dimensionalflowproblems.Theimplicit schemesoutlinedin Section
4.2areexploredascandidateschemesto solvetheseproblemsonparallelcomputers.Theissuesin
implementingthe GMRESalgorithmandthepreconditionersin adistributed-memoryenvironment
areaddressed.The methodsarecomparedboth in termsof elapsedtimesand convergencerates.
Resultsfor a typical flowarounda multi-elementairfoil arepresentedandtheperformancesof the
explicit and implicit schemeson the Intel iPSC/860arecompared.It is shownthat the implicit
schemesofferadequateparallelismat theexpenseofminimalsequentialoverhead.Followingdomain
decompositionideas,the useof a global coarsegrid to further minimizethis overheadis also
investigated.The full detailsof the parallelimplementationsmaybe found in [129]. Finally,we
presentsometechniquesfor loadbalancing,whichareimportantwhenadaptivegrid computations
arecarriedout on parallelcomputers.

6.1 Partitioning of grids

We begin with a few definitions. An undirected graph is defined as a set of vertices joined by

edges. It is symmetric in that if vertex A is connected to B, B is connected to A as well. In

the context of unstructured grid flow solvers, the graph can thus be viewed as a collection of first

order stencils. Vertices A and B are termed nearest neighbors if there exists an edge in the graph

linking A and B. Recall that the stencil for a higher order accurate cell-vertex scheme involves

next-to-nearest neighbors as well. However, in most finite volume schemes, the information from

the next-to-nearest neighbors enters in the form of gradients evaluated at nearest neighbors. Thus

the graph of the problem for a cell-vertex scheme is the underlying grid itself. If the scheme made

use of information from vertices other than nearest neighbors directly, the proper graph to consider

should include edges connecting the vertex in question to those vertices as well. This is seldom

done in practice because the problem graph would become more dense in such cases.

The partitioning of unstructured grids among processors should be carried out in a manner as to

minimize the execution time. The execution or wall clock time is the maximum over all processors

the sum of the times required for computation and communication. The computational work (load)

is typically a function of the number of grid points and sometimes, a function of the shape of the

domain as well. The dependence on the shape of the domain arises, for example, when a banded

solver is used to invert a linear system of equations within each processor. For most practical CFD

computations, however, the computational work is only a function of the number of grid points

contained within each processor.

t_°m" = aN_, (69)

where a is the time taken to process one grid point and iV," is the number of grid points in the

partition. In most CFD solvers, the work is directly proportional to the number of vertices, so that

a = lin Eqn. (69). In the case of cell-vertex schemes on unstructured grids, the computational

work involved in the computation of residuals is directly proportional to the number of edges which
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is linearly relatedto the numberof verticesin the grid. A typicalmodelfor communicationtime
t_j°ram between two processors i and j is given by

ti_ mm = ts + _dij + 7mij. (70)

Here ts is the cost of start-up (also known as latency), fl is the time required for communication

between nearest neighbors in the given topology of the computer, dq is the number of hops between

the two processors in the topology, 7 is the time required to communicate one byte and mij is the

number of bytes being communicated. Thus the total execution time for processor i is given by

t_°t
comp comm

= t_ + _ t_j
jeXi

= + I lts + Z Zd j
jeM,

q- _ 7mij,
jeM

(71)

where Afi is the set of neighboring partitions of i with a cardinality of I.hf_l. Minimizing the maximum

t_°t over all processors is a very difficult problem because it ties in the characteristics of the parallel

computer, such as the topology and the communication model, to the algorithm used to solve the

problem. Rather than solve this difficult problem, we will examine each of the terms in Eqn. (71)

individually. There is no guarantee that the piecemeal approach to the partitioning problem will

minimize the execution time.

The first term in Eqn. (71) deals with the time to carry out the computations. This is minimized

if the partitioning problem guarantees that Ni is equal across all processors. The last term deals
with the transmission costs and is related to the number of cut-edges. The number of cut-edges is

a good metric for assessing the various partitioning strategies with the goal of minimizing it. In a

cell-vertex scheme, this metric is only a rough measure since the message lengths are proportional

to the number of vertices that are on either side of the cut-edges.

The penultimate term in Eqn. (71) is usually dealt with separately and is referred to as the

embedding problem. This term is getting less important with switches and wormhole routing in

modern parallel architectures. Embedding deals with the assignment of partitions to processors.

More precisely, it is the embedding of the partition communication graph to the processor graph.

An embedding of a graph G onto a graph H is a one-to-one assignment of a vertex in G to a vertex

in H. A partition communication graph (PCG) is defined as an undirected graph with vertices

representing the partitions and edges representing communication link between two neighboring

partitions. Figure 25 shows a decomposition of a domain into eight partitions and the corresponding

PCG. An optimal assignment of partitions to processors is an embedding that minimizes the dilation

cost, which is defined as the maximum distance in H between the images of vertices that are adjacent

in G [58]. Figure 26 shows a processor graph, which is a hypercube interconnect for 8 processors.

Figure 26 also shows an embedding of the PCG shown in Figure 25. The processor numbers

are shown as binary numbers while the partition numbers are shown in parantheses as Arabic

numerals. It is easy to see that the dilation cost for this mapping is 2. Heuristic techniques are

usually employed to derive good embeddings. On parallel computers with hypercube interconnect,

embedding does not appear to be much of an issue. The assignment of partitions to processors

could be more critical if the processor network is less dense e.g. a two-dimensional mesh.
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Figure 25: 8-way decomposition of domain

and its associated partition communication

graph.
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Figure 26: 8-processor hypercube intercon-

nect and an assignment of processors.

The second term in Eqn. (71) depends on the number of neighbors of a partition. This can be

minimized if desired by using the so-called stripwise partitioning strategies[135]. Usually, however,

minimizing this leads to an inordinate increase in the cut-edges [135] and communication costs. An

example is given for a simple square domain. Figure 27(a) shows a 16-way domainwise partitioning

of a square whereas Figure 27(b) shows a 16-way strip-wise partitioning of the domain.

I

i
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i I

n n

(a) (b)

Figure 27: 16-way partitioning of a square (a) domainwise (b) stripwise.

Assume that the domain has n x n grid points and that the communication takes place across

the edges of the partitions and that the length of the messages is equal to the number of grid

points along the boundaries between partitions. The domainwise partitions have a maximum of

4 neighbors and the stripwise partitions, a maximum of 2. The computational time is the same,
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whereasthe communicationstimesaredifferent. Assuminga simplecommunicationmodel,Eqn.
(70)with 13= 0, the communication cost with domainwise partitioning for an interior processor is

tc°mm = 4(ts + 7n/4), (72)

and for stripwise partitioning

tc°mm = 2(ts + 7n), (73)

This example shows that unless t, > 7n/2, the domainwise partitioning strategy is better. On most

modern parallel computers, the latency is small enough that minimizing the number of neighbors

is not necessary, although it should be reasonably bounded.

The partitioning algorithms discussed below, create partitions that have the same computa-

tional loads and are applied to two-dimensional triangular grids. The efficacies of the partitioning

strategies are assessed by inspecting the number of cut edges and also by measuring the commu-

nication times in applications. Das et al. [83] and Johan et al. [66] have applied the algorithms to

three-dimensional problems. It is assumed that a cell-vertex scheme is employed. One has the choice

of either partitioning triangles or the vertices themselves. Vertices are partitioned by applying the

algorithms to the graph represented by the triangulation itself, whereas triangles are partitioned

by considering the dual, where the triangles are represented by vertices which are connected by

dual edges. In [129], we have examined using both these strategies for a cell-vertex scheme and

find both the schemes lead to similar execution times. In the examples shown below however, the

triangles will be assinged uniquely to partitions; therefore, the dual graph is partitioned. Figure

28 shows a triangulation and Figure 29 shows the corresponding centroidal dual; each vertex in

Figure 28 corresponds to a triangle in Figure 28.

Figure 28: A triangulation. Figure 29: Dual graph.

Partitioning is done recursively starting with the problem of dividing one domain into two,

almost equal subdomains. The number of vertices in the two subdomains differs at most by one.

There are two classes of partitioning schemes. The first class utilizes the coordinates of the vertices

and does not make use of the problem graph. The second class does not use the coordinates but

uses only the graph information.

The coordinate bisection strategy uses the coordinate information associated with each vertex.

The coordinates are then sorted in a particular coordinate direction (either x or y). Typically,

the direction containing more number of points is chosen as the direction in which to sort. One

half of the ordered vertices define the first partition and the remaining vertices define the second

partition. The advantage of the coordinate bisection method is that it is extremely efficient because
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the sortingcanbedonein logN operations, where N is the total number of vertices. Variants of

this method include inertia] bisection method [42] and parametric binary dissection [21]. In the

inertial bisection method, instead of sorting in the coordinate directions, a different coordinate

syst.em is used. In the case of parametric binary dissection, load balance is sacrificed in order to

improve the total execution time.

The graph bisection techniques view the unstructured grid as an undirected graph and partition

the graph by finding the graph separator by any of a number of methods. A separator is a set

of nodes that subdivides the original connected graph into two disjoint subgraphs. The sizes of

the separators have a direct bearing on the fili-in that occurs during the factorization of sparse

matrices, but are also important in the context of partitioning since they form the interpartition

boundaries. One way to derive a separator is to first form the rooted level structure defining level

sets. These represent the neighbor lists starting with a root, neighbors of the root, neighbors

of neighbors of the root and so on. The Cuthill-McKee algorithm [49] generates a rooted level

structure as a first step. The two partitions are defined when one half of the domain has been

traversed. Another way to find a graph separator is called the spectral bisection method and is

based on the spectral partitioning algorithm of Pothen et al. [101]. Their algorithm induces the

partitions from the eigenvector corresponding to the second smallest eigenvalue of the Laplacian

matrix associated with the graph. The elements of n × n Laplacian matrix L_j of an undirected

graph with n vertices are defined as

Lij = -1 if i _ j and an edge connects i and j

Lij = 0 if i _ j and no edge connects i and j

Lij = D ifi=j, (74)

where D is the the degree of vertex i. The smallest eigenvalue of this matrix is 0 with an eigenvector

of (1, .... 1). The eigenvector corresponding to the second smallest eigenvalue is determined by a

Lanczos algorithm. The entries of this eigenvector are sorted and split along the median to produce

equal]y-sized partitions. Pothen et al. [101] have shown that the separators produced by this

algorithm are shorter than those produced by other techniques. Barth in [1] presents a simple

proof that the spectral bisection technique minimizes number of cut-edges.

Simon [112] has applied these three partitioning algorithms to a variety of two- and three-

dimensional grids and has shown that the spectral bisection technique yields better partitions in

that it produces subdom_ns with shorter boundaries. He has observed that the coordinate bisection

technique leads to disconnected partitions, thereby greatly increasing the lengths of the boundary

segments. Disconnected partitions also have the undesirable effect of increasing the number of

adjacent partitions, and each adjacent partition requires a message to be generated. Therefore,

disconnected partitions imply higher start-up and transmission costs. The graph bisection technique

using level sets produces partitions with long boundaries since it uses a breadth-first search to define

the level sets. The spectral bisection technique produces uniform, mostly connected subdomains

with short boundaries. Theoretical results by Fiedler (summarized in [101]) show that one of the

two subdomains formed by the spectral partitioning is always connected. Spectral partitioning

results in fewer shorter length messages and reduced communication costs.

Figures 30(a), 30(b), and 30(c) show eight-way decompositions for a mesh around a four-element

airfoil obtained with coordinate bisection, graph partitioning based on level sets and spectral par-

titioning, respectively. The interpartition boundaries are shown by the thick lines in these figures.

We observe from Figure 30(a) that even with only eight partitions, there are instances when the

subdomains degenerate to zero thickness. This is a direct consequence of the variable density of the

grid within a rectangular coordinate strip and leads to disconnected domains for a larger number

of partitions. In Figure 30(b) we see that the partitions produced by the level sets strategy have

long boundaries and are connected, but as the number of partitions increases, we have observed
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that thepartitionsbecomedisconnected.In Figure30(c)wenoticethat thepartitionsproducedby
the spectralbisectiontechniquearecompact,andthis propertyseemsto hold evenasthe number
of partitionsis increased.

Figure 30(a): 8-waydecompositionwith co-
ordinate bisection, communication graph.

Figure 30(b): 8-way decomposition with

graph bisection using level sets. processors.

Figure 30(c): 8-way decomposition with graph bisection using level sets. processors.

The execution times for the coordinate, level sets, and spectral bisection techniques for a 64-

way partitioning of a triangular mesh with 15606 vertices on a Silicon Graphics workstation (Iris

4D/70) in 32-bit arithmetic are 4, 3, and 1750 seconds, respectively. On the Cray Y-MP/1 the

timings without vectorization are 3.70, 3.96, and 399.26 seconds and 0.76, 1.04, and 26.6 seconds

with vectorization. The performance of spectral bisection improves considerably with vectorization

because the matrix-vector products are vectorized on the Cray Y-MP. The spectral bisection is

thus expensive. The multi-level spectral bisection scheme of Barnard and Simon. [7] can be used

to improve the efficiency. The execution time on the workstation is reduced to 200 seconds to

partition the same grid. The multi-level spectral technique does not create the same partitions as

the original spectral algorithm due to round-off and sensitivity to stopping criteria in the Lanczos

algorithm.

A different partitioning strategy based on coordinates has been tested by Gilbert et al. [51]

based on the theoretical work of Miller et al. [91]. A brief description of this relatively new

partitioning algorithm, called geometric partitioning is given here.
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Project Up. A stereographicprojectionof the point set in IRa onto a higher-dimensional unit

sphere is carried out. Assume IRd is embedded in IRd+l as the Xd+l = 0 coordinate plane and

assume a urtit sphere Ud embedded in IRd+l centered at the origin. Given a point p in IRa,

construct a line L in IRd+l passing through p and through the north pole of Ud. The line L

must pass through another point q of Ud; the point ST(p) = q is defined as the image under

the stereographic projection mapping. Thus the entire point set P = {Pl, .... , ,p,_} in IRd is

mapped onto ST(P) = {ST(p1), ...,ST(p,_)}.

Find Centerpoint. This is a special point in the interior of U _. The centerpoint of a point set is

defined as one such that every hyperplane passing through it about evenly divides the point

set. A more precise definition may be found in [51].

Conformal map: Rotate and Dilate. This step moves the centerpoint conformally to the ori-

gin. It is accomplished in two steps. First a rotation on Ud is carried out so that the

center-point c is mapped onto the diameter between the north and south poles of Ud i.e., the

new center point is cl = (0,0, ...r). Following a mapping back to IRd by using the inverse

transformation ST -1, the points in IRd are scaled by a factor x/(1 - r)/(1 + r). The scaled

points are projected back onto U d by another application of ST.

Find Great Circle. A random great circle (a sphere in IRd) is chosen on the unit sphere U d.

Unmap and Project Down. The great circle is transformed to a circle in lR d by applying the

inverse of the transformations. The resulting circle in IRd represents the boundary between

partitions.

The center-point computation is computationally expensive involving (O(Nd)) operations and

Miller et al. [91] have proposed a sampling strategy. The theoretical results in [91] indicate that

provably good separators can be obtained.

The advantage of geometric partitioning over coordinate bisection is that it produces separators

that are arcs of circles (in two-dimensions) as opposed to straight lines. It is also much less

expensive compared to graph bisection techniques. Since it only deals with the coordinates of the

point set, there are many situations where the graph bisection techniques will be better, e.g. a

two-dimensional graph embedded in 3-dimensional space.

6.2 Communication issues

After partitioning, global values of the data structures required to define the unstructured mesh

are given local values within each partition in a preprocessing step. We thus dispense with any

references to global indices. In the present implementation, each local data set also contains the

information that a partition requires for communication at its interpartition boundaries. The

information required for communication at the interpartition boundaries is precomputed using

sparse matrix data structures. These are outlined for a cell-vertex scheme where vertices are

partitioned.

The data structures required for communication and stored by each processor consist of:

nadjproc - no. of adjacent processors (processors handling adjacent partitions)

iadjproc - list of adjacent processors; length nadjproc

ibvs - pointers to the cumulative number of interior boundary vertices that need to send informa-

tion in common with the adjacent processors; length nadjproc+l

nbvs - number of boundary vertices in common with processor iadjproc(j) that need to send

information. This can be derived from ibvs and is not stored; nbvs(j) = ibvs(j+l)-ibvs(j)
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nintbvs(.,1) - Local indicesfor the verticessendinginformationon current processor;length
ibvs(nadjproc+1)-1

nintbvs(.,2) - Localindicesonadjacentprocessorreceivinginformation;lengthibvs(nadjproc+l)-
1

ibvr - pointersto thecumulativenumberofinteriorboundaryverticesin commonwith theadjacent
processorsthat needto receiveinformation;lengthnadjproc+l

nbvr - numberof boundaryverticesin commonwith processoriadjproc(j) that needto receive
information. This canbederivedfrom ibvr andis not stored;nbvr(j) = ibvr(j+l)-ibvr(j)

nintbvr(.,1) - Local indices on current processor receiving information; length ibvr(nadjproc+l)-
1

nintbvr(.,2) - Local indices on adjacent processor sending information; length ibvr(nadjproc+l)-I

The arrays nintbvs(.,2) and nintbvr(.,2) can be dispensed with if the numberings in the adjacent

processors are done in a consistent manner. The data structures are illustrated by means of an

example. Figure 31 shows a three-way partition with the inter-partition boundaries indicated by
the thick lines. Each of the vertices shown is stored by two or three processors. The entries of the

data structures for processor 0 are also shown in the figure.

DATA STRUCTURES

nadjproc = 2

iadjproc = 2, 1

ibvs = 1,8, 12

nbvs = 7,4

ibvr = 1,9, 14

nbvr = 8, 5

Figure 31: 3-way decomposition showing only the triangles intersecting the partition bound-

aries and data structures for processor 0.

Regarding the assignment of partitions to processors, a naive mapping is done. This simply

maps partition 0 to processor 0 and so on. As was discussed in the last section, it is possible

to do a near-optimal mapping by heuristics. In [135], we evaluated the naive mapping against a

random mapping for an unstructured problem on 64 nodes of the Intel iPSC/860 and observed

little difference in performance. Reasons are also given [135] as to why the assignment of partitions

to processors is not crucial. We simply note here that since the partitioning is done in a recursive

manner, spatial locality is imposed on the partitions. For example, the first cut in a 64-way

partioning of the domain ensures that the first 32 partitions (0-31) are spatially separated from

the second 32 (32-63) except for the boundary between the two halves. A similar locality property

also exists in some processor networks, such as the hypercube.
The PCG defined in Section 6.1 only reveals the communication pattern. It does not contain

any information on the order in which messages could be received. Therefore, asynchronous re-

ceives can be posted for all the messages that a processor expects to receive. This would entail

providing storage for buffers to receive all the messages. This would also imply that the exchange

of information between two processors A and B takes place serially, the first to transfer information

42



betweenA and B andthe secondbetweenB andA. Onmanyparallelcomputers,suchastheIntel
iPSC/860,a bidirectionalcommunicationfacility is provided.If the processorsaresynchronized,a
two-wayexchangeof informationtakesplacein parallel,thusreducingcommunicationcosts.For
this to beutilized, the edgesin the PCG needshaveto be colored.This approachalsoreduces
memoryrequirementssincestorageis not requiredfor all the messagesthat a processorreceives;
the bufferonly needsto beaslargeasthemaximummessagelength. Thusa scheduleof messages
is derived.Table 1 presentsa scheduleof messagesfor the PCG of Figure25. It is a coloringof
the edgesof the PCG. As a result, processorsareorganizedinto pairs so that the bidirectional
communicationcantakeplacebetweenpairsof processorsat eachstageof the schedule.

Table1: Communicationschedule.

Processor Permuted iadjproc
0

1

2

3

4

5

6

7

1 7

0 2 3 4 6

3 1

2 4 1

5 3 6 1

4 6

7 5 4 1

6 0

Partitioning, conversion from global to local addresses, and generation of the data structures

required for communication at the interpartition boundaries are all done presently on a workstation

as a preprocessing step. This is justified when the same geometric case will be run for a variety

of analyses, varying freestream Mach number, angle of attack, etc. In adaptive grid situations,

where the grid evolves with the flow solution, such an approach requires constant repartitioning

and is clearly not viable; procedures such as those outlined in Section 6.6 need to adopted. It

is also possible to parallelize the partitioning algorithms e.g., Johan et al. [66] have successfully

parallelized the spectral partitioning method.

6.3 Parallelism in explicit schemes

In a vertex-partitioned mesh, each vertex of the triangulation is assigned uniquely to a partition

and the interpartition boundaries consist of the edges of the control volumes. In the case of upwind

schemes based on projection-evolution techniques [12], two communication phases are required for

the evaluation of the residuals, one during the computation of the gradients and the other, during

the formation of the fluxes. The processors exchange the dependent variables at two rows of vertices

that are incident to the interpartition boundary edges for the computation of the gradients. Next,

during the reconstruction phase, gradients are exchanged so that each processor can compute the

interpolated variables on each side of the the dual edges forming the interpartition boundaries. If

limiters such as the one presented in [12] are employed, another communication step is necessary.

Each processor can thus compute the entire residuals for all the vertices it owns. Duplication of the

flux calculations occurs at the interpartition boundary edges, but it is not a crucial issue on medium-

and coarse-grained parallel computers. As discussed in [135], this duplication can be avoided on

fine-grained parallel computers at the expense of more communication. Hammond and Barth [54]

when implementing an explicit scheme on a fine-grained parallel computer, assign orientations to

the edges of the triangulation so that no vertex has an out-degree greater than 3. Each processor is

assigned a vertex and redundant flux calculations are avoided by assigning flux evaluations to the

processors containing the outgoing edges. We conclude this subsection by observing that there is

ample parallelism in stencil-based operations on fine- and coarse-grained parallel computers with
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the associatedcommunicationcostincreasingwith the sizesof the stencils.

6.4 Parallelism in implicit schemes

This section deals with the issues involved in parallelizing implicit schemes on unstructured grids.

Ramamurthi et aJ. [104] have implemented a conjugate gradient method with a linelet-based

preconditioner (see Section 4.2.3) and have addressed the issues involved in parallelizing an incom-

pressible flow solver. They settle on a weaker parallel preconditioner that limits the linelets to be
contained entirely within the processor. Ajmani et al. [2] have also settled for a weaker precondi-

tioner when solving the Navier-Stokes equations with a GMRES implicit method grids on the Intel

iPSC/860. As was discussed in Section 4.2, the preconditioned GMRES method was shown to be

quite efficient for solving two-dimensional flow problems using unstructured grids on sequential and

vector computers. Given that the sequential algorithm is satisfactory, the techniques to extract the

best parallel performance are examined.
On distributed-memory parallel computers, the same least squares problem of Eqn. (24) is

solved by each of the processors. While this results in some duplication of work, the main nonlocal

kernels of the GMRES are distributed across multiple processors. These kernels include the sparse

matrix-vector multiplication, dot products, and L2 norm evaluations. On a Cray Y-MP, vectoriza-

tion for the sparse matrix-vector product was achieved by using an edge-oriented data structure for

the matrix and coloring the edges of the graph. Coloring of edges destroys locality while allowing

for vectorization, and is attractive on a computer such as the Cray Y-MP, because of the fast

gather/scatter functions it possesses. However, this is not the optimal way to compute the matrix

vector product on a parallel computer with hierarchical memory, where locality is of utmost impor-

tance. The compressed-row storage scheme [49], which affords more locality, is used instead. We

have found that even on a single node this approach outperforms the one that uses the edge-based

data structure by a factor of two, because of the increased locality. Alternatively, the edges and

vertices could be reordered such that the new ordering possesses much more locality [83]. The rows

are uniquely assigned to processors. The communication step consists of exchange of the vector

components at the two rows of vertices incident to the interpartition boundary edges. Akin to the

explicit scheme, each processor computes its share of the matrix vector multiplication. More details

on the implementations of the matrix-vector product on vector-parallel and distributed-memory

computers may be found in [128].

In most problems of interest, the choice of the preconditioner is very important, but the effort

involved in applying the preconditioner should not be prohibitive. The implicit scheme without

preconditioning possesses almost complete parallelism, except for the duplication of some work when

solving the least squares problem in GMRES, and the communication associated with the formation

of the residual. On a parallel computer, the parallelism in the preconditioning phase is an important

additional consideration. A simple choice is a block-diagonal preconditioner that computes the

inverse of the 4 x 4 diagonal block associated with a mesh point. The LU decomposition of the
4 x 4 blocks and the forward and back solves are local and, hence, are inherently parallel.

With ILU(0) preconditioning, it is possible to obtain parallelism by using a level scheduling

[4]. Under this permutation of the matrix, unknowns within a wavefront can be eliminated simul-

taneously. However, since the degree of parallelism varies with the wavefront, it cannot be easily

exploited on a distributed-memory parallel computer. A fixed partitioning strategy for the mesh

incurs substantial load imbalance, while a dynamic partitioning strategy entails substantial data

movement and hence, increased communication costs. It has been found in [53, 8] that using a fixed

partitioning strategy when solving triangular systems of equations on a regular grid results in low

upper bounds on efficiency even in the absence of communication. A higher degree of parallelism

in ILU(0) can be achieved by using a different ordering of unknowns, but typically such an or-

dering adversely affects the convergence of the underlying iterative method. Therefore, for general
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sparsematrices,theILU(0) preconditioneris ill-suitedfor implementationona distributed-memory
parallelcomputer.

Therefore,wesettleon an ILU preconditionerthat is processor-impliciti.e., ILU(0) is carried
out for all theverticesinternalto aprocessor.Thus,at amacro-level,theoverallpreconditionercan
beviewedasanapproximateblockJacobiiteration,whereineachblockisassignedto aprocessorfor
whichanincompleteLU factorizationis carriedout. A blockhererefersto a subdomainconsisting
of all the unknownsassignedto a processor.In the preconditioningphase,ILU factorizationis
carriedout for eachprocessorby zeroingout the matrix entrieswhosecolumnnumberslie outside
the processordomain. This is equivalentto solvingthe problemwithin eachprocessorsubjectto
zeroDirichlet boundaryconditionsduring the preconditioning.This approximationis consistent
with thesteadystatesolutionAW -- 0 everywhere. The overall preconditioner is weaker than the

global ILU(0), and degenerates to a block-diagonal preconditioner in the limit of one grid point

per processor. Thus, as the number of processors increases, degradation in convergence is to be

expected. This degradation should be moderate on coarse-grained parallel computers.

In order to minimize the sequential overhead, we appeal to techniques developed in domain de-

composition. For an overview of domain decomposition techniques and their suitability to parallel

computers see [69]. One of the most successful methods in use in domain decomposition is the

Schwarz alternating procedure for overlapping subdomains, which can also be implemented as a

preconditioner. Two variants of this procedure have been developed in the literature, the additive

and the multiplicative algorithms; see [36]. The term additive denotes that the preconditioning can

be carried out independently for each subdomain. The processor-implicit scheme outlined above is

an example of an additive Schwarz preconditioner. In contrast, the multiplicative Schwarz method

requires that the preconditioner be applied in a sequential way by cycling through the subdomains

in some order, as in Gauss-Seidel relaxation. It is possible to extract some coarse-grained paral-

lelism by coloring the subdomains in an additive/multiplicative hybrid, but the potential is limited.

Therefore in a parallel context, the additive Schwarz method is preferred.

A powerful idea for elliptic problems advocated in [36], is the use of a coarse grid in order

to bring some global influence to bear on the problem, similar in spirit to a two-level multigrid

algorithm. The coarse grid operator is applied multiplicatively in our context i.e., the coarse grid

problem is solved first. The solution from the coarse grid problem is subsequently used by the

processors during the additive (parallel) phase as Dirichlet data at the subdomain boundaries.

Applying the coarse grid in this manner does impose a penalty in a parallel setting; it becomes

a sequential bottleneck. Additive coarse grid operators are also common [25]. In this reference,

the multiplicative and additive Schwarz algorithms are applied to the solution of nonsymmetric

elliptic problems. An almost h-independent convergence, where h is the fine grid size, is observed

provided the coarse grid is fine enough. In [25] the coarse grid operator was formed by discretizing

the partial differential equation on a coarse grid. However, in our application, this would require a

triangulation followed by a discretization on this coarse grid. Generation of interpolation operators

to transfer information between the coarse and the fine grids would also be necessary. We avoid all

these complexities by appealing to an alternative way of obtaining a coarse grid operator described

in [139].

A coarse grid Galerkin operator is easily derived from a given fine grid operator by specifying

the restriction and prolongation operators. We choose the restriction operator to be a simple

summation of fine grid values, and the prolongation operator to be injection. Under this choice,

the coarse grid discretization is similar to the one used in an agglomeration multigrid strategy,

see [71, 132]. It amounts to identifying all the vertices that belong to a subdomain by one coarse

grid vertex, and summing the equations and the right-hand sides associated with them. Thus the

coarse grid system has as many vertices as the number of subdomains. At each time step, a coarse

grid system is formed and solved by using a direct solver. The data obtained from the coarse grid

is used on the boundaries as Dirichlet data for each subdomain. We have found that in practice,

45



a direct solveris seldomneededto solvethe coarsegrid system;an iteration of incompleteLU
decompositionseemsto suffice.The implementationof the coarsegrid solveris discussednext.
Eachprocessorfirst formspartsof the coarsegrid matrix and the right-handsideat everytime
step. A globalconcatenationisperformedsothat eachprocessorhastheentirecoarsegrid system.
This systemis solvedredundantlyby eachprocessorby forming approximateL and U factors.

During the preconditioning phase, each processor forms a portion of the right-hand side. After a

global concatenation of the right-hand side, each processor carries out forward and backward solves

and deduces the appropriate Dirichlet data.

We have found that at least one cycle of implicit smoothing similar to that employed in multigrid

context [79] is needed to mitigate the adverse effects of injection of the solution from the coarse to

the fine grid. Therefore, on the fine grid, after injection, given the old vector, u °ld, the following

system of implicit equations is solved for the new solution vector, u'_e_:

d

V" (75)J ,
j=l

where e is taken to be 0.5, d is the degree of the vertex i, and the summation is over the neigh-

bors of each vertex. We have found one Jacobi iteration applied to Eqn. (75) to be sufficient.

This smoothing step involves communication at the boundaries. We have also developed a weaker

smoother that dispenses with the communication associated with the Jacobi smoothing, but yields

comparable convergence. This technique termed modified Jacobi smoothing, smooths the neighbor-

ing coarse grid data (to be used as Dirichlet data) with the data that the processor holds. This

step is given by the following relation:

(I + e)U_ _ = UD + eULoc, (76)

where UD is the old Dirichlet data, U_ _ is the new Dirichlet data and ULOC is the value of the

coarse grid vertex assigned to the processor.

6.5 Performance on the Intel iPSC/860

The Intel iPSC/860 is a multiple instruction/multiple data stream (MIMD) parallel computer. The

machine used has 128 processor nodes. Each node comprises of a 40 MHz Intel i860 micro-processor,

8 MBytes of memory, and a Direct Connect Module (DCM) which handles communication in the

hypercube communication network. Each node has a peak performance of 60 Mflops in 64-bit

arithmetic. The bi-directional hypercube interconnect facilitates communication across the nodes.

Flow past a four-element airfoil in a landing configuration at a freestream Mach number M_ =

0.2 and an angle of attack of 5 ° is considered as a test case. Performance results are presented for

two problem sizes that are representative of two-dimensional inviscid flows. The coarse mesh has

6019 vertices, 17,473 edges, 11,451 triangles, 4 bodies, and 593 boundary edges. The fine mesh has

15,606 vertices, 45,878 edges, 30,269 triangles, 4 bodies, and 949 boundary edges. Figure 32 shows

the coarse grid abotlt the four-element airfoil. The Cray implementation of the explicit code [12]

runs at 150 megaflops on the Cray Y-MP. The implicit code was not optimized for the Cray Y-MP,

since it was developed on the Intel iPSC/860. The result is that it runs in an almost scalar fashion

on the Cray, except for the right-hand side computation. However, a similar implicit unstructured

mesh Navier-Stokes code was implemented earlier on the Cray Y-MP and optimized [135] to run at

approximately 110-120 megaflops. All the megaflop numbers in this section are based on operation

counts using the Cray hardware performance monitor. The explicit scheme is a four-stage Runge-

Kutta scheme and uses a CFL number of 1.4. With the GMRES/DIAG scheme, the start-up CFL

number is 3 and the CFL number is allowed to vary inversely proportional to the L2 norm of the

residual up to a maximum of 30. With GMRES/ILU, the start-up CFL number is 20 and the CFL
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numberis allowedto varyinverselyproportionalto theL2 norm of the residual up to a maximum

of 200,000. With both implicit schemes, the number of GMRES search directions is limited to 15.

Hence, we use a fixed-storage inexact Newton method [32].

Figure 32: Coarse grid about the four-element airfoil with 6019 vertices.
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The performances of the explicit and the implicit schemes are compared on the Intel iPSC/860.

Tables 2 and 3 show the times per iteration in seconds and the convergence rates for the coarse
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and thefinegrids,respectively.The convergencerate is definedas
1

where R_ is the L2 norm of the residual of the density equation at the end of nth time step and

R1 is the residual at the end of the first time step. Figure 33 shows the convergence histories

for the fine mesh as a function of the number of iterations. It may be observed that the explicit

scheme is barely converging while the implicit schemes converge much faster. The GMRES/ILU

processor-implicit preconditioning exhibits degradation in convergence as the number of processors

increases, but the degradation is moderate. It is also seen that the convergence histories with

GMRES/ILU gravitate towards that of GMRES/DIAG as the number of processors increases. In

the limit of 1 grid point per processor the two will be identical. Since the problem does not fit

on one processor of the Intel iPSC/860, the uni-processor runs were carried out on the Cray Y-

MP. Even with 128 processors, the GMRES/ILU scheme requires only about 20% more iterations

than the ideal 1 processor scheme to obtain the same level of convergence (5 orders of reduction

in the residual norm). Since the time to completion is of ultimate interest, Figure 34 shows the

convergence histories as a function of the elapsed times with the number of processors fixed at 64.

It clearly shows the superiority of the GMRES/ILU processor-implicit technique over the explicit

and the GMRES/DIAG schemes.

Table 2: Performance of the implicit scheme on the Intel iPSC/860 - 6019 vertices.

No. of processors

Scheme Measure 1 4 8 16 32 64

RK4 Time/iter (sec) - 1.07 0.59 0.32 0.20 0.13
Conv. rate 0.973 0.973 0.973 0.973 0.973 0.973

GMRES/ Time/iter (sec) 3.06 1.66 0.95 0.59 0.42
DIAG Conv. rate 0.874 0.874 0.874 0.874 0.874 0.874

GMRES/ Time/iter (sec) 4.42 2.36 1.32 0.77 0.52
ILU Conv. rate 0.791 0.795 0.796 0.797 0.797 0.797

Table 3: Performance of the implicit scheme on the Intel iPSC/860 - 15606 vertices.

No. of processors

Scheme Measure 1 16 32 64 128

RK4 Time/iter (sec) - 0.78 0.43 0.25 0.15
Conv. rate 0.997 0.997 0.997 0.997 0.997

GMRES/ Time/iter (sec) - 2.19 1.24 0.75 0.51
DIAG Conv. rate 0.968 0.968 0.968 0.968 0.968

GMRES/ Time/iter (sec) - 3.07 1.73 1.07 0.65
ILU Conv. rate 0.870 0.878 0.878 0.880 0.891

Finally, we examine the effects of using a coarse grid as discussed in Section 6.4 to improve

convergence for the 15,606-vertex mesh. Figure 35 shows the convergence histories as a function of

iterations for the uni-processor, 32-processor and 128-processor cases, with and without the use of

a coarse grid. A cycle of modified Jacobi smoothing is employed as part of the preconditioner in

order to stabilize the procedure with the coarse grid system, and the coarse grid system is solved

redundantly by all processors using one iteration of incomplete LU factorization. The convergence

improves significantly, illustrating the power of the coarse grid; the convergence with 128 processors
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is evenbetter than that obtainedwith the uni-processorscheme.Unfortunately,this improved
convergencedoesnot translateinto a reductionin the time requiredto solvethe problem,in spite
of all the optimizationsmentionedin Section6.4. This is illustratedin Figure36,whichshowsthe
convergencehistoriesasafunctionof elapsedtimeson32and128processorswith andwithout the
coarsegrid. In both the 32-andthe 128-processorcases,it maybeobservedthat the timesrequired
to solvethe problemarenearly the samewith and without the useof the coarsegrid. On a per
iteration basis,the elapsedtimesfor the 32-processorcaseare1.73and 1.87secondsrespectively,
without andwith the coarsegrid. Forthe 128-processorcase,thesetimesare0.64an 1.02seconds.
This points to a major drawbackof usingthe coarsegrid systemto improveconvergenceon a
parallelcomputer. With too smalla coarsegrid system,the effort requiredto solvethe system
is minimal,but sois the realizedimprovementin convergence.With a largercoarsegrid system,
thegain in convergenceis substantialbut comesat a greatercost.The coarsegrid operator,being
sequentialin nature,predominatesasthenumberof processorsincreases.Wheninvokingthecoarse
grid operator,a largefractionof the timeis spentin theglobalconcatenation.Thus,if theparallel
computerwereto havebetter communicationrates,the techniquewouldbe morecompetitivein
termsof elapsedtimesaswen.
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36: Convergence histories 15606-

vertex case as a function of elapsed times with

and without the use of a coarse grid.

In order to get an idea of the relative performances of the codes on the Intel iPSC/860 and

the Cray Y-MP/1, performance data from the Cray implementation are given. The elapsed times

on the Cray Y-MP/1 are respectively, 0.15 and 0.39 seconds per time step for the coarse and fine

meshes with the explicit scheme. The explicit code runs at 150 megaflops on the Cray Y-MP/1.

The megaflop ratings on the Cray are obtained .using the hardware performance monitor. By simple

scaling it may be verified that the explicit code runs at nearly 400 megaflops on 128 processors of

the Intel iPSC/860 with the larger problem. Timings for the implicit scheme on the Cray Y-MP/1

are not provided since the codes have not been not optimized.

6.6 Adaptive grids

R-refinement, where the grid points are simply repositioned so that regions of importance are better

resolved, poses no problems in parallel. P-refinement causes load imbalance in a parallel setting.

H-refinement or mesh-enrichment also results in load imbalance. We will be mainly concerned in
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this sectionabout redressingtheloadimbalancecausedby h-refinement,with a similarapproach
beingpossiblefor p-refinement.

In the caseof steadyflows,a global repartitioningusing any of the partitioning strategies
outlined in Section6.1 is attractive, becausethe adaptationis typically only carriedout a few
times. In the caseof unsteadyflows,however,the adaptationis usuallylcarriedout muchmore
frequentlyandglobalrepartitioning,evenif donein parallel,is time-consuming.Instead,a dynamic
load balancingstrategywhich involveslocal migrationof cellsfrom eachprocessorto/from the
neighboringprocessorsis moreappealing.The quality of the partitions that result from sucha
local procedureis dependenton the quality of the initial partitions and alsoon the numberof
timesthe local procedureis carriedout. Periodically,wemayhaveno choicebut to usea global
repartitioningstrategyif the qualityof the partitionsdegrades.A tacit assumptionis madewhen
dealingwith adaptivegrids on distributed-memoryparallelcomputers.The assumptionis that
whenthe subgridassignedto a nodeis refined,it still fits in the memoryof that nodebeforethe
loadbalancingalgorithmis initiated. This maybeanunrealisticassumptionunlessthememoryof
that nodeis sizable;it mayalsolimit the amount of refinement that can be done.

A dynamic load balancing strategy presented in [137] for adapted tetrahedral grids is now

described. The technique migrates tetrahedral cells between processors so that balanced partitions

result. Given an initial partitioning, that becomes unbalanced because of adaptive refinement,

the load balancing algorithm consists of two steps. The first step, or the higher-level algorithm,

concerns the identification of the processors that need to exchange cells with their face-adjacent

neighbors and the specification of the number of cells to be exchanged. The second phase, or the

lower-level algorithm, concerns the actual modus operandi of the exchange of cells between any two

face-adjacent processors, including the updating of the pertinent data structures.

The higher-level algorithm used for load balancing is a divide-and-conquer strategy. The global

problem involving all the processors is split into two similar, independent problems, each of which

involves half the number of processors. The two problems are recursively solved in the same fashion,

with the recursion terminating when the problem involves only two processors. Thus the algorithm

completes in log2P stages where P is the total number of processors. At each stage, processors

in each group that are face-adjacent to at least one processor in the other group are identified for

the actual migration of cells and are called candidate processors. Since a recursive partitioning

strategy is adopted (see Section 6.1), the groups of processors at each stage are easily identified

by their binary addresses. This will be clarified by means of an example. Figure 37 shows an

8-way partition of the domain. The loads associated with the partitions are shown in parantheses.

Assume that a naive mapping of processors is done, so that partition 0 is assigned to processor 0,

and so on. At the first stage, the processors are split into two groups, one with 0 in the leading

bit of the binary addresses (processors 0, 1, 2, 3) and the other with 1 (processors 4, 5, 6, 7).

The candidate senders are processors 0, 1 and 3 and the candidate receivers are 7, 6 and 4 at the

first stage. The cumulative loads in these two processor groups are balanced by migrating a total

load of 50 from the heavier group using the candidate processors. The next step will involve two

problems, one that exchanges data between processor groups (0, 1) and (2, 3), using candidate

processors 1, 2 and 3 and a second, that exchanges data between processor groups (4, 5) and (7, 6),

using candidate processors 6, 4 and 5. The last stage consists of exchange of information between

processors 0 and 1, 2 and 3, 4 and 5, and 7 and 8. At each stage of the load balancing, migration

takes place only across face-adjacent neighbors. Because of the recursive initial partitioning, such

a scheme would never have to migrate cells between processors that are not face-adjacent. In our

applications, the number of cells migrated by each candidate by each candidate sender is given by

the following relation:
Ni

- -- * Mig_ot, (78)
M igi - Ntot

where Migi is the number of cells to be migrated by the ith candidate processor in the sender
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group, N_ is the total number of cells on processor i, Mig_o_ is the total number of cells to be

migrated, and Ntot is the cumulative number of cells in all the candidate processors of the sender

group. This algorithm will fail when Migi > N_. This can happen if, for example, a processor

such as processor 2 in Figure 37, has an excess load, but is not a candidate processor in the early

stages of the algorithm. However, such situations can be remedied by initi',dly balancing the load of

such a processor with its face-adjacent neighbors before applying the divide-and-conquer algorithm.

First stage of load balancing
.... Second stage
...... Third stage

Figure 37: 8-way decomposition with the computational loads shown in parantheses.

After the determination of candidate senders and receivers at each step of the divide and conquer

algorithm, the second step consists of the actual migration of cells. The candidate processors in the

sender group send the number of cells computed using Eqn. (78) to the receivers. The candidate

processors in the receiver group likewise receive the information from the senders. Asynchronous

communication models are utilized for this purpose. The candidate processors also have to adjust

their inter-partition data structures so as to accurately reflect the change in the assignment of cells

to partitions. The local migration procedure is split into two steps:

1. The cell-designation step: The sender processor determines which cells are to be sent. To

minimize start-up costs, the sender sends the entire group of cells to the receiver in one

message. The cells could be designated by using either a connectivity-based or a coordinate-

based strategy. In the connectivity-based strategy, starting with the cells on the sender that

are face-adjacent to the receiver, additional cells are added to the list if they share a face

with any of the cells already in the list. In the coordinate-based strategy, cells within a

spatial region are designated for transfer. In [137], it was found that the coordinate-based

designation scheme was found to produce smooth inter-partition boundaries, whereas the

connectivity-based strategy produced jagged boundaries. It should be mentioned that the

coordinate-based cell-designation is appropriate only when a coordinate bisection strategy is

employed for the initial grid partitioning.

2. Communication step: The sender processor deletes the designated cells and the appropriate

faces, edges and nodes from its representation. It sends the information to the receiver

processors. Each of the receivers adds the elements to its representation. Then both the

sender and receiver update their inter-partition boundary data structures.

An example of the load balancing algorithm taken from [137] for an adapted grid for flow about

an ONERA M6 wing is shown in Figure 39(a) and (b). The surface grid has been adapted once near

the leading edge, the tip and the shock waves. The initial partitioning using a coordinate bisection
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strategyisshownin Figure39(a)bythethick lines. Thesurfaceplot for thebalancedgrid usingthe
divide andconquerstrategywith the coordinate-basedcelldesignationschemeis shownin Figure
39(b). During the first stepof the loadbalancingalgorithmtheverticalpartition boundarymoves
to the left to balancethe numberof cellsin the two halves.This is followedby an independent
movementof eachof the horizontalboundaries.Thelengthof the inter-t)artitionboundarieshas
not changedappreciablydueto thebalancing.This iscontrastto thecasewhereconnectivity-based
cell-designationis employedwhereit wasfound that the inter-partition boundariesbecamejagged
and poorly formed[137].Theloadbalancingwasimplementedon an iPSC/860andwasfoundto
haveadequateparallelism.

'IIIIR

Figure 39(a): Adapted grid with the initial

partitioning.

Figure 39(b): Partitions that result from ap-

plying the load balancing algorithm.
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