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ABSTRACT

A formalism for jet noise prediction is derived that includes the refractive 'cone of

silence' and other effects; outside the cone it approximates the simple Lighthill format.

A key step is deferral of the simplifying assumption of uniform density in the dominant

'source' term. The result is conversion to a convected wave equation retaining the basic

Lighthill source term. The main effect is to amend the Lighthill solution to allow for

refraction by mean flow gradients, achieved via a frequency-dependent directional factor.

A general formula for power spectral density emitted from unit volume is developed as

the Lighthill-based value multiplied by a squared 'normalized' Green's function (the

directional factor), referred to a stationary point source. The convective motion of the

sources, with its powerful amplifying effect, also directional, is already accounted for in

the Lighthill format: wave convection and source convection are decoupled . The

normalized Green's function appears to be near unity outside the refraction dominated

'cone of silence', this validates our long term practice of using Lighthill-based approaches

outside the cone, with extension inside via the Green's function. The function is obtained

either experimentally (injected 'point' source) or numerically (computational

aeroacoustics). Approximation by unity seems adequate except near the cone and except

when there are shrouding jets: in that case the difference from unity quantifies the

shielding effect. Further extension yields dipole and monopole source terms (cf. Morfey,

Mani, and others)) when the mean flow possesses density gradients (e.g., hot jets).

INTRODUCTION

Lighthill, in his seminal papersl, 2 posed the problem of flow noise in terms of a wave

equation for a 'virtual medium at rest': the actual flow was effectively incorporated into

right hand side terms; these were interpreted as sources of sound. Although the equation

is exact, approximations to these source terms have the effect of suppressing sound

convection (hence refraction and shielding) by the mean jet flow 3,4. (Some effects of

refraction were pointed out by Powell 5 even before this connection was made.)

Equivalent equations for a moving medium have been put forward6-10; they allow for



the sound convection. Of these, Lilley's equation 10 has received much attention: it has

been developed by Mani 11-13, Balsal4,15, and others 16-22 into a quantitative predictive

formalism for properties of jet noise. It entails a formidable derivation or calculation of a

Green's function for highly idealized models of a jet flow. By contrast, the Lighthiil

procedure, as developed by Ribner 23, Pao and Lowson 24, and others based on

Csanady7, 25-27, is relatively simple. These various formalisms appear to yield

comparable predictive accuracy outside the 'cone of silence' opening downstream of the

jet28, 29. Within this cone the Lighthill-based theory fails completely--it predicts no

attenuation--whereas the Lilley-based theory exhibits good to poor accuracy, depending

on frequency.

It is now well known3,4,7that expansion of the basic Lighthill source term leads to extra

terms that may be shifted to yield a convected wave equation: it was the implicit

discarding of these extra terms that was cited above. In 1977 the expansion was

exploited 28,29 to demonstrate a considerable equivalence between the Lighthill- and

Lilley-based approaches outside the 'cone of silence'. In the course of the present study it

was realized that the dominant residual source terms, as finally modelled, were fully

equivalent to the Lighthill term. Taken together, these findings led to the notion that the

Lighthill solution could be amended to allow for convected wave effects: extended in

simple fashion into the 'cone (g'silence'. The basis of the extension lies in replacing the

ordinary oscillatory Green's function, eikr/4rtr, by that for the convected wave equation.

These are both for a stationary point source, in contradistinction to the Lilley procedures;

this decouples convection of the sources and the sound waves, permitting the cited

simplifications in the theory. The following analysis develops the mathematical

implementation. Since the Green's function is frequency-dependent, the formalism is

directed toward the power spectral density, in particular, from unit volume. Then

quadratures can provide the full jet spectrum and the broadband noise intensity. All of

these are direction-dependent.

The survey paper, reference 29, from which the present study evolved, illuminates certain

facets only briefly touched on herein; moreover, it displays graphically several

comparisons of theory and experiment merely cited here. For a fuller understanding and

perspective as to how the present notions relate to other theories of jet noise, that paper

should be consulted as well.



PARTIAL OVERVIEW

Lighthill manipulatedtheconservationequationsof fluid dynamicsinto theform of a

waveequationforcedby nonlineartermsin theunsteadyvelocityvi on theright hand

side;thesewereinterpretedassourcesof sound. Forpracticalprediction,only the
dominantsourcetermwasretained,to yield

1 02p 02pvivj

Co2_t 2 - 72P - _xi_xj (la)

As a further approximation, the fluid density was approximated as uniform (p = Po) in

the source term, resulting in

1 _2p b2vi v.
(1)2 0t 2 - V2p = Po _xi_xj

Co

The early assumption of uniform density is premature, however: it completely suppresses

refraction of the sound by the flow 3,4. Herein, gradients in the density figure in the

expansion of the original source term of (la), after which the density is replaced by its

mean. This restores the refractive capability in terms of a convective wave equation: in

the case of a transversely sheared mean flow it takes the simple form

_1_ D2p ., c)U0u2ac _ _2vivi
Co2 Dt 2 ZPo_-_2_l 1 - 72P = Po_

(2a)

(where U2ac is defined by

E)U2ac _P (2b))
Po Dt - - _x2

as a refinement of the unconvected wave equation (1): the degree of approximation in the

step p=po here is.less. This bears a close relationship to Lilley's well-known

equationl0,12,13. It is, however, vastly simpler, with the special feature of being forced

by the same source term as in Lighthill_" uniform density format, if, compatibly with 9 =

Po, ¢)vi]_xi is taken to be zero. The convection implicit in D/Dt is by the jet velocity,

approximated locally as U(x2); this is the time average of the instantaneous velocity vi,

the fluctuations being designated ui.

The solution of Eq.(2) for a single freqt,ency component of the pressure p is obtained via

a Green's function, the right hand side being replaced by a stationary oscillatory point

'source'. Guided by an elegant relation due to Balsa 15 (but like Lighthill, he used a

moving point source), we develop a general expression for the power spectral density of

the sound pressure emitted from unit volume of the flow as

3



dO(xL_
,_ IGI2 • 4-dimensional Fourier transform of space-time correlation ofd Vol

(po02vivj/0xi0xj) (3a)

where IGI is the absolute value of the oscillatory Green's function, and it applies to a large

distance x (far field). (An earlier attempt by Schubert 8,9, in retrospect oversimplified,

may be mentioned.) Eq.(3a) can be reduced to the much heater form

dO(x]c0)
K"4 • IG[2 • 4-dimensional Fourier transform of space-time correlation ofd Vol

(pov_2) (3b)

where _¢is a wave vector (with absolute value _¢) governing the phase of G, and v_: is the

instantaneous velocity component in the direction of _¢. This reduction parallels a similar

one in a space-time domain formalism (for _2) due to Proudman 45.

The four dimensional tran,s_rrn may he reduced to a one dimensional tran,sform (time =:_

frequency); this involves the widely used approximation of the turbulent 'eddies' as

'acoustically compact'. This is a great simplification, but at a significant price in

accuracy: the amplifying effect 1,2 of eddy convection is progressively overestimated with

increasing jet velocity3,4,30, 38.

An alternative version of Eq.(3) is obtained by transformation of the correlation to a

convected frame of reference, following Chu30, 31. This resembles equations of Lilley 10

and Balsa 15 based on a moving point Green's function in connection with a moving

frame. (Cf. also references 24, 38, 46-48 for developments in terms of a four dimensional

Fourier transform.) In either case, use of the moving frame simplifies extraction of the

amplifying effect of convection of the source pattern.

For the simple wave equation (1), the magnitude of the Green's function at a large

distance x is simply (1/4rex). For the convected wave equation (2), on the other hand, IGI

will have a form approximating (1/4r_x) times a directional factorS, 9. In terms of these

results, a solution of Eq.(l) corresponding to (3b) is obtained by replacing K41GI2 in

Eq.(3b) by k4(4rtx) -2, where k = c0/c. Then, on taking the ratio of the two equations,

d_(xlc0)/dVol = [(_:2/k2) (4r_x)lGI] 2 d_(xlc0)MVol

convected wave eq. Lighthill wave eq

(4)



where the factor in brackets is defined as IGNI and for the purposes herein is designated

the normalized Green's function.

Eq.(4) generalizes the power spectral density from unit volume based on the simple

Lighthill wave equation to account, via a more realistic wave equation, for the influence

of flow. It exhibits the result as the Lighthill-based value multiplied by a squared

'normalized' Green's function. The Green's function multiplier incorporates the flow-

acoustic interaction: it yields a frequency-dependent alteration of the directional pattern.

The interaction has been described as a refractive effect32, 33 due to mean flow or sound

speed gradients and also as a shielding effect 11,12,15 due to the mean flow itself. The

term 'Lighthill-based value' in the above relation is not restricted to a formulation in

terms of 4-dimensional transforms. All valid estimation schemes used in the past are

encompassed; these are usually based on an approach in the space-time domain, rather

than the wave number-frequency domain.

Equations (2), (3), and especially their corollary Eq.(4) are the key results of this paper.

They provide the basis for reinterpretation of early procedures of the author's group --

experimental 32,33 and numericalS,9, 34 -- that effectively evaluated an approximation to

the Green's function. The normalized magnitude, IGNt, appears near unity outside the

refraction dominated 'cone of silence': this validates our practice of using Lighthill-based

approaches outside the cone, with extension inside via the Green'_ function.

A further extension in an Appendix yields dipole and monopole source terms (cf.

Morfey 35, Mani 13, Michalke and Michel 49, 50) when the mean flow possesses density

gradients (e.g., hot'jets).

MODIFIED LIGHTHILL EQUATION

Unconvected Wave Equation: Virtual Medium at Rest

Lighthill's wave equationl, 2 is equivalent to

1 _2p _2pvivj 1 _2p_ a2p
Co2_t 2 - V2p _)xic)xj + (5)- Co2_t2 _t 2

wherein the pressure has replaced the density that he used as the dependent variable;

additionally, the fluid has been approximated as inviscid and non-heatconducting. The
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right hand side is interpreted as a spatial distribution of sources of sound. In the usual

approximation, the last two terms are taken to cancel, and the fluid density is taken to be

a constant (p = Po) in the first. This leads to

c)2vivi

Co2bt2 " V2p = Po_ (6)

A rich literature4, 29 has dealt with applications of this equation for the prediction of

properties of jet noise.

The early replacement of p by Po to yield (6) is premature, however; it has the effect of

suppressing wave convection (and refraction) by the flow3, 4. This is shown most simply

by expansion of the original first source term under the specification of a unidirectional,

transversely sheared, meanflow U(x2). (This is known as the 'locally parallel'

approximation when applied to a real spreading jet. That more complicated case is dealt

with in Appendix A, along with the derivation of additional source termsi3, 35 that arise

in, e.g., heated jets, fi'om density gradients. ) The instantaneous local velocity is written

as the mean plus a perturbation ui,

vi = Ui + ui; Ui = (U(x2),0,0), (7)

and the expansion changes (5) to

l O2p
Co20t 2

using the definition

o32puiuj 90U0pu2 _ D2p
- V2P = _ + -c')x2 OXl + Co20t 2 Dt 2

E)/Dt = 0/0t + UO/0xl

as a convective derivative following the mean flow. Both (5) and (8) are exact.

(8)

(9)

Convected Wave Equation: Actual Medium with Flow

At this point we approximate D2p/Dt 2 as c-2D2p/Dt2,, where c is a local time-average

sound speed (Appendix B). On shifting the term to the left hand side, equation (8) goes

over to

1 D2p 02puiuj 20UOpu2

__2Dt 2 V2p = 0xi_)X-j- + Ox2 0Xl
(10)



Thus in place of the unconvected wave equation (6), we now have the more accurate

convected wave equation (10). The difference is traceable to the deferral of the

incompressible flow assumption in the first source term of Eq.(5): this had suppressed the

expansion of 02p/_t 2 into the convective form iD2p/Dt 2.

This is not yet in final form. The second source term, involving mean flow shear 0U/Ox2,

is linear in u2. For this reason, it has been argued8-10, 36 that the term participates in wave

propagation and so should be on the left hand side. (See Goldstein 37, pp. 389-391, for a

further discussion.) This applies, however, only to a small acoustic (or compressible)

component associated with wave propagation. Within a subsonic flow the

overwhelming part of ui is induced by the turbulence vorticity; being small compared

with the soundspeed, it may be approximated as incompressible. Thus we split off the

acoustic component and place it on the left hand side. (The acoustic component of the

first source term, on the other hand, is of higher order and may be neglected). Thus it is

at this point that we may justifiably apply Lighthill's approximation p = Po to the

remaining right hand side source terms. Consistently, the ui are taken to have zero

divergence. Equation (10) then goes over to

1D2p ,. 0U0u2ac _ _ 0U0u2

c-2Dt2 _ Zpo_---_-2_ll _ _72p = PO_xi_xj + Zpo_

where U2ac is defined via the momentum equation

(11)

iSU2ac
Po-_- - -_x2 (lla)

The corresponding equation for the Green's function, G(x,yk0), is

I_D2p ,,,., 0U0u2,,c
__2Dt2 - ,.._,o0-_2_11 - V2p = _i(x-y) e-i°t

and the solution of the pair of equations (1 la) and (12) for p is Ge -i°_t.

(12)

Recall now that Eqs. (8) to (12) relate to turbulence ui superposed on a transversely

sheared mean flow Ui = (U(x2), 0, 0), Eq. (7). For this scenario we examine the Lighthill

source term po0vivj/0xixj of Eq.(6), where vi = Ui + ui. On carrying out the

differentiation, the term expands exactly into the two terms on the right hand side of

Eq.(11). Thus that equation is exactly equivalent to

1 D2p_ _ OUOu2.a¢ _ (13)
_.2Dt 2 ZP°0x2 0Xl V2P = P°0xi_)xj
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In theexpansionwehaveusedthe incompressibility relation c)vi/Oxi = 0 implied by taking

P = Po; as noted, the approximation of incompressibility is made only in the source terms.

This is a major new result, approximated as Eq (2) in the OVERVIEW. It is slightly

generalized here, with c2(x) replacing Co2. (A further generalization in Appendix A,

(i) replaces the restrictive Eq. (7) by a more realistic mean flow U(x) on the left hand

side, and (ii) allows for mean flow density gradients; these give rise to important

additional source terms in the cases of hot jets and jets of nonambient gas 13,35, 49,50.)

Now according to Lighthill's arguments 1,2, po0vivj/bxixj is a valid source term for flow

noise. From the above it is clear that both the right hand source terms of Eq.(1 1), being

equivalent for the sheared mean flow, are likewise valid source terms for that scenario:

the 'shear noise' term 2po(0U/0x2)(0u2ac/Oxt) as well as the 'self noise' term po63UiUj/C)xixj.

Furthermore, the velocities ui therein are incompressible to the same approximation as in

Lighthill's term. All of this supports the earlier argument concerning the split of the shear

term in Eq.(1 1): a compressible acoustic component has been excised (before the step

9:::*9o) and placed on the left hand side, leaving an incompressible component on the

right hand side (presumably much larger). The shear term with U2ac on the left hand side

serves in a propagation role, whereas the shear term with u2 on the right hand side serves

in a generation role.

Equation (1 1) with deletion of the last term, together with Eq. (1 la), are roughly

equivalent to Lilley's equation 10,12,13 (he combined them into a single third order wave

equation37). However, Lilley, in effect, moved the entire shear term to the left hand side

wave operator. The 'shear noise" source term so lost from the right hand side is of major

importance. This was shown indirectly by Ribner 4,23, and later more directly by Pao and

Lowson 24 in terms of Lighthill's equation. Aside from the arguments of the last

paragraph, credibility is afforded by comparisons with experiment: the 'self noise'

spectrum, downshifted in frequency, shows a predicted match to the 'shear noise'

spectrum (Fig.I). We will return to this point later.

The successive modifications of the wave equation for flow noise, proceeding from

Eq.(5) (virtual medium at rest) to Eq.(l 3) (actual medium with flow) may be summarized

at this point. Deferring the approximation P=9o, as in the derivation of Eq.(1 3), leads to

propagative tenns that may be moved to the left hand side. This is a conversion into a

convective wave operator, making explicit the role of the mean flow in convecting the

8



soundwaves.On theotherhand,theconvectiveroleof themeanflow is only implicit in
Eq.(5):it residesin thegradientsof Oin thesourceterm. Thesegradientsaresuppressed

in theapproximationP=Poprematurelyappliedin Eq. (6). At veryhigh frequencieswave

convectionshouldreduceT,11,54,55thewell knownamplificationpredictedl,2, in the

absenceof flow, for movingsources;thereductionis referredto as'fluid shielding'l 1, 14

But at jet noise frequencies the most dramatic effect has to do with the flow gradients: the

radial decrease in mean-flow velocity in the jet; this turns or refracts the sound rays away

from the axis to yield the well known 'cone of [relative] silence'.

The allowance for refraction in the generalized Lighthill equation (13) comes at a price:

the point source solution (Green's function, utilizing eq. (1 1) as well) is enormously more

complex than that for the simple wave operator of Lighthill's equation (1). It has been

found, however 8,9, that there is near agreement at the larger angles from the jet axis. This

implies that the simple Lighthill solution for rms sound pressure will approximate that

predicted via eq. (13) outside the "cone of silence'. The basis for this is elaborated

below.

FORMULAS FOR POWER SPECTRAL DENSITY

General Relations

The formulas that follow are based on the Green's function for a stationary, oscillatory

point source. The approach parallels that of Balsa 15 based on a moving, oscillatory point

source, with missing steps being inferred. We seek the power spectral density _(x103) of

the radiated sound pressure dictated by equations (1) or (1 3); they may be written

symbolically as

L[OlOt, O/_x; a(x)l p(x, t) = Q(x, t) (14)

where L may be either the unconvected wave operator of Eq (1) or the convected wave

operator of Eq (13). The a(x) are the coefficients; for the convected wave operator they

allow for the local mean flow, taken as U(x2), and a space-variable sound speed. (In a

generalized version of Eq. (13) in Appendix A, U(x2) goes over to U(x),and Po to p(x),

where p is a local time average. Equation (14) applies to this version as well.)

Correspondingly,

L[-ito,/)/Ox; al p(xl_) = Q(xt_) (15)

where p and Q are defined in Fourier transform pairs:



1 j'p(x,t) eitZtdt;p(xtto) =
-OO

OO

Q(xlto) = 2-_ J"Q(x,t) e it°` dt ;
-OO

Equation (15) has a solution

p(x,t) = j'p(xlto) e -itm do (16)
-OO

Q(x,t) = j'Q(xlto) e-itotdt (17)
oOO

p(x!to) = _ G(x,ylto) Q(ylto) d3y (18)
-OO

in terms of a Green's function G(x,ylto) that is the solution of

L[-ito, c3/c3x;al G(x,ylto) = _i(x - y) (19)

The (two-sided) power spectral density of the sound pressure is evaluated as

• (xlt0) = _p(xlto) p*(xlto)> (20)

where ( ) signifies an ensemble average.

oo

_(xlto) = .[ j" G(x,y'lto)G*(x,y"lto)(Q(y'lto) Q*(y"lto)) d3y ' d3y ''
_oo-OO

= I _ G(x'y+_/21to)G*(x'y-_/21to)(Q(y+_/21to)Q*(y-_/2lto))d3_d3v
_C_O0

Inserting (18), with y replaced by y' and y",

(21)

(22)

where _ = y' - y" and y = (y' + y")/2.

Reduction for Far Field

The Green's function of Eq. (22) may be written in the form

G(x,y Ito) = IG(x,y Ito)l eiV (x,y Ito) (23)

We now restrict x to the far field defined by Ixl being very much greater than both lyl and

the largest wavelengths of concern; y is limited to the region of nonzero source strength

Q. A sufficient approximation for the phase, which seems to be implied in Balsa's

Appendix 15, is then

10



_(x,y'lm) = V(x,y"lo))- g.(y'-y") (24)
wherethewavevector

_¢= - (7y _)far field (25)

is proportional to co. There seems to be the further reasonable assumption, which we

make also, that the variation in amplitude of G is negligible compared with that of the

phase as _ of eq. (22) ranges within the source region Q. Then _ may be dropped in

comparison with y in the amplitude so that

G(x,y+_2lc0) G*(x,y-_/21c0) = IG(x,ylo_)12e-i_:°_ (26)

The other factor in (22) is the frequency-domain correlation

R(y, _loJ) - (Q(y+_2loa)Q*(y-_/2lo_)) (27)

This is the Fourier transform of the time-domain correlation

R(y, _,'t:) = (QCy+_/2, t+_) QCy-_/2, t)) (28)

(which is independent of t); specifically,

1
RCy, _1o3) - 2n f ei°rtR(Y' _,x)dx (29)

-0<3,

Insertion of equations (26) and (29) into (22) yields
OCI O<)

1
= J IGCx,ylco)12d3y ! j" e-i_:'_ +i°rr d3_dz (30)

-OO -OO-OO

Equation (30) is the desired general result for the power spectral density @(xlog) (cf.

Eq.(3) of the Overview). The inner integral can be recognized as a four-dimensional

Fourier transform of the two-point space-time correlation R(y, _,x). Alternatively, it is a

three-dimensional transform of the cross-spectral density R(y, _lc0). This transform

multiplied by the square of the amplitude of the Green's function (frequency domain) has

a simple interpretation: it is the contribution of unit volume of the sources Q to the power

spectral density of the sound pressure radiated to the field point x.

11



Moving ReferenceFrame
ExperimentallythecorrelationR(y,_'t) in ajet flow hasa form describinga moving,

fluctuatingpattern.This is dealtwith mostneatlyby transformingto areferenceframe

movingwith thepatternconvectionvelocity, takenasUc. (But theGreen'sfunction,

unlike thatin Balsa'srelation15,still refersto apoint sourceatrest.) Following Chu 31,

we take

_m = _- Ucx ; Uc = (Uc,0,0) (31)

so that '¢'gm = K'°_, - _°Uc't: (32)

and reexpress R in terms of _,n, t, sing (31 ), as

Rm(Y,_m,'t) = R(y,_,x) (33)

Then in Eq. (30)
OO OO OO OO

f f R(y'_''t) e-i_°_+ic°td3_d'_ = f f Rm(y'_m"Ue'i_C°_m+i(t°-_C°Uc)Xd3_ md't (34)
-OO -OO -CO -OO

since the Jacobian of the transtk)rmation _---_m is unity. We may further define

= 6o- I¢'Uc (35)

as the effective source frequency in the moving frame to yield an observer frequency 03

at x in the stationary frame (far field). Inserting these last two equations converts Eq.

(30) into
oo oo

! IIG(x,vl6o)I 2 d3y j" f Rm(y,_,n,'Q e-i_C'_m+itntd3_md't (36)• (xl6o) = 2n
-00 -00 -CO

This is an alternative /?_rm for the power spectral density; it is more useful in that the

effects of source convection are more easily brought out. In Eq. (30) the space-time

source field correlation is referred to a stationary coordinate frame and is designated R.

In Eq. (36) this same correlation is referred by transformation to a coordinate frame

moving with velocity Uc,_ and is designated Rm. In both cases the two points being

correlated are stationary.

12



SourceTerm of Form a(y)_2bij/0yiOYj

Suppose the (monopole) source strength distribution has the form of the right hand side

of Eq. (13), slightly generalized:

Q(y, t) = a(y)O2bij(y,t)/Oyi_)Yj (summed over i, j = 1 to 3) (37)

It can be shown that the Fourier transform of this is

Q(ylc0) = a(y)32bij(yloJ)/OyiOYj

The cross spectral density of the source field between points y' and y" is then

, ,, ._2bij(y'l¢o) _2b*kl(y"l(o)\
a(y)a(y ) , , _-/

OyiOYj ,9y kCgy I
(Q(y'lc0)Q* (y"l¢0)) =

which is equivalent to

(Q(y'lco)Q*(y"lo_)) =

The

a2(y) _)4(biJ(y'l°J)b*kt(y"l°_)) (38)

where _ - _], _2, _3 = Y' - Y", if a(y')a(y") is approximated a2((y'+y")/2) = a2(y).

Insertion of equations (26) and (38) into (22) yields the power spectral density of the

radiated sound pressure as

¢(xlc0) = f IG(x,yloJ)l 2 a2(y) _4(bi-i(y'l°J)b*kl(y"l°3)) e-i_¢°_ d3_d3y (39)

J c3_ic3_jC3_k_l
-OO

which isrcplaccableby
oo

f IG(x,yIc0)I2a2(y) , • . e-iZ._@(xlc0) = _ _¢i_¢j_c_OCl(bij(YI¢0)b kl(Y I¢0)) d3_d3y (40)
-OO

But the source cross-spectral density designated by ( ) is the Fourier transform of a two-

point correlation:
Oo

(bij(y'lco)b*kl(y"lo3)) =-_-- _(bij(Y', t+X)bkl(Y", t)) e i°s_ dx
ZTt-oo

so that the power spectral density of the sound generated by sources of type (37) may be

written
oO

• (xl_) = j" IG(x,yl_)l 2 a2(y) _¢i_¢j_CktCl(bij(Y', t+'C)bkl(Y", t)) e-i_¢°_ +i¢°Xdxd3_.jzl3y (41)
-OO

Suppose we identify a(y)bij(y,t) with the Lighthill source term _(y)vivj (wherein the

uniform Po is generalized to 9(y) to allow for a space-variable time average density: cf.

Appendix A). Then, on taking _¢iJcjlCk_¢linside the ( ) of Eq.(41), we have terms like

lcilcjbij = _¢ilcjvivj. But the summation _¢ivi is !¢ times the component of v along _¢,

which we designate v_¢. Writing _¢as the magnitude of _¢, this is summarized as
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1,¢ilqjbij = KiKjvivj = i,:2 v_¢2 (42)

It follows that, in Eq.(41) the summation

_i_¢j_ZkK'l(bij(Y ', t+X)bkl(Y", t)) = K4 v_2((y ', t+X)v_:2(y '' , t)) = K"4 R_:(y,_,'l:) (43)

O

where R_ is a two-point correlation of v_:'-. With this replacement Eq.(41) simplifies to
oo

1 K'4p2(y)IG(x,Ylm) 12d3y I _ RK-(y,_,x) e-i_°{ +i_ d3_dx (44),:t,(xlc0) =
-OO -OO-OO

where, it is noted, the two points being correlated in R_: are referred to a stationary

reference frame. Correspondingly, Eq. (36) becomes

1 g4_2(y)lG(x,y[_)l 2 d32_ _ f Rmn(Y,_m,Z)e_i_O{m+i_xd3_md zq_(xlm) - 2_
-OO -OO-OO

(45)

where the correlation Rnm designates the same correlation with respect to the moving

frame (velocity Uc); it is obtained from R_: via the transformation (31). Eq.(45) is a key

result stated in words as Eq.(3h) of the Overview (but generalized with p(y) replacing

Po).

These latest results for the power spectral density _(xlc0) may be put in perspective: they

are all expressed in terms of the Green's function for a stationary, oscillatory point source

in an arbitrary flow Uc(x). Equations (30) and (36) refer to a general source strength

function Q; Eqs.(43) and (45), on the other hand, refer to a source strength of the

generalized Lighthill form Q = 9(y)02vivj/OyiOyj (summed), to which p(y)_c2v_ 2 is

equivalent.

It is noteworthy, as he pointed out, that this double divergence form of Q implies that the

sources are of quadrupole natt, re. In the time domain this was associated with an

operator 32/c3t 2 in the far field format; in the present wave-number domain the factor K2

plays an equivalent role.
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Virtual Medium at Rest

This is Lighthilrs scenario 1,2: the fluid flow is incorporated into the source term. The

original region of flow is now treated as a 'virtual medium at rest'. For this case the

oscillatory Green's function is simply

1 eiklx_yl ; k = e/Co (46)
G(x,yl_) - 4xlx-yl

When the observer point x is in the far field (cf. after Eq. (23)), a sufficient

approximation is, with x = Ixl,

G(x,ylto) = 4_ eikx ikx .y/x ;
1

IG(x,ylc0)l - 4xx (47)

Thus, in this case, the vector _¢= -(Vy _t)far field of Eq. (25) may be identified with the

wave vector k given by

_c = k = kx/x = c0X/CoX; k = Ikl (48)

Also, with the sources convected parallel to the xl-axis, Uc = (Uc,0,0), Eq. (35) yields

_ = _[1-(Uc/co)(X/X)! = 0_(1-Mccos0) - coo (49)

This is just the Doppler shifted source frequency that will yield an observed frequency

at x.

Reduction to Chu's Equation

Equation (45)--correlation referred to moving reference frame, Q of form

po_)2vivj/_)xi_)xj--may be applied to Chu's scenario 30,31 by specializing to a fluid at rest.

This implies invoking Eqs. (47) to (49). His power spectral density *l(XJCO) is one-sided

(limited to positive values of co), so that it is twice our _(xko). He notes further that,

since Rkm(Y,_m,X) is even in _ and x, the Fourier transforms may be replaced by cosine

transforms. Equation (45) then takes the form, after doubling,

_l(xl0))- p°2k4 j lG(x,ylfo)12d3y J'cosk'_md3_m j'Rkm(Y,_m _)cos_l:dl: (50)
-OO -OO -OO

But we note that, from the equation for the time delay Xm* above Eq. (8) of ref.31, we

have the equivalence
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¢00"_m* = k'_m (51 )

employing our Eq. (49). Inserting this and the appropriate values of IGI, and fi] from

Eqs. (47) and (49)
¢>o o<) oo

po2034 3
• 1(xl03)- 16_x2_!d-y__cos 030"qn*d3_m_!Rkm(Y,_m,'t)cos 030"cdx (52)

This recovers Chu's result for the one-sided power spectral density (Eq.(2.2.7) in ref.(30)

and Eq.(8) in ref. 31).

The simplifying assumption that the turbulent 'eddies' are 'acoustically compact' permits

a marked simplification: cos c00"tm* in Eq. (52) (and similarly e-i_¢°_,m in Eq. (45)) can be

replaced by unity. The effect is to reduce fimr dimensional Fourier tran,sforms to one

dimensional tram_)rrns: the space-wavenumber transform becomes merely a volume

integral. The replacement is explained along with other observations concerning Eq. (52)

in the following quotation from Chu 30 (amlotations shown in brackets; our notation and

reference numbering):

"Firstly, we can identify fi_ as the freqt,ency in the turbulence; the corresponding radiated

frequency 03 is then the Doppler-shifted frequency (i.e., co = _/®). This is a logical

result which one could have obtained on physical grounds.. Secondly, Lighthill's

criterion for neglecting retarded time shows tip automatically in the cos 030"tm* term.

According to Lighthill, retarded time can be neglected if c0L/co is small so that the eddy

size L is small compared with the wave-length of the sound that it generates

['acoustically compact']. If this condition is met...then for _m < L the term cos c0Ot[n*

can be approximated as unity. Thirdly, if retarded time Idifference across an 'eddy'] is

neglected, Lighthill's convection factor ( l-Me cos0) -5, which accounts for the main

effect of convection at limited speeds is exhibited as a vertical shift (1-Me cos0) -4 plus a

Doppler shift (1-Me cos0) -1 in the power spectrum ..... This concept is a low-speed version

of a similar idea presented in ref. 4. Fourthly, although the Lighthill's convection factor

is not applicable for high-speed convection because of its singularity where 1-Me cos0 =

0, lan example given by Chu, discussed above Eq. (60)] will show that Eq. (52) is still

valid for high-speed convection if retarded tirne [difference] is not neglected. In fact, this

moving frame integral with proper account of retarded time posses a zereo that exactly

cancels the (1-Me cos0) -5 singularity and replaces it by a nonsingular convection factor

(cf. also refs. 3 and 38)."
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Actual Medium vs Virtual Medium

Here we compare the noise emission from the actual medium, allowing for the effect of

the fluid flow on propagation, to that predicted for the virtual medium at rest. We will

show how the former differs from the latter (the Lighthill scenario) in being an extension

to allow for flow-acoustic interaction effects: e.g., refraction that bends sound rays away

from the jet axis to create a 'cone of silence' opening downstream. And we will show a

close to asymptotic approach to the Lighthill case outside the cone of silence.

It will be convenient to restrict attention to the power spectral density emitted from unit

volume at y. For the scenario of Eq. (45) ('actual medium'), with the appropriate Green's

function and anticipating that _¢may be approximated as k at jet noise frequencies

(Appendix C),

O3_(xlc0)
oo

oo

- po2k4 IG(x,yIoJ)l]2{2--____ ! Rkm(Y,_m,1;)e'ik'_m+it_xd3_md'_ } (53)o_y3

The corresponding result, using the respective Green's function and wave vector _¢= k for

a virtual medium at rest (Lighthill format), is
o,o

oo

1"_)3_(x103)']"-- po2k 4 (1/4rtx)2{2-_____ Rkm(Y'_m"_)eik'_m+it_xd3_md'_} (54)!. c3y3 _lVM =

The ratio of these two can be put in the form

c)3_(x1¢°) l(4rtx) IG(x,ylc0)l] 2 I-_3_(xl°_)'] (55)
_y3 - [ _y---_ JVM

It will simplify discussion if we refer to the factor in brackets as a 'normalized Green's

function'

IGN(x/x,ylco)l = (4_x)lG(x,ylc0)l (56)

so that (54) may be written

[a3 (xl0 )]
_3_(xl_) - IGN(x/x,yl_)l 21_ _y3 JVM (57)c3y3

with IGNI dependent solely on the direction of x by virtue of the 4_x normalization and

the 1/x decay of IG I in the far field.
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Normalized Green's Function, [GN[: Single Choice for Entire Jet

The 'normalized Green's function' designated in Eq. (56) is nominally a function of source

location. In this section we develop evidence that the value fi_r a single choice of source

position y on the axis, designated Yo, may serve as an effective average.

This was concluded in the context of a series of experiments 32,33 on the far-field

directivity pattern of a 'point source' of sound immersed in a subsonic jet. Except for

some uncertainty as to the accuracy of simulation of a point source, the measurements

effectively yielded values of/G� 2 normalized by the value at 90 °. This result was deemed

equivalent to IGN12, on the ground that the effect of wave convection was expected to be

nil at 90°; that is, IGI should reduce to (1/4nx) there. It was found that the geometric

average of the O-dependence for symrnetric off-axis positions +1_ or -O differed little

from that of the on-axis source position for a given Yl. Further, the variation with Yl was

small. This justifies referring IGNI2 to a single location, which will greatly simplify both

utility and interpretation.

Noting that the direction x/x may be designated O,q) in polar coordinates for a general,

non-round, jet, the effective average of the squared 'normalized Green's function' may be

defined as IGNI2; thus

IGN (O,% YrcdC0)l2 = ((4rtx)21G(x,yl03)12)av e (58)

where Yrcf is a representative value of y I along the jet axis. (The dependence on q), of

course, disappears for a round jet.) According to the arguments above, this refers to an

average over y. In practice, however, it would be used as a surrogate for a weighted

average; that is, equivalent to a single average value of IG(x,yl60)l 2 taken outside the

integral of Eq. (45) to replace the value inside that varies with y. The use of a surrogate

single Green's function has also been the practice in solutions of the Lilley equationl2-15;

Mani 13 referred to the same experiments cited above as justification. Replacement of

the y-dependent Green's function of Eq. (57) by the single y-independent Green's function

of Eq. (58) allows immediate integration of (56) into

_(xle0) : IGN (0,% yolo3)l 2 I_(xle0)lvM (59)

This states that the same frequency-dependent/GM 2 that applies to unit volume is, to a

sufficient approximation, applicable u_ the.jet as a whole.

DIRECTIVITY OF JET NOISE
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IGlv[z Defines Flow-Acoustic Interaction.

The form of Eq. (59) tells us that the flow-acoustic interaction effects, refraction and

shielding, are embodied in the normalized Green's function/GN/2. This factor modifies

the smooth directional pattern of intensity otherwise predicted (IGNI2taken as unity).

Both experimental (injected 'point' source)32, 33 and numerical (computational

aeroacoustics)8,9, 34 attempts to evaluatelGNI2display this. The most striking effect is a

progressive reduction of intensity within a 'cone of silence' or 'refraction valley' opening

downstream along the jet axis: this is owing to the sound having been refracted outward

by the jet velocity gradients. For filtered jet noise there is a similar 'cone of silence' that

is matched by the experimental/GN/2 impressively well 28,29,at each frequency (Fig. 2).

For the computed IGNI2 there is a qualitative match 8,9, with fairly good agreement at low

frequencies and Mach numbers. However, the computed depth in decibels of the

'refraction valley' is much exaggerated at high frequencies and high subsonic Mach

numbers. We would attribute this overprediction to the use of the mean flow only in the

convective terms of the wave operator (the turbulence being averaged out): the neglected

large scale, low frequency, velocity field distortions would spoil the assumed

axisymmetry during the transit time of a wave. It is intuitively evident that perfect

axisymmetry is required to yield a very high refractive attenuation along the axis (e.g.,

54 decibels in Schubert's8, 9 most extreme case.)

The frequencies for which geometric acoustics is applicable are many-fold higher 8,9 than

those of jet noise. It was found 8,34 that at these high frequencies the computed valley

depth is grossly exaggerated (e.g., 90 dB prediction at M=0.3). Despite this, many

studies (e.g., references 7, 17) attempt to quantify the 'cone of silence' via geometric

acoustics.

For heated or cooled jets, or jets of foreign gases, sound-speed gradients come into

play8,9, 32-34. Heating enhances the outward refraction, hence increases the depth of the

refraction valley. Cooling has an opposite effect. If cold enough, the temperature

gradients could dictate inward refraction strong enough to overpower the outward

refraction imposed by the velocity gradients. This would give rise to some 'focusing'

enhancement of noise intensity along the jet axis:/GN/2 should exhibit an axial lobe in

place of a 'cone of silence'. This expectation was dramatically confirmed in the

experiments of Grande29,33: the enhancement lobe was 9 dB at 3000 Hz for an M=.112

jet of nitrogen at -180 C. A n almost identical lobe was found in his measurements of the
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jet noise in a narrow filter band at the same frequency (Fig.2). Schubert's approximate

numerical calculations of IGxl 2 showed a similar, albeit exaggerated, lobeS, 9 .

This similarity of behavior between jet noise and experimental and computational

approximations to IG_,.I2, for both arnbient and cold jets, shows that IGNI 2 dominates the

intensity pattern in a conical downstream zone about the jet axis; elsewhere it is near

unity. These facts, together with Eqs. (57) and (59), permit the following interpretation:

IGnl, the normalized Green's function, serves to extend the Lighthill-based calculations

into the refractive zone near the jet axis: the 'cone of silence', or focused lobe, as the

case may be. Approximation of IGNI2 by unity outside this zone yields the Lighthill-

based pattern: this seems an adequate approxinnation except when there are shrouding

jets.

The calculations need not be fi)rmulaled in terms of the four-dimensional Fourier

transform of Eq. (54), despite its figuring in the derivation: other formulations deemed

to be equivalent may be used. In practice, relatively crude approximations--implicitly

for the ton'elation R_m--have been used. Some approximate developments of this kind,

normally resulting from an analysis in the space-time domain, are discussed in a later

section and in Appendix D.

Convective Amplification and Basic Direclivity

Lighthill 1,2 showed that convection of the sources (but not the sound waves) gives rise to

amplification of the noise in the downstream direction. To quantify this, Chu 30 modeled

Rkm as a Gaussian function in the convected frame and carried out the four dimensional

Fourier transform to evaluate Eq. (52) or the equivalent Eq. (54). The resulting power

spectral density pcr unit vohnne was then integrated over frequency to yield the broad

band radiated intensity per unit volume. This displayed the Mc---_ 0 intensity as

multiplied by a convective ampli/_cation factor, C-5, given by

C "5 - 1(1- Mccos 0) 2 + o.2Mc21-5/2 (60)

in terms of the source pattern convection Math number Mc. This factor was originally

obtained by Ffowcs Williams 3_ and by Ribner 3 via different formalisms; it is a

refinement of the Lighthill-based relation 39 (!- Mccos "d)"5 that is nonsingular when

Mccos O = 1. (The basis for this was elaborated under Eq. (52).) The directional pattern

of intensity radiated by the sources (the Basic Directivity), before multiplication by this

factor, was tacitly taken to be spherical.
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Ribner 23 made allowance for the two source terms of Eq.(11 ), leading to a nonspherical

basic directional pattern; he chose a more defensible (but still somewhat unrealistic) form

for Rkm: it was modelled as compatible with isotropic turbulence superposed on a

transversely sheared mean flow. This could be expressed as a 'narrow band' directional

spectrum

C -5 *t C[a(Ct.0)+ b(C_)(cos4O + cos2"O)/2]

= C "5 * Basic Directivity (quasi-elliptic) (61)

emitted from unit volume; the two terms a(Cc0) and b(Co)) correspond respectively to the

two source terms ('self noise" and "shear noise') on the right hand side of Eq.(11). Cto is

an 'effective' Doppler shifted source frequency 3,4, and the outer factor C disappears in the

integral over co (cf. also remarks under Eq. (52)).

The format of Eq.(61) was effectively confirmed in the work of Pao and Lowson 24.

Their approach was, in fact, superior to Ribner's in that it yielded the convective

amplification factor C-5 in an i,lternally consistent fashion. Ribner, on the other hand,

used the 'compact eddy' assumption in a compatible M--->0 approximation to derive the

Basic Directivity. Then he generalized this to finite M by assuming that the broadband

factor C -5 applied as a multiplier, to yield Eq.(61).

The shear noise, given here by the b(Cc0) term, has a dipole-like directivity. Thus it has

been argued that the convective amplifier should be the C -3 of a dipole, rather than the

C "5 of a quadrupole. Pao and Lowson 24 obtain a C -5 multiplier, but they attribute the

change from -3 to -5 to the choice of turbulence model. "The spectrum in the low wave

number region follows a k2 law, which artificially raises the power dependence from [-3

to -5]. In actual measurements of jet turbulence, the spectrum in this region is usually

flat." We observe, however, that the k 2 law refers to a 3D spectrum, whereas the hot

wire measures only a ID spectrum, and the flat 1D spectrum at small k is fully

compatible with a k 2 3D spectrum. Thus there is no artificiality here, and the convective

amplifier C -5 would appear to be applicable to the shear noise as well as to the self noise.

Comparisons with experiment on this basis seem to support that conclusion.

To our approximation, the magnitudes of C -5 and IGNI2 apply equally to unit volume and

to the jet as a whole. This is not true for the a(Cc0) and b(Cco) of Eq. (61): the magnitudes

differ for the two applications, but the ratio b/a is unaltered. An important prediction of

the theory4, 23 that connects these two spectra is

b(CoJ) = 13a(2Cto) (62)
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where 13is a constant of order 2. The implications of this are elaborated below.

The 'basic directivity' of Eq.(61 ) is compounded of b(Cco) and a(Cco) in different

proportions, depending on direction; credibility is afforded by comparisons with

experiment. First, the predicted overall directional pattern over a range M=0.37 to M=0.9

(outside the 'cone of silence') is about right28,29: this is a minor point, since the

contribution of the basic directivity is weak compared with that of the convective

amplification. Second, and much more significant, the prediction in Eq.(62) of separate

spectra of'khear noise" b(C co) and _'elf noise' a(2Co9) of almost identical shape, but with

one octave relative shift, was strikingly confirmed29,40(Fig. I), These are extracted from

measurements at angles of 45 and 90 degrees from the jet axis, without adjustable

constants. When normalized to unity peak, curves of shear noise b(Cco) and self noise

a(2Cco) virtually collapse on one another.

The third point has to do with correlations of two microphones l(xzated on a large sphere

centered on the jet nozzle: with one microphone fixed, the other was displaced either

along a meridian or a circle of latitude. It was with a series of such measurements carried

out by Maestrello 41 that the theory was compared. In particular, correlations of two

microphones are sensitive to details of the source instantaneous directivity, whereas the

single microphone mean square response is not. The Lighthiil-Ribner theory 23 leading to

Eq.(61) was extended to deal with this case 42,43. It was found that prediction of two-

microphone cross-correlations along circles of latitude showed good qualitative

agreement over a range of angular separations, and for different latitudes. This was true

both in broadband 42 and the more demanding narrow band43; see also references 51 and

52. (Microphones located along a meridian exhibit a cusp-like correlation in broadband,

decaying sharply with separation 41. The agreement of the theory here was particularly

striking42; although only weakly relevant to Eq. (61), it makes a strong case for the

credibility of key aspects of the basic theory23.)

Basic Directivily x Convective Amplificalion x IGNI2

The product of the weak basic directivi O, and the strong convective amplification, C -5,

Eq.(61), yields the directivity of the jet noise of frequency co on the Lighthill-Ribner

model. Multiplication by the non-nalized Green's function, IGNI 2, modifies this to allow

for the flow-acoustic interaction (refraction 3-5 and shielding7,11,12,44), iGNi2 dominates

in a cusp-like fashion near the axis to produce the refractive downstream 'cone of

silence'. The broad fan-shaped amplificatior_, C -5, with its maximum downstream as
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well, amplifies not far from uniformly across the 'valley', scarcely modifying its shape.

This accounts for the relatively close match between the measured IGNI2 and the jet noise

pattern near the axis (Fig.l). The resultant of the three factors is the well known heart-

shaped directional pattern of jet noise. The opposing effects of C -5 and IGNI2, in their

relative strengths, determine the location and magnitude of the maxima. The progression

of patterns from Basic Directivity to Basic x C "5 to Basic x C "5 x IG,vl z is schematically

shown in Figure 3; (the factors are additive on the decibel scale of the figure).

Directivity vs Spectrum

We have been discussing the directivity of jet noise in frequency bands; that is, the

variation of *(xlo) with _, the angle of the observer vector x with the jet axis. The

directivity of the mean square sound pressure p_x), being an integral over co, is a

weighted average of these. The spectra at fixed angles 1_are, of course, cross-plots.

The directivity of the emission from a typical unit volume (O3_(xlo)//)y3 and its integral

over co,/)3p2//)y3) and the directivity of the entire jet, discussed above, are much the same

(normalized to values at a9 = 90 degrees). But the spectral shape emitted from unit

volume differs greatly from that of the entire jet. The former is estimated as less than 2

octaves wide, the latter is measured 54 as some 5 octaves, taken between the 6 dB down

points. Thus calculations for a single unit volume may serve for the directivity of the

entire jet, but an integration over the jet is required for estimating the spectrum. The

directivity is only slightly sensitive to the asumed turbulence model (it affects the basic

directivity); the spectrum requires a detailed estimate of turbulence properties throughout

the jet. These refer to shapes • prediction of absolute levels requires a higher level of

accuracy in the turbulence data and its modelling, and in any simplifying assumptions.

APPROXIMATE QUANTITATIVE PREDICTION

We turn now to the approximate quantitative prediction of jet noise properties. The

central element is the four dimensional Fourier transform (4DFT) of the source term

correlation function Rkm (e.g., Eqs. (3) and (53)). For illustration we limit attention to the

self noise term, the shear term involving rather more complication. Neither theory nor

measurements (so far) adequately describe the correlation function over space and time.

If it is dealt with at all (in place of scaling arguments), a simplistic form (e.g., a

Gaussian) is often assumed to ease the mathematics. It follows that the space transform

(3DFT: _--_k) is of dubious accuracy, and the mathematical difficulty it entails seems

thereby unwarranted. Thus the 3DFF is normally bypassed (an exception is ref. 24) by
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means of the 'compact eddy' assumption: this reduces the transform to just a volume

integral (over _), as noted earlier.

The 4DFT is then a volume integral times a IDFT (x_(o). Moreover, the IDFT defines a

spectrum between one and two octaves wide. For simplicity this is commonly

approximated as a single line: a _5-function of local frequency (Or,e. and amplitude A.

Combining these yields the rather drastic approximation

4DFT (correlation function) -- A((uk_)2LlL2L3_to-tOse)) (62)

where the volume integral (of the normalized correlation function) is by definition the

product LIL2L3 of the three orthogonal scales of turbulence; normalization is by the peak

correlation (uk_)2), and Uk refers to the component of turbulence in the k-direction

(aligned with the x-direction). All these parameters are functions of y. Insertion in

Eq.(54) yields the power spectral density emitted from unit volume at y as

[asc (xlo )] _ po20j-4(tlk_) 2 _ .

JVM, SE = A_L1L2L3_tff-O_e) (63)

as applied to the self noise. This refers to a virtual medium at rest. The format of Eq.(53)

generalizes this to a jet flow, encompassing refractive and shielding effects, via the factor

IGN 12(using Eq.(56)):

[03_(xlo))] vo,_,"2t.04tu, 52

t --_)y3 JSE _ A.GN]2CSco4(4_x)2LIL2L3_(o)-O)se)__ (64)

Mathematically, the appropriate choices for the amplitude A and local frequency rose are

these: (i) A should be the integral of the 1DFT spectrum (cf. above Eq.(62)) over to, and

(ii) rose should be the centroid or first moment of that spectrum. Then the 8-function

approximation will yield minimum error in computing the overall power spectral density

_(xl(.0) by integrating Eqs. (63) or (64) over y. In practice, heuristic scaling laws are

often used for evaluating both A and 60se. These and the other parameters must be

estimated as y ranges throughout the jet. A representative example 27 of such an

estimation, leading to rather good spectral prediction, is given in Appendix D.

CONCLUDING REMARKS

Central Result

The central result of the paper may be restated in simplified terms. Lighthill posed his

aerodynamic sound sources as radiating into a 'virtual medium at rest.' Refraction of

sound (creating the axial 'cone of silence') was suppressed by approximating the density

in the dominant source term as constant (p = Po). But by deferring the step p = Po, we
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canposetheradiationasbeingemittedinto the actualjetflow. This brings the refractive

effect of the flow into play. Moreover, the residual sound source term is the same.

Mathematically, the only change is replacement of the solution for a pure tone point

source in a medium at rest by the solution for the source in a jet flow. The former can be

written down by inspection as eikr/4/w, the latter is a complicated solution, G(x,ylo), of a

convected wave equation. But, at frequencies characteristic of jet noise, we find from

both experiment32, 33 and calculation8, 9 that G reduces in the far field to eikr/4m " (with a

phase shift) times a directional factor. That directional factor, for a single round jet, is

near unity for angle 0 greater than some value OM. For smaller angles it decreases

sharply to a minum on the jet axis, 'd = 0. This describes the 'cone of silence' (Figs. 2,3).

In summary, in the far field the new G differs in amplitude from the Lighthill eikr/4rtr

significantly only within the 'cone of silence'. Use of G thus serves to extend the

Lighthill-based solutions into this refractive zone. But outside it may be dispensed with,

with little error.

Relationship to Other Approaches

A variety of Lighthill-based solutions -- fi_rmalisms for jet noise prediction -- have

been used, e.g., Refs. 23-27. They were all approximations. As discussed, they usually

involved simplistic replacements for the four dimensional Fourier transform formalism.

The turbulence correlation function, if it was modeled at all (rather than bypassed by

heuristic assumptions), was normally taken as separable in space and time (implicit in

Eqs.(62)-(64)). Chu 30 improved the mc_el, removing the spurious separability: he used

data from his own comprehensive program of very careful measurements by hot wire. He

did, however, avoid the 4DFT by invoking the 'small eddy' assumption. Neverthless,

despite these deemed improvements, his predictive accuracy fell far short of the best of

refs. 23-27. Hindsight suggests the capabilities of his data may not have been optimally

exploited. A revisit in the light of the present formalism could be profitable.

The predictive problem is compounded by the difficulty of a four-dimensional Fourier

transform. As noted, the 'compact eddy' approximation reduces this to a simple volume

integral. But that step compromises the accuracy of the prediction of convective

amplification. The approach has, indeed, led to fairly accurate predictions, both for round

and more complex jet configuration. However, even with this approximation, they could

be improved as indicated under Eq.(64). The further inclusion of the factor IGN 12 will
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extendthesolutioninto the 'coneof silence'(small0 region),andevenimprovethe

accuracyoutsidethisregion(by the amount IGN 12 differs from unity).

Lilley's wave equation, in the hands of Balsa, 15 leads to a similar formula IGBI 2 x four-

dimensional Fourier transform of source correlation function. Here again, in practice the

Fourier transform is bypassed by an approximation. There are other important

differences. A major component, the shear term included in Eq.(11), is missing from the

source term: the consequences are discussed in the text. And the squared normalized

Green's function, IGBI 2, refers to a moving point source. The effects of source convection

and wave convection -- respectively governing amplification and refraction (via velocity

gradients) -- are thereby combined. In contradistinction, these effects are decoupled

herein by the use of the value of IG# 2 for a stationary source That is, IGBI 2 plays

essentially the same role as C-51GNI2: they should be largely equivalent.

It is this decoupling that allows the simplicity of the Lighthill-based formalisms to be

applied outside the 'cone of silence', since IGNt2 is near unity there. Another advantage is

that this refractive IGNt2 is determined for a realistic spreading jet -- either by

calculation or experimentally -- whereas IGI/I 2 has been evaluated only for idealized,

infinite, nonspreading jets.

Issue of Shielding

Mani I 1,12 and Balsa 15 have pointed to a 'shielding' role of the mean flow in reducing the

convective amplification (a function of direction) at high frequencies. But

comparisons28, 29 with the directivity measured by several investigators do not bear this

out. The simple theoretical convective factor C -5 adequately predicts the curves up to

M=0.9, source Strouhal no. 1.0 (observed Strouhal no. 1.33). This is a reduction in

convective amplification compared with the classical factor (1- Mccos0) -5, but it is not an

effect offlow shielding. Instead, it results from retarded time variation across an 'eddy',

not allowed for in the classical factor.

It would seem that the frequencies of jet noise are simply too low: for significant

shielding the flow dimensions must be much larger than a typical wave length of the

sound55, 56. This is a requirement for geometric acoustics (ray acoustics) to apply.

Schubert's calculations8, 9 show that jet noise is very far from that regime.
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Theseremarksrefer to asingleroundjet. Thecaseof multitubejets (or equivalent

corrugatednozzlejets) is anothermatter. Substantialshieldingof thehigh frequency
noiseof the innerjets by aring of theoutermostjets is ademonstratedfact. Balsa44,via

amoving source Green's function, shows apparent agreement with measurements that he

cites. No stationary source Green's function, as proposed herein, has as yet been

evaluated for this scenario.

Range of Applicability

The results herein are for the far field only. Moreover, they are presumed to beapplicable

primarily for subsonic jets. For supersonic jets additional noise sources come into play.

Tam 60, in his review article, develops the case for instability waves, identified as 'large

scale coherent structures', being a major source of noise. He evaluates the noise directly

via a 'stochastic wave model' with very impressive agreement with experiment. But we

note that these instability waves, to the extent that they coexist with the random

turbulence, will contribute to the correlation function Rk used herein. But evaluation is

another matter: the similarity laws for jet turbulence, which have been used with success

for subsonic jets, would have to be reevaluated for the supersonic regime.

Perhaps more importantly, there will be a pattern of shock waves if the jet does not issue

at the design speed from a properly contoured convergent-divergent nozzle. It was shown

many years ago that shock-turbulence interaction would generate intense noise 57-59. In

recent years Tam (summarized in ref. 60) has attempted quantitative prediction of this

shock-associated noise; he analyzed the interaction between instability waves and a 'wave

guide' model for the shock structure. His near field patterns show a close match to

measurements.

The results are further restricted to jets issuing into ambient fluid at rest: that is, static test

conditions. The effects of forward flight on the jet noise are not considered. Michalke

and Michel29,49, 50 have extended the Lighthill theory to provide a successful prediction

of these effects. This takes the form of a scaling law that maps the intensity of a static jet

at certain jet Mach number and direction into that for a moving jet at an altered Mach

number, direction, and distance. (See also an approach via CFD methods61.) Refraction,

governing extension into the 'cone of silence', is not allowed for: this would involve a

further development of the present stationary-source Green's function approach.
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APPENDIXA: GENERALIZED CONVECTIVEWAVE MODIFICATIONS OF

LIGHTHILL EQUATION

EXACT WAVE EQUATION

Expansion of Lighthill Source Term, QL

The restriction to a transversely sheared mean flow of uniform density, Eq. (8), is relaxed

here: Lighthilrs source term expression, which we shall call QL (the right-hand side of

Eq. (5)), is expanded under the specifications

vi = Ui + ui; Ui = Ui(x); (Vi)av = Ui (A1)

p = p(xi) + p'; (P)av = p(xi) (A2)

By Csanady's 7 Eq. (3), QL expands as follows:

=-_+ 1 02p_ _ 02p = P (._0v 0vi + 0Vi_x_)+ 1__1__2pQL
0xi0xj Co2 0t 2 _ V,,-_ _ ff_i Co2 0t 2

02p 2vi _ 02p0t 2 - -- - vivj x_-ffxj (A3)

With this expansion it is easily shown that Eq (5) of the main text is equivalent to

Schubert's 8,9 exact wave equation for an inviscid nonheatconducting fluid. Inserting

Eqs. (A1) into (A3) yields 7

QL = p (___JxUi0Ui + 0Ui OU' uiuj

I a2p.+ 0u 0pui 0 ,. o__iu-',+ + 2 + 2 (A4)
Co2 0t 2 0xi0xj 0xj 0xi _jj Lpuj 0xi )

When Ui = (U(x2), 0, 0) this reduces to the right-hand side of Eq (8) of the main text.

With the further expansion

02puiuj 0Ui 0puj a2uiui 0Ui _ 0Ui 0p _ 0p 02p
2p + 2uj 0xi 2 + uiuj0xi0xj + 2 _ 0xi = p + +0xi0xj 0xj0xi 0xj

(A5)

and the definition

_}2 02 02 02

Dt 2 -= 0t 2 + 2Ui _ + UiUj _ (A6)

and some rearrangement, QL becomes
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QL=2p_ _+ I 02p _i_p _ 2uj01"Ji/)P _/)P
jOxi Co2ot 2-_ +p + -- +2OxiOxj ()xj ()xi ()xj _i

_)2p a (puj()Ui'_+ f_U'c)Ui ()Ui_Ui+ -_-_'fl P _flxi + _xi _xj )
(A7)

This expansion of the acoustic source terms, the right-hand side of the wave equation (5),

is exact.

APPROXIMATE WAVE EQUATIONS

Incompressible Turbulence

We now introduce approximations in two stages. First, in all but the first three terms of

QL, we neglect the compressibility of the turbulence in the application to subsonic flows.

We argue that density perturbations P' in the nonexcepted terms account for scattering of

sound by turbulence, and they may be neglected in dealing with generation of sound.

Thus, in these terms, p may be replaced by its local temporal mean p(x). Consistently, it

is implied that ui, in all but the excepted terms, contains no compressible component.

Despite this assumed incompressibility of the source terms, sound (pressure waves) will

indeed be generated as Lighthilll,2 showed. Thus compressibility has been retained

where acoustically necessary: in the final left-hand-side wave operator.

The first excepted term is 2p(OUi/Oxj)(/)uj/Oxi). By the argument in the main text above

Eq. (11), the very small compressible, or acoustic part of this term, being linear in uj,

participates to the first order in wave propagation; thus we move it to the left-hand-side

wave operator. The terms Co2 _)2p/Ot2 and -[_2p/Dt2 have also to do with wave

propagation; we move them likewise to the left-hand side, approximating _2p/Dt 2 by

c-2[_2p/Dt2 (Appendix B).

With these term shifts from the right-hand side (QL) and approximation of p by p therein,

Eq. (5) may be rewritten. First we need an approximate equation for mean flow

continuity. Taking the correlation _ as negligible yields this as

_pUj/_xj = 0 (A8)

By virtue ofEq. (A8), two terms of the approximate QL may be collapsed into one:
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- au. a (uj (A9)

The modified Eq. (5) then reads

1"32P + 2U"32P'bxibt+ U'U" 32P'' - 2P_x_" _ "V2p = -32ulUlP_-¢-"+ 2Poxj -3-__"
c_[3t 2 JOxiOxj ! t)xi OXiOXj 3xi

-:3U_ 3Ui + 3Ui 3Ui (A10)

Transversely Sheared Flow

Let us specialize now to a transversely sheared flow (Eq. (7) of the main text), with

transverse density gradient as well:

U i = (U(x2), 0, 0);

The modification (A10) of Eq. (5) simplifies to

1.02192U0___ U _2._____1 -3U 3U2ac
c_13t2 + 3xlOt + 3Xl 2J" 2P0--xx23Xl " V2p =

2 3u2ui ()P U2_ox22
But it can be quickly verified by direct expansion that

p = p(x2)

-au a.2
+ 2P_-223Xl

_02vivi -_)2uiui ^-3UOu2

so that an alternative form is

(All)

(A12)

1.32p 2u32P U 32__p_, -aU3u2ac

-2t3t2 + 3x13t + 3Xl 2'' 2P3--_23Xl

(A13)

' oxiaxj

(A14)

where it is recalled that vi is the instantaneous resultant flow Ui + ui, as defined in Eq.

(A1). An equation of the form (A14) results also for a cylindrical jet Ui = (U(r), 0,0), p =

(r), if u2, x2 are replaced by ur, r, respectively (see Eq.(A15). Equations (A12) and

(A14) are the key results of this Appendix; they generalize Eqs.(l l) and (13) of the main

text, respectively, to the case of flows of nonuniform mean density. The applications and

implications are discussed below.

Jet Flow

Following Schubert8, 9 we note that Ui in a jet is essentially unidirectional:
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Ui = [U(r;xl), 0, 0]; r = _x22 + x32 roundjet (A15)

= x2 twodimensionaljet

with a strongdependenceon r, anda weakdependenceon Xl. Further,

= p (r; Xl) (A16)

with a similar dependence. Thus, for both U and p, the gradients along Xl are very much

less than those along r. For the foregoing transversely sheared flow the xl-gradients are

identically zero; requiring this led to Eqs. (A12) to (A14). It follows that Eqs. (A 12) to

(A14) may be applied to jet flow as a close approximation, with x2 replaced by r.

Density Scenarios: _ = constant vs. _ = _ (r)

Let us specialize further to a uniform mean density,

= Po = constant (A17)

This, together with Eq. (A 11), recovers the scenario of the main text. It is seen that the

density gradient terms drop out, and Eqs. (AI2) and (A14) reduce to Eqs. (11) and (13),

respectively: the modified Lighthill equation in the form of Eq.(13) is confirmed as a

special case of the more general form of this Appendix, Eq.(A14).

From the foregoing, it is clear that density gradients, via the additional source terms,

cause more noise to be generated. This has been explored in the context of hot jets by

Morfey 35, Mani 13, and by Michalke and Michel49, 50. The source terms in (A12) and

(A14) appear similar to those deduced by Mani. The term 2 _ /)_
/)xj _is essentially of

dipole form,/)Qj//)kj, (treating ffg/bx2 as a spatial constant): it would yield a factor Int2 in

place of h_l4 in an equation like (4). As a consequence of this, or by arguments given in

the cited references, the corresponding radiated sound power would vary as U6; they

showed it could exceed the ordinary quadrupole-source jet noise, with its U 8 law, for

sufficiently hot jets. The term u2 2 _2p/c)x22 is of monopole form, leading to a U 4 law

(11d4 factor replaced by unity). This would radiate very weakly, the curvature/)Tp//)x22

being minimal in the zone of strongest turbulence, where the mean flow shear and/)p//)x2

both maximize.

Over time "...dozens of equivalent (and nonequivalent) source term expansions have been

published by flow noise researchers. This multiplicity of competing source terms has
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been a major contributor to confusion..." (Reference 29). In this author's view, the

effective limit in the law of diminishing returns has been reached in the expansions of this

Appendix: of the Lighthill wave operator (left hand side of Eq.(A 10)) and of the Lighthill

source term for an inviscid nonheatconducting fluid (exact, Eq.(A7); approximate,

Eq.(A14)).

APPENDIX B: APPROXIMATION OF _)2p/Dt2 as _-2 _2p/Dt2

The exact relation for a moving fluid element of constant entropy

Dp 1Dp
Dt - c2 Dt

implies

D2p 1 D2p_ _'-__![Dp_

Dt 2-c 2Dt 2 pc 4_)Dt

where D2/Dt 2 is the convective second derivative

D 2 02 02 02 Dvi 0

Dt 2 - 3t 2+2vi_+vivj_+_

in which

(B1)

(B2)

(B3)

vi = Ui + ui (B4)

is the mean velocity Ui plus a perturbation ui. This may be compared with a mean flow

convective derivative

82 32 02 32
Dt-----g-= at----_ + 2Ui _ + UiUj _t-_g (B5)

It is argued, following SchubertS, 9, that replacement of (B3) by (B5) (and c2 by _2)

merely supresses scattering of sound by the jet turbulence; (Dvi/Dt)0/3xi is neglected

also, as yielding second order terms.

We illustrate this in terms of a plane sound wave in a reference frame following the mean

flow:

p = p + Ip'l ei(kix i - ¢_); _/kl 2 + k2 2 + k3 2 = k = 0_j_ (B6)

p = p + Ip'l ei(kix i - cot)

(Herein the contribution of turbulent perturbations to c 2, e-2, andl/c -2 are considered

negligible, so the designated local time averages are taken to be equivalent. With this

assumption, the averages involving soundspeed c in Eq.(B6) and later equations are

compatible.) Using the momentum equation,
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1 Dvic)p _ 1 13p ',2

_2 Dt bxi - p z'aX--SJ

And the amplitude is (with p _,p)

1 Dvi/)P ]

_2 Dt/)xi

k2 k__= --ip,i 2 = p'l 2

(B7)

(B8)

For comparison we evaluate E-2 D2p]Dt 2, which is _-2 02p/_)t2 in the moving frame, to a

close approximation. By (B6) the amplitude is

11D2pl 0,2= --Ip'l = k 2 Ip'l (B9)
'_2Dt 2' c-2

The term (B8), arising from the operator (Dvi/Dt)/)/0xi, is seen to have an amplitude a

factor Ip'l/'_ smaller than the term (B9). This justifies neglect of that operator.

By a similar example we can show that the last term of Eq. (B2) is of higher order and

may be dropped.

that

_)2p 1 _)2p (B10)

Dt2 _2 Dt2

is a sufficient approximation for the modified Lighthill wave equation.

Thus, on the basis of these order-of-magnitude estimates, we conclude

APPENDIX C: APPROXIMATION OF _ AS k

For frequencies characteristic of jet noise, we examine the change in phase _ in the far

field when the source is displaced from y to y'. Equation (25) gives a linear

approximation as

[xg'- _l = [_(x,y'103)-_(x,yl03)] = -_:.(y'-y)

where

(C1)

K = - (Vy _)x>>y (C2)

and wave convection by the jet flow is allowed for. In the absence of flow (or for a

virtual medium at rest) this reduces to

k = - [Vy(kr)]x>>y = [kr/r]x>>y -- kx/x (C3)

with corresponding phase change

IV'- _]VM = -k-(y'-y) (C4)

This is an approximation to the exact relation

[W' - W]VM = k(Ix-y'l - Ix-yl) (C5)
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The (negative) phase advance due to the flow is the left hand side of Eq. (C1) minus that

of Eq. (C4); designating this as S, it is obtained as

S - [_g'- V]- [_- _g]VM = (k-K)*(y'-y) (C6)

Schubert 8, in his numerical computations for a point source in a jet flow, has evaluated

this phase difference in a number of cases (he used the more precise relation (C5) in

defining the left hand side as

S = [_'- _g]- k(Ix-y'l- Ix-yl) (C7)

effectively: for the large x/y ratio of our examples the difference is negligible). In his

Figures 30 to 32 he plots S/n vs (Y'I- yl)/D; this corresponds to y' and y both directed

along the jet axis; x is directed at angles O= 0, 6.8, and 16.2 degrees.

We take the simplest case, O=0. Now k is directed along x by Eq.(C3), and when x lies

along the axis, so does k. By virtue of the flow symmetry about 0=0, K must also be

directed along the axis. For this scenario Eq.(C6) becomes

S = (k-K)(y'l-Yl) (C8)

so that

K/k = 1- S/k(y'l-Yl) = 1- e

The ratio r/k is evaluated in several examples with data from Figs.30 and 32. The

specifications are: Mj = 0.3,, Ix-yl/D=100. The results are:

Wo=kD=l.055 and (y'l-Yl)/D = 1:

(y'I-Yl)/D = 2:

Wo-kD= 2.46 and (y'l-Yl)/D = 0.5:

(y'l-yl)/D = 1:

K/k = l-_(.005)/[1.055(1)1 = 1 -.015

K/k = 1- n(.015)/[ 1.055(2)] = 1 -.022

K/k = 1- rt(.032)/[2.46(0.5)] = 1 -.08

K/k = l-rt(.101)/[2.46(1)] = l -.13

(C9)

It is seen that _/k differs little from unity: the difference lel increases with kD

(proportional to frequency) and with (y'I-Yl)/D. The values kD = 1.055 and 2.46

correspond to the upper part of the jet noise spectrum, which has a broad peak around

kD= 0.3. Therefore, for the bulk of the spectrum the difference le[ will be less for a given

(y'I-Yl)/D. Furthermore, an appropriate source displacement (Y'I-Yl) must be less than

the local macroscale L of the jet turbulence, a function of Yl. Estimates are L/D = .35,

.15 for kD = 1.055, 2.46, respectively. Thus the values of (y'I-Yl)/D in the examples are

unacceptably high, especially at the highest kD. It follows that appropriate values of lel

are substantially smaller than those of the examples: tc/k differs from unity by not more

than several percent at jet noise frequencies for Mj = 0.3. The difference will, of course,

increase with jet Mach number.
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On going to O> 0, thecurvesof S/nvs (y'I-Yl)/D in Figs.30and32arenotgreatly

different: thephasedifferenceSbetweentheflow andno flow casesremainsvery small

asOvaries. This impliesthat thephasegradient(Vy _)x>>y for theflow andno flow

caseshasnearlythesamedirectionaswell asmagnitude.That is, theinferencefrom the
O= 0 examplesabove,with respectto magnitudes,that

_¢--k (C10)

maybegeneralizedto thedirectionsaswell; thatis,
_¢= k (C1 l)

to a closeapproximation foratIcastlow spccd jctsattypicalfrcquencics.

APPENDIX D: MOON-ZELAZNY MODEL OF THE TURBULENCE

PARAMETERS

Moon and Zelazny 27 derived an equation roughly equivalent to the approximate Eq.(63)

for the self noise. (They had another equation, more complex, for the shear noise.) These

were based on a space-time (rather than wave number-frequency) domain solution of the

Lighthill equation and involved various simplifying assumptions. In particular, the

operation 3/_'c was interpreted as effectively multiplying by a characteristic frequency (a

function of axial position Yl in the jet): C0se for the self noise and (l/2)COse for the shear

noise. There was also an implicit heuristic assumption for the constant A of Eqs. (62)-

(64). For implementation for the scenario of a round jet, they developed a model for

determination of these and other needed turbulence parameters. A major feature (taken

from a Ph.D. dissertation underlying ref. 27) was an eddy viscosity formalism for

evaluation of the rms axial component of turbulence, u', as a function of r and Yl

throughout the jet. This led to evah, ation of (Uk2) 2 appearing in Eq.(63). Other heuristic

features of their model are:

Ls = shear layer half-width

O)se = 0.3 U(yl)/L2

LI = 0.358Ls

¢Osh= 0.3 U(yl)/L1

L2 = L3 =0.179 L s

The agreement with both turbulence and noise measurements was good. These were

absolute levels: in particular, for the noise there was no shifting of the decibel scale for

best match. This has to be impressive. On the other hand, the assumptions, e.g., of

scales and frequencies, involves empiricism.

35



ACKNOWLEDGEMENTS

Supportat NASA wasprovidedby tenurepart timeat theLangleyResearchCenterasa

DistinguishedResearchAssociate,andat theUniversityof Toronto Institutefor

AerospaceStudieswith fundsfrom agrantfrom theNaturalSciencesandEngineering
ResearchCouncilof Canada.

REFERENCESAND NOTES

1Lighthill, M. J., "On Sound Generated Aerodynamically--I. General Theory,"

Proceedings of the Royal Society of London, Vol. 211, Ser. A, No. 1107, 1952, pp.564-

587.

2 Lighthill, M. J., "On Sound Generated Aerodynamically--II. Turbulence as a Source

of Sound," Proceedings of the Royal Society of London, Vol. 222, Ser. A, 1954, pp. 1-32.

3 Ribner, H. S., "Aerodynamic Sound from Fluid Dilatations: A Theory of Sound from

Jets and Other Flows," Univ. of Toronto, Institute of Aerophysics (now Aerospace

Studies), UTIA Rept. 86, AFOSR TN 3430, July 1962.

4 Ribner, H. S., "The Generation of Sound by Turbulent Jets," Advances in Applied

Mechanics, Vol. VIII, Academic Press, New York, 1964, pp. 103-182.

5 Powell, A., "Survey of Experiments on Jet-Noise, Aircraft Engineering, Vol. 26,

1954, pp. 2-9.

6 Phillips, O. M., "On the Generation of Sound by Supersonic Turbulent Shear Layers,"

Journal of Fluid Mechanics, Vol. 9, No. 1, 1960, pp. 1-28.

7 Csanady, G. T., "The Effect of Mean Velocity Variations on Jet Noise," Journal of

Fluid Mechanics, Vol. 26, Sept. 1966, pp. 183-197.

8 Schubert, L. K., "Refraction of Sound by a Jet: a Numerical Study," Univ. of Toronto,

Institute for Aerospace Studies, Rept. 144, Dec. 1969.

9 Schubert, L. K., "Numerical Study of Sound Refraction by a Jet Flow II. Wave

Acoustics," Journal of the Acoustical Society of America, Vol. 51, Feb. 1972, pp. 447-

463.

10 Lilley, G. M., "The Generation and Radiation of Supersonic Jet Noise. Voi. IV--

Theory of Turbulence Generated Jet Noise, Noise Generation from Upstream Sources,

and Combuistion Noise, Part II: Generation of Sound in a Mixing Region," Air Force

Aero Propulsion Lab., AFAPL-TR-53, July 1972.

36



11 Mani, R. "A Moving Source Problem Relevant to Jet Noise," Journal of Sound and

Vibration, Vol. 25, No. 2, 1972, pp. 337-347.

12 Mani, R. "The Influence of Jet Flow on Jet Noise. Part 1. The Noise of Unheated

Jets," Journal of Fluid Mechanics, Vol. 73, Feb., 1976, pp. 753-758.

13 Mani, R. "The Influence of Jet Flow on Jet Noise. Part 2. The Noise of Heated

Jets," Journal of Fluid Mechanics, Vol. 73, part 4, 1976, pp. 779-793.

14 Balsa, T. F., "The Far Field of High Frequency Convected Singularities in Sheared

Flows, with an Application to Jet Noise Prediction," Journal of Fluid Mechanics, Vol. 74,

No. 2, 1976, pp. 193-208.

15 Balsa, T. F., "The Acoustic Field of Sources in Shear Flow with Application to Jet

Noise: Convective Amplification," Journal of Fluid Mechanics, Vol. 79, No. 1, 1977, pp.

33-47.

16 Tester, B. J., and Morfey, C. L., "Developments in Jet Noise Modelling--Theoretical

Predictions and Comparisons with Measured Data," Journal of Sound and Vibration, Vol.

46, 1976, pp. 79-103.

17 Morfey, C. L., Szewczyk, V. M., and Tester, B. J., "New Scaling Laws for Hot and

Cold Jet Mixing Noise, Based on a Geometric Acoustics Model," Journal of Sound and

Vibration, Vol. 61, No. 2, 1978, pp. 255-292.

18 Balsa, T. F., and Gliebe, P. R., "Aerodynamics and Noise of Coaxial Jets," AIAA

Journal, Vol. 15, No. 11, Nov. 1977, pp. 1550-1558.

19 Balsa, T. F., Gliebe, P. R., Kantola, R. A., Mani, R., Stringas, E. J., and Wang, J. C.

F., "High Velocity Jet Noise Source Location and Reduction. Task 2--Theoretical

Developments and Basic Experiments," FAA-RD76-79, II, May 1978. (Available from

DTIC as AD A094291 .)

20 Gliebe, P. R., and Balsa, T. F., "Aeroacoustics of Axisymmetric Single- and Dual-

Flow Exhaust Nozzles," Journal of Aircraft, Vol. 15, No. 11, Nov. 1978, pp743-749.

21 Gliebe, P. R., "Diagnostic Eval;uation of Jet Noise Suppression Mechanisms,"

Journal of Aircraft, Vol. 17, No. 12, Dec. 1980, pp. 837-842,

22 Gliebe, P. R., Brausch, J. F., Majjigi, R. K., and Lee, R., "Jet Noise Suppression," in

Aeroacoustics of Flight Vehicles: Theory and Practice. Vol. 2: Noise Control, NASA

Reference Publication 1258, Vol. 2; WRDC Technical Rept. 90-3052, Aug. 1991, pp.

207-269.

23 Ribner, H. S., "Quadrupole Correlations Governing the Pattern of Jet Noise," Journal

of Fluid Mechanics, Vol. 38, No. 1, 1969, pp. 1-24.

24 Pao, S. P., and Lowson, M. V., "Some Applications of Jet Noise Theory," AIAA

Paper 70-233, New York, Jan. 1970.

37



25Krishnappa,G. "Estimationof theIntensityof NoiseRadiatedfrom aSubsonic

CircularJet,"Proceedings of the AFOSR/ Univ. of Toronto, institute for Aerospace

Studies, Symposium, Toronto, 1968, Univ. of Toronto Press, Toronto, Canada.

26 Krishnappa, G. and Csanady, G. T., "An Experimental Investigation of the

Composition of Jet Noise," Journal of Fluid Mechanics, Vol. 37, June 1969, pp. 149-159.

27 Moon, L. F. and Zelazny, S. W., "Experimental and Analytical Study of Jet Noise

Modeling," AIAA Journal, Vol. 13, No. 3, March 1975, pp. 387-393.

28 Ribner, H. S., "On the Role of the Shear Term in Jet Noise," Journal of Sound and

Vibration, Vol. 52, No. 1, 1977, pp. 121-132.

29 Ribner, H. S., "Perspectives on Jet Noise," Dryden Lecture, AIAA Journal, Vol. 19,

No. 12, Dec. 1981 pp. 1513-1526.

30 Chu, W. T., "Turbulence Meast, rements Relevant to Jet Noise," Univ. of Toronto,

Institute for Aerospace Studies, UTIAS Rept. 119, Nov. 1966.

31 Chu, W. T., "Moving Frame Analysis of Jet Noise," Journal of the Acoustical

Society ofAmerica, Vol. 53, No. 5, 1973, pp. 1439-1440.

32 Atvars, J., Schubert, L. K., Grande, E., and Ribner, H. S., "Refraction of Sound by

Jet Flow or Jet Temperature," Univ. of Toronto, Institute for Aerospace Studies," UTIAS

TN 109, May, 1965; NASA CR-494, May, 1966.

33 Grande, E., "Refraction of Sound by Jet Flow and Jet Temperature II," Univ. of

Toronto, Institute for Aerospace Studies, UTIAS TN 110, Dec. 1966; NASA CR-840,

Aug. 1967.

34 Schubert, L. K., "Numerical Study of Sound Refraction by a Jet Flow I. Ray

Acoustics," Journal of the Acott_'tical Society of America, Vol. 51, Feb. 1972, pp. 439-

446.

35 Morfey, C. L., "Amplification of Aerodynamic Noise by Convected Flow

Inhomogeneities," Journal of Sound and Vibration, Vol. 31, Dec. 1973, pp. 391-397.

36 Doak, P. E., "Analysis of Internally Generated Sound in Continuous Materials: 2. A

Critical Review of the Conceptual Adequacy and Physical Scope of Existing Theories of

Aerodynamic Noise, with Special Reference to Supersonic Jet Noise," Journal of Sound

and Vibration, Vol. 25, No. 2, Nov. 22, 1972, pp. 263-335.

37 Goldstein, M. E., "Aeroacoustics," National Aeronautics and Space Administration,

Lewis Research Ctr., NASA SP-346, 1974 (see pp. 389 and 391).

38 Ffowcs Williams, J. E., "The Noise from Turbulence Convected at High Speed,"

Philosophical Transactions of the Royal Society of London, Series A, Vol. 255, 1963, pp.

469-503.

38



39FfowcsWilliams, J.E., "SomeThoughts on the Effects of Aircraft Motion and Eddy

Convection on the Noise from Air Jets," Univ. of Southampton, Dept. of Aeronautics and

Astronautics, USAA Rept. 155, 1960.

40 Nossier, N.S.M., and Ribner, H. S., "Tests of a Theoretical Model of Jet Noise,"

AIAA Paper 75-436, March 1975.

41 Maestrello, L., "Two-Point Correlations of Sound Pressure in the Far Field of a Jet:

Experiment," NASA TM X-72835, 1976.

42 Ribner, H. S., "Two Point Correlations of Jet Noise," Journal of Sound and

Vibration, Vol. 56, No.l, pp. 1-19.

43 Richarz, W.G., "Theory of Cross-Spectral Densities of Jet Noise," Mechanics of

Sound Generation in Flows, IUTAM/ICA/AIAA-Symposium Gottingen, Max-Planck-

Institut fur Stromungsforschung, Ed. E.-A. Muller, Aug.28-31, 1979, pp. 153-158.

44 Balsa, T. F., "The Shielding of a Convected Source by an Annular Jet with an

Application to the Performance of Multitube Suppressors," Journal of Sound and

Vibration, Vol. 44, No. 2, 1976, pp. 179-189.

45 Proudman, I., "The Generation of Noise by Isotropic Turbulence," Proceedings of

the Royal Society, Ser. A, Vol. 214, 1952, pp. 119-132.

46 Kraichnan, R.H. "The Scattering of Sound in a Turbulent Medium," Journal of the

Acoustical Society of America, Vol.25, 1953, pp. 1096-1104

47 Mawardi, O.K. "On the Spectrum of Noise from Turbulence," Journal of the

Acoustical Society of America, Vol. 27, 1955, pp.442-445.

48 Lilley,G.M. "On the Noise from Air Jets," Aeronautical Research Council (Great

Britain), ARC 20, 376-N40-FM2724, 1958

49 Michalke, A., and Michel, U., "Prediction of Jet Noise in Flight from Static Tests,

Journal of Sound and Vibration, Vol. 67, NO. 3, 1979, pp.347-367.

50 Michalke, A. and Michel, U., "Prediction of Flyover Noise from Single and

Coannular Jets," AIAA Paper 80-1031, June 1980.

51 Musafir, R.E., Slama, J. G., Zindeluk, M., "Quadrupole Correlations and Jet Noise,"

Inter-noise 84, Honolulu, Dec.3-5, 1984, "Physical Phenomena," pp.257-260.

52 Musafir, R.E., "The Use of Polar Correlation in the Characterization of Multipolar

Source Distributions," Inter-noise 86, Cambridge, Mass., July 21-23, 1986, "Analysis,"

pp. 1335-1340.

53There is an apparent contradiction here with reference 29 on the connection between

the self- and shear-noise terms: the following remarks are intended to resolve this. It is

still maintained that, as asserted there (p. 1517), "the wave equation--either Lighthill or

"Lilly"--in concert with the momentum equations governs the entire turbulent flow", etc.,

39



andalso,"It follows thatthewaveandmomentumequationsserveto correlate the self-

and shear-noise terms. Either the equations or flow measurements can provide the

shear/self correlations." These remarks were made in reference to an equation like (11)

with the entire shear term on the left hand side. But it is now realized that the

employment of a Green's function technique for solution (as done by Lilley) will involve

only the acoustic component of the shear term (the one with U2ac) on the left hand side.

That is to say, the far field Green's function will not compute the full shear term, and so

will not serve to correlate it with the self-noise term. The technique is, of course, an

artifice for predicting noise, the instantaneous turbulence being presumed known. (In

applications, it is only space-time correlations that are needed.)

54 Lush, P. A., "Measurements of Subsonic Jet Noise and Comparison with Experiment,"

Journal of Fluid Mechanics, Vol. 46, part 3, 1971, pp. 477-500.

55 Powell, Alan, "Fundamental Notions Concerning Convection of Aerodynamic Noise

Generators," Program, 59th Meeting of the Acoustical Society of America, Providence,

R.I., June 9-11, 1960, Paper 05 (Abstract)

56 Ribner, H. S., "Energy Flux from an Acoustic Source Contained in a Moving Fluid

Element and Its Relation to Jet Noise," Journal of the Acoustical Society of America,

Vol.32 (9), Sept. 1960, pp. 1159-1160 (Letter).

57 Lighthill, M.J., "On the Energy Scattered from the Interaction of Turbulence with

Sound or Shock Waves," Proceedings of the Cambridge Philosophical Society, Vol. 49,

Pt. 3, 1953, pp. 531-551.

58 Ribner, H. S., "Convection of a Pattern of Vorticity Through a Shock Wave," NACA

TN 2864, Jan. 1953 and NACA Rept. 1164, 1954.

59 Ribner, H. S., "Shock-Tt, rbulence Interaction and the Generation of Noise," NACA TN

3255, July 1954 arid NACA Rept. 1233, 1955.

60 Tam, C. K. W., "Jet Noise Generated by Large-Scale Coherent Motion," in

Aeroacoustics of Flight Vehicles: Theory and Practice. Vol. 1: Noise Sources NASA

Reference Publication 1258, Vol. 1; WRDC Technical Rept. 90-3052, Aug. 1991, pp.

311-390.

61 Bayliss, A., Maestrello, L., McGreevy, J. L., Fenno, C. C. Jr., "Response of Multi-

Panel Assembly to Noise from a Jet in Forward Motion," 1st Joint CEAS/AIAA

Aeroacoustics Conference (16th A IAA Aeroacoustics Conference), Munich, 12-15 June

1995 (to be presented).

40



NormalizEd
Self o

10 Spectra Shear x

o o.io_ _ of, c_ o_ o.7 o_
Source StrouhalNumber- Frequency

Fig.1. Shear term in source role. Match of experimentally derived shear noise and self
noise spectra, normalized to same amplitude. The self noise has been downshi|ted one
octave, in accordance with the theory. (After ref. 29, based on ref. 40.)
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outward); right-hand side; very cold jet (-180°C)with enhanced intensity lobe (rays turn
inward to a quasi-focus). (After ref. 29, based on refs. 32 and 33).
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