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ABSTRACT
A formalism for jet noise prediction is derived that includes the refractive 'cone of
silence' and other effects; outside the cone it approximates the simple Lighthill format.
A key step is deferral of the simplifying assumption of uniform density in the dominant
'source’ term. The result is conversion to a convected wave equation retaining the basic
Lighthill source term. The main effect is to amend the Lighthill solution to allow for
refraction by mean flow gradients, achieved via a frequency-dependent directional factor.
A general formula for power spectral density emitted from unit volume is developed as
the Lighthill-based value multiplied by a squared 'normalized’ Green's function (the
directional factor), referred to a stationary point source. The convective motion of the
sources, with its powerful amplifying effect, also directional, is already accounted for in
the Lighthill format: wave convection and source convection are decoupled . The
normalized Green's function appears to be near unity outside the refraction dominated
‘cone of silence’, this validates our long term practice of using Lighthill-based approaches
outside the cone, with extension inside via the Green's function. The function is obtained
either experimentally (injected 'point’ source) or numerically (computational
aeroacoustics). Approximation by unity seems adequate except near the cone and except
when there are shrouding jets: in that case the difference from unity quantifies the
shielding effect. Further extension yields dipole and monopole source terms (cf. Morfey,
Mani, and others)) when the mean flow possesses density gradients (e.g., hot jets).

INTRODUCTION
Lighthill, in his seminal papers!? posed the problem of flow noise in terms of a wave
equation for a 'virtual medium at rest': the actual flow was effectively incorporated into
right hand side terms; these were interpreted as sources of sound. Although the equation
is exact, approximations to these source terms have the effect of suppressing sound
convection (hence refraction and shielding) by the mean jet flow3.4. (Some effects of
refraction were pointed out by Powell> even before this connection was made.)
Equivalent equations for a moving medium have been put forward®-10; they allow for



the sound convection. Of these, Lilley's equation!? has received much attention: it has
been developed by Manit1-13, Balsal4.15, and others!0-22 into a quantitative predictive
formalism for properties of jet noise. It entails a formidable derivation or calculation of a
Green's function for highly idealized models of a jet flow. By contrast, the Lighthill
procedure, as developed by Ribner23, Pao and LowsonZ24, and others based on
Csanady’25-27_ is relatively simple. These various formalisms appear to yield
comparable predictive accuracy outside the 'cone of silence’ opening downstream of the
jet28.29. Within this cone the Lighthill-based theory fails completely--it predicts no
attenuation--whereas the Lilley-based theory exhibits good to poor accuracy, depending

on frequency.

It is now well known3:4:7that expansion of the basic Lighthill source term leads to extra
terms that may be shifted to yield a convected wave equation: it was the implicit
discarding of these extra terms that was cited above. In 1977 the expansion was
exploited28:29 to demonstrate a considerable equivalence between the Lighthill- and
Lilley-based approaches outside the 'cone of silence'. In the course of the present study it
was realized that the dominant residual source terms, as finally modelled, were fully
equivalent to the Lighthill term. Taken together, these findings led to the notion that the
Lighthill solution could be amended to allow for convected wave effects: extended in
simple fashion into the ‘cone of silence’. The basis of the extension lies in replacing the
ordinary oscillatory Green's function, eikf/4xr, by that for the convected wave equation.
These are both for a stationary point source, in contradistinction to the Lilley procedures;
this decouples convection of the sources and the sound waves, permitting the cited
simplifications in the theory. The following analysis develops the mathematical
implementation. Since the Green's function is frequency-dependent, the formalism is
directed toward the power spectral density, in particular, from unit volume. Then
quadratures can provide the full jet spectrum and the broadband noise intensity. All of

these are direction-dependent.

The survey paper, reference 29, from which the present study evolved, illuminates certain
facets only briefly touched on herein; moreover, it displays graphically several
comparisons of theory and experiment merely cited here. For a fuller understanding and
perspective as to how the present notions relate to other theories of jet noise, that paper

should be consulted as well.



PARTIAL OVERVIEW
Lighthill manipulated the conservation equations of fluid dynamics into the form of a
wave equation forced by nonlinear terms in the unsteady velocity v; on the right hand
side; these were interpreted as sources of sound. For practical prediction, only the

dominant source term was retained, to yield

10%p o, _ pviyj
Co2dt2 v P‘axiax,- (1a)

As a further approximation, the fluid density was approximated as uniform (p = po) in

the source term, resulting in

1 9%p vy,
2 a2 -V = po g (1)

The early assumption of uniform density is premature, however: it completely suppresses
refraction of the sound by the flow3:4. Herein, gradients in the density figure in the
expansion of the original source term of (1a), after which the density is replaced by its
mean. This restores the refractive capability in terms of a convective wave equation: in

the case of a transversely sheared mean flow it takes the simple form

1 D% dU dugye 9%vivj

- - U2y = .
co?2 D2 2p°ax2 dx Vep Po OX;0X; (2a)
(where up, is defined by
Du». d
P = -5 (20))

as a refinement of the unconvected wave equation (1): the degree of approximation in the
step P=po here is.less. This bears a close relationship to Lilley's well-known
equation10:12,13_ 1t is, however, vastly simpler, with the special feature of being forced
by the same source term as in Lighthill’s uniform density format, if, compatibly with p =

Po, OVi/Ox; is taken to be zero. The convection implicit in D/Dt is by the jet velocity,
approximated locally as U(x2); this is the time average of the instantaneous velocity vj,

the fluctuations being designated u;.

The solution of Eq.(2) for a single frequency component of the pressure p is obtained via
a Green's function, the right hand side being replaced by a srationary oscillatory point
'source’. Guided by an elegant relation due to Balsald (but like Lighthill, he used a
moving point source), we develop a general expression for the power spectral density of

the sound pressure emitted from unit volume of the flow as



dd(x! . . . . .
—d—%—ag o IGI?2 » 4-dimensional Fourier transform of space-time correlation of

(Pod?Vivj/ox;ox;)) (3a)
where |Gl is the absolute value of the oscillatory Green's function, and it applies to a large
distance x (far field). (An earlier attempt by Schubert8.?, in retrospect oversimplified,

may be mentioned.) Eq.(3a) can be reduced to the much neater form

dd(x|w . . . . .
—#(l)l) o K4+ IGI2 + 4-dimensional Fourier transform of space-time correlation of

(POVKZ) (3b)
where K is a wave vector (with absolute value k) governing the phase of G, and v is the

instantaneous velocity component in the direction of k. This reduction parallels a similar

one in a space-time domain formalism (for p~) due to Proudman43,

The four dimensional transform may be reduced to a one dimensional transform (time =
frequency); this involves the widely used approximation of the turbulent ‘eddies’ as
‘acoustically compact’. This is a great simplification, but at a significant price in
accuracy: the amplifying effect!.2 of eddy convection is progressively overestimated with
increasing jet velocity3:4,30,38,

An alternative version of Eq.(3) is obtained by transformation of the correlation to a
convected frame of reference, following Chu30.31, This resembles equations of Lilley10
and Balsal3 based on a moving point Green's function in connection with a moving
frame. (Cf. also references 24, 38, 46-48 for developments in terms of a four dimensional
Fourier transform.) In either case, use of the moving frame simplifies extraction of the

amplifying effect of convection of the source pattern.

For the simple wave equation (1), the magnitude of the Green's function at a large
distance x is simply (1/4nx). For the convected wave equation (2), on the other hand, Gl
will have a form approximating (1/4mx) times a directional factor8.9. In terms of these
results, a solution of Eq.(1) corresponding to (3b) is obtained by replacing «4G12 in
Eq.(3b) by k4(4nx)-2, where k = w/c. Then, on taking the ratio of the two equations,

dd(x|w)/dVol = [(k2/k2) @nx)IG!]? dd(x|w)/dVol (4)

convected wave eq. Lighthill wave eq



where the factor in brackets is defined as |Gyl and for the purposes herein is designated
the normalized Green's function.

Eq.(4) generalizes the power spectral density from unit volume based on the simple
Lighthill wave equation to account, via a more realistic wave equation, for the influence
of flow. It exhibits the result as the Lighthill-based value multiplied by a squared
'normalized’' Green's function. The Green's function multiplier incorporates the flow-
acoustic interaction: it yields a frequency-dependent alteration of the directional pattern.
The interaction has been described as a refractive effect32.33 due to mean flow or sound
speed gradients and also as a shielding effect1:12.15 due to the mean flow itself. The
term 'Lighthill-based value' in the above relation is not restricted to a formulation in
terms of 4-dimensional transforms. All valid estimation schemes used in the past are
encompassed; these are usually based on an approach in the space-time domain, rather
than the wave number-frequency domain.

Equations (2), (3), and especially their corollary Eq.(4) are the key results of this paper.
They provide the basis for reinterpretation of early procedures of the author's group --
experimental32:33 and numerical$.9:34 -- that effectively evaluated an approximation to
the Green's function. The normalized magnitude, |Gnl, appears near unity outside the
refraction dominated 'cone of silence': this validates our practice of using Lighthill-based
approaches outside the cone, with extension inside via the Green's function.

A further extension in an Appendix yields dipole and monopole source terms (cf.
Morfey35, Mani!3, Michalke and Michel4%: 50) when the mean flow possesses density
gradients (e.g., hot jets).

MODIFIED LIGHTHILL EQUATION
Unconvected Wave Equation: Virtual Medium at Rest
Lighthill's wave equation!-2 is equivalent to

1% o _Ppvivi 1% 9%

C028t2 -V P =aXian Cozatz ) 8[2 (5)

wherein the pressure has replaced the density that he used as the dependent variable;
additionally, the fluid has been approximated as inviscid and non-heatconducting. The



right hand side is interpreted as a spatial distribution of sources of sound. In the usual
approximation, the last two terms are taken to cancel, and the fluid density is taken to be
a constant (p = py) in the first. This leads to

13?2 9%y
co2or2 Vp = po‘ax_ié;(‘; (6)

A rich literature4.29 has dealt with applications of this equation for the prediction of
properties of jet noise.

The early replacement of p by py, to yield (6) is premature, however; it has the effect of
suppressing wave convection (and refraction) by the flow34. This is shown most simply
by expansion of the original first source term under the specification of a unidirectional,
transversely sheared, mean flow U(xz). (This is known as the 'locally parallel’
approximation when applied to a real spreading jet. That more complicated case is dealt
with in Appendix A, along with the derivation of additional source terms!3.35 that arise
in, e.g., heated jets, from density gradients. ) The instantaneous local velocity is written
as the mean plus a perturbation uj,

vi=Uj+ui:  Uj=(U(x2),0,0), )

and the expansion changes (5) to

10%p V2o = Ppuju; ,dUdpup  13% D%

CotOt2 P = %% T ox T co2dt2  Di2 ®
using the definition D/Dt = 9/dt + Ud/dx] 9

as a convective derivative following the mean flow. Both (5) and (8) are exact.

Convected Wave Equation: Actual Medium with Flow
At this point we approximate D2p/Dt2 as ¢2D2p/Dt2,, where ¢ is a local time-average
sound speed (Appendix B). On shifting the term to the left hand side, equation (8) goes

over (o

1D%p g, d2puijy; . zaUapuz (10)

—2D12 P = Jx;0Xj ox7 0x1
C



Thus in place of the unconvected wave equation (6), we now have the more accurate
convected wave equation (10). The difference is traceable to the deferral of the
incompressible flow assumption in the first source term of Eq.(5): this had suppressed the

expansion of 92p/dt2 into the convective form D2p/Dt2,

This is not yet in final form. The second source term, involving mean flow shear dU/ox2,
is linear in up_ For this reason, it has been argued8-10.36 that the term participates in wave
propagation and so should be on the left hand side. (See Goldstein37, pp. 389-391, for a
further discussion.) This applies, however, only to a small acoustic (or compressible)
component associated with wave propagation. Within a subsonic flow the
overwhelming part of u;j is induced by the turbulence vorticity; being small compared
with the soundspeed, it may be approximated as incompressible. Thus we split off the
acoustic component and place it on the left hand side. (The acoustic component of the
first source term, on the other hand, is of higher order and may be neglected). Thus it is
at this point that we may justifiably apply Lighthill's approximation p = pg to the
remaining right hand side source terms. Consistently, the u; are taken to have zero
divergence. Equation (10) then goes over to

1 D?%p oUduac oo _ . JPujy; dU duy
—,Dt2 ) 2p°ax2 ox1 Vip = Poaxiaxj + 2p°ax28x1 a1
c
where uyyc is defined via the momentum equation
Du 0
o - 38 s

The corresponding equation for the Green's function, G(x,ylw), is

1 ]_jZE aualQaC

Y - 2005, 9x; VZp = §(x-y) etion (12)
C

and the solution of the pair of equations (11a) and (12) for p is Ge-iot,

Recall now that Egs. (8) to (12) relate to turbulence uj superposed on a transversely
sheared mean flow U; = (U(x2), 0, 0), Eq. (7). For this scenario we examine the Lighthill
source term Podvivjdxix;j of Eq.(6), where vj = Uj + uj. On carrying out the
differentiation, the term expands exactly into the two terms on the right hand side of
Eq.(11). Thus that equation is exactly equivalent to

1 D%p oUdu d2vivj
_2Dt2 - 2po X2 Ox1 Vp =p oy (13)
c



In the expansion we have used the incompressibility relation dvi/dx; = 0 implied by taking
P = Po; as noted, the approximation of incompressibility is made only in the source terms.

This is a major new result, approximated as Eq (2) in the OVERVIEW . 1t is slightly

generalized here, with ¢2(x) replacing ¢o2. (A further generalization in Appendix A,
(1) replaces the restrictive Eq. (7) by a more realistic mean flow U(x) on the left hand
side, and (ii) allows for mean flow density gradients; these give rise to important

additional source terms in the cases of hot jets and jets of nonambient gas13.35,49.50 )

Now according to Lighthill's arguments‘vz, poav;vj'/axixj' is a valid source term for flow
noise. From the above it is clear that both the right hand source terms of Eq.(11), being
equivalent for the sheared mean flow, are likewise valid source terms for that scenario:
the 'shear noise’ term 2p,(QU/0x2)(Qunyc/dx1) as well as the 'self noise’ term podujuj0xix;.
Furthermore, the velocities u; therein are incompressible to the same approximation as in
Lighthill's term. All of this supports the earlier argument concerning the split of the shear
term in Eq.(11): a compressible acoustic component has been excised (before the step
p=po) and placed on the left hand side, leaving an incompressible component on the
right hand side (presumably much larger). The shear term with ugyc on the left hand side
serves in a propagation role, whereas the shear term with up on the right hand side serves

in a generation role.

Equation (11) with deletion of the last term, together with Eq. (11a), are roughly
equivalent to Lilley's equation!®.12,13 (he combined them into a single third order wave
equation37). However, Lilley, in effect, moved the entire shear term to the left hand side
wave operator. The 'shear noise’ source term so lost from the right hand side is of major
importance. This was shown indirectly by Ribner#:23, and later more directly by Pao and
Lowson24 in terms of Lighthill's equation. Aside from the arguments of the last
paragraph, credibility is afforded by comparisons with experiment: the 'self noise’
spectrum, downshifted in frequency, shows a predicted match to the 'shear noise’

spectrum (Fig.1). We will return to this point later.

The successive modifications of the wave equation for flow noise, proceeding from
Eq.(5) (virtual medium at rest) to Eq.(13) (actual medium with flow) may be summarized
at this point. Deferring the approximation p=p,, as in the derivation of Eq.(13), leads to
propagative terms that may be moved to the left hand side. This is a conversion into a

convective wave operator, making explicit the role of the mean flow in convecting the



sound waves. On the other hand, the convective role of the mean flow is only implicit in
Eq.(5): it resides in the gradients of p in the source term. These gradients are suppressed
in the approximation p=p, prematurely applied in Eq. (6). At very high frequencies wave
convection should reduce?:11:54,55 the well known amplification predicted!-2, in the
absence of flow, for moving sources; the reduction is referred to as 'fluid shielding'11, 14,
But at jet noise frequencies the most dramatic effect has to do with the flow gradients: the
radial decrease in mean-flow velocity in the jet; this turns or refracts the sound rays away
from the axis to yield the well known 'cone of [relative] silence’.

The allowance for refraction in the generalized Lighthill equation (13) comes at a price:
the point source solution (Green's function, utilizing eq. (11) as well) is enormously more
complex than that for the simple wave operator of Lighthill's equation (1). It has been
found, however39, that there is near agreement at the larger angles from the jet axis. This
implies that the simple Lighthill solution for rms sound pressure will approximate that
predicted via eq. (13) outside the ‘cone of silence’. The basis for this is elaborated
below.

FORMULAS FOR POWER SPECTRAL DENSITY

General Relations
The formulas that follow are based on the Green's function for a stationary, oscillatory
point source. The approach parallels that of Balsal3 based on a moving, oscillatory point
source, with missing steps being inferred. We seek the power spectral density ®(xlw) of
the radiated sound pressure dictated by equations (1) or (13); they may be written
symbolically as

L{9/dt, 9/ox; a(x)] p(x,t) = Q(x,t) (14)

where L may be either the unconvected wave operator of Eq (1) or the convected wave
operator of Eq (13). The a(x) are the coefficients; for the convected wave operator they
allow for the local mean flow, taken as U(x3), and a space-variable sound speed. (In a

generalized version of Eq. (13) in Appendix A, U(x2) goes over to U(x),and pg to p(x),

where p is a local time average. Equation (14) applies to this version as well.)

Correspondingly,
Li-iw, d/9x; a] p(xlw) = Q(xlw) (15)

where p and Q are defined in Fourier transform pairs:



o0 oo

pixlo) = 511; jp(x,t) eiotdt;  p(xt) = jp(xnm) e 1ot d (16)

Q) = 5= [Qune@di; Qo = o eiota  (7)
Equation (15) has a solution
pxlo) = IG(x,ylm) O(ylw) d3y (18)

in terms of a Green's function G(x,ylw) that is the solution of
L[-iw, 9/0x; a] G(x,yl®) = &(x - y) (19)
The (two-sided) power spectral density of the sound pressure is evaluated as
Oxlw) = Ppxlw) p*(xln)) (20)

where ( ) signifies an ensemble average. Inserting (18), with y replaced by y' and y",

Siw) = | [GoyI)GHxyIOXOYI®) 0¥yl ' dly’ @b
= | JGxy+ 820G xy-E20(Qu+E20)0* (- 20)dkdy  (22)

where & = y' -y" and y = (y' + y")/2.

Reduction for Far Field
The Green's function of Eq. (22) may be written in the form

G(x,y o) = |G(x,y l0)] ey lw) (23)

We now restrict x to the far field defined by Ix| being very much greater than both lyl and
the largest wavelengths of concern; y is limited to the region of nonzero source strength
Q. A sufficient approximation for the phase, which seems to be implied in Balsa's
Appendix!3, is then



Yx,y'lo) = yxy"lw) - xe(y'-y") (24)
where the wave vector
K == (Vy War ficld (25)
is proportional to . There seems to be the further reasonable assumption, which we

make also, that the variation in amplitude of G is negligible compared with that of the
phase as € of eq. (22) ranges within the source region Q. Then & may be dropped in

comparison with y in the amplitude so that
G(x,y+§2|0) G*(x,y-£/2lw) = |G(x,ylw)|%e-ixe (26)

The other factor in (22) is the frequency-domain correlation

R(y, flw) = (Q(y+&/2|w) Q*(y-&/2|w)) 27)
This is the Fourier transform of the time-domain correlation
R(y, §,1) = (Q(y+&/2, t+1) Q(y£/2, 1)) (28)

(which is independent of t); specifically,

o0

R(y, Eo) = 5= [ doR(y, £t (29)

Insertion of equations (26) and (29) into (22) yields

o0 oo

B(xw) = 5= [IGEyIR By | [R(yEm) eivsbrion g3ede (30)

Equation (30) is the desired general result for the power spectral density P(xlw) (cf.
Eq.(3) of the Overview). The inner integral can be recognized as a four-dimensional
Fourier transform of the two-point space-time correlation R(y, £,7). Alternatively, itis a
three-dimensional transform of the cross-spectral density R(y, &|w). This transform
multiplied by the square of the amplitude of the Green's function (frequency domain) has
a simple interpretation: it is the contribution of unit volume of the sources Q to the power
spectral density of the sound pressure radiated to the field point x.

11
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Moving Reference Frame

Experimentally the correlation R(y,E.1) in a jet flow has a form describing a moving,
fluctuating pattern. This is dealt with most neatly by transforming to a reference frame
moving with the pattern convection velocity, taken as U¢,  (But the Green's function,
unlike that in Balsa's relation!3, still refers to a point source at rest.) Following Chu3!.

we take
‘im = E'a' Uet; Ue = (Ug,0,0) (31)

so that KeEm = kof - kelU.1 (32)
and reexpress R in terms of &, using (31), as

Rm(y,&m.T) = R(¥,&,1) (33)
Then in Eq. (30)

o0 00 QO o

J J'R(y,i,f) erikeGHOTE3EdT = I J-Rm(.VaémaT) f3'iK"r;m+i(m_K.Uc)":d3E_,md"t (34)

-00 ~00 ~00 =00

since the Jacobian of the transformation £—5&y, is unity. We may further define
O = w-xel, (35)

as the effective source frequency in the moving frame to yield an observer frequency
at x in the stationary frame (far field). Inserting these last two equations converts Eq.
(30) into

e o]

O(Xw) = 5 [IGENMDP By [ [ Rin(yEme1) #1073 at (36)

-00 ~00

This is an alternative form for the power spectral density; it is more useful in that the
effects of source convection are more easily brought out. In Eq. (30) the space-time
source field correlation is referred to a stationary coordinate frame and is designated R.
In Eq. (36 ) this same correlation is referred by transformation to a coordinate frame
moving with velocity Uc_and is designated Ryy. In both cases the two points being
correlated are stationary.



Source Term of Form a(y)dZb;j/dy;dy;
Suppose the (monopole) source strength distribution has the form of the right hand side
of Eq. (13), slightly generalized:

Qiy, )= a(y)82bij(y,t)/8yi8yj (summed overi, j=1to 3) (€Y))
It can be shown that the Fourier transform of this is
Q(ylw) = a(y)b;j(ylw)/dyidy; The

The cross spectral density of the source field between points y' and y" is then

92b;(y'lw) 92b* ki(y"
QIO = (a(ya(y") ol D wYI0)
dy'idy'j  dy"kdy"|

which is equivalent to

% bii(y' 1 w)b " u(y"lw))

(QG'Q*(y o)) = a(y) —
dE;08j0EkdE)

where E=£1, 8,3 =y' - y", if a(y')a(y") is approximated a2((y'+y")/2) = a%(y).

Insertion of equations (26) and (38) into (22) yields the power spectral density of the

(38)

radiated sound pressure as

I bjj(y"lwb* iy )y .
d(xlw) = | 1G(x,y|w)2 a2(y) L e-ike§ 43843 (39)
J | 969 PEiE, Sy

which is replaceable by

o0

D(xlw) = [1G(x,y|w)12 a2(y) Kikjreki(hi(y 'l u(y o)) k6 d3Eddy  (40)

But the source cross-spectral density designated by { ) is the Fourier transform of a two-

point correlation:
©Q

by "ty @) = [(biy', by’ v) eior de

so that the power spectral density of the sound generated by sources of type (37) may be

written
O(xlo) = [IGOxylw)2a2(y) kixjrxi(bij(y', HDbK(y", 1) kG +iotdtd3Eddy  (41)

Suppose we identify a(y)bij(y,t) with the Lighthill source term p(y)v;v; (wherein the

uniform p, is generalized to p(y) to allow for a space-variable time average density: cf.
Appendix A). Then, on taking KiKjkkX] inside the { ) of Eq.(41), we have terms like
KiKjbij = KiKjvjvj . But the summation xjv; is K times the component of v along x,
which we designate v. Writing x as the magnitude of «, this is summarized as

13
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KiKjbij = KiKjvivj = K2 v,2 (42)
It follows that, in Eq.(41) the summation
KiKjKkKI(bij(¥', t+Dbk(y", 0) = 4 vi(y', +Tvi2(y", ) = K Rey,6,1)  (43)
where Ry is a two-point correlation of vi2. With this replacement Eq.(41) simplifies to

d(xlw) = flﬁ JK“ﬁ?(y)IG(x,ylm)l?- d3y | JRK(y,E,,T) eixeS +iwt d3kdr  (44)

-0 .c0

where, it is noted, the two points being correlated in Ry are referred to a stationary
reference frame. Correspondingly, Eq. (36) becomes

oo

xia) = 2 [KFNCEID2 By [ [ Rn(rfim O by #0503 e (45)

~00_00
where the correlation Ry, designates the same correlation with respect to the moving
frame (velocity Ug); it is obtained from Ry via the transformation (31). Eq.(45) is a key
result stated in words as Eq.(3b) of the Overview (but generalized with p(y) replacing
Po).

These latest results for the power spectral density ®(xlw) may be put in perspective: they
are all expressed in terms of the Green's function for a stationary, oscillatory point source
in an arbitrary flow Uc(x). Equations (30) and (36) refer to a general source strength
function Q; Eqs.(43) and (45), on the other hand, refer to a source strength of the
generalized Lighthill form Q = p(y)d2vivj/dyidy; (summed), to which p(y)x2vi2is

equivalent.

It is noteworthy, as he pointed out, that this double divergence form of Q implies that the
sources are of quadrupole nature. In the time domain this was associated with an
operator d2/0t2 in the far field format; in the present wave-number domain the factor k2

plays an equivalent role.



Virtual Medium at Rest
This is Lighthill's scenario!:2: the fluid flow is incorporated into the source term. The
original region of flow is now treated as a 'virtual medium at rest'. For this case the

oscillatory Green's function is simply

G(xylw) = ek-yl. k= w/co (46)

4mix-yl
When the observer point x is in the far field (cf. after Eq. (23)), a sufficient
approximation is, with x = IxI,

G(x,ylw) = 471t—x elkx-ikxoy/x . |G(x,ylw)| = %{; (47)
Thus, in this case, the vector K = —(Vy Witar ficld of Eq. (25) may be identified with the

wave vector k given by
K = k = kx/x = 0x/cox ; k =1K| (48)
Also, with the sources convected parallel to the xj-axis, Ug = (U¢,0,0), Eq. (35) yields
® = o[ 1-(Uc/co)(x/x)] = w(1-M¢ cos8) = wO (49)

This is just the Doppler shifted source frequency that will yield an observed frequency ®

at x.

Reduction to Chu's Equation

Equation (45)--correlation referred to moving reference frame, Q of form
Pod2vivi/oxioxj--may be applied to Chu's scenario30:31 by specializing to a fluid at rest.
This implies invoking Eqgs. (47) to (49). His power spectral density ®1(x|w) is one-sided
(limited to positive values of w), so that it is twice our ®(xlw). He notes further that,
since Rxm(y,Em,T) is even in § and 1, the Fourier transforms may be replaced by cosine

transforms. Equation (45) then takes the form, after doubling,

2 (e o] o0
1 (xlw) = p°nk4 [16ex,yiw)2d3y [cos keEmd3m [Rim(¥sEm,ticos BT dT (50)

But we note that, from the equation for the time delay 1" above Eq. (8) of ref.31, we

have the equivalence
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w@tln* = k'&m (5])
employing our Eq. (49). Inserting this and the appropriate values of I1Gl, and @ from
Egs. (47) and (49)

2(1)4 (o] o ) [o o)
@ (xlo) = Té%?ﬁﬁ_id}y_im w01, d3§m_ika(y,§m,z)cos wOtdt  (52)

This recovers Chu's result for the one-sided power spectral density (Eq.(2.2.7) in ref.(30)
and Eq.(8) in ref. 31).

The simplifying assumption that the turbulent ‘eddies’ are ‘acoustically compact’ permits
a marked simplification: cos ®O1,,* in Eq. (52) (and similarly e-i%*¢ in Eq. (45)) can be
replaced by unity. The effect is to reduce four dimensional Fourier transforms to one
dimensional transforms: the space-wavenumber transform becomes merely a volume
integral. The replacement is explained along with other observations conceming Eq. (52)
in the following quotation from Chu30 (annotations shown in brackets; our notation and

reference numbering):

"Firstly, we can identify ® as the frequency in the turbulence; the corresponding radiated
frequency w is then the Doppler-shifted frequency (i.e., ® = © /0). This is a logical
result which one could have obtained on physical grounds.. Secondly, Lighthill's
criterion for neglecting retarded time shows up automatically in the cos wOt,,* term.
According to Lighthill, retarded time can be neglected if mL/c, is small so that the eddy
size L is small compared with the wave-length of the sound that it generates
[‘acoustically compact’]. If this condition is met...then for £, < L the term cos 0@t,*
can be approximated as unity. Thirdly, if retarded time [difference across an 'eddy'} is
neglected, Lighthill's convection factor (1-M¢ cos8)~-3, which accounts for the main
effect of convection at limited speeds is exhibited as a vertical shift (1-M cos0)~4 plus a
Doppler shift (1-M cos8)~! in the power spectrum..... This concept is a low-speed version
of a similar idea presented in ref. 4. Fourthly, although the Lighthill's convection factor
is not applicable for high-speed convection because of its singularity where 1-M¢ cos8 =
0, lan example given by Chu, discussed above Eq. (60)] will show that Eq. (52) is still
valid for high-speed convection if retarded time [difference] is not neglected. In fact, this
moving frame integral with proper account of retarded time posses a zereo that exactly
cancels the (1-M_ cos6)~3 singularity and replaces it by a nonsingular convection factor
(cf. also refs. 3 and 38)."



Actual Medium vs Virtual Medium

Here we compare the noise emission from the actual medium, allowing for the effect of
the fluid flow on propagation, to that predicted for the virtual medium at rest. We will
show how the former differs from the latter (the Lighthill scenario) in being an extension
to allow for flow-acoustic interaction effects: e.g., refraction that bends sound rays away
from the jet axis to create a ‘cone of silence' opening downstream. And we will show a
close to asymptotic approach to the Lighthill case outside the cone of silence.

It will be convenient to restrict attention to the power spectral density emitted from unit
volume at y. For the scenario of Eq. (45) (‘actual medium'), with the appropriate Green's
function and anticipating that x may be approximated as k at jet noise frequencies

(Appendix C),

3 o0
: de;(’;'m) po2k? |G(x,y|w)|12{— | [ Rum(yEm ekt #i@d3Endt  (53)
y T[-Oo-oo

The corresponding result, using the respective Green's function and wave vector x = k for
a virtual medium at rest (Lighthill format), is

3D(x! 1y i i
[POU],, - s Rt | [ Rimstm et et (59

The ratio of these two can be put in the form
d3d(xlw)
dy3

It will simplify discussion if we refer to the factor in brackets as a 'normalized Green's

a?cb(xlm)]
VM

- (@) Gyl | (55)

function’

IGn(X/x,yY ) = (4rx)IG(x,y|w)l (56)
so that (54) may be written
3 3
w Grixixylon 2[ 22X (D(xlo))] - 57
y-

with IGy | dependent solely on the direction of x by virtue of the 4ntx normalization and
the 1/x decay of IG | in the far field.
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Normalized Green's Function, |Gy|: Single Choice for Entire Jet
The 'normalized Green's function' designated in Eq. (56) is nominally a function of source
location. In this section we develop evidence that the value for a single choice of source

position y on the axis, designated y, may serve as an effective average.

This was concluded in the context of a series of experiments32.33 on the far-field
directivity pattern of a 'point source’ of sound immersed in a subsonic jet. Except for
some uncertainty as to the accuracy of simulation of a point source, the measurements
effectively yielded values of /G/2 normalized by the value at 90°. This result was deemed
equivalent to IGnI2, on the ground that the effect of wave convection was expected to be
nil at 90°; that is, IG!  should reduce to (1/4nx) there. It was found that the geometric
average of the 9—dependence for symmetric off-axis positions +9 or -0 differed little
from that of the on-axis source position for a given yy. Further, the variation with yq was
small. This justifies referring IGap2 to a single location, which will greatly simplify both

utility and interpretation.

Noting that the direction x/x may be designated 3,9 in polar coordinates for a general,
non-round, jet, the effective average of the squared 'normalized Green's function' may be
defined as IGnI2; thus

IGy (9,9, Yre@)1? = ((ATx2IG(X,¥|0)12v¢ (58)
where yof is a representative value of y; along the jet axis. (The dependence on @, of
course, disappears for a round jet.) According to the arguments above, this refers to an
average over y. In practice, however, it would be used as a surrogate for a weighted
average; that is, equivalent to a single average value of IG(x,y|®)!2 taken outside the
integral of Eq. (45) to replace the value inside that varies with y. The use of a surrogate
single Green's function has also been the practice in solutions of the Lilley equation12-15;
Mani!3 referred to the same experiments cited above as justification. Replacement of
the y-dependent Green's function of Eq. (57) by the single y-independent Green's function

of Eq. (58) allows immediate integration of (56) into
D(XIw) = IGy @,9, Yolw)I? [B(xlw)]yy (59

This states that the same frequency-dependent [Gnf? that applies to unit volume is, to a

sufficient approximation, applicable to the jet as a whole.

DIRECTIVITY OF JET NOISE



|GnyP Defines Flow-Acoustic Interaction.

The form of Eq. (59) tells us that the flow-acoustic interaction effects, refraction and
shielding, are embodied in the normalized Green's function /Gy/?. This factor modifies
the smooth directional pattern of intensity otherwise predicted (IGyl2taken as unity).
Both experimental (injected 'point' source)32:33 and numerical (computational
aeroacoustics)89-34 attempts to evaluatelGpl2 display this. The most striking effect is a
progressive reduction of intensity within a 'cone of silence’ or 'refraction valley' opening
downstream along the jet axis: this is owing to the sound having been refracted outward
by the jet velocity gradients. For filtered jet noise there is a similar ‘cone of silence’ that
is matched by the experimental |Gy/? impressively well 28.29.at each frequency (Fig. 2).

~ For the computed IGyI2 there is a qualitative match8.9, with fairly good agreement at low
frequencies and Mach numbers. However, the computed depth in decibels of the
'refraction valley' is much exaggerated at high frequencies and high subsonic Mach
numbers. We would attribute this overprediction to the use of the mean flow only in the
convective terms of the wave operator (the turbulence being averaged out): the neglected
large scale, low frequency, velocity field distortions would spoil the assumed
axisymmetry during the transit time of a wave. It is intuitively evident that perfect
axisymmetry is required to yield a very high refractive attenuation along the axis (e.g.,
54 decibels in Schubert's8:9 most extreme case.)

The frequencies for which geometric acoustics is applicable are many-fold higher8.9 than
those of jet noise. It was found®.34 that ar these high frequencies the computed valley
depth is grossly exaggerated (e.g., 90 dB prediction at M=0.3). Despite this, many
studies (e.g., references’> 17) attempt to quantify the ‘cone of silence' via geometric

acoustics.

For heated or cooled jets, or jets of foreign gases, sound-speed gradients come into
play89:32-34 Heating enhances the outward refraction, hence increases the depth of the
refraction valley. Cooling has an opposite effect. If cold enough, the temperature
gradients could dictate inward refraction strong enough to overpower the outward
refraction imposed by the velocity gradients. This would give rise to some 'focusing’
enhancement of noise intensity along the jet axis: /Gn/? should exhibit an axial lobe in
place of a ‘cone of silence’. This expectation was dramatically confirmed in the
experiments of Grande29-33: the enhancement lobe was 9 dB at 3000 Hz for an M=.112

jet of nitrogen at -180 C. An almost identical lobe was found in his measurements of the
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Jet noise in a narrow filter band at the same frequency (Fig.2). Schubert's approximate

numerical calculations of IGy2 showed a similar, albeit exaggerated, lobe®.9 .

This similarity of behavior between jet noise and experimental and computational
approximations to IGa12, for both ambient and cold jets, shows that IGyI2 dominates the
intensity pattern in a conical downstream zone about the jet axis; elsewhere it is near
unity. These facts, together with Egs. (57) and (59), permit the following interpretation:
|G, the normalized Green's function, serves to extend the Lighthill-based calculations
into the refractive zone near the jet axis: the 'cone of silence’, or focused lobe, as the
case may be. Approximation of IGxIZ by unity outside this zone yields the Lighthill-
based pattern: this seems an adequate approximation except when there are shrouding

jets.

The calculations need not be formulated in terms of the four-dimensional Fourier
transform of Eq. (54), despite its figuring in the derivation: other formulations deemed
to be equivalent may be used. In practice, relatively crude approximations--implicitly
for the correlation R ¢y--have been used. Some approximate developments of this kind,
normally resulting from an analysis in the space-time domain, are discussed in a later

section and in Appendix D.

Convective Amplification and Basic Directivity
Lighthill.2 showed that convection of the sources (but not the sound waves) gives rise to
amplification of the noise in the downstream direction. To quantify this, Chu39 modeled
Rkm as a Gaussian function in the convected frame and carried out the four dimensional
Fourier transform to evaluate Eq. (52) or the equivalent Eq. (54). The resulting power
spectral density per unit volume was then integrated over frequency to yield the broad
band radiated intensity per unit volume. This displayed the M¢.— 0 intensity as
multiplied by a convective amplification factor, C3, given by

C-5 = [(1- Mecos 1)2 + 02M,.2)-3/2 (60)
in terms of the source pattern convection Mach number M¢. This factor was originally
obtained by Ffowcs Williams3® and by Ribner? via different formalisms; it is a
refinement of the Lighthill-based relation3? (1- Mccos 9)5 that is nonsingular when
Mccos O = 1. (The basis for this was elaborated under Eq. (52).) The directional pattern
of intensity radiated by the sources (the Basic Directivity), before multiplication by this

factor, was tacitly taken to be spherical.



Ribner23 made allowance for the two source terms of Eq.(11), leading to a nonspherical
basic directional pattern; he chose a more defensible (but still somewhat unrealistic) form
for Rxm: it was modelled as compatible with isotropic turbulence superposed on a
transversely sheared mean flow. This could be expressed as a 'narrow band' directional
spectrum

C-5 *{ C[a(Cw)+ b(Cw)(cos?® + cos20)/2] ¢

= C-5 * Basic Directivity (quasi-elliptic) 61)

emitted from unit volume; the two terms a(Cw) and b(Cw) correspond respectively to the
two source terms (‘self noise’ and ‘shear noise’) on the right hand side of Eq.(11). Cw is
an 'effective’ Doppler shifted source frequency3+4, and the outer factor C disappears in the
integral over w (cf. also remarks under Eq. (52)).

The format of Eq.(61) was effectively confirmed in the work of Pao and Lowson?4.
Their approach was, in fact, superior to Ribner's in that it yielded the convective
amplification factor C-J in an internally consistent fashion. Ribner, on the other hand,
used the 'compact eddy' assumption in a compatible M—0 approximation to derive the
Basic Directivity. Then he generalized this to finite M by assuming that the broadband
factor C-J applied as a multiplier, to yield Eq.(61).

The shear noise, given here by the b(Cw) term, has a dipole-like directivity. Thus it has
been argued that the convective amplifier should be the C-3 of a dipole, rather than the
C-5 of a quadrupole. Pao and Lowson24 obtain a C-3 multiplier, but they attribute the
change from -3 to -5 to the choice of turbulence model. "The spectrum in the low wave
number region follows a k2 law, which artificially raises the power dependence from [-3
to -5]. In actual measurements of jet turbulence, the spectrum in this region is usually
flat." We observe, however, that the k2 law refers to a 3D spectrum, whereas the hot
wire measures only a 1D spectrum, and the flat 1D spectrum at small k is fully
compatible with a k2 3D spectrum. Thus there is no artificiality here, and the convective
amplifier C-3 would appear to be applicable to the shear noise as well as to the self noise.

Comparisons with experiment on this basis seem to support that conclusion.

To our approximation, the magnitudes of C-5 and IGyI2 apply equally to unit volume and
to the jet as a whole. This is not true for the a(Cw) and b(Cw) of Eq. (61): the magnitudes
differ for the two applications, but the ratio b/a is unaltered. An important prediction of

the theory#:23 that connects these two spectra is
b(Cw) =P a(2Cw) (62)
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where [ is a constant of order 2. The implications of this are elaborated below.

The 'basic directivity' of Eq.(61) is compounded of b(Cw) and a(Cw) in different
proportions, depending on direction; credibility is afforded by comparisons with
experiment. First, the predicted overall directional pattern over a range M=().37 to M=0.9
(outside the 'cone of silence') is about right28-29: this is a minor point, since the
contribution of the basic directivity is weak compared with that of the convective
amplification. Second, and much more significant, the prediction in Eq.(62) of separate
spectra of "shear noise’ b(Cw) and ‘self noise’ a(2Cw) of almost identical shape, but with
one octave relative shift, was strikingly confirmed?940(Fig. 1). These are extracted from
measurements at angles of 45 and 90 degrees from the jet axis, without adjustable
constants. When normalized to unity peak, curves of shear noise b(Cw) and self noise
a(2Cw) virtually collapse on one another.

The third point has to do with correlations of two microphones located on a large sphere
centered on the jet nozzle: with one microphone fixed, the other was displaced either
along a meridian or a circle of latitude. It was with a series of such measurements carried
out by Maestrello#! that the theory was compared. In particular, correlations of two
microphones are sensitive to details of the source instantaneous directivity, whereas the
single microphone mean square response is not. The Lighthill-Ribner theory?23 leading to
Eq.(61) was extended to deal with this case32.43. It was found that prediction of two-
microphone cross-correlations along circles of latitude showed good qualitative
agreement over a range of angular separations, and for different latitudes. This was true
both in broadband42 and the more demanding narrow band43; see also references 51 and
52. (Microphones located along a meridian exhibit a cusp-like correlation in broadband,
decaying sharply with separation4!. The agreement of the theory here was particularly
striking#2; although only weakly relevant to Eq. (61), it makes a strong case for the
credibility of key aspects of the basic theory23.)

Basic Directivity x Convective Amplification x IGyi2

The product of the weak basic directivity and the strong convective amplification, C-3,
Eq.(61), yields the directivity of the jet noise of frequency w on the Lighthill-Ribner
model. Multiplication by the normalized Green's function, IGy12, modifies this to allow
for the flow-acoustic interaction (refraction3-3 and shielding7.11,12.44)  |GA12 dominates
in a cusp-like fashion near the axis to produce the refractive downstream 'cone of

silence’. The broad fan-shaped amplification, C-3, with its maximum downstream as



well, amplifies not far from uniformly across the 'valley', scarcely modifying its shape.
This accounts for the relatively close match between the measured IGpnI2 and the jet noise
pattern near the axis (Fig.1). The resultant of the three factors is the well known heart-
shaped directional pattern of jet noise. The opposing effects of C-3 and IGp12, in their
relative strengths, determine the location and magnitude of the maxima. The progression
of patterns from Basic Directivity to Basic x C-5 to Basic x C-5 x |Gx[? is schematically
shown in Figure 3; (the factors are additive on the decibel scale of the figure).

Directivity vs Spectrum

We have been discussing the directivity of jet noise in frequency bands; that is, the
variation of ®(xlw) with 9, the angle of the observer vector x with the jet axis. The
directivity of the mean square sound pressure pz_(x), being an integral over w, is a
weighted average of these. The spectra at fixed angles 9 are, of course, cross-plots.

The directivity of the emission from a typical unit volume (33®(xlw)/dy3 and its integral
over o, 93p2/dy3) and the directivity of the entire jet, discussed above, are much the same
(normalized to values at 9 = 90 degrees). But the spectral shape emitted from unit
volume differs greatly from that of the entire jet. The formeris estimated as less than 2
octaves wide, the latter is measured as some 5 octaves, taken between the 6 dB down
points. Thus calculations for a single unit volume may serve for the directivity of the
entire jet, but an integration over the jet is required for estimating the spectrum. The
directivity is only slightly sensitive to the asumed turbulence model (it affects the basic
directivity); the spectrum requires a detailed estimate of turbulence properties throughout
the jet. These refer to shapes : prediction of absolute levels requires a higher level of
accuracy in the turbulence data and its modelling, and in any simplifying assumptions.

APPROXIMATE QUANTITATIVE PREDICTION
We turn now to the approximate quantitative prediction of jet noise properties. The
central element is the four dimensional Fourier transform (4DFT) of the source term
correlation function Ry, (e.g., Eqs. (3) and (53)). For illustration we limit attention to the
self noise term, the shear term involving rather more complication. Neither theory nor
measurements (so far) adequately describe the correlation function over space and time.
If it is dealt with at all (in place of scaling arguments), a simplistic form (e.g., a
Gaussian) is often assumed to ease the mathematics. It follows that the space transform
(3DFT: £—k) is of dubious accuracy, and the mathematical difficulty it entails seems
thereby unwarranted. Thus the 3DFT is normally bypassed (an exception is ref. 24) by
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means of the 'compact eddy' assumption: this reduces the transform to just a volume
integral (over ), as noted earlier.

The 4DFT is then a volume integral times a 1DFT (t—®). Moreover, the 1DFT defines a
spectrum between one and two octaves wide. For simplicity this is commonly
approximated as a single line: a 3-function of local frequency wse and amplitude A.
Combining these yields the rather drastic approximation

4DFT (correlation function) = A((ux?)2L1L;L38(0-wge)) (62)
where the volume integral (of the normalized correlation function) is by definition the
product L1L2L3 of the three orthogonal scales of turbulence; normalization is by the peak
correlation (ukf)z), and uy refers to the component of turbulence in the k-direction
(aligned with the x-direction). All these parameters are functions of y. Insertion in
Eq.(54) yields the power spectral density emitted from unit volume at y as

[83<D(x|co) ~——2°5 “’:((:" ))2L1L2L35(m-00se) (63)
as applied to the self noise. This refers to a virtual medium at rest. The format of Eq.(53)
generalizes this to a jet flow, encompassing refractive and shielding effects, via the factor
IGNI2 (using Eq.(56)):

[a3¢("m’ Jse- m%;"’j—&"% 1LoL3¥0-050) (64)
Mathematically, the approprlate choices for the amplitude A and local frequency wge are
these: (i) A should be the integral of the 1DFT spectrum (cf. above Eq.(62)) over ®, and
(ii) wse should be the centroid or first moment of that spectrum. Then the &-function
approximation will yield minimum error in computing the overall power spectral density
d(xlw) by integrating Eqgs. (63) or (64) over y. In practice, heuristic scaling laws are
often used for evaluating both A and wg.. These and the other parameters must be
estimated as y ranges throughout the jet. A representative example2? of such an
estimation, leading to rather good spectral prediction, is given in Appendix D.

CONCLUDING REMARKS
Central Result
The central result of the paper may be restated in simplified terms. Lighthill posed his
aerodynamic sound sources as radiating into a ‘virtual medium at rest.” Refraction of
sound (creating the axial ‘cone of silence’) was suppressed by approximating the density
in the dominant source term as constant (p = po). But by deferring the step p = po, we



can pose the radiation as being emitted into the actual jet flow. This brings the refractive
effect of the flow into play. Moreover, the residual sound source term is the same.

Mathematically, the only change is replacement of the solution for a pure tone point
source in a medium at rest by the solution for the source in a jet flow. The former can be
written down by inspection as elkf/47r; the latter is a complicated solution, G(x,y|w), of a
convected wave equation. But, at frequencies characteristic of jet noise, we find from
both experiment32.33 and calculation8.9 that G reduces in the far field to eikf/4nr (with a
phase shift) times a directional factor. That directional factor, for a single round jet, is
near unity for angle 0 greater than some value ¥p. For smaller angles it decreases
sharply to a minum on the jet axis, ¥ = 0. This describes the 'cone of silence' (Figs. 2,3).
In summary, in the far field the new G differs in amplitude from the Lighthill eikt/4nr
significantly only within the ‘cone of silence’. Use of G thus serves to extend the
Lighthill-based solutions into this refractive zone. But outside it may be dispensed with,
with little error.

Relationship to Other Approaches

A variety of Lighthill-based solutions — formalisms for jet noise prediction — have
been used, e.g., Refs. 23-27. They were all approximations. As discussed, they usually
involved simplistic replacements for the four dimensional Fourier transform formalism.
The turbulence correlation function, if it was modeled at all (rather than bypassed by
heuristic assumptions), was normally taken as separable in space and time (implicit in
Eqs.(62)-(64)). Chu3¥ improved the model, removing the spurious separability: he used
data from his own comprehensive program of very careful measurements by hot wire. He
did, however, avoid the 4DFT by invoking the 'small eddy' assumption. Neverthless,
despite these deemed improvements, his predictive accuracy fell far short of the best of
refs. 23-27. Hindsight suggests the capabilities of his data may not have been optimally
exploited. A revisit in the light of the present formalism could be profitable.

The predictive problem is compounded by the difficulty of a four-dimensional Fourier
transform. As noted, the 'compact eddy' approximation reduces this to a simple volume
integral. But that step compromises the accuracy of the prediction of convective
amplification. The approach has, indeed, led to fairly accurate predictions, both for round
and more complex jet configuration. However, even with this approximation, they could
be improved as indicated under Eq.(64). The further inclusion of the factor IGyI2 will
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extend the solution into the 'cone of silence’ (small 8 region), and even improve the

accuracy outside this region (by the amount IGy /2 differs from unity).

Lilley’s wave equation, in the hands of Balsa,!5 leads to a similar formula IGg|2 x four-
dimensional Fourier transform of source correlation function. Here again, in practice the
Fourier transform is bypassed by an approximation. There are other important
differences . A major component, the shear term included in Eq.(11), is missing from the
source term: the consequences are discussed in the text. And the squared normalized
Green’s function, IG g|2, refers to a moving point source. The effects of source convection
and wave convection — respectively governing amplification and refraction (via velocity
gradients) — are thereby combined. In contradistinction, these effects are decoupled
herein by the use of the value of IGp2 for a stationary source That is, |Gg|2 plays
essentially the same role as C-SIGy12: they should be largely equivalent.

It is this decoupling that allows the simplicity of the Lighthill-based formalisms to be
applied outside the ‘cone of silence’, since IGM? is near unity there. Another advantage is
that this refractive IGM2 is determined for a realistic spreading jet — either by
calculation or experimentally — whereas IGg|2 has been evaluated only for idealized,

infinite, nonspreading jets.

Issue of Shielding

Manill.12 and Balsal3 have pointed to a 'shielding' role of the mean flow in reducing the
convective amplification (a function of direction) at high frequencies. But
comparisons28.29 with the directivity measured by several investigators do not bear this
out. The simple theoretical convective factor C-5 adequately predicts the curves up to
M=0.9, source Strouhal no. 1.0 (observed Strouhal no. 1.33). This is a reduction in
convective amplification compared with the classical factor (1- Mccos0)-3, but it is not an
effect of flow shielding. Instead, it results from retarded time variation across an 'eddy’,

not allowed for in the classical factor.

It would seem that the frequencies of jet noise are simply too low: for significant
shielding the flow dimensions must be much larger than a typical wave length of the
sound35:56, This is a requirement for geometric acoustics (ray acoustics) to apply.

Schubert's calculations8.9 show that jet noise is very far from that regime.



These remarks refer to a single round jet. The case of multitube jets (or equivalent
corrugated nozzle jets) is another matter. Substantial shielding of the high frequency
noise of the inner jets by a ring of the outermost jets is a demonstrated fact. Balsa%4, via
a moving source Green's function, shows apparent agreement with measurements that he
cites. No stationary source Green's function, as proposed herein, has as yet been

evaluated for this scenario.

Range of Applicability

The results herein are for the far field only. Moreover, they are presumed to beapplicable
primarily for subsonic jets. For supersonic jets additional noise sources come into play.
Tam®9, in his review article, develops the case for instability waves, identified as 'large
scale coherent structures', being a major source of noise. He evaluates the noise directly
via a 'stochastic wave model' with very impressive agreement with experiment. But we
note that these instability waves, to the extent that they coexist with the random
turbulence, will contribute to the correlation function Rg used herein. But evaluation is
another matter: the similarity laws for jet turbulence, which have been used with success

for subsonic jets, would have to be reevaluated for the supersonic regime.

Perhaps more importantly, there will be a pattern of shock waves if the jet does not issue
at the design speed from a properly contoured convergent-divergent nozzle. It was shown
many years ago that shock-turbulence interaction would generate intense noise37-59. In
recent years Tam (summarized in ref. 60) has attempted quantitative prediction of this
shock-associated noise; he analyzed the interaction between instability waves and a 'wave
guide' model for the shock structure. His near field patterns show a close match to

measurements.

The results are further restricted to jets issuing into ambient fluid at rest: that is, static test
conditions. The effects of forward flight on the jet noise are not considered. Michalke
and Michel29:49.50 have extended the Lighthill theory to provide a successful prediction
of these effects. This takes the form of a scaling law that maps the intensity of a static jet
at certain jet Mach number and direction into that for a moving jet at an altered Mach
number, direction, and distance. (See also an approach via CFD methods61.) Refraction,
governing extension into the 'cone of silence’, is not allowed for: this would involve a
further development of the present stationary-source Green's function approach.
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APPENDIX A: GENERALIZED CONVECTIVE WAVE MODIFICATIONS OF
LIGHTHILL EQUATION

EXACT WAVE EQUATION
Expansion of Lighthill Source Term, QL
The restriction to a transversely sheared mean flow of uniform density, Eq. (8), is relaxed
here: Lighthill's source term expression, which we shall call Q, (the right-hand side of

Eq. (8)), is expanded under the specifications
vi=Ui+ui  Ui=sUix);  (vidav =1 (A1)

p=pxi)+p';  (Plav=p(xi (A2)
By Csanady's” Eq. (3), QL expands as follows:

pvivi 1 d2p 82p vidvi dv
Q= OX;0X; +@ o o2 (D_Ja;‘;l 3—1&1) co? at2
d%p 9%p 9%
o2 2vi 5 ot~ Vivi IxjoXj (A3)

With this expansion it is easily shown that Eq. (5) of the main text is equivalent to

Schubert's3.9 exact wave equation for an inviscid nonheatconducting fluid. Inserting
Egs. (A1) into (A3) yields’

dU;aU; . aU;j aU;y\ 9% 9%p L)
(XIK; E(—IIH_J) at2 -2Ui 5|a -Uiv Jaxxa

2
1 a_E d%pujy; +2aU dpuj . 9 ( au) (Ad)

t 002 8[2 axlaXJ aXJ ax, +2 aXJ puj ax,
When Uj = (U(x2), 0, 0) this reduces to the right-hand side of Eq. (8) of the main text.
With the further expansion

92pujy; oUiopy; Fuju; oU; dyj oU;dp _ , dujujdp L
axiax, ax_, oxi Pax,a'x; +2p axJ ax, + 2u; -X;R+ 2 ox; ox; + uiyj ax.é
(AS5)
and the definition ’tz
02 02 92
e = ﬁ ﬁ + UjU;j m (A6)

and some rearrangement, Q. becomes



., Udu 1 9% Bp  uw o dUdp | 5 Ui ,ap
Qu=2p 5-’Ej|la_’(':-*-c2at2 th P axlax]+2 a_xj!a a

o 82p 8 dU; dU;dU; , dU;dy;
+ Uil 5xox; axiax ax (‘“’JT) (ax, T_l oxi 5—‘ ) (A7)

This expansion of the acoustic source terms, the right-hand side of the wave equation (5),
is exact.

APPROXIMATE WAVE EQUATIONS
Incompressible Turbulence
We now introduce approximations in two stages. First, in all but the first three terms of
QL, we neglect the compressibility of the turbulence in the application to subsonic flows.
We argue that density perturbations p' in the nonexcepted terms account for scattering of
sound by turbulence, and they may be neglected in dealing with generation of sound.
Thus, in these terms, p may be replaced by its local temporal mean p(x). Consistently, it
is implied that uj, in all but the excepted terms, contains no compressible component.
Despite this assumed incompressibility of the source terms, sound (pressure waves) will
indeed be generated as Lighthilll.2 showed. Thus compressibility has been retained
where acoustically necessary: in the final left-hand-side wave operator.

The first excepted term is 2p(dU;/0x;)(duj/dx;). By the argument in the main text above
Eq. (11), the very small compressible, or acoustic part of this term, being linear in u;,
participates to the first order in wave propagation; thus we move it to the left-hand-side
wave operator. The terms c;? 32p/3t2 and -D2p/Di2 have also to do with wave

propagation; we move them likewise to the left-hand side, approximating B2p/Di2 by
E'2b2p/Dt2 (Appendix B).

With these term shifts from the right-hand side (Qr) and approximation of p by p therein,

Eq. (5) may be rewritten. First we need an approximate equation for mean flow
continuity. Taking the correlation p'u; as negligible yields this as

dpUjoxj=0 (A8)
By virtue of Eq. (A8), two terms of the approximate Q. may be collapsed into one:
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d (= AU\, , 3U;p
25 (Pu 50 ) + 20 5 =-2U.3——(u,3%) (A9)

The modified Eq. (5) then reads

1 9% 0%p d2p —dU; du; —02uju; . -0U;du;j . ,dujujdp
(55 + 2Uig5; + Uil ox)  Pan e VP =Pt 3% ax * Lox; ax;

0% 0 . op
+lhujm -2U|a—x;(uj‘gi)+p( xl-a—x-;+a—x-l' X;

Transversely Sheared Flow
Let us specialize now to a transversely sheared flow (Eq. (7) of the main text), with
transverse density gradient as well:

Ui=(U(x2),0,0); p=p(x2) (A11)
The modification (A10) of Eq. (5) simplifies to
. 92p 78 —aU duee oo =0%ujyy  ,—0U dup
[3[2 + 2Lax18t +U 2] Pax, axl -Vép= FaxiSXj 2p8x2 ox1

auzu Qa£ +u29® ,9%p

ax (A12)
But it can be quickly verified by direct expansion that
~0%vjv; _ =d%ujuy; + 25 dU duy (A13
péxiaxj' - p5x35Xj p5x25x1 )

so that an alternative form is

_p_ - 92p ap —E)Ua U y2 —92v;v; au uj 9p_ da2p
e+ VgtV U a? Paxs aa VP Paxms 2o s * V502

(Al4)
where it is recalled that vj is the instantaneous resultant flow Uj + u;, as defined in Eq.

(A1). An equation of the form (A14) results also for a cylindrical jet U = (U(r), 0,0), p =
p (), if up, x2 are replaced by uy, r, respectively (see Eq.(A15). Equations (A12) and
(A14) are the key results of this Appendix; they generalize Eqs.(11) and (13) of the main

text, respectively, to the case of flows of nonuniform mean density. The applications and
implications are discussed below.

Jet Flow
Following Schubert8.9 we note that U; in a jet is essentially unidirectional:



Ui = [UEx1),0,0; r=vVxo2+x32 round jet (A15)
= X2 two dimensional jet
with a strong dependence on r, and a weak dependence on xj. Further,
p=p(rx1) (A16)
with a similar dependence. Thus, for both U and p, the gradients along x are very much
less than those along r. For the foregoing transversely sheared flow the x1-gradients are

identically zero; requiring this led to Egs. (A12) to (A14). It follows that Egs. (A12) to
(A14) may be applied to jet flow as a close approximation, with x2 replaced by r.

Density Scenarios: p = constant vs.p =P (r)
Let us specialize further to a uniform mean density,

p = po = constant (A17)
This, together with Eq. (A11), recovers the scenario of the main text. It is seen that the
density gradient terms drop out, and Eqs. (A12) and (A14) reduce to Egs. (11) and (13),
respectively: the modified Lighthill equation in the form of Eq.(13) is confirmed as a
special case of the more general form of this Appendix, Eq.(Al4).

From the foregoing, it is clear that density gradients, via the additional source terms,
cause more noise to be generated. This has been explored in the context of hot jets by
Morfey35, Manil3, and by Michalke and Michel49:50. The source terms in (A12) and

(A14) appear similar to those deduced by Mani. The term 2 83—2”‘ g£ is essentially of
Xj 0x2

dipole form, dQj/dx;, (treating dp/dx2 as a spatial constant): it would yield a factor Id2 in
place of Ixi4 in an equation like (4). As a consequence of this, or by arguments given in
the cited references, the corresponding radiated sound power would vary as US; they
showed it could exceed the ordinary quadrupole-source jet noise, with its U8 law, for
sufficiently hot jets. The term u2 92p/dx32 is of monopole form, leading to a U4 law
(Ix4 factor replaced by unity). This would radiate very weakly, the curvature 82p/ox32

being minimal in the zone of strongest turbulence, where the mean flow shear and dp/dx2

both maximize.

Over time "...dozens of equivalent (and nonequivalent) source term expansions have been
published by flow noise researchers. This multiplicity of competing source terms has
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been a major contributor to confusion..." (Reference 29). In this author's view, the
effective limit in the law of diminishing returns has been reached in the expansions of this
Appendix: of the Lighthill wave operator (left hand side of Eq.(A10)) and of the Lighthill
source term for an inviscid nonheatconducting fluid (exact, Eq.(A7); approximate,
Eq.(A14)).

APPENDIX B: APPROXIMATION OF D2p/Di2 as c-2 H2p/De2
The exact relation for a moving fluid element of constant entropy
D

implies

2 2

where D2/Dt2 is the convective second derivative
D2 92 92 o 09? Dv; 0
D2 = 22 T 2Vigxot T Vivigxdx; T Dr ox; (B3)
in which
vi=Uj+y; (B4)
is the mean velocity U; plus a perturbation uj. This may be compared with a mean flow

convective derivative

B2 52 92 92

It is argued, following Schubert8.9, that replacement of (B3) by (B5) (and c2 by c2)
merely supresses scattering of sound by the jet turbulence; (Dvi/Dt)d/dx; is neglected

also, as yielding second order terms.

We illustrate this in terms of a plane sound wave in a reference frame following the mean

flow:

p = p + Ip'l eilkx; - o), VK12 + ko2 +k32=k = fc (B6)

(Herein the contribution of turbulent perturbations to 7:-2, c2, and]/-c_'2 are considered
negligible, so the designated local time averages are taken to be equivalent. With this
assumption , the averages involving soundspeed ¢ in Eq.(B6) and later equations are
compatible.) Using the momentum equation,



1Dvidp 1

i 2
Dtk - ‘Bx. ) B
c pc?
And the amplitude is (with p = p)
Ile'apl LY S (B8)
Dt ox; __.'P P
pc P

For comparison we evaluate ¢-2 D2p/Dt2, which is ¢-2 92p/ot? in the moving frame, to a
close approximation. By (B6) the amplitude is

|1D%] @2 2 (BY)

The term (B8), arising from the operator (Dv;i/Dt)d/dxi, is seen to have an amplitude a

factor Ip'l/yp smaller than the term (B9). This justifies neglect of that operator.

By a similar example we can show that the last term of Eq. (B2) is of higher order and

may be dropped. Thus, on the basis of these order-of-magnitude estimates, we conclude

that
H2p _ Lﬁzp
D[z ) D[2
c

(B10)

is a sufficient approximation for the modified Lighthill wave equation.

APPENDIX C: APPROXIMATION OF k AS k

For frequencies characteristic of jet noise, we examine the change in phase W in the far
field when the source is displaced from y to y'. Equation (25) gives a linear
approximation as

(W' - w1 = [y(xy'lo) - y(x,ylm)] = -ke(y'-y) (C1)
where

=- (Vy Yx>>y (C2)

and wave convection by the jet flow is allowed for. In the absence of flow (or for a

virtual medium at rest) this reduces to

= [Vyknlx>>y =[kr/tlxssy = kx/x (C3)
with corresponding phase change
[y - Wlvm = -ke(y"-y) (CH
This is an approximation to the exact relation
[v' - wlvm = k(x-y'l - Ix-y1) (C5)
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The (negative) phase advance due to the flow is the left hand side of Eq. (C1) minus that
of Eq. (C4); designating this as S, it is obtained as

S=[y - vl- [V - ylvm= (k-K)e(y"-y) (Co)
Schubert8, in his numerical computations for a point source in a jet flow, has evaluated
this phase difference in a number of cases (he used the more precise relation (CS) in
defining the left hand side as

S={y - y] - k{x-y'l - Ix-yl) (C7hH

effectively: for the large x/y ratio of our examples the difference is negligible). In his
Figures 30 to 32 he plots S/r vs (y'1- y1)/D; this corresponds to y' and y both directed
along the jet axis; x is directed at angles 9= 0, 6.8, and 16.2 degrees.

We take the simplest case, 9=0. Now k is directed along x by Eq.(C3), and when x lies
along the axis, so does k. By virtue of the flow symmetry about 9=0, ¥ must also be
directed along the axis. For this scenario Eq.(C6) becomes
= (k-¥)(y'1-yD) (C8)
so that
k/k =1-S/k(y'1-y1) =1-¢€ (C9)

The ratio x/k is evaluated in several examples with data from Figs.30 and 32. The
specifications are: Mj = 0.3,, Ix-yl/D=100. The results are:
Wo=kD=1.055 and (y'1-y})/D = 1: k/k = 1- n(.005)/[1.055(1)] =1 -.015

¥'1-yp)/D=2:  x/k=1-n(.015)/[1.055(2)] =1 -.022
Wo=kD=246 and (y'1-y;)/D =0.5: x/k = 1- n(.032)/[2.46(0.5)] = 1 -.08

¥'1-y1D=1:  x/k=1-n(.101)/[2.46(1)] =1-.13
It is seen that k/k differs little from unity: the difference lg| increases with kD
(proportional to fréquency) and with (y'1-y1)/D. The values kD = 1.055 and 2.46
correspond to the upper part of the jet noise spectrum, which has a broad peak around
kD= 0.3. Therefore, for the bulk of the spectrum the difference le| will be less for a given
(y'1-y1)/D. Furthermore, an appropriate source displacement (y'1-y1) must be less than
the local macroscale L of the jet turbulence, a function of y;. Estimates are L/D = .35,
.15 for kD = 1.055, 2.46, respectively. Thus the values of (y'1-y1)/D in the examples are
unacceptably high, especially at the highest kD. It follows that appropriate values of Ig|
are substantially smaller than those of the examples: x/k differs from unity by not more
than several percent at jet noise frequencies for Mj = 0.3. The difference will, of course,
increase with jet Mach number.



On going to U > 0, the curves of S/r vs (y'1-y1)/D in Figs. 30 and 32 are not greatly
different: the phase difference S between the flow and no flow cases remains very small
as ¥ varies. This implies that the phase gradient (Vy y)x>>y for the flow and no flow
cases has nearly the same direction as well as magnitude. That is, the inference from the
¥ =0 examples above, with respect to magnitudes, that

K=k (C10)
may be generalized to the directions as well; that is,
K=k (C11)

to a close approximation for at least low speed jets at typical frequencies.

APPENDIX D: MOON-ZELAZNY MODEL OF THE TURBULENCE
PARAMETERS

Moon and Zelazny?27 derived an equation roughly equivalent to the approximate Eq.(63)
for the self noise. (They had another equation, more complex, for the shear noise.) These
were based on a space-time (rather than wave number-frequency) domain solution of the
Lighthill equation and involved various simplifying assumptions. In particular, the
operation d/dt was interpreted as effectively multiplying by a characteristic frequency (a
function of axial position yj in the jet): wge for the self noise and (1/2)wge for the shear
noise. There was also an implicit heuristic assumption for the constant A of Eqgs. (62)-
(64). For implementation for the scenario of a round jet, they developed a model for
determination of these and other needed turbulence parameters. A major feature (taken
from a Ph.D. dissertation underlying ref. 27) was an eddy viscosity formalism for
evaluation of the rms axial component of turbulence, u', as a function of r and y,
throughout the jet. This led to evaluation of (uid)? appearing in Eq.(63). Other heuristic

features of their model are:

Lg = shear layer half-width L1=0.358L¢ Lp=L3=0.179 Lg
wse = 0.3 U(y1)/L2 wsh = 0.3 U(y1)/Lq

The agreement with both turbulence and noise measurements was good. These were
absolute levels: in particular, for the noise there was no shifting of the decibel scale for
best match . This has to be impressive. On the other hand, the assumptions, e.g., of
scales and frequencies, involves empiricism.
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only the acoustic component of the shear term (the one with u,¢) on the left hand side.
That is to say, the far field Green's function will not compute the full shear term, and so
will not serve to correlate it with the self-noise term. The technique is, of course, an
artifice for predicting noise, the instantaneous turbulence being presumed known. (In
applications, it is only space-time correlations that are needed.)
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Fig.1. Shear term in source role. Match of experimentally derived shear noise and self
noise spectra, normalized to same amplitude. The self noise has been downshifted one
octave, in accordance with the theory. (After ref. 29, based on ref. 40.)
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Fig. 2. Match of noise intensity patterns to indicate refraction-dominated zone. Left-hand
side: room temperature jet (M=0.5) with reduced intensity 'cone of silence’ (rays turn
outward); right-hand side; very cold jet (-180°C) with enhanced intensity lobe (rays turn
inward to a quasi-focus). (After ref. 29, based on refs. 32 and 33).
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Fig.3. Convective amplification (C-5) and refraction (normalized Green's function |Gn|2)
modify the basic pattem of intensity vs direction (in decbels). (After ref. 29, based on
refs. 32 and 33).
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