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Development of a Linearized Unsteady Euler Analysis

for Turbomachinery Blade Rows

Summary

Progress toward the development of a linearized, unsteady, aerodynamic analysis for

axial-flow turbomachinery blading is outlined in this report. The linearization is based on

the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic

analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade

rows. The field equations and surface conditions required for nonlinear and linearized, invis-

cid, unsteady, aerodynamic analyses of three-dimensional flows through single, stationary or

rotating, blade rows operating within cylindrical ducts are derived. Also, a description of the

approximate far-field conditions that are currently available for completing these unsteady

aerodynamic formulations is given.

An existing numerical algorithm for determining time-accurate solutions of the nonlinear

unsteady flow problem is described, and a numerical model, derived from this nonlinear flow

solver, is formulated for the first-harmonic, linear, unsteady problem. In previous work at

NASA Lewis, two-dimensional versions of the nonlinear aerodynamic and numerical models

have been implemented into a time-accurate, unsteady flow code, known as NPHASE. Under

the present effort, the linearized aerodynamic and numerical models have been implemented

into a corresponding first-harmonic, unsteady, flow code, called LINFLUX. At present the

NPHASE and LINFLUX codes apply to two-dimensional flows, but extensions to three-

dimensional flows are planned as future work.

The three-dimensional aerodynamic and numerical formulations and the two-dimensional

LINFLUX analysis are described in this report. Numerical results for two-dimensional un-

steady cascade flows, excited by prescribed blade motions and prescribed aerodynamic dis-

turbances at inlet and exit, are also provided to illustrate the capabilities of the LINFLUX

analysis. The present capabilities for predicting unsteady subsonic flows produced by blade

vibrations and acoustic excitations are quite good, but additional work will be required so

that accurate predictions of unsteady transonic flows and unsteady flows excited by entropic

and vortical gusts can be determined. Additional work will also be required to improve the

computational efficiency of the LINFLUX analysis.



1. Introduction

The development of theoretical analyses to predict unsteady flows in axial-flow turboma-

chines has been motivated primarily by the need to predict the aeroe]astic (flutter and forced

vibration) and aeroacoustic (sound generation, transmission and reflection) behaviors of the

blading. For the most part, the blades of an isolated two-dimensional cascade have been

considered, viscous effects have been neglected and the unsteady fluctuations have been as-

sumed to be sufficiently small so that a linearized treatment of the unsteady flow is justified.

To determine the aeroelastic and aeroacoustic characteristics of the blading, the resulting

analyses must be useful for predicting the unsteady loads that act on the blades and the

unsteady pressure fields that exist upstream and downstream of the blade row and arise from

various sources of unsteady excitation. These sources include prescribed structural (blade)

motions and the external aerodynamic excitations associated with fluctuations in total tem-

perature and total pressure at inlet and fluctuations in static pressure at inlet and exit. In

particular, for blade flutter applications it is only necessary to predict the unsteady blade

loads that arise due to prescribed blade motions, whereas for forced vibration and aeroa-

coustic applications the unsteady blade loads and unsteady pressure fields, respectively, due

to incident entropic, vortical and acoustic disturbances are also required.

Until recently, the inviscid unsteady aerodynamic analyses that have been available for

turbomachinery aeroelastic and aeroacoustic design applications have been based on classical

linearized theory (see [Whi87] for an informative review). Here the steady and harmonic un-

steady departures of the flow variables from their uniform free-stream values are regarded as

small and of the same order of magnitude, leading to uncoupled, linear, constant-coefficient,

boundary-value problems for the steady and the complex amplitudes of the unsteady dis-

turbances. Thus, unsteady solutions based on the classical linearization apply essentially to

cascades of unloaded flat-plate blades that operate in an entirely subsonic or an entirely su-

personic environment. Very efficient semi-analytic solution procedures have been developed

for two-dimensional attached subsonic and supersonic flows and applied with some success

in turbomachinery aeroelastic and aeroacoustic design calculations. It should also be men-

tioned that extensive efforts (as reviewed by Namba INam87]) have been made to develop

three-dimensional unsteady aerodynamic analyses, based on the classical linearization.

Because of the limitations in physical modeling associated with the classical linearization,

more general two-dimensional inviscid linearizations have been developed. These include the

effects of important design features such as real blade geometry, mean blade loading, and

operation at transonic Much numbers. Here, unsteady disturbances are regarded as small-

amplitude harmonic fluctuations relative to a fully nonuniform, potential, steady flow. The

steady flow is determined as a solution of a nonlinear inviscid equation set, and the unsteady

flow is governed by linear equations with variable coefficients that depend on the underlying

steady flow. This type of analytical model is often referred to as a linearized potential model,

although the potential flow restriction only applies to the steady background flow. It has

received considerable attention in recent years, and solution algorithms for the nonlinear

steady and the linearized unsteady problem have reached the stage where they are being

applied in turbomachinery aeroelastic and aeroacoustic design studies. We refer the reader to

the review articles by Verdon [Ver92, Ver93] for a description of the model and its application

to turbomachine cascades.
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Linearized potential methods are based on the assumption of an isentropic and irro-

tational mean or steady background flow. Although these assumptions lead to significant

computational efficiencies, they also limit the range of application of the resulting analyses.

In particular, a more general linearization is required to predict three-dimensional unsteady

flows in which the effects of mean swirl are important, and two- and three-dimensional flows

in which strong shocks occur. For such flows, the nonlinear Euler equations are required to

model the nonisentropic and rotational mean flow, and linearized versions of these equations

are required to model the unsteady perturbation.

Recently, much attention had been given to the development of two-[HC93a, HC93b.

KK93] and three-dimensional [HL92, HCL93] linearized Euler analyses. In these analyses, as

in the earlier linearizations relative to potential mean flows, the linear unsteady equations are

developed in the frequency domain and analytic far-field solutions are matched to numerical

near-field solutions to limit the computational domain to a single blade-passage region of

finite extent in the axial direction. Unlike the classical and potential-based linearizations,

the linearized Euler equations are solved on a grid that deforms with the blade motion so

that troublesome extrapolation terms in the blade surface conditions can be replaced by

more tractable source terms in the field equations [HC93a]. Also, shock and wake effects

are %aptured" within a conservative finite-volume discretization, rather than "fitted" by

imposing shock and wake jump conditions. Finally, because of the large number of unknowns

in the discretized equation set, the first-harmonic linear equations are solved using pseudo-

time as an iteration technique rather than by direct matrix inversion.

Under the present effort work has been initiated to develop a three-dimensional linearized

unsteady aerodynamic analysis for turbomachinery blade rows that accounts for the effects

of real blade geometry, mean blade loading, mean swirl and strong shocks. It is based on the

Euler equations of fluid motion and the high-resolution, wave-split, implicit time marching,

numerical scheme developed by Whitfield, Janus and Simpson [WJS88]. Here, the time-

dependent Euler equations are written in strong conservation form in terms of curvilinear,

computational coordinates and solved using an implicit time-marching procedure. A three-

point, backward difference approximation, which is second-order accurate, is used to ap-

proximate time derivatives, and a cell-centered, upwind, finite-volume discretization is used

to approximate spatial behavior. In the spatial discretization, fluxes at the cell interfaces

are evaluated using a flux-splitting technique in which the eigenvalues of the flux Jacobian

matrices control the direction of spatial differencing. The nonlinear discretized equations

are solved at each instant of time using a Newton iteration procedure, that involves an ap-

proximate factorization of the residual equation. Gauss-Seidel sub-iterations are applied to

reduce the approximate-factorization errors.

The wave or flux splitting used in [WJS88] allows flow discontinuities to be captured in

one computational cell, if the grid is well aligned with the discontinuity. In addition, since

the splitting scheme is based on a local eigenvalue decomposition of the Euler equations, the

mean flow can be interrogated to determine the shock locations. A change in sign of the

eigenvalues associated with acoustic waves indicates a change from supersonic to subsonic

flow, and therefore the existence of a shock. This feature could facilitate shock fitting in the

future via the imposition of shock jump conditions at mean shock locations.

Based upon the foregoing numerical scheme, Huff, Swafford and Red@ [HSR91] have con-

structed an implicit, multi-block, finite-volume analysis and computer code, called NPHASE,



for time-accurate resolutions of nonlinear, two-dimensional, unsteady flows through vibrating

cascades. NPHASE is a robust analysis with a demonstrated capability to predict transonic

flows with sharply defined shocks. It has also been modified by Sreenivas, Whitfield, and

Huff [SWH93] to provide a linearized unsteady analysis in the time-domain. Under the

present effort, a linearized, frequency-domain, unsteady aerodynamic model has been for-

mulated, and a two-dimensionM version of this model has been implemented into a computer

code called LINFLUX. The LINFLUX code has been constructed by making the appropriate

modifications to the NPHASE analysis.

In this report we will describe the nonlinear and linearized, three-dimensional, unsteady,

aerodynamic and numerical formulations that form the foundation for the present effort. We

will also present numerical results, based on the two-dimensional versions of these models

that have been implemented into the LINFLUX code. In § 2 of this report the three-

dimensional, unsteady, fluid-dynamic problem is described and various mathematical con-

ventions, i.e., nomenclature, reference frames, independent variables, etc., are established.

Starting from the integral conservation laws and the thermodynamic relations for a perfect

gas, the field equations and surface conditions that govern nonlinear inviscid flow through a

single rotating blade row operating within a cylindrical duct are presented in § 3. The small

unsteady-disturbance approximation is introduced in § 4, leading to a nonlinear bound-

ary value problem for a zeroth-order flow, that is steady in the rotor frame of reference,

and a linear, variable-coefficient, boundary-value problem, in which the variable coefficients

depend upon the steady background flow, for the first-order unsteady perturbation. The

approximate far-field conditions available to complete the nonlinear and linearized unsteady

aerodynamic formulations are described in some detail in § 5. The lack of suitable far-field

conditions for three-dimensional flows is probably the most important impediment to the

development of useful three-dimensional, unsteady aerodynamic analyses. Numerical mod-

els, based on the work of [WJS88] and [HSR91], for solving the nonlinear and the linearized,

frequency-domain, unsteady aerodynamic equations are described in § 6. The application of

the LINFLUX code to two-dimensional, unsteady cascade flows excited by prescribed blade

motions and prescribed aerodynamic disturbances at inlet and exit is presented in § 7.

The numerical results presented in § 7 pertain to two-dimensional unsteady flows through

the so-called Tenth Standard Cascade Configuration [FS83, FV93]. In particular, we con-

sider unsteady subsonic and transonic flows driven by prescribed bending and torsional blade

vibrations and, for purposes of comparison, present results determined using the linearized

Euler analysis LINFLUX, the time-accurate, nonlinear, Euler analysis NPHASE [HSRgl],

and the linearized potential analysis LINFLO [Ver92, Ver93]. We also consider unsteady

subsonic flows excited by acoustic disturbances at inlet and exit and by entropic and vorti-

cal disturbances at inlet, and present results, determined using the LINFLUX and LINFLO

codes. The unsteady aerodynamic predictions given in § 7 indicate that the present LIN-

FLUX analysis provides accurate aerodynamic response predictions for unsteady subsonic

flows driven by prescribed blade motions or by acoustic excitations at inlet and exit. However,

improvements in shock modeling will be required to allow accurate resolutions of unsteady

transonic flows, and improvements in the numerical representation of blade-surface bound-

ary conditions will be needed to accurately resolve unsteady flows excited by entropic and

vortical disturbances. The computational efficiencies of the LINFLUX unsteady transonic

and gust response calculations must also be improved.



2. Unsteady Flow through a Rotating Blade Row

2.1 Physical Problem

We consider time-dependent adiabatic flow, with negligible body forces, of an inviscid,

non-heat conducting, perfect gas through a single rotating blade row such as the one shown in

Figure 1. In particular, we will be concerned with a blade row operating within a cylindrical

duct of radius r = rD(_) and mounted on cylindrical hub of radius r = rH(_), where

measures axial distance and r measures distance radially outward from the _-axis. The

blade row consists of N distinct blades which rotate about this axis at angular velocity f_.

In the absence of unsteady fluid dynamic forces, the blades are assumed to be identical in

shape, identical in orientation and equally spaced around the rotor. The mean or steady

state position of the nth blade, in the rotor frame of reference, is described by an equation
of the form

27rn
= . , :V 1 (2.1)F(r,O,()=O+-_-+f(r,_) 0, n=0.1.2,... , - ,

where 0 measures angular distance in the direction opposite to the direction of the rotation

and n is a blade number index which decreases in the direction of rotation.

For aeroelastic and aeroacoustic applications we are interested in a restricted class of

unsteady flows; i.e., those in which the unsteady fluctuations can be regarded as pertur-

bations, not necessarily small, of a background flow, that is steady in the rotor frame of

reference. Thus, we will consider primarily situations in which the blades rotate at con-

stant angular velocity and in which the background flows far upstream (say [ < [_) and

far downstream ([ > (+) from the rotor are at most a small perturbation from a steady,

axisymmetric, swirling flow. This perturbation stems from the interaction between the fluid

and the blading and is steady in the rotor frame of reference.

The time-dependent or unsteady fluctuations in the flow, as seen by an observer attached

to the blade row, arise from one or more of the following sources: prescribed vibratory blade

motions, and prescribed upstream total temperature, total pressure and static pressure dis-

turbances and downstream static pressure disturbances, that carry energy toward the blade

row. For the most part, we will restrict our consideration to temporally and circumferentially

periodic, unsteady excitations that are of small-amplitude.

For example, we will consider prescribed blade motions of the form

Tg(r,O+2rcn/N,_,t) =Re{R(r,O,_)exp[i(a3t+no')]}, xonB, n=0,1,2,... ,N-l,

(2.2)
where the vector "/_ is the displacement of a point on a moving blade surface relative to its

mean position in the rotating frame; R, (IR I _ (.9(e)), is a complex displacement-amplitude

vector; a,' is the temporal frequency of the blade motion relative to an observer in the rotor

frame; a is the phase angle between the motions of adjacent blades; Re{ } denotes the real

part of { }, and B denotes the zeroth (n = 0) or reference blade surface.

The unsteady flows in the far upstream and far downstream regions are in part, pre-

scribed as a fluid dynamic excitation and, in part, depend upon the interaction between

the fluid and the blading. Typically, an unsteady aerodynamic excitation is represented



as a linear combination of fundamental disturbancesthat are harmonic in time and in the
circumferential direction. For example,a fundamental pressureexcitation would be of the
form

_51,_oo(x,t)= Re{pt,_oo(r)exp[i(wt + mO) + X-_]}, _ < _: (2.3)

Here pt,:_o_(X, t) is an incident pressure disturbance, i.e., a pressure disturbance that travels

towards the blade row from far upstream (_ < __) or far downstream (_ > _+), w is the

temporal frequency of the disturbance, and m is the number of complete disturbance cycles

that occur over one revolution, i.e., in the interval 0 < O < 2_-. The quantities w and m are

prescribed, and pr,_:_(r) and )/,, are determined from the equations that describe the fluid

motion in the far field. Note that the interblade phase angle, a, of an incident disturbance

is 2rcm/N.

For aeroelastic and aeroacoustic investigations, the applications of primary interest here,

the goal is to predict the unsteady fluid dynamic loads that act on the blades and the

unsteady pressure fluctuations that carry energy away from the blade row, respectively, for

various prescriptions of the foregoing excitations.

Two-Dimensional Approximation

In the present study we will provide fluid dynamic and numerical formulations for solving

the physical problem just described. In addition, these formulations will be implemented

into a two-dimensional unsteady Euler .code, with the development of a three-dimensional

code planned as future work. The two-dimensional unsteady flow problem is derived by

considering the flow in a thin cylindrical annulus having inner and outer radii, r = ro -

At0 and r = r0 + At0, respectively; assuming that the radial components of the blade

displacement and the fluid velocity are negligible, i.e., "R.. e, ._ 0 and V • er _ 0; and

setting Vw - _2 × ro = f/roe0, where Vw is the absolute velocity of the blade row in the

circumferential direction, and is constant, if _ - 0.

If we unwrap the cylindrical annulus, set r/ = rO, e, = ee, V_ = _, etc., and regard

and r/ as Cartesian coordinates in the axial and tangential directions, respectively, we

are effectively considering the flow through a rectilinear, two-dimensional cascade consisting

of an infinite number of equally-spaced blades (see Figure 2). The mean or steady-state

positions of the blade chord lines coincide with the line segments r/ = _ tan 6) + nG, 0 <

<: cos 6), n = 0, 4-1, 4-2, ... , where n is the blade number index, (9 is the cascade

stagger angle, and G = Gen is the cascade gap vector which is directed along the y-axis with

magnitude, G, equal to the blade spacing.

The vibratory blade motions, i.e.,

77.(x + nG, t) = Re{R(x)exp[i(wt + ha)l}, x 6 B ,n = 0,4-1,4-2... (2.4)

are prescribed functions of position x and time t, and, for a two-dimensional flow, small

unsteady disturbances far from the blade row can be represented as the sum of independent

entropic, vortical and acoustic modes of fluid motion. The entropic, .___(x, t), vortical,

__¢¢(x,t), and acoustic, @A_:cc(x,t), excitations are prescribed functions of x and t, that

satisfy the fluid dynamic field equations and describe disturbances that carry energy toward

6



the blade row.
describedby equationsof the form

._-oo(x,t) - Re{s__ exp[i(__oo•x + wt)]} ,

= rte{¢_oo x +
and

Here s__, ___

For example, the fundamental external aerodynamic excitations can be

(2.5)

(2.6)

iSi,:vco(x,t ) = Re{pL_ooexp[i(t%:oo -x +wQ]} . _ X (:v (2.7)

and PL_:oo are the complex amplitudes of incident entropic, vortical and

pressure fluctuations, respectively, and _:oo axe the wave number vectors for these distur-

bances. The interblade phase angle, a, of a_n incident disturbance is given by _:_ • G.

Also, the temporal frequency and wave number of an incident entropic or vortical distur-

bance are related by w = -t¢__ • V__, where V__ is the uniform relative inlet velocity,

but a more complicated relationship exists between w and I¢:¢o¢ for an incident pressure

disturbance [Ver89b].

2.2 Mathematical Conventions

In this report all physical variables are dimensionless. Lengths have been scaled with

respect to a reference length L*, time with respect to the ratio L'/V °, where V" is a reference

flow speed, velocity with respect to V*, density with respect to a reference density p*,

pressure, with respect to p'(V") 2, specific internal energy and enthalpy with respect to

(V') _. Here, the superscript • refers to a dimensional reference value of a flow variable. The

reference length is based upon blade chord, and the reference values of the fluid dynamic

variables are based upon the far upstream mean-flow conditions. Also, in the present report,

vector and tensor quantities are written in bold-face type.

In anticipation of the small unsteady-disturbance approximation, which will be intro-

duced in §4, the symbol ,,_ will be used below to denote a fully nonlinear time-dependent

fluid property, and, with the exception of the density, upper and lower case Roman letters will

be used to represent the various nonlinear flow variables and their small-disturbance coun-

terparts, respectively. Thus, for example,/5 and P will refer to the nonlinear time-dependent

fluid pressure and the pressure in a background flow, that is steady in the rotating frame of

reference, respectively, and t5 and p will refer to the time-dependent, small-disturbance, un-

steady pressure and its complex amplitude. The corresponding symbols for the fluid density

are _, p, p and p, respectively. The subscripts -c_ and +¢x_ will be used to denote values of

the flow variables far upstream and fax downstream from the blade row.

In addition to these notations for the fluid dynamic variables, upper case script letters

(e.g., S) represent instantaneous surface (blade, wake and shock) locations, whereas corre-

sponding upper case block (S) letters refer to steady-state surface positions. The vector,

7_(x, t), x E S or 7_s, measures the displacement of a point on a moving surface relative to

its mean or steady-state position.

Reference Frames

For the most part, we will be conducting our analyses in a coordinate frame that rotates

with the blade row, i.e., at angular velocity _, but we will also have occasion to work in a



space-fixedor inertial referenceframe. Thus, we introduce the temporal coordinate t, the

rotating cylindrical spatial coordinates r, 6, _, and the space-fixed cylindrical coordinates

r, _A (, where 8A = 8 _ i2t. The coordinates _ and r measure distance along and normal,

respectively, to the axis of rotation and the angular coordinates, 8 and 8 A measure angular

distances in the direction opposite to the direction of rotation. We will also use rotating

(xl,x2,x3) and space-fixed A A(Zl, Z2, Z A) Cartesian coordinates in which the xl- or zA-axis

coincides with the axis of rotation, i.e., f2 = f_ee = [le==_. The Cartesian (zl,x2, z3) and

cylindrical (r, 8, () coordinates of a point are related by

xl=_ , x2-'rsin0 and x3=-rcos0 (2.8)

or

= , e = and r = [(x,)' + (x3)']'/2 (2.0)
We will require equations that describe the fluid motion in both the space-fixed or inertial

reference frame and the rotating reference frame. Gradient operations, e.g., _f, _. F and

K7 × F, where f and F are arbitrary scalar and vector functions, respectively, are invariant

under a transformation from one rotating reference frame to another, as is the total time

derivative df/dt of a scalar quantity. Local time derivatives of scalar and vector quantities

and total time-derivatives of vector quantities are not invariant under such a transformation,

but are related by

°Of I Ofl _(_'lxr. V)f '

and
X A X

(2.10)

A dt +DxF

Here, for example, dF/d_[A and dF/dt are the time derivatives as seen by observers in the

space-fixed or inertial and the rotating reference frames, respectively. If the position vectors,

x A = x + f2 x rt and x track the motion of the fluid particle, then dF/dtlA and dF/dt are

material or convective derivatives of F. In this case, we will use the symbol D/Dt in place

of d/dt to emphasize that the total time derivative is a material derivative.

The fluid velocities, accelerations and vorticities as seen by observers in the spaced-fixed

and rotating frames are related by

- = +_x x=V+12 xr, (2.11)
Dt A

-" _ A _--_+_X (V+#xr)=A+2_xV+_xr+#x(_?xr), (2.12)

and

8



Here 9 A, /_k A and _a are the _elocity, acceleration, and vorticity, respectively, as seen by an

observer in the inertial frame; V, A and _. are the velocity, acceleration, and vorticity seen by

an observer fixed in the rotating frame; f_ is the angular acceleration of this rotating frame;

and r is the radial position vector. Quantities measured with respect to the inertial frame will

be referred to as absolute flow quantities; those measured in the rotating frame, as relative

flow quantities. The terms 212 x V, 12 × (12 x r), and J_ x r in equation (2.12) represent

Coriolis, centripetal and Euler accelerations, respectively. Note that, if V x VA = 0, the

flow is irrotational in the space-fixed system, but it is rotational with _ = -2g? relative to

an observer in the rotating frame.

Spatial Independent Variables

To describe flows in which the fluid domain varies with time; e.g., unsteady flows over

vibrating solid bodies, it is useful to consider two sets of independent variables, say (x, t)

and (:_, t), where the position vectors x and :_ refer to locations within the rotating frame

of reference. The vector x(_, t) refers to the instantaneous location of a moving field point,

say 7", at time t, whereas 2 refers to the reference position of 7'. Thus,we can write

x = t)= + t), (2.14)

where "R.(:_, t) is the displacement of the point P from its reference position.

This representation is motivated by the need to conveniently account for solid body

motions in unsteady flows. In particular, the vectors xs(2s, t) and :_s denote position vectors

to a point on a moving surface S and to the location of this point on the reference surface

S, respectively, and 77.s = xs - "Xs is the displacement of a point on the moving surface ,3

relative to its stationary or reference position on S. It is assumed that 7_(2, t), is continuous,

single valued, and that (2.14) can be inverted to give the reference coordinates :_, of a moving

field point in terms of its current position, x, and the time t; i.e., the functions :_ = 2(x, t)

are also continuous and single-valued.

The behavior of fluid properties may be followed along the path of the moving point,

7), or at fixed spatial locations. For example, the fluid density, fi, may be expressed as a

function of _ and t, where :_ is the reference location of 7", or as a function of x and t, where

x is the position of 7" at time t. Associated with these two descriptions are two derivatives

with respect to time; 0( )�Otis, the derivative with respect to time keeping 2 constant, and

O( )/Ot[x, the derivative with respect to time keeping x constant. The former is the rate

of change in a quantity as observed when following the motion of a moving point; the latter,

the rate of change as observed at a fixed point x in space. These derivatives are related by

o( )1 o()-ot - bt + v,,)( ) (2.15)

9



3. The Nonlinear, Time-Dependent, Aerodynamic Equations

The description of the foregoing physical assumptions and mathematical conventions

brings us to a convenient starting point for presenting the equations that govern the unsteady

flow through the blade row. These are determined from the conservation laws for mass,

momentum and energy, and the thermodynamic relations for a perfect gas. We will write

the governing equations, first, in terms of dependent and independent variables measured

with respect to an inertial reference frame, and then, in terms of variables measured with

respect to a reference frame rotating with the blade row at angular velocity g2.

3.1 Conservation Laws and Thermodynamic Relations

We consider an arbitrary moving control volume, ];(t), which is bounded by a moving

control surface $(x A, t) = 0. The conservation laws for the fluid within 12 at time t can be

written as

and
d +£ - - (3.3)

Here d/dtiA is the time derivative taken relative to an observer fixed in the inertial reference

frame, and 2, _A, /5 and/)A = _7 + (f"A)2/2 are the fluid density, absolute velocity, pressure

and absolute specific total internal energy, respectively; ,/_A is the absolute velocity of a field

point lying on the control surface S; _a _ ,/_A is the fluid velocity relative to the moving

control surface; n is the unit outward normal vector to the control surface; and ® denotes

the tensor or dyadic product of two vectors.

The first and second terms on the left-hand-sides of the integral mass (3.1), momentum

(3.2) and energy (3.3) conservation laws represent the time rate of increase of a conserved

quantity, (i.e., mass, momentum or total internal energy) within the control volume and the

efflux of that quantity through the control surface, respectively. The surface integrals on

the right-hand-sides of (3.2) and (3.3) represent the external force acting on the fluid within

the control volume V, and the rate at which this force does work on the fluid within 1,'.

respectively. In the absence of viscosity, discontinuities in the flow variables can occur. The

integral forms of the conservation laws are therefore required to describe the flow over the

entire domain of interest. These forms provide corresponding differential equations in regions

where the flow variables are continuously differentiable and "jump" conditions at surfaces

across which the flow variables are discontinuous, i.e., at vortex-sheets, and at shocks.

Rotating Frame Variables

We can express the conservation laws in terms of variables that are measured in the

rotating reference frame by making use of (2.10) and substituting the dependent variable

10



and

relations:

(:3.4)

into equations (3.1) - (3.3). Here V is the relative fluid velocity and ET = /Y + I>'2/2 is the

relative total specific internal energy. After carrying out the algebra we find that

dt
(:3.5)

and

× r) ® (V - "/_)]-ndS,

(3.6)

d-i = -d--i _[9. n × r+ (n × r)_/2]dV

- /¢{_[V - Y2 × r + (Y2 × r)2/2](V - 7_) + t5/2 × r}-ndS,

(3.7)
where d/dt is the time derivative measured by an observer in the rotating frame and 7_ is

the relative velocity of a point on the moving control surface $(x, t). Note that the [eft-

hand-sides of (3.5) - (3.7) are identical in form to (3.1) - (3.3). The source terms on the

right-hand-sides of (3.6) - (3.7) account for the rotation of the blade-row fixed reference
frame.

The integral conservation laws can be written in various alternative forms. For example,

we can interchange the order of time differentiation and volume integration for the volume

integrals appearing in (3.5), (3.6) and (3.7) by employing a modified version of the Reynolds

transport theorem (see [Ari62] p. 85 or ([Mou84] p. 51), i.e.,

d-Tf( )dr=/, 0t x )] dV, (3S)

where _ ® ( ) reduces to "R.( ) if the quantity within the parantheses is a scalar. We can

also apply Green's theorem, i.e.,

(3.9)

to convert surface integrals in (3.5)-(3.7) to volume integrals.
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Thermodynamic Relations

In addition to the conservation equations, some relations from classical thermodynamics

are needed to complete the specification of the unsteady fluid dynamic problem and to

enhance our understanding of unsteady flow processes. In particular, we require the equation

of state for a thermally perfect gas,

/5 = "/-'(7 - 1)aT, (3.10)

and the relation between the specific internal energy and the temperature for a calorically

perfect gas,

/)-- -/-17_ - ("/- 1)-1/5/fi. (3.11)

Here T is the temperature and "7 is the specific heat ratio (constant pressure to constant

volume) of the fluid. It follows from (3.10) and (3.11) that the pressure can be expressed
in terms of the dependent variables a, I;'A and E_ or a, V and/)r as follows:

P = (')' - l)_[/)_r - (vA)2/2] = ('y - 1)_(/)r -- 92/2) (3.12)

Equation (3.12) can be substituted into the conservation laws (3.1) through (3.3) or (3.5)

through (3.7), to provide independent equations (two scalar and one vector) for the unknown

variables _, 9 (a) and /)_A/ or _, 9, and/)T-

The enthalpy,//, of a fluid particle is defined by

//=/)+P/a,

and it follows from (3.10), and (3.11)

//= _ = <1(_- 1)P/a

(3.13)

(3.14)

Although enthalpy and temperature are different fluid dynamic properties, the relationship
H = T applies here because of the scalings used to non-dimensionalize the various flow

variables. The total and relative total specific enthalpies of the fluid are given by

//¢" =//+ (9"_)_/2 =/)_ + P/P (3.15)

and

//r=//+P2/2=/)r+P/_=//74-_C.axr-(axr)2/2. (3.16)

We will also find it useful to introduce the fundamental thermodynamic identities

:FdS - d/) + Pd(_-') - d//- _-ldP, (3.17)

where S is the specific entropy of the fluid. It then follows from (3.10) through (3.17) that

the entropy is related to the pressure and density by the differential expression

dS = 7-_dP/P-da/_ . (3.18)

Equation (3.18) can be integrated to relate the change in entropy between any two equilib-

rium states to the corresponding changes in pressure and density; i.e.,

P_-'e -'_ _ (Pa-'%-'_s)R_f , (3.19)

where the subscript refers to a reference thermodynamic state.
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3.2 Field Equations

Equations that describe inviscid fluid motion at the field points, x = 2 + 7_(_, t), i.e.,

the Euler equations, are obtained from the integral conservation laws, e.g., (3.1) - (3.3), by

applying the transport theorem (3.8) to interchange the order of time differentiation and

volume integration and Green's theorem (3.9) to convert the surface integrals to volume

integrals. After taking the limit of the volume integrals as '12(t) _ 0, we find that the

conservation laws, expressed in terms of the dependent variables fi, V and ET and the

independent variables x and t, have the form

+ vx. + Vx-[(9- = 0.
X

(3.20)

_-_ ix+WX'(7_®_V)+Vx'[(9-'/_)®fiV+/SI]=-_[2J'lxg+bxr+g'2x(J'lxr)] (3.21)

and

X

(3.22)

The right-hand-sides of the momentum (3.21) and energy (3.22) equations have been sim-

plified by making use of (3.20) and (3.20) and (3.21), respectively, and performing some

algebra. The source term on the right-hand-side of the momentum equation (3.21) accounts

for the Coriolis, Euler and centripetal accelerations experienced by a fluid particle. To pro-

vide a complete set of governing equations, the conservation laws must be supplemented by

the thermodynamic relation (3.12) which relates the fluid pressure to the density, relative

total specific internal energy and the relative flow speed.

Equations (3.20)-(3.22) apply at all points within the fluid domain at which the fluid

motion is continuous and differentiable. The displacement field 7_[x(_, t)] is regarded as a

known quantity and is usually prescribed so that field points that lie on moving solid surfaces

always remain on such surfaces. Note that the terms containing 7_ can be eliminated from

(3.20) - (3.22). However, at this point, we have chosen to retain these terms so that there is

a direct correspondence between the differential and the integral [(3.5) - (3.7)] forms of the

conservation equations. Also, equations (3.20) - (3.22) have been written in terms of the

independent variables x and t. The conservation laws could also be written using _ and t as

independent variables by introducing the spatial coordinate transformation x _ z_. We will

adopt this strategy in deriving the linearized Euler equations in §4.

Conservative forms of the governing differential equations are usually preferred for nu-

merical simulations so that shocks and wakes can be "captured", but the convective forms

of these equations are also useful, particularly in establishing analytic far-field conditions.

These follow from (3.20) - (3.22) after applying some straightforward algebra. The convec-

tive form of the mass balance equation is

D_
D-7+ vx.9=o, (3.23)
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whereDIDt = OlOtlx + V- Vx is the material or convective derivative operator relative to

an observer fixed in the rotating frame. The convective form of the momentum equation,

i.e.,

DV
+ × (3.24)Pb-T + v_P = -._ x + _ x (_ × ,

is obtained by combining (3.21) and (3.23), and the convective form of the energy equation,

i.e.,
-D/_
_-ff_- = -/SVx. V, (3.25)

is obtained by combining (3.22), (3.23) and (3.24) and performing the necessary algebra.

Alternative convective forms of the energy equation can be determined by combining the

thermal energy equation (3.25) with (3.23), (3.24) and the thermodynamic relations (3.17).
We find that

-_D/_ --DS -..D/_ DP

p--_ + PVx . V = pT--_ = p Dt Dt = 0. (3.26)

In particular, the entropy of each fluid particle must remain constant in continuous regions

of the inviscid flow. It also follows from equation (3.19) that, in such regions, the pressure

and density of each fluid particle are related by the isentropic equation of state; i.e.,/3_-'_ =

constant.

Surface and Far-Field Conditions

For application to turbomachinery blade rows the foregoing field equations must be sup-

plemented by boundary conditions at the moving blade surfaces and conditions on the flows

at the inflow and outflow boundaries. Transient unsteady aerodynamic behavior is usually

not of interest in turbomachinery aeroacoustic and aeroelastic calculations. Therefore, for

such applications, a precise knowledge of the initial state of the fluid is not required.

For inviscid flows the flow tangency condition applies at the moving blade surfaces, i.e.,

('_"- "_). n = o, x e B,, (or _ e B,,), (3.27)

and at the stationary duct walls, i.e.,

V.n=0, atr=r.qandr=rn. (3.28)

The blade velocity _. in (3.27) is a prescribed quantity [cf. (2.2) or (2.4)].

We also require conditions on the flow far upstream and far downstream from the blade

row, i.e., at the inflow and outflow boundaries of the computational domain. Typically the

circumferentially- and temporally-averaged values of the total pressure, total temperature

and the inlet flow angle are specified as functions of radius at the inflow boundary. At

the outflow boundary, the circumferentially- and temporally-averaged pressure is specified,

consistent with radial equilibrium. In addition, total pressure and total temperature fluc-

tuations at inlet, and the pressure fluctuations at inlet and exit, that carry energy towards

the blade row, must be specified. Again, it should be noted that the unsteady excitations

must be prescribed as solutions of the fluid-dynamic field equations. As discussed in §5, such

prescriptions are only possible under restrictive assumptions about the flows far upstream
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and far downstreamof the blade row. Total pressureand total temperaturefluctuations at
exit and unsteadypressuredisturbancesat inlet and exit that carry energy away from the
blade row must bedeterminedaspart of the unsteadysolution. This is usually accomplished

by extrapolating numerical _'near-field" solutions through the inflow and outflow boundaries.

In principle, jump conditions should be imposed at vortex sheets ("viscous layers") and

shocks, but the usual procedure in numerical calculations is to capture such discontinuities

by solving the conservation forms of the field equations (3.20) - (3.22) over the entire fluid

domain. However, for the sake of completeness, we will describe the jump conditions that ap-

ply at surfaces of discontinuity. These conditions are obtained from the integral conservation

laws(3.1)- (3.3)or (3.5)- (3.7) by considering a control volume that contains a segment

of such a surface, and taking limits, first, as the lateral extent of this volume normal to the

surface segment approaches zero, and, then, as the area of the segment approaches zero.

The resulting jump conditions for conserving mass, momentum and energy at a surface, ,5,
across which the flow variables are discontinuous are

and

[:#fl =0,

t_.f_va] + _fa]]n = 19i_(9]] + [/5In = 0

3_Ii[_7_-]] + [/59a_ • n = Mf[ET_ + [/59_ • n = 0, 3.31)

respectively. Here _ ]] denotes the jump in a flow quantity as experienced by an observer

when moving across the surface of discontinuity S in the n-direction and

& = A- •n = - n, × e s (a.a2)

is the fluid mass flux through the surface.

Equations (3.29) - (a.31)have been derived by setting the field point velocity _ in the

integral conservation laws equal to the surface velocity "Rs. Thus, these equations are applied

at points, x E $ (or :_ E S), that lie on a moving "boundary layer", wake or shock surface.

In the present application the surface velocity vector "R-s is prescribed at blade surfaces, but

at wake and shock surfaces it must be determined as part of the overall time-dependent,

solution for the unsteady flow.

Since vortex sheets support a jump in tangential velocity, i.e., [_r_. -r -7(:0, it follows that

the conditions

._/, = _(9 - "as). n = 0 (3.33)

[P]] --- 0 (3.34)

and

119]]- n = 0, (3.35)

prevail at vortex sheet boundary-layer and wake surfaces. Since the vortex-sheet boundary

layers coincide with the blade surfaces, (a.aa) is equivalent to the inviscid flow tangency

condition. At shocks, the mass flux is generally nonzero (i.e., .@, 7(: 0). Hence, it follows

from (a.a0)that the tangential component of the fluid velocity V • -r, must be continuous

across shocks. The remaining jump conditions, along with the thermodynamic equations of

state, are then required to determine the shock velocity, 5_-s, and the changes in the normal

component of the fluid velocity and the thermodynamic properties of the fluid as it passes

through the shock.
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3.3 Matrix Forms of the Governing Equations

The conservation equations are often written in matrix form. For example, we can write

the integral conservation laws (3.5) - (3.7) and the corresponding differential expressions

(3.20) - (3.22) as

_e
dt ; Odl) + fs[FJ -(JT_',]n_',d$ = fvSdY (3.36)

and

X

respectively. Here, the column vectors U, Fj, and S are referred to as state, extended flux.

and source term vectors, respectively, 7_zj,j - 1,2,3 are the Cartesian components of the

vector _, and a summation over repeated indices is implied.

The state vector, U, the extended flux vector, F/,j - 1, 2, 3 and the source term vector,

O __.

are defined by

and (3.38)

g _._

0

0

The flux vectors _'j can also be expressed as explicit functions of the state variables (_,

i = 1, 2..., 5, and the source term vector S can be expressed as an explicit function of the
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state variables and the spatial coordinatesxi, i = 1, 2, 3, i.e.,

_'j(O) = and S(U,x) =

where

Q+,67/0, + P_,j

Q+lr;_/L?I+ b_3j

Q÷1(05+_)/01

0

0

(:3.:39)

P = (_- i)[0_- C;-_(r2_+ 032+ 0_)/21 (:3._0)

Our derivation of the fieldequations and surface conditions that govern the nonlinear:

time-dependent, inviscidflow through a blade row operating within a cylindricalduct is

now complete. The nonlinear, unsteady flow problem is formidable, and, to date. there

has been relatively little attempt to apply time-accurate numerical simulations of unsteady

flows in turbomachinery aeroelastic and aeroacoustic response studies, not only because of

the associated mathematical complexities, but primarily because the computing resources

needed for such simulations prohibits their use in detailed parametric investigations. Thus.

in the next section we will make use of additional simplifying assumptions with the inten-

tion of providing a useful unsteady fluid dynamic model for turbomachinery aeroelastic and

aeroacoustic design applications. In particular, we will restrict our consideration to small-

amplitude, temporally and circumferentially periodic, unsteady excitations, and unsteady

perturbations of a nonlinear background flow that is steady in the blade-row fixed, reference

frame . In particular, the unsteady perturbations in the flow are assumed to be driven by

prescribed blade motions of the form (2.2) and/or external aerodynamic excitations of the

form (2.3).
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4. The Small Unsteady-Disturbance Approximation

4.1 Mathematical Preliminaries

The computational resources required to simulate nonlinear inviscid and viscid unsteady

fluid dynamic behavior will continue to prohibit the use of such simulations in repetitive

aeroelastic or aeroacoustic design studies. Therefore, approximate analyses, based on the

small-unsteady-disturbance assumption, are still needed to provide efficient predictions of

unsteady aerodynamic response phenomena. Indeed, small-disturbance or linearized inviscid

analyses have played and, for the forseeable future, will continue to play the central role in

aeroelastic and aeroacoustic design calculations.

Thus, we consider inviscid unsteady flow through a three-dimensional blade row rotating

at constant angular velocity, _, and seek approximations to the nonlinear, time-dependent,

governing equations, which are valid for small-amplitude [i.e., of O(e) << 1] unsteady exci-

tations. If the excitations are of small amplitude, the unsteady part of the inviscid flow can

be regarded as a linear perturbation of an underlying, nonlinear, zeroth-order, background

flow. If the blades are identical in shape and orientation and equally spaced around the rotor,

and the prescribed mean flow conditions at inlet and exit are axisymmetric, i.e., functions

only of r and (, then the background flow will be steady in a reference frame that rotates

with the blade row.

To determine approximate equations that describe the inviscid unsteady perturbation we

must first expand the dependent flow variables in asymptotic series in e. Thus, we consider

dependent variable expansions of the form

_r[x(_,t),t]=V(f()+_'[x(_,t),t]+...=V(_)+_'[_(x,t),t]+ .... (4.1)

Here V(x, t) is the nonlinear unsteady velocity at the instantaneous position x of a moving

field point, V(_:) --- (9(1) is the zeroth-order or steady velocity at the reference position

:_, of this point, 9[_(x, t), t] -,- O(e) is first-order, unsteady, perturbation to the steady

velocity at R at the instantaneous location, x, and the dots refer to higher order terms.

We take the reference position _ of x to be the mean or steady-state position, and assume

that 177.1 ,-_ O(e). The asymptotic expansion (4.1) has been proposed only recently [HCg.3a]
and [Gi193], and offers several advantages when used in conjunction with modern numerical

solution procedures. According to this expansion OV/Ot 1_¢= 0 and therefore, it follows from

(2.1.5) that OV/Otlx = -('l_. Vx)V.

If we set 7_ - 0, then x = 2, and (4.1) becomes identical to the asymptotic expansion used

in classical linearized analyses [Whi87] and in earlier linearizations relative to nonuniform,

potential mean flows [Ver92, Ver93]. The latter leads to a set of linearized unsteady field

equations, that apply at fixed points in space, and precludes the need to define a displacement

field 7_(:_, t) over the entire solution domain. However, Taylor series expansions, e.g..

Ps = (P + "R. vP +... )is (4.2)

are required to refer information at moving blade surfaces to the mean blade positions.

As a result extrapolation terms of the form (77. • V)V and (7_. V)P appear in the blade

boundary conditions and in the expression used to evaluate the pressure at a moving blade
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surface. These terms are difficult to evaluateaccurately. Consequently,recent linearized
solution methods[HC93a,HC93b,KK93, HL92] haveemployedthe moregeneralasymptotic
expansion(4.1). With this expansion,if the displacementfield "R.(£, t) satifies the condition

7_(:_, t) - 7EB,(R,t) for £ E B,_, extrapolation terms will not appear in the blade boundary

conditions or surface pressure expressions. Instead, source terms, which are easier to evaluate

accurately, will appear in the field equations for the linearized unsteady flow.

Up to this point we have expressed the fluid dynamic equations in terms of the indepen-

(lent variables x and t. However, the use of dependent variable expansions of the form (4.1)

renders it more appropriate to express the steady and linearized unsteady equations in terms

of' the independent variables _ and t. The temporal derivatives 0( )/Otlx and 0( )/Otl_

transform according to (2.15); the gradient operators, according to

v,,( ) v,( ) - ®'R). ) + .... (4.:3)

The equations that govern the zeroth-order steady and the first-order unsteady flows are

obtained by substituting the series expansions for the dependent flow variables, e.g., (4.1)

and the independent-variable relations (2.15) and (4.3) into the nonlinear, time-dependent,

governing equations; equating terms of like power in e; and neglecting terms of second and

higher order in e. After carrying out this procedure, we find that nonlinear and linear

variable-coefficient equations are obtained, respectively, for the zeroth- and first-order flows.

The variable coefficients that appear in the linearized unsteady problem depend upon the

zeroth-order, steady background flow.

We will write the steady and linearized unsteady equations in terms of the rotating frame

dependent variables, i.e., the relative velocity [cf. (4.1)] and the relative total specific internal

energy

/)r(x, t) =/) + (,'2/2 = E + V2/2 + _ + V- _" +... = ET(x) + gr(x, t) + .... (4.4)

It follows from (3.4) that the perturbation absolute velocity and specific total internal energy

are given by

VA(x,t) = t) + x (r -
(4.5)

_A = _+V A ._rA __ _T + _r . _"_ X r--_V ._'_ x (r-_) ,

where r = r(x) and _ = r(R).

Consequences of the Small Unsteady Disturbance Approximation

A significant simplification offered by an unsteady aerodynamic linearization is that the

fluid dynamic responses arising from various sources of unsteady excitation are not coupled,

and hence, they can be determined separately. Indeed, it is usually sufficient in turboma-

chinery applications to develop solution procedures for a single harmonic (in space and time)

component of a given unsteady excitation. Solutions for an arbitrary independent excitation

and for arbitrary combinations of various independent excitations can then be obtained by

superposition. It should be noted, however, that the linearization does limit the unsteady

aerodynamic response phenomena that can be analyzed, since nonlinear inviscid unsteady
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aerodynamic phenomena, such as phenomena associated with the appearance and disappear-

ance of shocks or the effects of inlet flow distortion on blade flutter, cannot be taken into

account.

Since the background flow is steady in the rotor fixed frame and the equations that govern

the first-order unsteady flow properties are linear, the fluctuations in the unsteady flow prop-

erties caused by an unsteady excitation that is harmonic in time must have harmonic time

dependence. We can take advantage of this feature by introducing a complex representation.

for the first-order flow properties, e.g.,

;¢( _, t ) = Re[v( Y_)exp( iwt ) ] , (4.6)

where _ is the temporal frequency of the unsteady excitation in the blade-row fixed frame,

and adopting the convention that the real parts of the various complex quantities represent

the actual time-dependent physical quantities. The complex representation (4.6) can be used

to remove explicit, physical, time dependence from the linearized unsteady problem; thereby,

facilitating the determination of a solution.

As a consequence of our assumptions regarding rotor geometry and the mean inlet and

exit flow conditions, the steady background flow will be periodic from blade-to-blade. Thus,

for example, we can write

V(_,O + 2_,n/N,O = V(_,O,_) , (4.7)

where _, O, _ are the cylindrical coordinates of the position vector :_. If, in addition, the

unsteady excitation is harmonic in time and in the circumferential or O-direction, then the

first-order unsteady flow will exhibit a phase-lagged, blade-to-blade periodicity, i.e.,

+ 2 nlX, O = 0, (4.s)

Here o = 2r, m/N is the phase angle between the unsteady motions in adjacent blade pas-

sages, N is the number of distinct blades in the three-dimensional array and m is the number

of disturbance cycles over one revolution, 0 < 0 < 2_r. Conditions (4.7) and (4.8) allow a

numerical resolution of the steady and the linearized unsteady flows to be limited to a single

extended blade-passage region and permit fluid properties at a point in the nth blade passage

to be evaluated in terms of information available at the corresponding point in a reference

(n = 0) passage.

4.2 The Steady Background Flow

]'he field equations and surface conditions that govern the zeroth-order or steady back-

ground flow are obtained by substituting the expansions (4.1) into the appropriate time-

dependent nonlinear equations and retaining only the zeroth-order terms. The zeroth-order

flow serves as the background flow for the unsteady perturbation. Therefore, a solution to

the zeroth-order problem is required to determine the variable coefficients that appear in the

linearized unsteady problem.

The conservative forms of the differential mass, momentum and energy equations for the

steady background flow are

Vt.(_V) =0 , (4.9)
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(v ® + = -b[2 × v + a × × e)],

and

V,_- (V_Er + PV) = _gt × _. _ × V.

The convective forms of these equations are

(4.1o)

(4.11)

V. Wx_ + t_'x • V = 0 , (4.12)

fi(V-V_)V + VxP = -_[2_t × V + gt × (_t × _)], (4.13)

and

V-_7_S -- 0. (4.14)

Here fi, V, P, ET and S are the density, relative velocity, pressure, relative total specific

internal energy, and entropy, respectively, in the steady background flow, _ = r(_), and the

steady pressure can be determined in terms of the dependent variables _ and £T or fi and

S, by using (3.12) or (3.19) respectively.

Surface and Far-Field Conditions

In principle, surface conditions for the steady background flow follow from (3.29) through

(3.35) and are imposed at the mean or steady-state positions of the blade, wake and shock

surfaces. Mean blade positions are prescribed, but the mean wake and shock locations must

be determined as part of the steady flow solution. However, the usual practice in nonlinear

inviscid calculations is to capture shocks and wakes by solving the differential forms of the

conservation laws throughout the fluid domain. Since we will follow this practice in the

present study, shock and wake conditions will not be explicitly imposed.

By assumption, the steady background flow remains attached to the blades and the duct

walls. Therefore, the conditions

V.n=0, for:_ E B,, r=rH, andr=rD (4.15)

apply at the mean blade surfaces and at the inner and outer walls of the duct.

Conditions must also be imposed on the steady background flow far upstream and far

downstream from the blade row. Steady-state non-reflecting inflow and outflow boundary

conditions can be constructed [SG91] in which circumferentially averaged values of total

temperature, total pressure and the flow angles are specified as functions of radius at the

inflow boundary, and the circumferentially averaged value of the pressure is specified at the

outflow boundary, consistent with radial equilibrium. Circumferential harmonics of the mean
flow variables are not set to zero but are allowed to evolve to values that are consistent with

the existence of an infinite annular duct upstream and downstream of the computational
domain.

Finally, the periodic condition (4.7) can be imposed to restrict the steady flow solution

domain to a single extended blade passage region, i.e., a region of angular pitch A0 = 2rr,/N.

Since inlet and exit conditions are imposed at finite distances from the blade row, say" at

= {_ and _ = {+, respectively, the solution domain is a single extended blade passage

region of finite axial extent.
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4.3 The Linearized Unsteady Flow

The differential equations that govern the first-order or linearized inviscid unsteady flow

are determined by substituting the asymptotic expansions for the flow variables (e.g., (4.1))

and the independent variable transformation (x _ R) into the full time-dependent governing

equations derived from the mass, momentum and energy conservation laws [i.e., (3.20), (3.21)

and (3.22)], subtracting out the corresponding equations for the zeroth-order background

flow, and neglecting terms of higher than first order in e.

This procedure provides the following system of linearized Euler equations for the un-

steady disturbance field:

O_ _ + v_. (_v + _'7) = "k. vx¢ + [(v_ ® n). v_]. (pv) = o,

o jN(pv + Z'7) + v_. [v ® (_v + p'7) + ,_® _v + _i]

= 4. v_(Z_?) + [(v_ ® _). v_]. (_v ® v + PI)

(4.i6)

(4.17)

and

-_[2n x v + n x (e x e)]- _[2f_ x '7 + n x (a x A_)],

+ + vs. Iv( E + +P'7+/3vl
{./b I

= "R.. V_(t_Er) + [(V_ @ "R.). V_]-[(pET + P)V]
(4.1s)

+_[_2 x _.f_ x'7+fl x A_.ft x V]+,aft x _-12 x V.

Here/5, '7, /5 and _T are the time-dependent first-order density, relative velocity, pressure

and relative total specific internal energy, respectively, and A_ = r[x(5_, t), t]- r(SQ. After

expanding the equation of state (3.12), we find that the first-order pressure, density and

total internal energy are related by

= (7 - 1)[p(@ - V.'7) + _(ET -- V2/2)]. (4.19)

The terms that depend on the blade motion, i.e., the terms containing 7"4.,"R or Y2. are

regarded as source terms and have therefore been placed on the right-hand-sides of equations

(4.16)- (4.18).

Convective Forms of the Linearized Unsteady Equations

The convective forms of the first-order unsteady equations follow after applying the

asymptotic expansions for the dependent flow variables and the independent variable trans-

formation x --+ _ to equations (3.23), (3.24) and (3.26). We find that

D_
Dt
-- + "7. v,a + pv,. '7 + av_. v = "_. v,Z + [(v, _ n). v,]. (Zv), (4.20)
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]

+ (,_. v,)vj + b(v. v,)v + v,_

= _(-_. v,)v + _[v. (v_ _ _). vx]v + (v_ G _)- vxP
(4.21)

-,_[2a × _-+ a x (a x Ae)]- ,_[2rtx V + a × (n × _-)],
and

b_
D---/+ (_" V_)S = 7_. VxS + IV. (V_ ® "R). V,]S (4.22)

where g is the first-order entropy. In equations (4.20) - (4.22) D/Dt = O/Otl_ + V- _'x is

a convective derivative operator based upon the mean-flow, relative velocity.

To complete the system of convection equations we require an additional equation relating

the first-order density, pressure and entropy. This is obtained by expanding the thermody-

namic relation (3.19), using (4.1), to obtain

D = P["/-'P/P - g] = A-2D - pg = O. (4.23)

Harmonic Unsteady Excitation

If we assume that the excitation driving the linearized unsteady flow is harmonic in time

with temporal frequency aJ, then we can express each unsteady flow variable as the real part

of the product of a complex amplitude, which depends only on the spatial coordinates R. and

the exponential function exp(iwt), cf. (4.6). In this case the local, O/Ot}x, and convective,

D/Dt, time derivatives of, say, the first-order unsteady pressure are given by

O}ll = Re{iapexp(iwt)} (4.24)

and

}[)--'_#Dt= Re{(i_o + V. _7x)pexp(iwt)} = Re ( Dt exp(ia_t) , (4.25)

where D_/ Dt = ia., + V. _'_.

If we now replace the first-order unsteady flow properties in the linearized field equations

by their complex representations, we arrive at time-independent, linear, partial differential

equations for the complex amplitudes of the first harmonic unsteady flow variables. For

example, the conservative forms of the first-order equations have the form

ia_p + re. (pV + 15v) = iwn. Vxt5 + [(V, ® R). Vx]. pV, (4.26)

i.:(pV + tic) + Vs-IV ® (pV + FSv)+ v ® fiV + pI]

= i._R. Ve(tSV)+ [(V_ ® R)- Vx](_V ®V + PI)

-#[2n × v + a × (a × _)1- _[2fl x v + a x (a x/x_)],

(4.27)
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and
i_(flET -t" fieT) -k VR " [V(pET + fieT) + V_ET] + Vx . (Pv + pV)

(4.2S)

where

+_[_ x _'._ x v+f_ x A_.f_ x V] + pf_ x _-f_ x V

P = (7 - 1)[/3(er -- V-v) + p(ET -- V2/2)] .

Boundary Conditions

(4.29)

Conditions on the unsteady perturbation at the moving blade surfaces, x E B_ or R E B_,

are obtained by substituting the asymptotic series expansion (4.1) and the relation between

the unit normals at points x = R + "R.(:L t) and _ on the instantaneous and reference surface

positions, i.e.,

nz3, =nB, - WT ® "R.. nB, + "" , (4.30)

into the full time-dependent surface conditions, subtracting out the corresponding zeroth-

order conditions and neglecting terms of higher than first order in e. In equation (4.30) RTT

involves only derivatives along a reference blade surface, B,_. Thus, if r and u are orthogonal

unit tangent vectors at a point on B,,, we can write

0 0

Vr = r_r +_,_u u (4.31)

It follows from the nonlinear unsteady (3.27) and the zeroth-order, steady (4.15) flow

tangency conditions, that the linearized unsteady flow tangency condition can be expressed

aS

*.n = + v. vr e B,. (4.32)

Condition (4.32) indicates that the normal component of the unsteady velocity at a reference

blade depends upon the zeroth-order velocity, V, and the prescribed blade displacement 77..

We must also impose flow tangency conditions at the duct walls. Since these walls are

assumed to be stationary, the appropriate conditions are

_r. n = 0, for r = rg and r = rD (4.aa)

If the unsteady excitation is harmonic in time, then the linearized flow tangency condi-

tions can be written as

v.n=[iwR+V-Vm®R].n, :_onB,_, (4.34)

and

v. n = 0, r = nil, rD (4.35)

where v(5_) and R(YQ, 5_ E B, are the complex amplitudes of the unsteady velocity fluctuation

and the unsteady blade displacement, respectively.

In addition to the foregoing surface conditions, phase-lagged periodicity [cf. (4.10)] and

far-field conditions must be imposed on the linearized unsteady flow. The latter conditions

will be discussed in some detail in §5.
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4.4 Matrix Forms of the Steady and Linearized Unsteady Equations

The nonlinear, time-independent Euler equations (3.20)-(3.22) have been written in ma-

trix form in (:3.37). For small-amplitude unsteady perturbations of a nonlinear mean or

steady background flow, the state vector U in (:3.:37) can be approximated by the asymp-

totic series

U[x(_, t)] = U(:_) + fi[:_(x, t),t] + .... (4.36)

where U(R) is the vector of conservation variables for the steady background flow at 9,

and d[:_(x, t),t] is the vector of conservation variables for the first-order unsteady flow at

x = :_ + "R(.% t). The flux _'j and source term, S, vectors can be approximated using Taylor

series expansions about the mean flow, U, and the reference spatial location, :L i.e.,

0Fj .

Fj(I?) = Fj(U) + 5flu+...
and (,4.37)

- - OS.

s(u,×) = s(c,,_) + b-Uu + (_ v_)s +...

The Jacobian matrices OFj/OU = {OF, j/OUk} and 0S/0U = {i)Si/OUk}, where the sub-

scripts i and k refer to the ith row and kth column, respectively, depend only upon the mean

flow solution, U and the reference spatial location :_.

In terms of the physical variables

_ + _v,_

_ + _v,_

_r + _ET

pvz: + i,E,

+ bv.i v._ + }sj_

+ [,v_ v.j + _5_

_]zrV_:, + _HrO,:, + _HrV_,_ ,

0

0

2a(_ + _v_) + f_2

-2f_(Z_ + b½_) + f_be_

fi_p(2_ + 2_)
+f_(_2v_ + _E_)

(7_-V_)S =

0

0

_f_(v._n._ + v;_n_)

(4.38)

where _ is given by (4.19), HT is the relative total specific enthalpy [cf. (3.16)] in the steady

background flow and

tZT = _r + P-_(PP/P + [_) (4.39)
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is the first-order relative total specific enthalpy.

After substituting the expansions (4.36) and (4.37) and the transformation relations

(2.15) and (4.3) into the nonlinear field equation (3.37), we find that the zeroth-order, steady

background flow and the first-order unsteady perturbation are governed by the equations

0

b-_jF_= s (4.40)

and

+ _ _,3-guj =('_. v_)u + _ v_ Fj+ b-flu+(_. v_)s (4.41)

respectively. If the excitation driving the linearized unsteady flow is harmonic in time with

temporal frequency w, we can set

fi = Re{uexp(iwt)} and 7_= Re{Rexp(i_t)} , (4.42)

where the components of the state vector u are the complex amplitudes of the linearized

unsteady conservation variables. In this case we can write the linearized unsteady equations
in the form

0 {'OF_ '_ (OR ) 0S (4.43)

The general solution procedure is first to solve for the nonlinear mean flow, and then.

for the unsteady perturbation. The steady solution is used to form the Jacobian matrices

OFj/OU and 0S/OU that appear in the linearized unsteady equation, (4.43).

Forms of the Equations Used in Numerical Calculations

For numerical calculations it is preferable to express the first harmonic unsteady equations

in strong conservation form. This can be accomplished by multiplying the terms the steady

equation (4.40) by _'_-R, adding the result to the right-hand-side of the linearized unsteady

equation (4.43) and performing some algebra. This procedure results in a first harmonic

unsteady equation of the form

i_,u o {OFj '_ i._ u)+ _ t,-yffu)= -_(v_. mu + (_,_

OFOR,_,__F,_ ]O@j OS

(4.44)

The first term on the right-hand-side of (4.44) is associated with temporal changes in the

dependent variables within a moving control volume; the second, third and fourth terms,

with fluxes across the control surface that bounds this volume; and the last term, with the

changes in the source term, associated with the rotation of the reference frame, caused by

the unsteady perturbation,.
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For the numerical integration of equations (4.40) and (4.44), it is convenient to make the

state vectors U and u pseudo-time dependent, as first suggested by Ni and Sisto [NS76].

Thus, we set

0(_, t, 7) = V(£, T) + Re{u(_, ,) exp(i_t)} , (4.4.5)

and write the steady and linearized unsteady equations in the form

0U[ 0Fj-_r x + 0_j - S (4.46)

and

o (oF 
+i_u+_jj \0U " u)= -i_(V_- R)U + i_(R_jU)

(4.47)

0 [0R_'Fm ] 0@_ 0S+_j [0--_ -(Ve.R)Fj + (Rx_S)+_--_u

Now, both the nonlinear mean flow equation and the tinearized Euler equation contain

explicit pseudo-time derivative terms, that allow iterative solutions to be determined using

conventional time-marching algorithms. The equations are marched forward in pseudo time

until the steady and the complex amplitudes of the unsteady conservation variables reach

steady state values. Because we are only interested in the steady state values of U and u,

there is no need to march the equations time accurately. Therefore, acceleration techniques

such as multiple-grid and local time stepping can be applied to greatly reduce the computing

time needed to solve an unsteady flow problem.

For finite volume calculations integral forms of (4.46) and (4.47) are required. These may

be found by direct integration, and are given by

and

d _UdV+fsFjn:_dS=_SdV, (4.48)dr

d]2,

(4.49)

(o I,, ) fOF, \

os

where all terms on the right hand side of (4.49), except the last, depend only on the mean

flow and displacement field, R(:_).
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5. Far-Field Behavior

Conditions on the linearized unsteady flow at the computational inflow (at _ = __) and

outflow (4 = 4+) boundaries are needed to allow the computational domain to be reduced to

one of finite extent in the axial direction. Specifically, we must be able to prescribe incoming

aerodynamic disturbances (excitations) as solutions of the governing equations, and the

computational inflow and outflow boundaries must be transparent to all outgoing waves, so

that spurious, nonphysical reflections are not generated. An approach, that has been applied

successfully in two-dimensional unsteady flow calculations, is to determine analytic solutions

for the unsteady flow variables far upstream and far downstream of a blade row, and to

match these solutions to a numerical near-field solution [Ver89b]. Unfortunately, analytic

solutions for three-dimensional unsteady disturbances are only available for the special case of

a uniform, axial, steady background flow. Thus, at present, approximate far-field conditions

must be applied in computational simulations of three-dimensional flows.

In this section, equations that describe the steady and linearized unsteady flows in the far

field (i.e., for _ < _:) of a blade row operating within a cylindrical duct will be examined. We

will write these equations for a stationary (_ - 0) frame of reference, but as a convenience,

we will omit the superscript A in describing absolute vector quantities and the subscript

A in describing convective time derivatives [cf. (2.10) and (2.11)]. Thus, in this section,

vector quantities, e.g., the fluid velocity, V, and the time derivatives D/Dr and O/Ot]×

are measured relative to the stationary frame (_ = 0) and are, therefore, absolute flow

quantities. In addition, we will consider fixed computational domains, i.e., "R. - 0, in the

regions far upstream and far downstream of the blade row.

We assume that, in the far field, the mean or steady flow quantities are at most dependent

only on radial position, the mean flow is isentropic, and that the radial component of the

steady velocity is negligible, i.e.,

V _ Ve(r)ee + V_(r)e_ .

Under these conditions [cf. (4.13) and (3.18)]

(5.1)

7 _dP )-x d(p-IP) r-_V_ (5.2)
d'-_-= 7(7 - 1 dr - "

As a consequence of the foregoing mean-flow assumptions, the first-order equations of

motion (4.22), (4.21), and (4.20) reduce to

b_
= 0, (5.3)

Dt

o v (5.4)

and

o. (5.5)
D---T+ #A_x " _ + =

We have made use of the first-order equation of state (4.23) and the mean-flow isentropic

relation, dP/dp = A 2 in deriving the momentum (5.4) and continuity (5.5) equations, and
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b/ot = 0/Otl_ ÷ _-_,_0/Oe + _o/04. (5.6)

The linearized unsteady flow in the far-field can be determined by solving the system of

convection equations (5.3), (5.4) and (5.5), for the first-order unsteady entropy (,_), velocity

(9) and pressure (/5). It follows from (5.3) that an entropic disturbance is convected by the

mean flow, and it therefore has a general solution of the form

_(x,t) = _(r, _0- _t,_- v_t) (.5.7)

If the mean flow is uniform, i.e., V = VCee, the unsteady equations (5.3)-(5.5) have

analytic solutions, which will be examined in detail in §5.1. These give some insight into

three-dimensional unsteady flow behavior within a cylindrical duct. Analytical approaches

for three-dimensional mean flows with axial shear and swirl will be discussed in §5.2. Another

important situation in which analytic far-field solutions can be determined, is one in which

the radial component of the unsteady velocity can be regarded as negligible [i.e., 7)_ ,-, O(d)].

This "two-dimensional", unsteady-flow approximation will be examined in §5.3. Finally, the

techniques used for formulating and implementing numerical far-field boundary conditions

will be discussed in §5.4.

5.1 Uniform Mean Flow in a Cylindrical Duct

First, we consider the unsteady perturbation of a uniform flow in a cylindrical duct, with

velocity V = Vee _. In this case the unsteady equations (5.4) and (5.5) reduce to

b?

D--_ + #-lVx/5 = 0, (5.s)

and

where

b/5
D---7+ PA2Vx " _' = 0,

D/Dt = 0/Otlx + V_O /0_.

After taking the curl of each term in the momentum equation (5.8), we find that

_ ~

De 0,
Dt

(5.9)

(5.10)

(5.11)

R7 x 9 is the unsteady vorticity. In addition, after applying the operators

) and/)( )/Dt to the terms in the momentum (5.8) and continuity equations

(5.9), respectively, and combining the resulting equations, we find that

/)2/5 A2V2x/5- 0. (.5.1:2)
Dt 2

Equations (5.3), (5.11), and (5.12) indicate that first-order entropic, vortical and acoustic

perturbations of a uniform mean flow are independent modes of unsteady motion. Entropic
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and vortical disturbancesare convectedby the meanflow, and thereforehave generalsolu-
tions of the form

g = g(r,O,_ - _t) and _ = _(r, 0,_- Vet ) . (5.1:3)

Pressure disturbances are governed by a convected wave equation, and, as a consequence,

such disturbances exhibit a more complicated behavior than entropic or vortical disturbances.

The unsteady perturbation can also be expressed in terms of independent entropic, rota-

tional velocity. OR, and irrotational velocity, R7¢, disturbances. Following Goldstein [Go176],

we introduce the velocity splitting

o = % + v_;, (.5.14)

where the rotational velocity is divergence free, i.e., RTx • On = 0, and the velocity potential

and pressure are related by

_Dg
= -P-bE (5.is)

It follows from equations (5.8) and (5.9) that

DOn

D--i-= o or oR = %(_,0,_ - Vet), (5.16)

and D2 _

Dr----7 + A2W2x4= O . (5.i7)

Thus the rotational velocity, like the entropy and vorticity, is a convected quantity and the

velocity potential, like the pressure, is governed by a convected wave equation. The solution

to this equation can be used to determine the irrotational component, Oz = _7_, of the

unsteady velocity as well as the unsteady pressure.

For turbomachinery applications it is usually appropriate to restrict consideration to un-

steady perturbations that are harmonic in time and periodic in the circumferential direction.

Thus, e.g., we can write

(5.1s)

where p(x) is the complex amplitude and ao is the temporal frequency of the unsteady pressure

fluctuation, and rn is an integer equal to the number of complete cycles or "lobes" in the

interval 0 <_ 0 <_ 2rr of the rnth component of the unsteady pressure disturbance. It follows

that convected quantities, say entropy and rotational velocity, have complex amplitudes of

the form

s(x)=[m=__sm(r)exp(imO)]exp(in_ ) (5.19)

and

vn(x)=[m=__vR,m(r)exp(irnO)]exp(iK_) (5.20)

where _( = -_VC 1.
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An analytic solution to the convectedwave equation (5.12) for the unsteady pressure
canbe determinedusing the method of separationof variables[TS62,VTMS2], leading to a
solution for the functions pro(r, () of the form

O0 7"=- Y_a=oam,n[Jrn(km,nr) -[-Qm,n}m(km,nr)]exp(xm,n()

: Y'_n°°=oarn,nEm,n(]Cm,nr) exp(Xm,n().

(5.21)

Here am,,_, Qm,,_ and k_,= are constants, Jm and Ym are Bessel functions of order m of the

first and second kinds, respectively, E(k_,,_r) is referred to as a "characteristic E-function".
and

Xm,_ = 3m._ + ix_,,_,_ = (1- M2) -1 [iMwA-_=]= V/(1 - M2)k_,n -wL4 -2 ] , (5.22)

where M = V¢/A is the Mach number of the steady background flow. Note that X,_,_ is purely

imaginary whenever _o/A > (1 - M2)l/2km,_. Under this condition, the two-components of

the m, nth pressure pattern propagate unattenuated along spiral paths normal to the lines

Ke,,_,n_+mO+a_t = constant. Ifa;/A < (1-M2)km,_, Xm,_ is complex and an rn, nth acoustic

disturbance grows or decays exponentially along the duct depending on whether the - or +

sign is applicable. The appropriate sign, - or + in (5.22), is determined by the conditions

imposed on the propagation of an acoustic wave. For example, an acoustic excitation must

either attenuate as it approaches the blade row, or propagate carrying energy toward the

blade row. Thus, for a subsonic mean flow (M < 1) the - sign must be selected to describe

an acoustic excitation from upstream; the + sign, to describe an acoustic excitation from
downstream.

The constants, km,_ and Q_,,_, in Equation (5.21) are determined by applying boundary

conditions at the inner (hub), r = rH, and outer (casing), r = rD, walls of the duct. The

so-called "hard wall" conditions,

Op
0--7 = 0 at r - rH and r = rD, (5.23)

will be used here, but "soft-wall" boundary conditions, in which an acoustic impedence is

specified along the walls, could also be applied. Conditions (5.23) lead to two simultaneous

equations for determining the k,_,,_ and Qm,_, i.e.,

!

+ = 0 (5.24)

and

r t TJm(km,nrD) + Qm,nY:(km,_ D) = O, (5.25)

where # = rH/r 9 and the primes indicate differentiation with respect to r. This system has

a nontrivial solution if and only if the determinant of the coefficients is equal to zero, i.e.,

= 0. (5.26)
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CHARACTERISTIC NUMBERS
Orderedby Magnitude

n _m._r D

l 0 1.353429

2 0 2.682314

3 0 3.957204

4 0 5.178097

5 0 6.335176

1 1 6.576327

2 1 7.060908

6 0 7.462803

3 1 7.844923

7 0 8.560980

4 1 8.830198

8 0 9.639520

5 1 9.987278

6 1 11.232715

7 1 12.507607

rn n _m,nrD rn n km,nr D rrt n _m,nrD

1 2 12.702435

11 0 12.826052

2 2 12.951395

3 2 13.342711

8 1 13.802131

12 0 13.878820

4 2 13.896018

5 2 14.542588

13 0 14.927908

9 0 15.067202

6 2 15.395325

14 0 15.975153

7 2 16.277517

10 0 16.305273

8 2 17.336420

11 i I7.518803

16 0 18.063198

9 1 18.444412

12 1 18.689379

1 3 18.907080

2 3 19.077499

3 3 19.390278

10 1 19.682482

4 3 19.707966

13 1 19.856277

18 0 20.144039

5 3 20.197456

6 3 20.736031

11 2 20.896011

14 1 21.001701

19 0 21.182236

7 3 21.382603

8 3 22.127346

15 0 22.135458

20 0 22.219130

12 2 22.223667

9 2 22.999720

16 1 23.256639

13 2 23.469107

10 2 23.845089

17 0 24.381201

14 2 24.771610

11 3 24.823000

1 4 25.190264

2 4 25.360685

Table 5.1: Roots of the determinant equation (5.26) with # = 0.5 arranged in order of

increasing magnitude (only the first 60 are shown).

The trancendental equation (5.26) has a countably infinite number of distinct roots km,nr D

for each integer m, which can be placed in increasing order of magnitude and numbered

n = 0, 1,.,9 .... The functions Em,_(km,,_r) then have n zeros in the interval r H < r < r D.

A solution scheme for determining the roots of (5.26) is given in [VTM82]. It involves a

combination of a fixed point iteration for each of the roots, along with a bisection algorithm

for calculating roots that are either skipped by the iteration routine or occur in regions in

which the iteration has difficulty in converging. Ordered results of this algorithm are shown

in Table 5.1 for # = 0.5. Once the roots have been found and the constants Qm,_ have been

evaluated, the radial mode shapes or characteristic E-functions, can be determined. A few

of these functions, normalized by their largest value, are shown in Figure 3.

.-ks indicated by the foregoing results, a general acoustic perturbation of a uniform mean

flow in a cylindrical duct consists of a combination of "spinning" modes, each containing m

lobes and having a radial dependence described by linear combinations of ruth order Bessel

functions of the first and second kinds. These modes either decay as the move axially away

from their source of origin, or propagate along spiral paths, unattenuated in amplitude.

5.2 Unsteady Perturbations of Nonuniform Mean Flows

If the underlying steady flow is not uniform, the equations of motion for three-dimensional

unsteady disturbances do not reduce to a simple convection equation for the unsteady vor-
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ticity nor to the standard convectedwaveequation for the unsteadypressure.The entropy
is still a purely convectedquantity with generalsolution given by (5.13); but vortical and
acousticdisturbancesarenot independentmodesof unsteadymotion, and it is not possible
to determine analytic solutions for thesefirst-order unsteadyflow variables. However, by
assumingan exponential dependencefor the temporal, circumferential, and axial behaviors
of the unsteadyperturbation quantities, the first order momentumand continuity equations
canbe reduced to a single,but complicated,second-order,ordinary differential equation for
the radial behavior of the pressure. This equation along with the boundary conditions at
the duct walls providesan eigenvalueproblem for the unsteadyperturbation, which must
besolvednumerically. A techniquefor determining this eigenvalueproblemfor a meanflow
with axial shear and swirl is given below.

We considera steadybackgroundflow containingboth axial and swirling componentsof
velocity, but no radial component. The steadyvelocity and thermodynamic propertiesare
describedby equations (5.1) and (5.2), respectively. If weassumethat the first-order un-
steadyentropy, velocity and pressureconsistof a superpositionof fundamentaldisturbances
that vary harmonically in time and in the circumferentialdirection andexponentially in the
axial direction; e.g.,

/5(r, 0,_, t) = Re{p(r) exp[x(r)_ + i(mO + czt)]}, (5.27)

and set

the unsteady equations (5.3)-(5.5) reduce to

(5.2s)

As = O, (5.29)

and

)_V r - 2 -'ve,e = _[,-1 + + (5.30)

(Avo + r-iV° + dr ,] v_ = -irn(_r)-lp, (5.31)

Ave + @r_ V, = -_-_(p, (5.32)

,tvrA(_A2)-'p+(rA2)-'V_v_+-_r +r-'v_+ _v_+imr-lvs+kv_=O. (5.33)

The unsteady solutions will be composed of convected (A = 0) and nonconvected (A ¢ 0)

components. The entropy is a convected disturbance with axial wave number

t_( -- -ix = -(w + mr-ll/_)V_ -1 , (5.34)

which, in this case, varies with radial position. Other convected disturbances can be deter-

mined as solutions of the momentum and continuity equations. For example, the assumption
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,\ = 0 applied to the circumferential (5.31) and axial (5.32) momentum equations results in

inconsistent equations for v_ and p unless the steady flow satisfies the condition

dV_r-iV6 + dr ]
(5.35)

If (5.35) is not satisfied, then v, = p = O, and the radial momentum (5.30) and continuity

(5.33) equations have solutions of the form

Vo m VoV_s
,0 = T' and ,_ = 2(_..+._-lvo) (5.36)

If, in addition to ,_ = 0, there are no entropic perturbations, then vo = 0. The axial

disturbance velocity v_ will also be zero, implying no disturbances, unless ,_ + mr-l I/0 = 0,

whereupon v¢ is arbitrary, and the axial wavenumber of this disturbance is zero. This

condition can be satisfied if the swirl velocity is linearly dependent upon r, e.g., if Vs = fir,

where f_ is a constant angular velocity. This situation is designated as "solid-body swirl,"

and according to Kerrebrock [Ker70], reasonably represents the flow behind a high work
blade row.

If there is no axial shear in the mean flow, i.e., dV_/dr = O, then the condition (5.35)

is satisfied for the cases of solid-body swirl, if w = -rnf_, and "free-vortex" swirl, which is

described by Vo = F/r and approximates the flow directly behind a fan rotor [KerT0]. Under

either of these circumstances, the circumferential and axial momentum equations become

simple multiples of each other, and either v_ or p can be specified independently.

Finally, if the circumferential component of the steady velocity is zero (Vs = 0) and

m :_ O, it follows from (5.31) and (5.32) that v_ = 0 and p = 0 and from (5.33) that

(.5.37)

This solution describes an unsteady velocity disturbance that carries no pressure and is

convected at the mean flow velocity.

Nonconvected disturbances (I :/: 0) are isentropic, i.e., s = 0. For such disturbances

equations (5.30) - (5.32) can be solved simultaneously to give m, vo and v_ in terms of p and

dp/dr, as long as

D = _2 + 2_-1V0 _-lV0 + d_ ] # 0, (5.3S)

and the results can be subtituted into (5.33) to determine a second-order differential equation

for p(r). It can be shown that the condition D = 0 leads to the trivial solution in which

all unsteady variables are zero. If D # 0 and we assume that X is a constant, the unsteady

velocities are given by

dp _ Vor_l[VoA_2_ 2im( )w)__]p]v_= -_(¢D) -1 N (5.39)

(5.40)
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and

After substituting these expressions into the continuity equation and performing the neces-
sary algebra we find that

d2P _rrdr---7 + fl(r) + f2(r)p = 0, (.5.42)

where

fl(r) pA-1D d
dr [A05D)-'] - r-aV°(V°A-2- 2imA-'r-')

--irn(Ar)-I r-lI/° + dr J + r-l(A-21_°2 + l)- A-1X_--_-Vr_

(5.4:3)

and

f2(r) = -_A-'D -{-d
dr [A(/SDr)-IV°(V°A-2 - 2imA-Ir-')]

-r-2Vo( A-2V_ + 1)(Vo2A -2 - 2irnA-ir-' )

+r_iVo._.__rdV_(Vo2A___ 2imA_,r_i) + A__D(x 2 _ A2A-2) •

Equation (5.42) is a rather complicated ordinary differential equation which must be solved

numerically subject to boundary conditions at the hub (r = rH) and duct (r = rD) walls.

Nontrivial solutions of the resulting eigenvalue problem determine the radial modes p(r)

corresponding to the eigenvalues X, which determine the attenuation constants and/or the
axial wavenumbers of the nonconvected disturbances.

It is interesting to compare the foregoing results to those arising from this same process

carried out for a uniform steady flow. If V_ is a constant, V0 = 0 and A = 0. It then follows

from (.5.30) - (5.32) that p(r) = 0, the velocity of this pressure-less disturbance (i.e., the

rotational velocity) is convected by the mean flow, and this velocity has a solution of the form

(5.16). If A -¢ 0, the velocity components are given by Eq. (.5.39) - (5.41) with dV_/dr and

V0 set equal to zero, and p(r) is governed by the second-order ordinary differential equation

d2p
dr""7 "_ r -1 d_prP+ (k 2 - rrt2r-2)p -- 0 , (5.45)

where

k 2 = A -2 [(A 2- V(2)X 2- 2iwV(x +w 2] (5.46)

Equation (5.45) is Bessel's equation of order rn and has a solution of the form indicated in

(5.21), and (5.46) yields solutions for _ of the form (5.22).
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5.3 Two-Dimensional Flow in a Cylindrical Annulus

In deriving equations (5.3) through (5.5), we have assumed that the radial component

of the steady velocity is zero [cf. (5.1)]. If we also assume that the radial component of

the unsteady velocity is negligible, i.e., vT "-. O(d), we can obtain analytic solutions for the

first-order unsteady flow variables in the far field that account for the effects of mean swirl.

Thus, if f'_ _., CO(e2), we find from (5.4) and (5.5) that the axial and circumferential variations

in the unsteady velocity and pressure, within the cylindrical annulus r0 - dr < r < r0 + dr,

are determined by the equations

D--i-= -bVx0 (,5.47)

D--2P= -CAlYx0 • (5.4S)
Dt

where x0 = (r0, _, 0), b/Dt is defined in (5.6), v = v_e_ + v0e0, and

O -i 0

Vx0 - e_-_ + r e0_-_ (5.49)

In addition, the radial component of the first-order momentum equation (5.4) reduces to

r-l Vo( Vo_ - 2_o ) = _-l (r-l A-2Vo2[_ - _r ) (5.50)

We can unwrap the cylindrical annulus, set e, = e0, V, = V0, v, = ve, and O/Or] =

r-lO/O0, and regard ( and 77 as Cartesian axial and tangential coordinates such that e_ x

e, = e: points out from the page. In this case equations (5.3), (5.47) and (5.48) govern

the two-dimensional, linearized, unsteady perturbation of a uniform stream flowing at an

angle .Q = tan-_(V,7/V_) to the axial direction. As for the case of uniform mean flow in a

cylindrical duct, the unsteady vorticity _ = _' x v = £e_ (or -_'e_) associated with this

two-dimensional flow is convected by the mean flow, the pressure is governed by a (two-

dimensional) convected wave equation, and the unsteady velocity can be decomposed into

rotational, fzR, and irrotational, _'z = re,components. The rotational velocity determines

the unsteady vorticity and is convected by the mean flow, the velocity potential determines

the pressure and is governed by a convected wave equation.

For an unsteady perturbation that is harmonic in time and periodic in the tangential, r/,

(or circumferential, 0) directions the (two-dimensional) solutions for the complex amplitudes

of the first-order unsteady entropy and rotational velocity are

s(x0) = Y_ s,_(ro)exp[i(_,_ + _,_r])] (5.51)

and

vFt(Xo) = _ vR,,_(r0)exp[i(x_,._f + x,_,mr])] (5.52)
rR_--._oo

where _,m = taro 1 is the "circumferential" wave number of the ruth disturbance, and

t.'_,._ = -(_ + x,7,,_V_)V( _ is the axial wave number of the mth entropic and rotational

velocity disturbances.
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The solution of the two-dimensionalconvectedwaveequation for the complexamplitude
of the pressure,asdeterminedby the method of separationof variables,is

p(x0) = _ pm(ro)exp(xm _ +ix_,mrl) (5.53)

where

;t_ = 3_ + ix_,m = Tdm + iM26,_ cosf_ ,

_m = (,,JV -1 + _,_ sin.q)/(1 - M 2 cos 2 f_) , (5.54)

d% (1 M _cos 2f_)-1 2 2 2= - x_, m - M _m

and d_ is the principal root of d_ ;i.e., dm= Idol if d%> 0 and dm= i]dm] if d_ < O.

If d_ # O, each fundamental solution describes two wave-like disturbances which, depend-

ing upon the sign of d2m, either grow or decay exponentially in the axial direction (d_ > O)

or propagate carrying energy away from or toward the blade row (aa,_ < 0). The condition

d_ = 0 which divides these two types of behavior is referred to as the "'cut off" or acoustic

resonance condition. In each case, d_ > O, d_ < 0 or d_ = O, we can write

p_(x0) = pm(ro)exp[(hmdm + iM26,_ cos f_)_ + ik,7,_77] , (5.55)

where the correct value of hm (i.e., +1 or -1) for d_m # 0, must be determined by whether

the pressure wave travels in the positive or negative axial directions.

The two-dimensional, far-field, conditions account for the effects of mean swirl, and for

this reason they are often applied (in "strips") in three-dimensional unsteady flow calcula-

tions. These conditions do not properly account for the radial dependence of the unsteady

flow variables. Consequently, solutions determined using this quasi-three-dimensional (or

strip theory) approach may be of limited use for forced vibration and aeroacoustic response

studies in which the excitation frequencies of interest are usually high, i.e., ,,_ -,_ (.9(10).

5.4 Numerical Far-Field Boundary Conditions

The development of numerical far-field boundary conditions typically involves an exam-

ination of an approximate set of linear unsteady equations followed by a decomposition of

the unsteady disturbances into incoming and outgoing waves. The incoming and outgoing

disturbances at the far-field boundaries are determined by the characteristics of the gov-

erning equations. The characteristic values or eigenvalues represent the velocities of the

fundamental disturbance waves, and the eigenfunctions describe the shapes of these waves.

Conditions must be formulated to neutralize undesired incoming disturbances. Such condi-

tions are termed "non-reflecting."

We can write the first-order unsteady equations (5.3) - (5.5), in matrix form, i.e.,

OfiP OfiP - -IOily OfiP

0--t- + A--_-r + Br _ + C--_- + Dfi v = 0 (5.56)

37



where

and

g __

tip = v0 ,

_0 0 0

0 % 0

0 0 V0
0 0 0

0 0 tSA 2

n ..._

0 0

0 0

0 fi-1

vo o
o wo

0 0

0 o

0 0

0 0

0 pA _

v_
0

,C-- 0
0

0

0

0

0

0

0

0

v_
0

o

0

0 0

0 p-1
0 0

0 0

0 0

0 0

0 0

v_ o
o v_
0 _A 2

0

0

0 ,

fi-z

(,5.57)

(5.5s)

D

0 0 0 0 0

r-'Vo 2 0 -2r-lVo 0 -(_r)-' A-_V_ _
0 r-lVo + dVo/dr 0 0 0

0 dV_/dr 0 0 0

0 FSr-X(V02+ A 2) 0 0 0

(_.59)

The components of the column vector tip are the primitive unsteady flow variables; those of

the matrices A, B, C and D are determined by the mean or steady background flow.

One-Dimensional Conditions

We assume that _ ,-_ O(e2), the unsteady entropy, circumferential velocity and pres-

sure are related by (5.50), and the circumferential variations (0/00) in the unsteady flow

properties are of O(d). Then, the components of the column vectors AOfiV/Or + Drip and

Br-10fiv/00 are at most of O(e2), and the system of equations (5.56) for the first-order
unsteady flow variables can be approximated by

ofip c °fi" =o. (5.60)
0--7-+ o_

Note that, although we have assumed _3, ,-_ O(e 2) in deriving (5.60), a convective equation

for v_ has been retained within this system of equations.

The matrix C can be diagonalized by employing a similarity transformation, i.e.,

S-tCS -- A (5.61)

where S contains the eigenvectors of C as its columns and A is a diagonal matrix whose

elements are the eigenvalues of C. Premultiplying (5.60) by S -1 and transforming to the
characteristic variables _ = S-lfi p results in

0a 0a
+ A_ = o (5.62)0-7

Equation (5.62) leads to an application of "one-dimensional" boundary conditions to the

three-dimensional unsteady problem. Such an application is effective if the unsteady distur-

bance waves travel along lines that are nearly parallel to the _-axis. The matrix S is used
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in transforming from characteristic to physical variables via the equation ti p = S_:. In the

present application S and its inverse, S -1, are given by

S

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 t_A -tSA

and S -1 =

The five eigenvalues of the matrix C are

100 0 0

010 0 0

001 0 0

0 0 0 I/2 (2#A) -t

0 o o i/2 -(2#A)

(5.6:3)

A1 =A2=A3=V_, A4=V_+A, and A5 =k_-.4. (5.64)

For subsonic flow, the first four eigenvalues of C are positive and the fifth is negative.

Therefore, at the inlet boundary, there are four waves entering the computational domain

which must be specified, and one wave exiting which is extrapolated from the interior. At

the downstream boundary, waves corresponding to the first four eigenvalues are exiting the

domain and are therefore extrapolated, while the wave corresponding to A5 must be specified.

For example, if it is assumed that there are no external excitations, then the conditions

cl =/:2 = c3 =/:4 = 0 are specified at the upstream boundary, and _?s = 0 is specified at the

downstream boundary. These conditions imply that

._=0, OT=0, 50=0, 5_=cs, and /5=-fSA_s, (5.65)

at the upstream boundary where the value of/:s is extrapolated from the interior of the

solution domain. At the downstream boundary

g = /:l , _r = C2 , V0 = Ca , 5_ = /:4 , and /_ = +pAc4 ,

where, here, the values of cl, c2, c3, and /:4 are extrapolated from the interior.

(5.66)

Two-Dimensional Conditions

The one-dimensional boundary conditions are useful if all unsteady disturbance waves

travel nearly in the positive or negative axial directions. Two-dimensional conditions which

allow for both axial and circumferential variations in the unsteady disturbances can be

determined by analyzing the coefficient matrices B and C in (5.56). The approach is de-

tailed in [Gil90], and its application to three-dimensional flow which yields "quasi-three-

dimensional" boundary conditions is discussed in [SG91].

In developing the two-dimensional far-field conditions, the equations of motion (5.56) are
approximated by

0ti p Otip C0fi p
0"--t--+ Br-I 0--O-+ 0( = 0 (5.67)

This approximation is equivalent to setting 5_ = 0 in the circumferential and axial momentum

equations in (5.4) and in the continuity equation (5.5), assuming that (5.50) holds, and

replacing the radial momentum equation in (5.4) by bS_/Dt =_ O. If we consider a wave-like
solution of the form

fiv(_,O,t) = uexp[x_ + i(mO + cot)] , (5.68)
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where )C, m and ,_ are constants, and substitute (5.68) into (5.67), we find that

[i_.,I + imr-_B + _C]u = 0, (5.69)

where I is the identity matrix. In general, w and m are specified, and X must be determined.

A right eigenvector u n of the system (5.69) is determined by solving the equation

[i_I + irnr-'B + xC]u R = 0 (5.70)

indicating that u n corresponds to the eigenvalue -iw of the matrix [imr-lB + ;kC]. Pre-

multiplying (5.70) by C -I yields

C -1 [i,;I + irnr-lB + xC]u R = 0 (5.71)

so that u R is also the right eigenvector of the matrix [iwC -I + imr-lC-1B] corresponding

to the eigenvalue -X. The perturbation vector fi can be expressed as a linear combination

rt 1, 2,..., 5, with eigenvalues -)O_, i.e.,of the right eigenvectors u_ , n -

tiP= exp[x  ] exp[i(mO+a;t)]. (,5.72)

Analogously, a left eigenvector u c of the matrix [irnr-tB + xC] corresponding to eigen-

value -i_ is defined by

uL[iwI + irnr-XB + xC] = 0, (5.73)

and a lefteigenvectorvL of the matrix i,_C-I+ irnr-IC-'B corresponding to the eigenvalue

-y is defined by

vLC-1[iwI + imr-IB + xC] = 0 (5.74)

R and LThe right and left eigenvectors corresponding to the eigenvalues X,_ are thus u,_ v_ =

L n 0 for rn :fl n, so premultiplyinguLc. It can be shown that the scalar product v m • u,_ =
C results in(.5.72) by v m

L tv an(v L u_)exp[xn_]exp[i(mO+wt)],n 1,2, 5 (5.75)

Nonreflecting boundary conditions are found by identifying which of the 5 modes correspond

to incoming waves at the boundaries, and specifying the constants a_ in (5.75) for those

waves.

For the two-dimensional system (5.69), the eigenvalues are found from the determinant

of the coefficient matrix, which yields

+ A2( m2r-2- X,_) = 0 (5.76)

This equation is a dispersion relation that relates the wave number of a given disturbance

to its frequency. Three of its roots are identical, and are given by [cf. (5.34)]

X1,2,a = -i(_z + mr-lV_)V_ -' = i_¢_ (5.77)
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indicating that the disturbances associated with these roots are convected by the mean flow

and that they do not decay with axial distance. The remaining two roots are found by

solving the quadratic in (5.76), which gives,

(A 2 _ )X4,s = i(_ + mr-1Ve)V_ =t=(A S t'_'2)dm (5.7s)

where

;A_ - _)dm = A_/iA2- _2)(._-1)2-;_ + "_-_)_- (,_.79)

These results become identical to those given in (5.54) if we replace mr -1 by _, and _,_ by

"_"_. The corresponding right eigenvectors are given by

{lj {0/{0}{0 1 0_= o u_= 0 _= (m_)-_; u_' '_ ' 4,5 -_

0 0 1

0 0 0

L
where 7 = w + rnr-iVe • The left eigenvectors v_ are given by

0

0

p-1 _4,5

(s.so)

v_ = {_ 0 o 0 o}

v_ = {o _ o o o}

v_ = {o 0 (_y_)-_r_ _ O_)-'}
and

v_,_ = {o o _(_r)-' -_-_(ZV_)-I (pA)-2V_ -1 [(d 2- V_2)X4,5- i"/_/_] } .

(5.si)

The first eigenvector is associated with an entropic disturbance, the second and third with

vortical disturbances, and the fourth and fifth with downstream and upstream moving acous-

tic disturbances.

Assuming that there are no specified external disturbances entering the domain, it is

necessary to specify

L 6p 0, n 5 (5.82)VnL • tip = 0, n = 1,2,3,4 and v,_ - = =

at the upstream boundary and downstream boundaries, respectively.

Alternative Techniques

Both the one-dimensional and the two-dimensional far field conditions presented above

provide only approximate representations of the three-dimensional, unsteady flow behavior

in the far field of a blade row operating within a cylindrical duct. Since the full system of

equations contains variable coefficients, an extension of these techniques to three dimensional

flows is not readily apparent. One alternative approach used in flutter calculations is to

stretch the computational grid in the axial direction so as to dissipate acoustic response waves

that travel away from the blade row and thereby prevent the occurrence of any reflected
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waves. This approachcan not be used in forced vibration or noisegenerationstudies, in
which external aerodynamicexcitations and far-field acousticresponsesmust be accurately
modeled.

Current aeroacousticanalysesmakeuseof the three-dimensionalanalytic solutionsavail-
able for uniform axial meanflows. This hasthe benefit of accountingfor the radial behavior
of acoustic disturbances,but ignores the effectsof mean swirl. As such, it is only useful
in special situations, e.g., to representthe unsteadyflow aheadof the first blade row of a
machine. The techniquegenerallyemployedin moderncomputational simulations is to use
the analytic solutions available for two-dimensionalflows in a strip-theory fashion. This
quasi-three-dimensionalapproach[SG91]incorporatesthe effectsof mean swirl, but it does
not properly accountfor radial variations in the unsteadyflow quantities. An examination
of radial mode behavior in uniform, axial, meanflows (e.g., seeFigure 3) indicates that this
approachmay not be very usefulfor aeroacousticresponsestudies.

Another approach that has been tried for two-dimensional flows is due to Hall and
Clark [HC93a],wherein the fluid dynamic field equationsare first discretizedand an eigen-
valueanalysis is performedon the resulting set of discretizedequations.This method com-

putes the eigenvalues and eigenvectors of the discretized system, and any incoming distur-

bances are then specified at the boundaries. Since the orders of the matrices involved in this

type of analysis are quite large, the method is computationally intensive. The technique also

requires constant coefficient matrices, and thus it contains the same difficulties for nonuni-

form mean flows as the analytical and characteristic-based methods described herein.

One potentially promising approach to finding useful three-dimensional solutions for far-

field unsteady disturbances is to develop reliable methods for solving the ordinary differential

equation (5.42) for the radial behavior of the unsteady pressure in a nonuniform mean flow.

By integrating this equation numerically, subject to boundary conditions at the duct wails.

both the eigenvalues and the radial mode shapes can be determined. In principle, the

resulting far-field solutions can be coupled to an interior numerical solution to complete the

description of the unsteady flow field.
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6. Numerical Model

The governing equations for the nonlinear three-dimensional unsteady flow problem were

formulated in §3; those for the three-dimensional steady and linearized unsteady flow prob-

lems, in §4. In this Section, approximate representations of these equations will be developed

using both finite difference and finite volume discretizations. Also, the particular finite vol-

ume model used in the development of the NPHASE and LINFLUX codes will be described.

The numerical model for solving the three-dimensional unsteady, steady and linearized

unsteady flow problems is based on the nonlinear, time-marching, Euler analysis originally

developed by Whitfield, Janus and Simpson [WJS88], and subsequently extended for turbo-

machinery unsteady aerodynamic applications by Huff, Swafford and Reddy [HSR91]. The

latter authors provided an implicit, multi-block, finite-volume analysis and computer code,

called NPHASE, for predicting nonlinear, two-dimensional, unsteady flows through vibrating

cascades. This analysis has been shown to be robust, with a proven capability to predict

transonic flows with sharp shock definitions, and accurate, allowing second and third-order

spatial discretizations. A detailed description of the latest version of NPHASE can be found

in [SLH+94] and the references cited therein. Under the present effort the NPHASE code

has been modified to take advantage of the efficiencies inherent in a linearized unsteady

aerodynamic formulation. The linearized version of NPHASE is called LINFLUX.

6.1 Discretization of Physical Domain

In order to develop a discrete approximation to the governing equations, the physical

domain must first be described as a set of discrete points, that form a computational mesh

or grid. For the NPHASE and LINFLUX analyses, the computational mesh is a sheared

H-mesh, typically generated using the IGB grid generation package of [BH92]. This struc-

tured mesh defines a curvilinear coordinate system, the boundaries of which lie along the

boundaries of the physical domain, such that there is a one-to-one transformation from

points in the physical domain, (x), to points in the computational domain, (a). Such a

transformation allows clustering of grid points in regions where flow variables undergo high

gradients and accounts for any grid point motion. A time-dependent coordinate transfor-

mation, (x, t) --, (o_, t), from the physical domain, in which the grid deforms with the blade

motion, to the computational domain, in which the grid is fixed, can be applied to simplify

the implementation of numerical differencing and boundary conditions. The numerical grid

is usually defined to be uniform, orthogonal and stationary in computational space for con-

venience in defining finite-difference approximations. This type of coordinate transformation

is described by Anderson, et al. [ATP84] and illustrated in Figures 4a and 4c.

Finite-Difference Coordinate Transformation Metrics

For finite difference approximations, expressed in the computational domain, we consider

a transformation (X ---* ,,4) of the governing equations from physical (x, t) to computational

(c_, t c) coordinates. Note that time is defined to be the same in the two coordinate systems,

but has been given separate symbols, t and t c, to avoid confusion. For arbitrary physical

domains the transformation from physical to computational coordinates must, in general,
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be definednumerically, and is typically doneby solving a set of elliptic partial differential

equations, as described by Thompson, et al. [TTM77], for (x,t) in terms of (a, t:). This

inverse transformation, A _ X, contains all the information needed to describe the location

of the grid points in physical space and to determine the metrics Oxk/Ot c and Oxk/Oaj, j, k =

i. 2, 3. However, the metrics of the forward transformation, X ---, .A, appear explicitly when

the governing equations are written in terms of computational coordinates; therefore, the

values of the forward metrics Oai/Ot and Oaj/Oxk must also be determined.

For a formulation based on the differential form of the governing equations the forward

metrics are obtained by considering total differentials in the two (physical and computational)

coordinate systems, i.e.,

dX =

dt

I
I

I=
dx2 1

[
!

dx3 I
.J

1 0 0 0

C_Zl OXl OXI C_:r.1

Ot--2 001 -On2 003

Ox2 Ox_ Oz2 Ox2

Ot _ Oal On2 On3

dtc -

doL 1

d_2

d_3

= I_'d,,4 (6.1)

and

dA=

dt _ ] ] 1 0 0 0

I
detl I I Ot Oxl c3x2 Ox3

I= I
da2 I I 0a2 0a2 0a2 0a2

I Ot Oxl Ox_ Ox3

I
das ] I Oa3 Oa3 Oa3 Oa3

a : Ot Ozl Ox_ Ozz

dt

dxl

dx2

dx3

= J=_dX (6.2)

where J=_ and I _= are the matrices of the forward, (x, t) _ (a, t c) and the inverse, (a, t c)

(x, t), transformations, respectively. The two matrices J*° and I _ are inverses of each other,

i.e.,

J=_ = (I'_=) -_ (6.3)

Equation (6.3) provides the needed relationships between the forward, Oaj/Oxk, and inverse,

Oxk/Oaj, metrics. The Jacobians J_'_ = det(J =_) = (I_=)-_ and I °_ = det(I _=) = (J=_)-_

of the forward and inverse transformations are referred to as metric Jacobians.

Finite Volume Geometry

For a finite volume discretization, based on the integral forms of the governing field

equations, the geometries 0f the mesh cells in physical space are required. The mesh points

define the eight vertices of the non-overlapping hexahedral cells which fill the physical solu-

tion domain. Cell faces are surfaces of constant computational coordinate, so that each cell
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is boundedby the six surfaces,say ch = I, I - 1 and o_2 = J, d - 1 and a3 = K, K - 1. The

connectivity of the cells is thus known from the computational coordinates, with neighboring

cells given by changing a computational coordinate by one.

The geometric properties of the cell are computed from the locations of the cell vertices.

For example, the area vector of a cell face is given by the cross product of the directed line

segments that cross the cell face from "lower left" to "upper right" and from "lower right" to

"upper left". Let subscripts correspond to mesh indices, then the area vector of a constant

al face is
1

hi -'- _ (XI,J, tx*- X/',J-1,K-1) X (X/J-l,/,,"- XI,J,K-1) , (6.4)

and similar expressions exist for constant a2 faces, A j, and constant a3 faces, AK. The

components of the area vectors can be treated as a matrix, with Ajk being the area of

the constant aj face projected in the xk direction. These area vectors are illustrated for a

two-dimensional geometry in the accompanying sketch.

C_1=1

O_2= g

al ---- I - 1 _ "/

- _=d-1

Two-dimensional cell with face area vectors.

The cell volume can be computed from the six face area vectors and the location of the

mid-points of the faces. Let the mid-point of a constant al = I face be xZ,_d, so that the

distance between mid-points across the cell in the al direction is

',_XI = Xl,mid -- X/-1,mid (6.5)

The cell volume is then

1 [(AI + AI_1) • Ax_ + (Aj + A j-l) • Axj + (AK + AK-_) • AXE] (6.6)a=g

which is equivalent to adding the volumes of the pentahedrons defined by each cell face and

the center point of the cell.
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6.2 Nonlinear Analysis

The equations that describe nonlinear, inviscid, unsteady flow through a rotating blade

row have been given in §3 of this report. For cascades in which the blades are vibrating, the

points, x, move in physical space, i.e., x = _ + 7_(:_, t) is the instantaneous position of a

moving field point having its reference position at :_. Currently, two methods are used tbr de-

termining the unsteady displacement field, "R(:L t). The NPHASE code originally contained

the grid motion formulation of Huff [Huf87], which is based on an algebraic description. As

part of the present effort a grid motion formulation, based on a displacement field that is

determined as a solution of Laplace's equation subject to Dirichlet boundary conditions at

the blade surfaces and in the far field, was incorporated into NPHASE. The latter formula-

tion, which is described in §6.3, is more robust than the algebraic formulation in that larger

amplitudes of blade motion can be considered without grid line intersections occurring.

Finite Difference Approximation

Since the mesh is time dependent, a time-dependent coordinate transformation, (x, t)

(c_, t_), from the deforming mesh in the physical domain to the fixed mesh in the computa-

tional domain is applied. The Euler governing equations (3.37) can be written in terms of

the computational coordinates c_ and t ¢ by applying the chain rule of partial differentiation,

i.e.,
i::) 0 Oaj 0_ 0 Oa i 0

O-'t = Ot--'-g + Ot Oaj and Oxk - Ox_:Oaj ' (6.7)

leading to equations of the form

) 0aj 0
0 0_j 0 u+----_'k=g. (6.s)

_ + Ot _j Oz_ Oc_j

Equation (6.8) can be written in strong conservation form by multiplying all terms by

(d,_)-i = i_ and making use of the tensor identities

o_--_\ ox_] =0 and Ot---r+g_3\ OrJ =0 (6.93

After applying the necessary algebra, we find that

where

o 0 __0_. _ (6._0)
Ot _ + Oaj 3 =

0 = lo'O, _, = Io_(°_JO o_j._ _ : io._
\ Ot + _F_), and S = . (6.11)
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Finite Volume Approzimation

In order to apply a finite volume discretization, the Euler governing equations (3.37) must

be written in terms of the cell geometry. For example, in three dimensions the cell geometry

is defined by 0, the cell volume, v_j, the volume swept out per unit time by the constant aj

face as the cell interface moves, and Ajk, the area of the constant o_j face projected in the xk

direction. Thus, we can write the finite volume spatial discretization of equation (:3.:37) as

_-_ =
C[

(6.12)

where

= _)U , _'.i = --Ojf.J + AjkF_ , and g = rig (6.13)

In equation (6.13) the vectors U and S represent averages over the cell volume of the con-

served quantities and the source terms, respectively. In equation (6.12) the vector _'j is the

flux across a constant c_j face; the symbol 5j represents the difference across adjacent cell

interfaces, i.e. 5j( ) = ( )j+1/2 - ( )j-i�2; and 1_ is referred to as the residual. The

repeated j index implies summation over all computational coordinate directions, so that

the term 5j_'j is the net flux through the cell. Since the grid deforms as the blades move,

the cell geometry terms, tg, v_j and Ajk, are time dependent.

The finite difference and finite volume discretizations are seen to be related if the transfor-

mation metrics of the finite difference discretization are interpreted in terms of cell geometry.

For example, in three dimensions t9 is analogous to I _, v_j is analogous to -l_'_'Oc_j/Ot, and

Aj_ is analogous to IaZoqaj/Oxk. This interpretation shows the similarity between the finite

difference definitions in equation (6.11) and the finite volume definitions in equation (6.1:3).

In the NPHASE analysis [HSR91], the fluxes at the cell interfaces are computed from

the values of the state vector on either side of the interface using the approximate one-

dimensional Riemann solver developed by Roe JR@e81]. The interfacial flux is computed by

multiplying the difference in the state vector across the interface by a flux Jacobian matrix

representing the local interface conditions. The eigenvalues of this flux Jacobian matrix are

used to determine which characteristic modes axe included, thus controlling the direction

of spatial differencing. This technique is known as flux difference splitting and results in a

first-order accurate spatial differencing scheme. Higher order accuracy is obtained by using

a corrective flux, which is limited by a TVD scheme [OC84] to control dispersive errors. This

flux differencing scheme is described in §6.4 for the steady and tinearized unsteady fluxes.

The NPHASE time differencing is based on the three level Beam-Warming [WB77] rep-

resentation of the time derivative. Thus, if we let the superscript n refer to the current or

nth time level, we can write

_+' -l_l '_= ,._%U - l+q2 _ , (6.14)

where @ and • are constants that define the relative weighting of the time levels. For

example, setting 13 = 1 and t9 = 1/2 results in the second-order accurate, implicit, three
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point backwarddifferenceschemecurrently usedin the NPHASE code.The time derivatives
on the right hand side of Equation (6.14) are expressedin terms of the residual of the
governingequation, as definedby Equation (6.12). Collecting terms and substituting for 0
and qJ results in

=n =n-I

3AU - AU :_+i
= -R (6.15)

2,Xt c

where the differences on the left hand side involve both the state vector and the ceil volume.

Separating the time dependence of the state vector and the cell volume results in

c °'(-+'' -- + 30 +1. Or - + - + = 0.

]_'_+1(1_/_+1) is a nonlinear function of lJ '_+1.Equation (6.16) is nonlinear, since R =

Therefore, it is solved using a Newton iteration procedure in which the residual equation

is linearized using flux vector splitting and the flux terms are approximately factored to

facilitate the numerical solution of the resulting linear, block-tridiagonal, system of equa-

tions. Symmetric Gauss-Seidel sub-iterations (cf. §6.4) are used to reduce the approximate

factorization error.

The field equation (6.12) must be solved subject to flow tangency conditions (3.27) and

(:3.28) at the blade surfaces and the duct walls, and far-field conditions at the inflow and

outflow boundaries. The far-field conditions must permit the prescription of external un-

steady aerodynamic excitations, and allow unsteady disturbance waves coming from within

the solution domain to pass through the inflow and outflow boundaries without reflection.

The flow tangency condition in the original NPHASE analysis was based on characteristic

theory, and one phantom cell was used in its numerical implementation. This condition was

changed to a two phantom-cell, pressure-symmetry, condition, which lowers the spurious

numerical entropy and vorticity that is generated at a blade surface. The current NPHASE,

multi-block, nonlinear analysis uses the solution from the previous time step when computing

across a block interface, thus introducing a time lag at the periodic block boundaries. In

the original NPHASE analysis the computational mesh was stretched in the axial direction

to dissipate outgoing waves. As part of the current effort, far-field conditions based on one-

dimensional characteristic theory, cf. equation (5.60), and on approximate two-dimensional

characteristic theory [Gil90], were implemented. These conditions allow for the prescription

of incoming unsteady excitations, but result in reflections of outgoing disturbances, if the

latter have significant variation in the circumferential direction. As a result we used the

stretched mesh capability for the NPHASE blade vibration calculations reported in §7.

6.3 The Steady and Linearized Unsteady Analyses

The field equations that govern the nonlinear steady and the first-harmonic unsteady

flows through a blade row rotating at constant angular velocity D have been given in §4,

as equations (4.46) and (4.47), respectively. These equations have been written in strong

conservation form in which terms that depend upon the blade motion, i.e., upon D and/or R

are regarded as source terms. The dependent unsteady flow variables u and the displacement

field R are assumed to be of O(e) and r is a pseudo time variable. The displacement field
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must be prescribedthroughout the solution domain, i.e., a single,extended, blade-passage
regionof finite extent in the axial direction. In addition, the steadyand linearizedunsteady
field equations must be solved subject to appropriate conditions at the blade surfaces, the

duct walls, the blade-to-blade periodic boundaries, and the inflow and outflow boundaries

of the computational domain.

Deforming Grids and the Dual Coordinate Transformation

The equations that describe the steady and linearized unsteady flows have been written

in terms of the independent variables 2 and t, where R is the reference or steady state

position of a moving field point. This description is based on an independent variable

transformation suggested by Hall and Clark [HC93a] and by Giles [Gi193]. It allows linearized

unsteady flow solutions to be determined on a fixed domain or grid in reference physical

space (cf. Figure 4b) without introducing difficult extrapolation terms in the blade surface

conditions. The transformation from the instantaneous spatial coordinates, x(:_, t) to the

stationary reference spatial coordinates, "2, contains the information that describes the blade

motion and the corresponding grid deformation. The time-dependent locations of the grid

points, i.e., x(2, t) = :/+ 7_('_, t), define an elastically deforming grid in physical space (see

Figure 4a) which, if R - 0, overlays the fixed undeformed grid (Figure 4b) used for the mean

flow solution. The deforming grid moves in physical space in response to the unsteady blade

motion; whereas the reference grid is stationary.

Because of the transformation (x, t) --* (2, t), the geometric terms required to define the

spatial discretization are time independent. For a finite volume discretization, this means

that the mean cell volume and face areas are used in computing the steady and linearized

unsteady flow. For a finite difference discretization, the coordinate transformation from the

reference physical coordinates to computational coordinates, i.e., _ --+ c_, is independent of

time. This dual coordinate transformation, (x, t) --, (:_, t) and :_ ---+a, results in governing

equations for the steady and linearized unsteady flows that are based on the same grid

geometry, with source terms, resulting from the grid deformation, appearing in the linearized

unsteady equation.

The field (or grid) point displacement "R.(z_, t)= Re{R(_)exp(iwt)} must be prescribed.

For unsteady flows through vibrating blade rows the vector "R should be defined so that

the physical solution domain conforms to the motions of the blades, i.e., a field point on a

moving blade surface should have the same :_-coordinate for all time, and this coordinate

corresponds to the physical mean or steady state position of the point in the rotating frame

of reference. Throughout the remainder of the computational domain, 7_ can be defined in

whatever manner is most convenient for implementing the flow boundary conditions.

The blade motion and, therefore, the deformation field, are harmonic in time, so the

instantaneous position x of a field point in physical space is given by

x = Y¢+ Re{R(2)exp(icot)} . (6.17)

The deformation field at the grid boundaries is defined in a manner that facilitates imple-

mentation of the flow boundary conditions. At the blade surfaces, ._ E B,_, we set

R(2) - RB.(:_), (6.18)
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and. since the duct walls are rigid, we set

ROt) - o, at e = ro • (6.19)

As a convenience in imposing the inflow and outflow boundary conditions, the deformation

field is assumed to vanish at the far field boundaries, i.e.,

R(2)-0 for 4X(_:, (6.20)

where 4- and 4+ are the axial coordinates of planes parallel to the blade row that form

the inflow and outflow boundaries of the computational domain. Also, as a convenience

in imposing the phase-lagged, periodic, boundary conditions, the deformation field R(:_) is

assumed to satisfy the condition

R(f, 0 + 2r,/N, 4) =- R(f,O,_)exp(ino')

The displacement or deformation field in the interior of the computational domain can be

chosen arbitrarily, and is defined here by solving Laplace's equation to obtain the smoothest

possible distribution within the field and to place the maximum displacements on the bound-

aries. Thus to prescribe the deformation field R(_) we require a solution of the equation

= o (6.22)

over a single, extended, blade-passage region, subject to the Dirichlet boundary conditions

(6.18)-(6.20) and the phase-lagged periodicity condition (6.21).

Finite Difference Approzimation

To write the steady and linearized unsteady equations in terms of computational co-

ordinates we employ a time-independent, spatial coordinate transformation, 2 _ or, from

reference physical space to computational space. Because the unsteady grid deformation

was absorbed into the definition of the x ¢:_ _ transformation, there is no unsteadiness in

the 2 _ a transformation. Also, the pseudo time variable r is defined to be the same in

all coordinate systems. The steady (4.46) and first-harmonic unsteady (4.47) equations can

be written in terms of the computational coordinates by applying the chain rule for the

stationary 2 _ o_ transformation, i.e.,

0 Oaj 0
- (6.23)

O5:k 05:k Oaj '

and manipulating the resulting expressions into strong conservation form by using the tensor

identity

Oa---_j\ O_] = O. (6.24)

where I _e is the Jacobian of the inverse transformation c_ _ _.

After performing the required algebra we find that the zeroth-order or mean flow equation

becomes

O_U a 0_'--A = _ (6.25)+ Oaj
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where

i _ ,zcgc_j F

The perturbation equation is

and S=I_eS. (6.26)

Oa + i_ + 0a---_- O-Uu = 0c_j

+ R)U + R)S + (R. Vx)S],

(6.27)

where

fi = I_¢u, _.j = i_eOa s - i_Oa j OFk
b-_kfk = 0_k 0U u '

and (6.28)

i_eOaJ Fm + (Vs. R)Fk'
f_ = O_2k -i_R,:_ U 0_

The right hand side of equation (6.27) contains source terms, due to the grid deformation,

which depend upon the specified deformation field and the mean flow solution.

Finite Volume Approzimation

In order to apply a finite volume discretization, the integral forms of the governing

equations for the steady (4.48) and the linearized unsteady (4.49) flows must be written

in terms of the cell geometry. For example, in three dimensions the mean cell geometry

is defined by _, the mean cell volume and ,4jk, the mean area of the constant aj cell face

projected in the _k direction. Thus, we can write the finite volume spatial discretization of

equation (4.48) as

Of-J I' = -6j:Fj + g = -I51. (6.29)

where

(J=_U, Fj=AjkFk, and S=0S (6.30)

Here, the vectors U and S represent averages of the state and source-term vectors, respec-

tively, over the mean cell volume and R is the residual, which should not be confused with

the complex amplitude (R) of the grid-point displacement field. The vector Fj is the flux

across a constant aj face, and the symbol 6j represents the difference across adjacent cell

interfaces, i.e. 6j( ) = ( )j+l/2- ( )j-l/2. The repeated j index implies summation over

all computational coordinate directions, so that the term _j_'j is the net flux through the

cell, which is balanced by the source term once the pseudo-time integration converges.

In addition to the metrics 0 and/]jk, that describe the mean cell geometry, the pertur-

bation equation contains terms that depend upon the displacement R, which must also be

interpreted in terms of cell geometry. For example, in three dimensions &0 ,_ 0 - z) is the

instantaneous cell dilatation, Oj = icoAjkR,_ is the volume swept out by the constant a 5 face
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per unit time, and the aj_ _ ,41_ - A3k are the perturbations in the cell-face area vectors.

Thus we can write (4.49) as

(6.31)

where
- OFk

fi = Ju , fj = Ajkfk = Ajk-_u ,and t]=-0jU+ajkFk.

Written in terms of a residual, equation (6.31) becomes

(6.32)

Off c_ aS0--7 = -iwfi - ajtj + -_-_fi - i_( Ae)U - 6jt_ + ( AO)S + O(R . V_)S = -_ (6.33)

The flux term, fj, on the left hand side of (6.31) is computed using flux difference splitting.

The terms on the right hand side of equation (6.31) are grid-deformation, source terms, and

are determined by the mean-flow state vector, U, and the deformation field, R.

The pseudo-time differencing is accomplished by setting O = 1 and _ = 0 in equa-

tion (6.14), resulting in a first-order accurate, implicit, two point, backward, difference

scheme. The pseudo-time difference expressions for the steady and linearized unsteady equa-

tions are

.Un4 -1 _ U n un-+.l _ u n

/'_On _ -t n+l and AW_ 9 _+1 (6.34)
&r Ar Ar &r '

respectively, where the mean cell volume is independent of the pseudo time. The steady

equation is nonlinear because l_ '_+1 is a nonlinear function of U _+1. Newton iterations are

used to solve this nonlinear equation for the residual in terms of the state vector. The residual

equation is linearized using flux vector splitting, and then approximately factored to facilitate

the numerical solution of the resulting linear block tridiagonal equations. Symmetric Gauss-

Seidel sub-iterations are used to reduce the approximate factorization error. This iteration

procedure is described in §6.4.

The steady field equation (6.29) must be solved subject to flow tangency conditions (4.8)

at the blade surfaces and duct wMls, blade-to-blade periodicity conditions (4.7) and far-field

conditions at the inflow and outflow boundaries. Similarly, the unsteady field equation (6.31)

must be solved subject to the flow tangency conditions (4.32) and (4.33), the phase-lagged

periodicity conditions (4.8) and far-field conditions that allow the prescription of unsteady

excitations and the passage of unsteady disturbance waves coming from within the solution

domain through the inflow and outflow boundaries without reflection.

The flow tangency condition, now used in the NPHASE analysis, is based on charac-

teristic theory, and a two-phantom-cell, pressure-symmetry implementation, which lowers

the spurious numerical entropy and vorticity generated at the blade surfaces. The steady

far-field conditions are based on one-dimensional characteristic theory, whereas the unsteady

far-field conditions are based on the analytic two-dimensional, single-frequency conditions

described in §5.3 and 5.4.
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6.4 Discretization Scheme

In the nonlinear unsteady analyses of [WJSS8J and [HSR91] a cell-centered finite-volume

method is used to spatially discretize the governing equations. The residuals due to net

fluxes at the cell interfaces are obtained by flux-difference splitting, obtaining an approxi-

mate Riemann solution with Roe averaged variables [RoeS1]. A corrective flux is used to

obtain higher order spatial accuracy. This particular numerical approach offers the ability

to capture discontinuities within a few mesh points without producing spurious non-physical
oscillations.

Evaluation of Steady and Linearized Unsteady Flux Terms

The flux vectors associated with changes in the steady and unsteady state variables, i.e..

Fj and fj in equations (6.29) and (6.31), respectively, are evaluated using a flux splitting

procedure, which is based on fluxes normal to the cell faces. The inviscid flux vectors, Fk,

are homogeneous in U of degree one, i.e., Fk = (0Fk/0U)U. Thus, in computational space,

the flux vectors for the steady and first-harmonic unsteady flows [cf. (6.30) and (6.29)] can
be written as

and

fi_ 0Fk = 0_'JU,
Pj = AjkFk = _k-g-ffU 0U (6.35)

- 0Fk 0_'j
{'j = fi, jkfk = Ajk--:_u = -_-_-u, (6.36)

so the functional relations _'j(U) and fj(u) are identical. Equations (6.35) and (6.36) relate

the transformed flux vectors Fj and fj to the cell face geometries, Ajk, and the dependent-

variable state vectors, U and u, in reference physical space. Both the steady and unsteady

fluxes are computed by using flux difference splitting to solve an approximate Riemann

problem, as outlined below.

The flux splitting is based on a similarity transformation of the computational flux Ja-

cobian matrix/:)_'j/0U. We set

0_-'__.._L/=(TAT-1)j (6.37)
0U

where T is the matrix of right eigenvectors, A is the diagonal matrix of eigenvalues, and "1"-1

is the matrix of left eigenvectors, of the flux Jacobian matrix, 0_'3/0U. From equation (6.35)

it can be seen that this transformation is determined by the -_-jk and the physical flux

Jacobian matrix (0Fk/0U). The flux Jacobian matrix is split into the sum of right and left

traveling modes, i.e.,

0_']: _ (TACT_l) j (6.38)
0U

where A + and A- are diagonal matrices containing the positive (+) and negative (-) eigen-

values, respectively. Positive eigenvalues correspond to right traveling disturbances and

negative eigenvalues correspond to left traveling disturbances. The sign of the wave speed
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(i.e., A + or A-) determines the direction in which spatial differencing is applied. Thus, the

flux vectors can split according to

ou u = \ ou + _] u (6.3.9)

with the (+) terms using information from the negative coordinate direction and the (-)

terms using information from the positive coordinate direction.

A cell-centered finite-volume discretization requires that the fluxes at the cell surfaces

be computed in terms of values of the state vector in the cell volumes. One method of

determining these fluxes is to solve an approximate Riemann problem. Roe [RoeS1] solved

this problem by defining a flux Jacobian matrix representing average interface conditions.

Let the values of the state vector on opposite sides of a cell interface be denoted by the

subscripts L and R, and the value of the flux vector at the interface by the subscript I. An

intermediate state vector, URoe, based on UL and UR is defined using the following relations

v_v_ + _R and E_._oe= v_e_.L + ,/_e_.R
_o_ = ,/_c_R, and Vao¢= v_ + v_ ' _ + v_

(6.40)
The flux at the interface is constructed from the flux in the cell on either side of the interface,

plus the flux due to waves approaching the interface due to the jump in the state vector across

the interface.

\'v_ have chosen to evaluate the flux vectors, _' and f, based on U = UL and the flux

Jacobian matrices based on left traveling disturbances. Thus, we set

and

( )_'z = _'(uL) + O-ffv--VR°o (uR - uL),
(6.41)

(I)0F (uR - UL) , (6.42)
t_ = t(uL) + 8-ff v=vR°,

where the disturbances with negative wave speed have been arbitrarily chosen to construct

the fluxes, _'_ and fl, at the interface, I. The fluxes could have been constructed from the

disturbances at positive wave speeds, or an average of the disturbances traveling at positive

and negative wave speeds.

An alternative method of flux splitting is the flux vector splitting proposed by Steger

and Warming [SW81]. This method is used in the approximate factorization of the time

integration scheme. As in flux difference splitting an eigenvalue decomposition of the flux

Jacobian matrix is used to distinguish between left and right traveling disturbances. The

interfacial flux is based on values of the state vector on either side of the interface, split

according to the sign of the wave speed, i.e.,

(6.43)(o.) -0_' UL + _-_ uR
_'f = 0"U U=UL U=UR

This flux formulation, as written, results in a first order spatially accurate scheme, but it is

only used in the approximate factorization, and does not appear in the converged solution.

54



Spatial Differencing and Corrective Fluxes

Once the fluxes have been computed, they are spatially differenced to compute the net

flux through the control volume. The difference expression is

3

where j corresponds to the computational coordinate direction, and fractional grid indices in-

dicate cell interfaces. This difference approximation is first-order accurate if the flux is based

only on information from adjacent cells, but higher order spatial accuracy can be achieved

by adding a corrective flux. The corrective flux brings in information from additional neigh-

boring cells, but requires the use of a flux limiter to control dispersive errors. Various flux

limiting schemes exist, and the choice between them is not clear. The NPHASE code cur-

rently supports min-mod [OC84], Superbee [Roe85], and Van Leer flux limiters [VL74], with

Van Leer being preferred.

In the present implementation flux limiters are used in the steady analysis, but not in

the linearized unsteady analysis. The limiters used in the steady analysis are activated by

changes of sign in the jumps in characteristic variables at adjacent interfaces, such as occur

at shocks and at stagnation points. The corrected steady flux is given by

(uj+l - uj) + + - (6.45)= +

where the limited jumps in the characteristic variables are

o "+ = L(o'+_½,o'++½) and o'- = L(o'j-+,..,o': 3)] (6.46)2+_ '

and the jumps in the characteristic variables at the j - _ cell interface are given by

o'_:_._ = A±T -' (Uj___+½ - Uj____.) 6.47)

The matrices T and A in (6.47) are computed based on Roe averaged variables, and the

function L in (6.46) is a generic limiting function. For example, the Van Leer limiter can be

expressed as

a_' + _r_ ' (6.48)

where the superscript n refers to the nth component of the column vector.

No flux limiter is used for the perturbation fluxes, so the corrective flux is comprised

of left traveling waves at the upstream interface of the adjacent upstream cell and right

traveling waves at the downstream interface of the adjacent downstream cell. These waves

at adjacent cell interfaces are approximated using the Roe averaged matrix at the current

interface. Thus, the corrected perturbation flux is given by

( )-(u +l - uj)
fJ J+7

(6.49)
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This expression results in second order spatial accuracy.

Evaluation of Grid Deformation Source Terms

In the linearized unsteady analysis source terms arise from the grid deformation because

the governing equations are expressed in reference physical coordinates. These source terms

are due to changes in cell volume, cell face areas, and cell radial location. The volume source

term is given by -ia:(A0)U + (AT))S, where Av_ represents the first order, in R, perturbation

in cell volume, as determined by equation (6.6). The cell, face-area, source term, f_, accounts

for the mean flux through the moving cell faces, and is defined in equation (6.:32). The

perturbations in projected face area, ajk, are computed using first order expansions in R

for the area of a cell face, as defined in equation (6.4). The swept volume is given by

_)j = i,_fitikR,,_, where the displacement R is taken to be the average over a cell face. The

remaining grid deformation source term [cf. (4.as)] accounts for changes in radial location.

In finite volume form this term is 0(R-_'x)S where R is based on the average displacement
of the cell vertices.

Pseudo- Time Integration

Solutions to the nonlinear steady and linearized unsteady flow problems are obtained

bv integrating in pseudo time until a converged steady state solutions are determined.

The pseudo-time integrations are performed using an implicit, approximately-factored

method [VW93]. For the steady analysis, the implicit pseudo-time discretization results in a

nonlinear equation that is solved using Newton iteration. For both the steady and linearized

unsteady analyses, the approximate factorization error is reduced using Gauss-Seidel sub

iterations, as explained below. The implicit time discretization requires evaluations of flux

Jacobian matrices. These are calculated analytically based on Steger-Warming flux-vector

splitting, as opposed to a more computationally expensive numerical calculation of these

matrices, based on Roe-averaged flux-difference splitting. A simplification in the linearized

unsteady analysis resulting from the transformation to reference physicM coordinates is that

cell geometric quantities do not vary with time, even though the computational domain

deforms with time in physical space.

The particular time discretization scheme chosen for the nonlinear steady analysis, cf. (6.34),

is expressed as

L(U = (U - U )/6 + R TM = 0, (6.50)

where L is nonlinear in U '_+l, since R,_+I is a nonlinear function of U '_+1, and

ArO Ar

0- (1 + = 7 ' (6.51)

since the constants O = 1 and _ = 0 were chosen to define the time discretization.

Equation (6.50) is solved using Newton iteration. Let the superscript p denote the Newton

iteration index, then the iteration formula is

(0L I ) (UV - UP-l) = -L(UV-1) , (6.52)O'U u=up_ _
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whereU° = U" and AU p = U p - U p-1 is the Newton update to the state vector. Once the

Newton iteration converges, AUP = 0 and U p = U n+l. The flux terms on the left hand side

of equation (6.52) are computed using flux vector splitting, for convenience in defining the

approximate factorization, while the flux terms on the right hand side are evaluated with

flux difference splitting, corrected for higher order spatial accuracy.

The Newton iteration matrix in (6.52) is given by

0L _ _)_1i + OR
ou _-U ' (6.5:3)

where the residual, R, is defined in (6.29). The change in the residual due to the Newton

update thus depends upon a change in the net flux and a change in the source term. The

change in the net flux due to the Newton update is

, (6.54/
and is evaluated using flux vector splitting. To apply flux vector splitting, the geometric

terms defining 0_'/0U must be evaluated at the proper location. For example, consider the

flux crossing the j - 1/2 and j + 1/2 cell faces, which are the boundaries of the cell in the

aj computational coordinate direction. When evaluating flux Jacobians using flux vector

splitting, let the first subscript indicate the cell index and the second subscript indicate the

interface index. The flux in the aj direction as evaluated using (6.54) is

(,',-r)+ -0U j,j+l/2) 0U g;+1)]
(6.55)

- +

_ 0_'_-_

which is based on the flux vector splitting given in (6.43). The Newton iteration formula is

thus

r0 'y' I 0g,-'
0-t5U p + 5j [_AU ] OU AUP = -0-'(UP-' - U")- 15,.p-1 , (6.56)

where the repeated j index for the flux term implies summation over all coordinate directions.

Once the Newton iteration converges, Equation (6.50) is satisfied.

For the linearized unsteady analysis, the particular time discretization scheme chosen,

cf. (6.34), can be expressed in the form

L(u,_+l) = O-l(un+l _ u n) .11_ _n+l = O-1/_ku + _n+l = 0 (6..57)

where Au is the pseudo-time update, and L is linear, since F _+_ is a linear function of u TM.

Equation (6.57) is solved by using a Taylor series expansion in pseudo time for the residual.

i.e.,

_+' = _ + _ - u_) + .... (6.ss

57



This can be combinedwith (6.57) to obtain

( 0,)0-1I + _uu (u_+l - u'_) -- -r_" (6.59)

The flux terms on both the left- and right-hand-sides of equation (6.59) are computed using

flux difference splitting and the approximations to the flux terms on both sides are corrected

for higher order spatial accuracy. This is feasable for the linear problem, since the flux

Jacobian matrices are evaluated only once, and it leads to much better convergence rates for

linear unsteady solutions.

The residual _ in (6.57)-(6.59) is defined in (6.33). The change in the residual due to the

pseudo-time update thus depends upon changes in the volume term, the net flux term, and

the source term, i.e.,

ou-_-_Xu= i_O/',u + _j [_-ffzXu I - ?-U_,u (6.60)

where the flux term is evaluated using flux difference splitting. The pseudo-time update
formula is thus

e-' uO + + ] - =-P (6.61)

where the repeated j index implies summation over all coordinate directions. Since the un-

steady problem is linear, Newton iterations are not required. However, the current LINFLUX

implementation uses explicit boundary conditions, which are incorporated into a Newton-

like iteration procedure, so that the boundary conditions can be treated in a semi-implicit

manner.

The coupling between adjacent cells introduced by the flux terms makes equations (6.56)

and (6.61) expensive to evaluate, so the flux evaluation is approximately factored into the

product of a positive and negative operator. In order to reduce the error introduced by

the approximate factorization, Gauss-Seidel sub-iterations [WT91] are used as part of the

time stepping procedure. The approximate factorization equation for the Newton iteration

procedure used in the nonlinear steady analysis is

oR} Au, - p -O-,(u p-1 u_)- R_-1
X

0-1I + _ AUP _ DjAU_ - 1_¢I+---j-1 j-1 +Mj+IAUj+I = - ,
/

(6.62)
and the approximate factorization equation used for the pseudo-time stepping in the lin-

earized unsteady analysis is

0f) _ = __0-1I + _uu Au'_ _ DjAu] - M+IAu2_ _ + M_r+IAuj+ 1 (6.63)

In both equations the j subscript is the grid index corresponding to the c_j computational

coordinate direction and, in the steady equation, p is the Newton iteration index. For the

Newton iteration procedure, the D and M matrices are evaluated based on the state vector
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Up-1 at the previous Newton iteration. The D matrix representsthe diagonal elements
of the iteration matrix. The M + and M- matrices represent the off-diagonal elements
of the iteration matrix in the negative and positive computational coordinate directions.
respectively.

Introducing l as the Gauss-Seidel iteration index the sub-iteration formula is given by

DjAU_ ,t ha+ AU v,l M- ATT_ ,t-1-- _'-3-I '--_ j-1 + -'_j+l/-_'-'j+l : -Lp-1

Dj_U_ 'l+1 + Mj+I '_UP:_I+I -- M+tAU;'_t = _L p-1

AUP/+2 = AUP,_+I _ AUP/

The first sub-iteration is over positive grid indices and the second sub-iteration is over neg-

ative grid indices. The sub-iteration procedure is thus an LU decomposition of the Newton

iteration or pseudo-time matrix, with forward and backward substitution. Once the Gauss-

Seidel sub-iteration converges, equation (6.56) or (6.61) is satisfied.

Once the solutions converge to a steady state, any error introduced by the Newton

iteration or the approximate factorization vanishes. Only the error in the residual calculation

of equation (6.29) or equation (6.33) remains. These residuals are calculated using flux

difference splitting with a corrective flux, as given by (6.45) and (6.49), to obtain second

order spatial accuracy.
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7. Numerical Results

Unsteady aerodynamic response predictions will be presented for two-dimensional flows

through a compressor-type (M+_ < M__) cascade undergoing prescribed blade motions and

subjected to various incident aerodynamic excitations to demonstrate the current capabilities

of the linearized Euler analysis and code, LINFLUX. The cascade, known as the Tenth

Standard Configuration [FS83, FV93] is assumed to be operating at subsonic uniform inlet

and exit conditions. We will consider unsteady flows excited by prescribed blade motions

for the Tenth Standard Cascade operating at an inlet Much number :___ and flow angle,

9..__, of 0.7 and 55 deg respectively, and at an inlet Mach number and flow angle of 0.8 and

58 deg. In the first case the steady background flow is entirely subsonic; in the second, it

is transonic with a normal shock emanating from the suction surface of each blade. For the

unsteady flows excited by external aerodynamic excitations, the Tenth Standard Cascade

is operating at M__ = 0.5 and ___ = 55 deg, and the steady background flow is entirely

subsonic.

In addition to the LINFLUX results for the Tenth Standard Cascade, for purposes of

comparison, we will also present nonlinear unsteady aerodynamic response predictions for

the flows excited by blade vibrations, as determined using the NPHASE code [HSR91], and

linear response predictions for blade vibrations and external aerodynamic excitations, as

determined using the LINFLO analysis [Ver92, Ver93]. In the latter, the unsteady flow is

regarded as a small perturbation of a potential steady background flow. The steady version

of the NPHASE analysis is used to provide the steady background flow information for the

LINFLUX calculations; the full-potential analysis CASPOF [Cas83] is used to provide this

information for the LINFLO calculations. Because appropriate unsteady far field conditions

have not yet been incorporated, at present, the NPHASE analysis cannot be applied to

predict unsteady flows excited by external aerodynamic excitations.

7.1 Flow Configuration and Computational Meshes

The Tenth Standard Cascade has a stagger angle, O, of 45 deg and a gap/chord ratio, G,

of unity (see Figure 2). The blades are constructed by superposing the thickness distribution

of a modified NACA four-digit series airfoil on a circular-arc camber line. The thickness

distribution is given by

T(x) = HT[2.969x _/2 -- 1.26x -- 3.516x 2 + 2.843x 3 -- 1.036x4], 0 < x < 1 . (7.1)

where HT is the nominal blade thickness. The coefficient of the x 4 term in (7.1) differs from

that used in the standard NACA definition (i.e., -1.015) so that the blades close at x = 1

in wedge-shaped trailing edges. The camber distribution is given by

C(z)=Hv-R+[R_-(x-0.5)_] 1/2, 0<z<l, (7.2)

where Hc (:> 0) is the height of the camberline at mid-chord and R = (2Hc)-I(H_ + 0.25)

is the radius of the circular-arc camber line. Thus, the surface coordinates for the reference

(n = 0) blade are given by

[x,y]B,± = [x =V-O.5T(z)sin6, C(x)-]-O.ST(x)cos6] , 0<:x<l, (7.3)
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where 8 = tan-l(dC/dx). The Tenth Standard Cascade is defined by setting HT = 0.06 and

He = 0.05, and is, therefore, a cascade of modified NACA 5506 airfoils.

Steady and linearized unsteady solutions were determined, using NPHASE and LIN-

FLUX, respectively, on H-type meshes. The meshes used in the blade vibration and acoustic

excitation studies are shown in Figure 5. These meshes consist of 155 axial lines and 41 lines

in the blade-to-blade direction, and extend one axial chord upstream and downstream from

the blade row. For the subsonic calculations (Figure 5a) the average normal grid spacing

adjacent to a blade was 0.1% of chord, and 55 points were placed on the blade surfaces.

For the transonic calculations (Figure 5b) the average normal grid spacing adjacent to a

blade was 0.05% of chord, and 75 points were placed on the blade surfaces. A finer H-mesh,

i.e., 241 x 81, with a smoother variation in grid distribution, was needed for the entropic

and vortical gust calculations. Nonlinear, unsteady, aerodynamic solutions were also deter-

mined using the NPHASE analysis. The nonlinear unsteady subsonic and transonic solutions

were determined on 121 × 41 and 241 × 81 H-meshes respectively. Since NPHASE does not

have fully nonreflecting, unsteady, far-field conditions, the H-meshes were stretched with

increasing axial distance from the blade row and extended to five axial chords upstream and

downstream from the blade row to dissipate outgoing waves.

The full potential steady (CASPOF) and the linearized unsteady (LINFLO) solutions

were determined on composite meshes [Cas83, UV91] consisting of local C-meshes embedded

in global H-meshes. The C-meshes are used to accurately resolve the steady and unsteady

flows around blade leading edges and through normal shocks, and to permit shock fitting in

LINFLO calculations. The H- and C-meshes used in the LINFLO calculations consisted of

155 axial and 41 tangential lines and 101 radial and 11 circumferential lines, respectively.

Coarser H- and C-meshes were used in the CASPOF calculations. In both cases, the H-mesh

extended one axial chord upstream and downstream from the blade row and, for transonic

flows, radial mesh lines were concentrated near shocks.

The computing times, reported herein, pertain to calculations performed on an IBM-

370 Workstation. Converged, NPHASE, steady inviscid solutions were obtained after 1,000

pseudo-time iterations. The steady subsonic solutions on a 121 × 41 mesh required ap-

proximately 18 CPU minutes to converge; the steady transonic solutions (241 × 81 mesh),

approximately 75 CPU minutes. The LINFLUX calculations for unsteady subsonic flows

excited by blade vibrations or acoustic excitations were performed on a 155 × 41 H-mesh

and required about 5 CPU minutes to converge. Those for transonic flows excited by blade

vibrations, also performed on a 155 x 41 mesh, required approximately 20 CPU minutes.

The calculations for unsteady subsonic flows driven by an entropic or vortical gust, which

were performed on a 241 by 81 mesh, also required about 20 CPU minutes to converge

The NPHASE nonlinear unsteady calculations were started from the appropriate steady

solution, and performed using 1,000 time-steps per cycle of blade motion with 3 Newton

iterations per time step and 3 symmetric Gauss-Siedel iterations per Newton iteration. Four

cycles of motion were used to converge the nonlinear inviscid solutions to a periodic state.

The subsonic inviscid unsteady calculations were performed on a 121 × 41 H-mesh and

required about 40 CPU min per blade passage to converge, and converged transonic inviscid

solutions, performed on a 241 x 81 H-mesh, required approximately 180 CPU rain/blade

passage. The number of blade passages required for a nonlinear unsteady calculation depends

upon the interblade phase angle of the unsteady excitation. For example, if a = 60 deg, six
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passagesare needed.Steady full potential solutionswereobtained, using CASPOF, within
10CPU seconds, and LINFLO, linearized, inviscid solutions required about 90 CPU seconds

per unsteady case.

7.2 Blade Vibration

First, we consider unsteady flows excited by prescribed single-degree-of-freedom, har-

monic, blade motions at small amplitude. The motions considered are pure translations

normal to the blade chords (bending) and pure rotations (torsion) about axes at the blade

midchords. Blade motions are termed subresonant, if all acoustic response disturbances at-

tenuate with increasing axial distance from the blade row; superresonant (ra, n), if m and

_ such disturbances persist in the far upstream and far downstream regions, respectively,

and carry energy away from the blade row; and resonant, if at least one acoustic response

disturbance persists in either the far upstream or far downstream regions and carries energy

along the blade row [Ver89b].

For the subsonic cascade configuration with 3/-oo = 0.7 and fl__ = 5.5 deg and exit

flow conditions, as determined by a full-potential calculation, of M__ = 0.446 and fi-_o =

40.2 deg, the resonant interblade phase angles (in degrees) are cr_-oo = -26.930,, or+ =

117.120,, _r+o_ = -31.80w and a+oo = 59.79w. The subscripts refer to the far upstream (-_)

or far downstream (+o_) regions and the superscripts indicate that there are two resonant

interblade phase angles associated with each of these regions. For the transonic configuration

with M-o_ = 0.8, fl-o_ = 58 deg, M+_ = 0.432 and fl+_o = 40.3 deg, the resonant phase

angles are a-_ = -28.94,,, a+_ = 201.7w, a+o_ = -35.920, and a++_ = 66.220,. In both

cases the blade motions at interblade phase angles lying between the lowest (cr+_) and

highest (o'+.o) resonant interblade phase angles are superresonant.

Subsonic Flow (M-oo = 0.7, fl__ = 55 deg)

The steady Mach number contours and blade-surface Mach number distributions for the

subsonic operating condition (M-oo = 0.7, fl = 55 deg) as determined by the nonlinear Euler

analysis are shown in Figure 6, along with the surface Mach number distributions predicted

using the CASPOF analysis. The Euler analysis predicts a mean flow exit Mach number,

M+_, and flow angle, 9t+oo, of 0.450 and 39.8 deg, respectively, and introduces spurious

total pressure losses of approximately 1.5% and 0.01% on the suction and pressure surfaces,

respectively, of each blade. The potential analysis predicts a mean flow exit Mach number

and flow angle of 0.446 mad 40.2 deg, respectively.

Unsteady response predictions for this subsonic NACA 5506 cascade are shown in Fig-

ures 7 through 10. Contours of the out-of-phase (with blade displacement) component of

the unsteady pressure, i.e., Ira{p}, as predicted using the LINFLO and LINFLUX analyses.

for an out-of-phase (a = 180 deg) torsional blade vibration at unit frequency are shown in

Figure 7. The results of the two linearized analyses are seen to be in very good agreement

for this subresonant blade motion.

Pressure displacement function distributions (we) and work per cycle (Wc) predictions

[Ver89a, Ver93] for in-phase (o" = 0 deg) and out-of-phase torsional blade vibrations are

shown in Figure 8. The results of the nonlinear Euler analysis NPHASE, the linearized Euler
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analysisLINFLUX, and the linearizedpotential analysisLINFLO areseento be in excellent
agreementfor the superresonant(1,1), in-phasevibration, and in excellentagreementalong
the pressuresurfacefor the subresonant,out-of-phasevibration. However,differencesexist
along the bladesuction surfacebetweenthe resultsof the two Euler analysesand thoseof
the potential analysis,for the out-of-phasemotion.

The blade motions consideredin Figure 8 are both stable, i.e., Wv < 0. The pressure

displacement function curves for the in-phase torsional motion reveal that the local unsteady

loads over most of the blade surface tend to suppress this motion, but those along the suction

surface from approximately 15% to approximately 45% of chord support the motion. For

the out-of-phase torsional motion, the pressure displacement function curves reveal that the

local unsteady loads over the entire suction surface and most of the pressure surface tend to

suppress the in-phase torsional motion, especially those in the vicinity of the blade leading

edge.

Similar results for bending vibrations are shown in Figure 9. The results of the two

linearized analyses for the in-phase bending vibration are in good agreement, whereas those

of the nonlinear Euler and the linearized potential analysis are in good agreement for the

subresonant, out-of-phase motion. For the latter motion, the results of the two linear analyses

show significant differences on the suction surface from a blade leading edge to approximately

20% of blade chord. The two bending vibrations are stable, but the local unsteady loads

over the aft part of the suction surface are destabilizing for the in-phase motion.

Numerical results are given in Figure 10 indicating the behavior of the aerodynamic work

per cycle versus interblade phase angle for the subsonic NACA 5506 cascade undergoing

pure torsional (Figure 10a) and pure bending (Figure 10b) vibrations at unit frequency. The

work per cycle predictions are given for an interblade phase angle range from -90 deg to

270 deg. The vertical lines above the curves in Figure 10 indicate the resonant interblade

phase angles for a unit-frequency excitation. NPHASE, nonlinear, unsteady results are

given for a -- 0 deg, +60 deg, 4-90 deg, 120 deg, 180 deg, 240 deg and 270 deg; LINFLUX

results, at 15 deg intervals in interblade phase angle, and a sufficient number of LINFLO

results have been determined to essentially define Wc as a continuous function of a. The

results determined using the three analyses are in very good agreement, except for those

at _r = 120 deg, which is near the upstream resonance condition a = a+oo = 117.12 deg.

Note that resonance phenomena are not accurately modeled by the current version of the

nonlinear analysis, because this analysis is applied on a stretched mesh with coarse axial

spacings in the far field.

The work per cycle results in Figure 10 indicate that the single-degree-of-freedom tor-

sional and bending blade motions at unit frequency are stable (We < 0) and that the

torsional vibrations have the lower stability margin. They also indicate the rather com-

plicated nature of the global unsteady aerodynamic response, which is associated with the

different acoustic responses (i.e., subresonant, superresonant (1,0), etc.) that occur at dif-

ferent interblade phase angles. Note the abrupt changes in the global unsteady aerodynamic

response behaviors, as predicted by the linearized analyses, at the interblade phase angles
at which acoustic resonance occurs.

In general, the results of the three analyses, LINFLUX, NPHASE and LINFLO, for

the subsonic unsteady flows considered in Figures 8 through 10, are in good agreement.

Differences exist, however, and the reasons for these are not clearly understood at the present
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time. One possible cause is that different meshes, i.e., an H-mesh, a stretched H-mesh and a

composite H/C-mesh, respectively, are used in the three analyses. Another, is the different

methods used to model unsteady disturbances in the far-field. Analytic, non-reflecting, far-

field conditions are applied in the two linearized calculations, whereas an axially stretched

mesh is used in the nonlinear calculation to dissipate outgoing disturbance waves. In future

work, analytic far-field conditions should be incorporated into the NPHASE analysis so that

the nonlinear and linearized Euler predictions can be determined on the same meshes. Then,

if differences between the nonlinear and linear Euler results still persist for small-disturbance,

unsteady, subsonic flows, they will indicate that errors have been introduced in deriving the

LINFLUX analysis from the nonlinear NPHASE analysis.

Transonic Flow (M_¢_ -- 0.8, _t__¢ = 58 deg)

The steady Mach number contours and blade-surface Mach number distributions, as

determined by the nonlinear Euler analysis, NPHASE are shown in Figure 11, along with

surface Mach number distributions predicted by the CASPOF analysis. The Euler analysis

predicts a mean flow exit Mach number M+oo and flow angle 12+oo of 0.429 and 39.8 deg,

respectively. The Mach numbers at the base of the shock are 1.26 on the upstream side and

0.834 on the downstream side. Spurious total pressure losses of approximately 2.5% on the

suction surface and 0.1% on the pressure surface are present in the Euler predictions. The

total pressure loss on the suction surface is increased approximately 1.0% by the shock to

approximately 3.5% downstream of the shock. The potential flow analysis predicts a mean

flow exit Mach number and flow angle of 0.432 and 40.3 deg, respectively. The Mach numbers

at the base of the shock are 1.292 and 0.794. The surface Mach numbers predicted by the

two analyses are in good agreement, except for those on the suction surface just downstream

of the leading edge and in the vicinity of the shock, where small differences exist.

Unsteady aerodynamic response predictions for the transonic NACA 5506 cascade are

given in Figures 12 through 15 for blades undergoing pure torsional and pure bending vibra-

tions at unit frequency. Contours of the out-of-phase component of the unsteady pressure

response, Ira{p}, as predicted using the LINFLO and LINFLUX analyses, for an in-phase

(a -- 0 deg) torsional blade vibration are shown in Figure 12. The pressure contours pre-

dicted by the two analyses for this superresonant (1,1) excitation are in reasonably good

agreement, except in the immediate vicinity of the shock. It should be noted that shock

fitting is used in the LINFLO analysis leading to discontinuous, first-harmonic, unsteady

pressures and impulsive anharmonic pressures that depend on shock displacement. The an-

harmonic pressures are not depicted in Figure 12. Shocks are captured in both the nonlinear

and linearized Euler analyses so that the first-harmonic unsteady pressure responses are

continuous, but undergo large changes in the vicinity of a shock.

Pressure-displacement function distributions and work per-cycle predictions for the tran-

sonic cascade undergoing in- and out-of-phase torsional blade vibrations at ¢o = 1 are shown

in Figure 13. These superresonant blade motions are stable, and, according to the linearized

potential analysis, the impulsive shock loads, indicated by the delta functions in Figures 13,

contribute significantly to the stability margins. The shock impulse, predicted by LINFLO,

depends upon the product of the steady pressure jump across the shock and the shock

displacement. The shock capturing used in the Euler calculations is based on the use of
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directionally-dependent flux evaluations. The directional differencing used in the nonlinear

unsteady analysis is based on the nonlinear unsteady flow properties, whereas that used

in the linear analysis is based upon the underlying steady flow properties. Although the

time-accurate, nonlinear analysis predicts a pressure response with a sharply defined shock

at each instant of time, shock effects are smeared in the pressure displacement function pre-

dictions, because these are based on an integration in time of the local unsteady response

over a complete cycle of blade, and therefore shock, motion.

For the torsional motions considered in Figure 1:3, the results given by the nonlinear

Euler analysis, the linearized Euler analysis, and the linearized potential analysis are in good

agreement in subsonic regions, i.e., along the blade pressure surface and along the suction

surface downstream of the shock. However, the results in the supersonic region upstream

of the shock and in the vicinity of the shock show substantial differences, particularly those

for the superresonant (1,0), out-of-phase, torsional blade vibration. Differences between

the nonlinear and linearized Euler analyses are due in part to the different methods used

to prevent disturbance reflections at the inflow and outflow boundaries, i.e, the use of a

stretched mesh and the imposition of analytic far-field conditions, respectively, and to the

different discrete approximations used in the vicinity of the shock. The differences between

the results of the two linearized analyses are due primarily to the different methods (i.e.,

shock capturing and shock fitting) used in modeling unsteady shock phenomena. The shock

capturing method currently used in the linearized Euler analysis is easy to implement, but

it does not properly account for shock motion. Therefore, it does not lead to the prediction

of a concentrated, anharmonic, pressure load at the shock.

A similar set of results for bending vibrations is shown in Figure 14. These blade motions

are also stable, even though the shock impulse, as predicted using LINFLO, is destabilizing

for the out-of-phase motion. The results of the three analyses, particularly those of the

nonlinear and linearized Euler analyses show significant differences in the vicinity of the

shock and, for the in-phase motion, in the vicinity of the blade leading edge. The shock

modeling effort in the linearized Euler analysis is continuing with the goals of achieving

consistent and good agreement between the nonlinear and linearized Euler predictions in the

vicinity of a shock. Also, an effort will be initiated to include analytic far-field conditions

in the nonlinear code (NPHASE) so that the nonlinear and linear Euler calculations can be

performed on the same mesh. This could eliminate the differences between the nonlinear

and linearized Euler solutions at blade leading edges.

Work per cycle versus interblade phase angle predictions are given in Figure 15 for the

transonic NACA 5506 cascade undergoing pure torsional and pure bending blade vibrations

at unit frequency. The three analyses, NPHASE, LINFLUX and LINFLO, provide results

that show similar trends, and indicate that the unit frequency, bending and torsional vibra-

tions of the transonic cascade are stable.

7.3 Aerodynamic Excitation

We proceed to analyze unsteady flows, excited by external aerodynamic disturbances.

through the Tenth Standard Cascade operating at M-oo = 0.5 and _-oo = 55 deg. The

steady Mach number contours and surface Mach number distributions for the NACA 5506

cascade, as determined by the NPHASE analysis, are shown in Figure 16 along with the

65



surfaceMach number distributions determined usingthe CASPOF analysis. The nonlinear
Euler analyis predicts a meanflow exit Machnumber and flow angleof 0.3.51and 39.9 deg,

respectively. The potential flow analysis predicts a mean flow exit Mach number and flow

angle of 0.349 and 40.2 deg, respectively.

Acoustic Excitations

First, we consider unsteady flows excited acoustic disturbances, that carry energy towards

the blade row from far upstream (-:xD) or far downstream (+_). For subsonic inlet and

exit conditions (:t/[:_oo < 1) the axial wave number of a propagating acoustic excitation is

given by (5..54) with d_m < 0, i.e.,

= i(7:td  l + cos (:.4)

The tangential wave number of the disturbance is nn = uG -1. Note that for a given temporal

frequency, interblade phase angle and mean-flow, operating condition, IK¢,+_I > In_.__l,

because a disturbance coming from downstream travels against the steady flow direction.

This implies that, for the same flow conditions, greater mesh resolution is required to resolve

upstream traveling acoustic disturbances.

We will consider acoustic excitations from upstream and downstream at a reduced fre-

quency ,_ = 5 and interblade phase angle _ = -90 deg. For the upstream excitation, the

wave number magnitude is It¢__ I = 1.68, corresponding to a wavelength of 3.73 blade chords,

and the propagation angle of the excitation with respect to the positive axial direction is

69.0 deg. The unsteady pressure fields and surface pressure distributions on the reference

blade, as predicted by the linearized Euler analysis and the linearized potential analysis, are

presented in Figures 17 and 18. The results of the two analyses are seen to be in excellent

agreement.

For the downstream excitation, the wave number magnitude is 2.71, corresponding to a

wavelength of 2.32 blade chords, and the excitation propagation angle with respect to the

positive axial direction is 144.6 deg. The pressure fields and pressure distributions on the

blade as predicted by the linearized Euler analysis and the linearized potential analysis are

presented in Figures 19 and 20. The results of the two analyses are again in very good

agreement, however the agreement for the downstream excitation is not as good as that

for the upstream excitation. The discrepancy may be due to the shorter wavelength of the

downstream excitation requiring greater mesh resolution to reduce discretization errors to

negligible levels.

Entropic and Vortical Excitations

Small-amplitude entropic and vortical disturbances are convected at the velocity of the

steady background flow. A single harmonic component of either one of these disturbances

is described by specifiying the temporal frequency, co, interblade phase angle, c_, and the

complex amplitude, s__ or 4__ [cf. equations (2.5) and (2.6)1. For a vortical excitation

we can prescribe the complex amplitude of the normal component of the rotational veIocity,

i.e., va,-oo • eN, where

vR_ = i(, _oo × ,
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in lieu of prescribingthe vorticity. The componentof the gust velocity in the inlet free-stream

direction, vR,-o¢ • eT, is determined by the divergence-free condition, i.e., is¢__o • vR,-oo _ 0.

The wave number _;-oo, of a harmonic entropic or vortical excitation has a component

_,7,-_ = °'G-Z in the cascade tangential or r/-direction and a component xT = -wV._-_ = -w

in the inlet free-stream direction. Therefore,

_-oo = -(wsecf__oo + _G -1 tanfi__c)e_ + eG-len

(7.6)

= --weT + (w tan ft__¢ + crG -1 sec f2__c)eN .

To consider a gust that models the first harmonic component, i.e., the component at

the blade passing frequency (BPF), of a wake excitation from upstream we would set

a = xo,7,_ooG = -27rG/GEx¢ and w -- -n,r,-ooVEx¢ = 2_rVEx¢/GExc. Here GExc is the

blade spacing in the upstream row which moves at constant velocity VExce,7 = Vwen in

the circumferential direction relative to the reference blade row, and xn,-oo = -27r/GEx¢
is the circumferential wave number of the fundamental or first-harmonic disturbance. In

the present study, an interblade phase angle of a = -180deg was chosen to represent the

first-harmonic component of a wake excitation from an upstream blade row with one-half the

number of blades as in the reference blade row. The temporal frequency was set at w = 5,

which corresponds to an upstream flow coefficient, i.e. ratio of mean flow axial speed to

wheel speed, V__ cos fl-oo/Vw, of 0.3604. The wave number magnitude, I_;_oo I, of this gust

excitation is then 5.25, and its direction of travel relative to the axial flow direction, i.e.,

a = tan-l(x,.__¢/I¢_,_oo), is 36.5 deg.

Results of the LINFLO and LINFLUX analyses for the convection of entropic [with

s__ = (1,0)] and vortical [with vn,-oo "eu = (1,0)] gusts at BPF, i.e., w = 5 and c_ =

-180 deg, through the NACA 5506 cascade operating at M__ = 0.5 and f___ = 55 deg,

are given in Figures 21 through 24. It should be noted that the LINFLO predictions for the

unsteady entropy and vorticity contours axe based on closed form solutions in which these

unsteady flow quantities are expressed as explicit functions of the drift and stream functions

of the steady background flow (see [Ver93]). The predicted entropy fields for a prescribed

entropic excitation at inlet are shown in Figure 21. The two linearized predictions for the

in-phase component of the unsteady entropy are in very good agreement. However, the

linearized Euler results show spurious distortions in the entropy contours, that are caused

by numerical losses, in the vicinities of the blades and along the blade wakes. A spurious

production of entropy is also present in the steady background flow predicted with the

nonlinear NPHASE analysis, and this is believed to contribute to the distortions in the

unsteady entropy contours.

The interaction of vortical gust with the NACA 5506 cascade is depicted in Figures 22

through 24. The predicted vorticity and pressure fields, represented via contour plots of the

in-phase components of these flow variables, are shown in Figures 22 and 23, respectively; and

the predicted unsteady pressures acting on the surfaces of the reference blade, in Figure 24.

The vortical gust predictions in Figure 22 are in good qualitative agreement, but the results

of the linearized Euler analysis show severe distortions in the vorticity contours in the vicinity

of the blades and their wakes.

The ability to accurately predict the response of real blade cascades to entropic and

vortical excitations using LINFLUX is currently impeded by the use of first-order accu-
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rate, blade-surface,boundary conditions in both the nonlinear steady and the linearized
unsteady Euler analyses.Theseconditions result in the production of spurioussteady and
first-harmonic, unsteadyentropy and vorticity near bladesurfaces. Also, the entropy and
vorticity, produced artificially by numerical losses,in the steadybackground flow are be-
lieved to interact with the unsteadyentropic and vortical disturbancesto further distort the
unsteadypredictions.

Becauseof the foregoinglimitations, the vorticity contours(Figure 22) predicted by the
LINFLUX analysisdiffer from thosepredictedby LINFLO. However,this disparity between
the predicted vorticity (excitation) fields does not seemto have a strong impact on the
resulting unsteadypressureresponse.The unsteadypressurefields (Figure 23) and surface
pressuredistributions (Figure 24), predictedby linearizedEuler and potential analysesfor
the vortical gust at _ = 5 and cr = -180 deg, are in good agreement. Nevertheless,the
LINFLUX capabilities for predicting unsteadyflows excited by vortical disturbancesmust
be improved to provide a more accurate description of the convectionof a vortical gust
through a blade row. Also, the present LINFLUX gust solutionsare very sensitiveto the
"smoothness"of the mesh,and they requireexcessivecomputing times to converge.These
issuesshouldbe addressedin future work.
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8. Concluding Remarks

Accurate and efficient, three-dimensional, unsteady, fluid-dynamic analyses are needed

to enhance our ability to understand and predict the aeroelastic (flutter and forced vi-

bration) and aeroacoustic (noise generation, transmission and reflection) characteristics of

turbomachinery blading. Such analyses must account for nonisentropic and rotational invis-

cid effects to model swirling flows with strong shocks and, eventually, for viscous effects to

model separated flows. Motivated by these needs, independent, but coordinated, research

programs are being conducted at NASA Lewis Research Center, Mississippi State University

and the United Technologies Research Center to develop advanced nonlinear and linearized

unsteady aerodynamic analyses for aeroelastic and aeroacoustic design applications. Under

the present UTRC program, work has been focused on formulating linearized, inviscid, un-

steady aerodynamic and numerical models, based on the Euler equations of fluid motion, for

three-dimensional flows through single blade rows operating within cylindrical ducts. These

models have been implemented into the two-dimensional, linearized, unsteady, aerodynamic

code LINFLUX, and the LINFLUX code has been evaluated via application to benchmark

unsteady cascade flows.

In formulating the linearized unsteady aerodynamic model, the unsteady flow is regarded

as a small perturbation of a nonlinear background flow that is steaxlyin the blade row

frame of reference.This leads to time-independent, nonlinear,governing equations for the

steady background flow,and time-independent, linear,variable-coefficient,equations for the

first-harmonic,unsteady perturbation. The variable coefficientsin the unsteady equations

depend upon the steady background flow. This type of linearizationaccounts for the effects

of realblade geometry, mean blade loading,mean swirland strong shocks and theirmotions

on the unsteady aerodynamic responses to prescribed structuraland external aerodynamic

excitations.

In the presentformulation,both the steady and unsteady equations are expressed in terms

of spatialindependent variablesthat describe the referenceor steady-statepositionsof the

moving fieldpoints that make up the physicalsolutiondomain. Thus, both setsof equations

are solvedon a fixedgridin referencephysicalspace to determine the valuesofthe steady and

unsteady flow variablesat the mean and instantaneous positions,respectively,of the moving

fieldpoints. This approach [HC93a, Gil93]in which the time-dependent deformation of the

physicaldomain isrepresentedby source terms in the unsteady fieldequations, simplifiesthe

imposition of the blade-surfaceor near-fieldboundary conditions.Far-fieldconditions that

account for the effectsof mean swirl and the radialdependence of the steady and unsteady

flow variablesmust stillbe developed to complete the formulation of the three-dimensional

steady and first-harmonic,unsteady flow problems.

The numerical models developed herein for determining the steady and linearizedun-

steady flows are based on the nonlinear, time-accurate, Euler analysis developed in [WJS88].

It involves a time-independent transformation from reference physical to computational co-

ordinates and a pseudo-time marching procedure in which the steady and the first-harmonic,

unsteady flowss are determined by marching implicitly in pseudo-time, using local time step-

ping, until converged steady-state solutions are determined. The pseudo-time derivatives are

approximated by first-order difference approximations, and, except for this change, the nu-

merical model for the steady flow is essentially identical to the one used in [WJSS8] for
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nonlinear unsteady flows. The linearized unsteady equations contain source terms, that
depend on the blade motion, and the spatial differencing directions used to evaluate the
unsteadyflux vectorsarebasedon the steady flow solution.

In previouswork [HSRgl] the time-accurate,nonlinear,numericalmodelof [WJS88]was
implemented into the multi-block, finite-volume code,called NPHASE, to provide a two-
dimensional,unsteadyaerodynamicanalysisfor vibrating cascades.The NPHASE codehas
beenused as the basisfor implementing the steady and linearizedunsteady aerodynamic
models,describedin this report. In particular, nonlinearsteady flowsare predictedusing a
slightly updated versionof NPHASE, and linearizedunsteadyflowsare determinedusing a
new code,called LINFLUX, which hasbeenconstructed,from the original NPHASE anal-
ysis. As part of the presenteffort, the surface-boundary-conditionimplementationused in
NPHASE has beenmodified to reducespuriousnumericallosses,and one-and approximate,
two-dimensional,far-field conditions [Gil90] havebeenincorporated to allow application to
unsteady flows excited by external aerodynamic disturbances. Unfortunately, the latter
conditions have been found to result in significant reflections, at the inflow and outflow
boundaries,of outgoing unsteadydisturbancewaves.Consequently,exact, single-frequency,
far-field conditions havebeenconstructedandimplementedinto LINFLUX. Theseconditions
seemto eliminate the non-physicalreflections,indicating that similar conditions shouldbe
incorporated into the NPHASE analysisin the future.

To evaluate the capabilitiesof the LINFLUX analysis,wehaveapplied it to benchmark,
two-dimensional, unsteady cascadeflows. In particular, we have consideredsubsonicand
transonic flows through the Tenth StandardCascadeConfiguration in which unsteadyaero-
dynamic responsesareexcitedby prescribedbladevibrations, acousticdisturbancesat inlet
and exit, and entropic and vortical disturbancesat inlet. For eachexample,LINFLUX pre-
dictions have been comparedwith other analytical predictions; namely,predictions based
on the time-accurate, nonlinear, analysisNPHASE, and/or thosebasedon the linearized

potential analysis LINFLO [Ver92, Ver93].

The results of this study indicate that LINFLUX gives response information that is in

close agreement with the results of the earlier analyses, NPHASE and LINFLO, for unsteady

subsonic flows excited by blade vibrations or acoustic disturbances that travel towards the

blade row. However, improved LINFLUX capabilities are needed for transonic flows and for

flows excited by vortical gusts. In particular, the shock modeling or directional differencing,

used in LINFLUX, should be modified so that LINFLUX and NPHASE will provide consis-

tent response information in the vicinities of shocks for unsteady transonic flows. Also, the

LINFLUX code should be modified to allow more accurate predictions of the unsteady flows

excited by vortical gusts. This will probably involve the implementation of higher-order sur-

face boundary conditions to reduce the amount of spurious numerical entropy and vorticity

that is generated at blade surfaces. Future work should also be directed towards implement-

ing accurate far field conditions into NPHASE. This would allow NPHASE to be applied to

unsteady flows excited by incident aerodynamic disturbances. It would also allow LINFLUX

and NPHASE calculations to be performed on the same mesh, which should help to clarify

the discrepancies, cited in this report, between the nonlinear and linear Euler predictions

in the vicinities of blade leading edges and in the supersonic regions of unsteady transonic

flow fields. Finally, steps will also have to be taken to improve the efficiency of LINFLUX

transonic and vortical gust calculations.
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The primary reasonfor developingnonlinearand linearizedunsteadyEuler analysesfor
blade rows is the needto predict three-dimensionalunsteadyflows in which the effectsof
meanswirl and radial variation are important. Thus, the follow-on to the presentresearch
effort will be directed towards implementing the aerodynamicand numerical formulations.
outlined in this report, into a three-dimensionalversionof the LINFLUX code. In addition
to the problemsassociatedwith the numericalmodelingof shocksand vortical gusts,another
major difficulty must be overcome. This involves the developmentand implementation of
appropriate far-field conditions for three-dimensionalsteadyand unsteadyflow calculations.
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Figure 21. Contours of the in-phase component of the unsteady entropy for an entropic

gust (s__ = (1,0), _., = 5, o = -7r) interacting with the subsonic (M__ = 0.5, f___ = 5.5

deg) NACA 5506 cascade: (a) LINFLO calculation; (b) LINFLUX calculation.

Figure 22. Contours of the in-phase component of the unsteady vorticity for a vortical gust

(vR,-_ .e:v = (1,0), _z = 5, _ = -_') interacting with the subsonic (M__ = 0.5, 9.__ = 55

deg) NACA 5506 cascade: (a) LINFLO calculation; (b) LINFLUX calculation.

Figure 23. Contours of the in-phase component of the unsteady pressure response for a

vortical gust (vR-_ -eN = (1,0), a_ = 5, o" = -_) interacting with a subsonic (M__ = 0.5,

f___ = 55 deg) NACA 5506 cascade: (a) LINFLO calculation; (b) LINFLUX calculation.
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Figure '24. Unsteady surface pressure distributions due to the interaction of a vortical gust

(vR.-_ • e_ = (1,0), ,_ = 5, _ = -_r) and the subsonic M-oo = 0.5, _-_ = .55 deg) NACA

•5506 cascade.
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r

Figure 1: Rotating axial compressor blade row operating within a cylindrical duct.
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n=2

Y FB_i v÷XE_+_

n--O

y 7/

Figure 2: Two-dimensional section of a transonic compressor blade row viewed (from hub

to tip) in rotating frame. A normal shock (Sh,_) impinges on the suction surface of the nth

blade, and a vortex sheet wake (W, 0 extends downstream from the trailing edge of the nth

blade.
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Figure 3: Characteristic E-functions for acoustic perturbations of a uniform axial mean flow.
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Figure 4: Computational grids: (a) deforming grid in physical space; (b) reference or steady-

state grid in physical space; and (c) uniform orthogonal grid in computational space.
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(a)

(b)

Figure 5: H-meshes used for steady (NPHASE) and linearized unsteady (LINFLUX) Euler
calculations: (a) subsonic flow; (b) transonic flow.
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Figure 6: Mach number contours and blade surface Mach number distributions for steady

subsonic flow at M-oo = 0.7 and fl-oo = 55 deg through the NACA 5506 (10th Standard)

cascade.
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Figure 7: Contours of the out-of-phase component of the unsteady pressure, i.e., Ira{p}, for

the subsonic (M-oo = 0.7, l-l_oo = 55 deg) NACA 5506 cascade undergoing an out-of-phase

torsional blade vibration about midchord (a = 2 deg, w = 1, _r = 180 deg): (a) linearized

potential analysis (LINFLO); (b) linearized Euler analysis (LINFLUX).
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Figure 8: Pressure-displacement function distributions and work per cycle predictions for

the subsonic (M-_o = 0.7, fl-oo -- 55 deg) NACA 5506 cascade undergoing torsional blade

vibrations about midchord at a --- 2 deg and w = 1: (a) in-phase (a --- 0 deg) torsional blade

motions; (b) out-of-phase (a = 180 deg) motions.

86



20.0-

I0.0.

-20.0

(a) _____ Nonlinear analysis (NPHASE)
Linearized analysis (LINFLO)
Linearized analysis (LINFLUX)

Suction surface

Wc = -2.56
Wc = -3.06
Wc = -3.21

T

'NPHASE)
'LINFLO)"
'LINFLUX)

"T

20.0

10.0.

Wc = -8.53
Wc = -8.66
Wc = -8.68

NPHASE)
LINFLO)

(LINFLUX)

]hy]-_wc I ,-, ,.

--1D'Olf'_'/ Suction surface

-20 Or ....
"O.0 0.2 0.4 0.6 0.8

X

1.0

Figure 9: Pressure-displacement function distributions and work per cycle predictions for the

subsonic (M-oo = 0.7, _-oo = 55 deg) NACA 5506 cascade undergoing bending vibrations

at hu = 0.01 and w = 1: (a) in-phase (a - 0 deg) bending motions; (b) out-of-phase (a --

180 deg) motions.
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Figure 10: Work per cycle vs. interblade phase angle for the subsonic (M-co = 0.7, fl-oo =

55 deg) NACA 5506 cascade undergoing bIade vibrations at w = 1: (a) torsional vibrations

about midchord with a = 2 deg; (b) bending vibrations with h_ = 0.01.
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Figure 11: Mach number contours and blade surface Mach number distributions for steady

transonic flow at M-oo = 0.8, and fl-oo = 58 deg through the NACA 5506 (10th Standard)

cascade.
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Figure 12: Contours of the out-of-phase component of the unsteady pressure, Ira{p}, for the

transonic (M-oo = 0.8, ft-oo = 58 deg) NACA 5506 cascade undergoing an in-phase torsional

blade vibration about midchord (a = 2 deg, w = 1, a = 180 deg): (a) linearized potential

analysis (LINFLO); (b) linearized Euler analysis (LINFLUX).
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Figure 13: Pressure-displacement function distributions and work per cycle predictions for

the transonic (M-_o = 0.8, fl__ = 58 deg) NACA 5506 cascade undergoing torsional blade

vibrations about midchord at a = 2 deg and ¢o = 1: (a) in-phase (a = 0 deg) torsional blade

motion; (b) out-of-phase (a = 180 deg) motion.
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Figure 14: Pressure-displacement function distributions and work per cycle predictions for

the transonic (M_¢¢ = 0.8, fl__ = 58 deg) NACA 5506 cascade undergoing bending vibra-

tions at hu = 0.01 and w = 1: (a) in-phase (a = 0 deg) bending vibration; (b) out-of-phase

(a = 180 deg) bending vibration.
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Figure 15: Work per cycle vs. interblade phase angle for the transonic (M-o_ = 0.8, f_-oo =

58 deg) NACA 5506 cascade undergoing blade vibrations at t_ = 1: (a) torsional vibrations

about midchord with a = 2 deg; (b) bending vibrations with hv = 0.01.
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Figure 16: Mach number contours and blade surface Mach number distributions for steady

subsonic flow at M-_ = 0.5, and ft__ = 55 deg through the NACA 5506 cascade.
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Figure 17: Contours of the in-phase component of the unsteady pressure due to the interac-

tion of an acoustic excitation from upstream (pt,-oo = (1,0), w = 5, a = -90 deg) with the

subsonic (3/-o0 = 0.5, fl-oo = 55 deg) NACA 5506 cascade: (a) LINFLO calculation; (b)
LINFLUX calculation.
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Figure 18: Unsteady surface pressure distributions due to the interaction of an acoustic

excitation from upstream (pz,-oo = (1, 0), a_ = 5, cr -- -90 deg) with the subsonic (M-_o -

0.5, fl-oo - 55 deg) NACA 5506 cascade.
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Figure 19: Contours of the in-phase component of the unsteady pressure due to the interac-

tion of an acoustic excitation from downstream (p1,+o_ = (1, 0), w = 5, a = -90 deg) with

the subsonic (21//-oo = 0.5, fl-oo = 55 deg) NACA 5506 cascade: (a) LINFLO calculation;
(b) LINFLUX calculation.
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Figure 20: Unsteady surface pressure distributions due to the interaction of an acoustic

excitation from downstream (pr,+oo = (1,0), w = 5, (r -- -90 deg) with the subsonic (M-oo

= 0.5, _-oo = 55 deg) NACA 5506 cascade.
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Figure 21: Contours of the in-phase component of the unsteady entropy for an entropic gust

(s-oo = (1,0), w = 5, _z = -a-) interacting with the subsonic (M-oo = 0.5, fl-oo = 55 deg)

NACA 5506 cascade: (a) LINFLO calculation; (b) LINFLUX calculation.
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Figure 22: Contours of the in-phase component of the unsteady vorticity for a vortical gust

(vR,-c¢ -eg -- (1,0), w ---- 5, O" -- --_r) interacting with the subsonic (M__ = 0.5, 12__ = 55

deg) NACA 5506 cascade: (a) LINFLO calculation; (b) LINFLUX calculation.
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Figure 23: Contours of the in-phase component of the unsteady pressure response for a

vortical gust (vR,-oo • eN - (l, 0), _ -- 5, cr = --Tr) interacting with a subsonic (M-oo = 0.5,

_-oo = 55 deg) NACA 5506 cascade: (a) LINFLO calculation; (b) LINFLUX calculation.
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Figure 24: Unsteady surface pressure distributions due to the interaction of a vortical gust

(VR,-_ • eN -" (1,0), w -- 5, o" -- --_r) and the subsonic (M-co = 0.5, ___ = 55 deg) NACA
5506 cascade.
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