
N95- 31244

Leveraging Object-Oriented Development at

Greg Wenneson and John Cormell

Software Engineering Process Group
Sterling Software at NASA Ames

Ames

ABSTRACT

This paper presents lessons learned by the Softwme Enginee_g Process Group (SEPG)
from results of supporting two projects at NASA Ames using an Object Oriented Ral_d
Prototyping (OORP) apIm3achSUplXXt_ by a full featured visual development
environmenL Supplemental Lessons learned from a large project in progress and a
requirements defmiUon are also incoqxrated. The paper dononstrales how productivity
gains can be made by leveraging the developer with a dcb development environment, correct
and early requirements definition usingrapidprototyldng,and¢adJe="andbettereffort
estimation and softwme sizing through object-oriented methods and metrics. Although the
individual elements of O0 methods, RP _ and O0 metrics had been used on othez
separate projects, the repo_l_ projects were the first integrated usage supported by a rich
development envirocmenL Overall, the aplxcech used was twice as Ixodm_ve (measmed
by hours per 00 UniO as a C++ development.

Combining Object Oriented ((30) methods with a Rapid Prototyping (RP) approach supported
by a rich development environment holds promise for highly productive development done fight
the first time. This combined Object Oriented Rapid Prototyping (OORP) approach was used
on several projects at NASA Ames and measured over twice as productive as C++ productivity
metrics collected by Capers Jones of Software Productivity Research. _ projects were
supported by training, consulting and mentoring from the Software Engineering Process
Support Group (SEPG). Conclusions and lessons learned are presented here for two of the

projects now in production: NASA Science Intemet (NSI) Service Request (NSR) Tracking
System and SoftLib, a reusable software library management system, internally developed by
the SEPG.

SEPG Presence, Supported Methods and Approach

The Sterling SEPG acts as a software and process clearinghouse while providing no or low cost
engineering and software process, methods and consulting support for contract staff and NASA

scientists at Ames Research Center. The SEPG locates, adapts and champions new technology
and productivity improving methods primarily as a demand driven resource. We promote

several primary methods, approaches and tools which we support by providing training,
process guidebooks, consulting, tools and procurement assistance, analysis and design
assistance and project mentoring. When requested, we will approve methods and approaches if
they are defined by published works and leveraged by available tools, but we prefer a more
proactive support presence. Our preferred methods and approaches are:

• The integration of Coad-Yourdon object-oriented analysis (OOA) and design
(OOD) methods with a rapid prototyping development approach

• OO Software sizing metrics
• High-level visual-programming development environments.

The Coad/Yourdon (C-Y) methods were selected because they are moderately simple, easily
taught and provide consistent analysis and design representation. During this last year with

SEW Proceedings

PI:_C_!_'_ PAQE i31.b,_',;_¢,i_O_ r.L.-.,"_=_,,.3

173 SEL-94-006

https://ntrs.nasa.gov/search.jsp?R=19950024823 2020-06-16T06:35:18+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42780494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

newly published works by Booch, Yourdon and others, object methods are converging and
borrowing the best from each other. Thus Ivar Jacobson's Use Cases and other current
approaches ate being incorporated into the methods we support. We find these methods and.
approaches are scaleable for small and large project size in simple to complex problem domains.

The SEPG supported approach is to use C-Y OOA]OOD methods [1, 2] combined with the
formal Object Oriented Rapid Prototyping approach defined in the new Yourdon Press book by

that fide [3]. This involves evolutio .nary" development wi.'th ref'mements b a_. on.feed back from
customer hands-on experimentation during approxtmately one to two weetr lterauon cycles. I ne
process model for this approach is shown in Figure 1. The identification of customers
(requirements owners), their level of involvement and their buy-in are obtained up-front. An
initial analysis and an OO model are produced in the first few days of the project for early

project planning and then iterated concurrently with the prototype through many incremental
additions and refinements. Formal ins_ons of requirements and design specifications occur

at two or three points during this evolution:

• Before prototype development
• After user approval of prototype, before tuning
• Any other time the development team feels a need to resolve emerging design issues.

Documentation

Iteration

Specs

User Services Plan Attributes Tuning

Messages

Figure 1 Object-Oriented Rapid Prototyping (OORP) Process

We have been experimenting with some new OO sizing and estimating metrics at Ames. These
metrics are similar to those presented by Lorenz [4] but were actually derived as a modification

of Dreger's Function Point Analysis [5] adapted to OO methods. The OO Unit metrics were first
published in a paper by Connell and EUer in 1992 [6]. OO Unit metrics for components
(classes/objects) and services (methods) are given OOU counts depending on the number of
attributes in the object. An object with 8 attributes is of average complexity and has an OOU
metric of 5. Each of the services would also count at 500Us. Services have different counts

SEW Proceedings 174
SEL-94-O06

for add/modify/delete, output, computationaUy intense, and system service but are clumped here
for simplicity. External Entities are the sources and sinks of a Source Sink Diagram which
defmes the system boundaries. External entities receive counts dependent on the number of
interfaced objects in the system. Figure 2 provides guidelines for determining OO Unit metrics
counts.

OO Units provide an advantage over the Lorenz sizing metrics in that they allow for
differentiating object classes according to size, depending on the number of attributes, services,
complexity of services, and external interfaces. The differentiation scale is based on a similar
scale provided by Dreger and Capers Jones

Component

Service

External

Entity

Simple

< 7 Info Items

300Us 500Us 800Us

400Us 500Us 600Us

< 3 Components
700Us

Figure 2

Average

7-14 Info Items

3-5 Components
10 OOUs

Complex

> 14 Info Items

> 5 Components

15 OOUs

Object-Oriented Unit Metrics Matrix

Using the C-Y OOA/D methods and Connell/Shafer rapid prototyping approaches, an early
estimate of total effort can be made from the initial analysis and OO model generated at project
startup. The OO unit metrics are counted from the i_q_al model using the number and
complexity of the objects, services and external interfaces. The final delivered application
usually grows during prototype iteration to three times the size of the initial model. The
estimated times to develop the initial prototype and then the fully deployed application are
dependent upon the implementation language and environment. In our estimates, we used a
figure of 4 hours to implement an OO Unit, equivalent to the figure Dreger uses for Objective C
and Smalltalk. We reasoned that a powerful visual programming environment would be at least
as effective as ObjectiveC and Smalltalk. Our project's end results produced figures equal to or
better than that, 4 hours per OOU for one project and about 3 hours to deliver an OOU on the
other.

We recommend use of high level visual programming environments for development and
iteration of rapid prototypes. Ideally, a powerful development environment would provide
integrated capability to manipulate GUI, control, functionality and data management abstractions
at a higher level than coding in a 3GL. This is still the holy grail of development environments.
While waiting for that future momentous unveiling and heeding the current (Summer 1993) call
of requirements, we evaluated numerous vendors and selected Sybase's GainMomentum
product as a development environment which met selection requirements. GalnMomentum
(here after referred to as Gain) provides object-oriented visual development tools for RDBMS
access, graphic user interface, and user def'med objects. Gain also has extensive function
libraries, a good debugging capability, and a 4GL scripting language (GEL - Gain Extension
Language) to augment visual development tools. Programming in C/C++ code is generally not
required. There is an instant context switch from edit to run mode and standalone run-rime
executables can compiled when an application is complete to restrict user access. Gain was
available for Unix environments only, though recently a Windows version was released.

SEW Proceedings 17 5 S EL- 94-006

For analysis and design modeling support we used the drawing and data dictionary capabilities
of Iconix's ObjectModeler for the Macintosh. Although ObjectModeler can generate code

templates, we only used the drawing capabilities of the tool. Consequently, the object models
and the tool's capabilities were not integrated into the developers' envn'onment. One project
elected to use a Macintosh drawing tool with just as effective results.

For both projects, SEPG members acted as external consultants, trainers and mentors. Just in
time training was provided in C-Y OO methods, Rapid Prototyping, development tools and
management approaches. The SFJ:tG also provided development tools during the early stages of
development so that development could get started on the right foot while project startup
procurements proceeded concurrently. During early stages of development, SEPG members
provided hands-on assistance with OOA and OOD modeling, prototype development, prototype
iteration and refinement methods, estimating, and planning support in conjunction with project

staff. When staff were completely comfortable with the methods, they assumed all development
activities from the SEPG.

The Projects' Specifics

Both the NSI and SoftLib projects were small and low risk. NSI planned for staff at 3 Full

Time Equivalents (FTEs) and the SoftLib project was planned at about 1 FTE. Due to
personnel and organizational changes, neither project reached their full planned staffing. The
NSI project was estimated to take 6 calendar months and the prototype was approved and
completed in 7 months. When the approved prototype was delivered, the users required further
work which was completed 4 months later. The SoftLib development was initially scheduled to
take 11 months and completed on schedule. With the organizational changes, we consider both
projects to have completed within projected time and costs. Project effort and metrics are
discussed in the next section.

Both of the projects used inexperienced staff assisted by SEPG consultants. The projects were
the staff's first inlroduction to object methods, rapid prototyping, full life cycle implementation,

advanced development environments, RDBMS and SQL.

The NSI project developed a new application to manage Interact connectivity requests stemming
from world-wide NASA science projects. The development involved creation of two complex

data entry forms: the NSI Service Request fNSR) and the Request for Service fRFS). The
combination of these two vehicles and supporting data structures provides on-line entry of

customer profile and organization data, funding authorization, and Intemet service connectivity
requirements. The application replaced and integrated manual and ad hoc systems for several

groups, adds new functionality and provides the opportunity for further automation.

The SoftLib project re-engineered to modernize an existing reuse library management system.
The old system provided a characterbased frontend to a databaseofmetadata about software

components. Users had to grapple with the character mode interface to fred reusable software
descriptions and then locate the actual software outside the domain of the library management
system. The new application provides a graphic X-Windows user interface to
capabilities. Combo-box list widgets now provide selectable keywords and other search
parameters. When users find interesting component descriptions in the hit list, the location is
presented and they can download the file using another window. The application also provides
interfaces to other applications such as a New Technology Database and other reusable libraries

including a NASA-wide BBS.

SEW Proceedings 17 6
SEL-94-006

In addition to the commonalty in development approach, inexperienced staff, estimating metrics
and visual development tools used, these two projects had certain other elements in common.
Both were in environments where users and developers did their work on networked
combinations of Macintosh and Sun workstations. The networks extended over many
Macintosh zones and Intemet domains within the Ames domains. Both applications required
intensive user interaction and an interface to an existing rehtional database.

There were also several differences between the projects in that SoftLib was developed using a
very new alpha/beta release of a truly object-oriented version of the Gain development
environment, while the NSI project used the current production release. Mentoring on SoftLib
was fairly smooth because the project was internal to the SEPt3. The NSI project used multiple
and conflicting sources for consulting causing some confusion and lost time due to thrashing
back and forth between divergent approaches -- information engineering versus object-oriented
rapid prototyping.

Perhaps one of the primary differences was in user's prof'fles and expectations. SoftLib
replaced a single text based system. The users, although from different application domains,
were familiar with a single interface. Whereas on NSI the users were from different functional
groups. There was no single application m replace; indeed, many users had evolved their own

applications using spreadsheets to support their work. Some of the replaced functionality was
being performed by data entry staff. The NSI authors felt that many of the users did not think
that they would be using the system.

Access and data security were issues for both projects. NSI's solution was at the network

administrator layer--disallow access outside project domains. SoftLib specifically needed to
allow access and file download capability throughout the Ames domains but not to outsiders.

The initial design was for security daemons, user accounts and client-server pairs for file
transfer. The access and security features were written in C due to apparent limitations of the
Gain environment. Very late in the development, the entire SoftLib security/file transfer
implementation was replaced with an Xmosaic shell with "allow" access capability for the Ames
domain and a separate Xmosaic window for file transfer. Distribution and installation
packaging were also replaced due to portability problems of executable code to heterogeneous
workstations. As a result, no software is required to be distributed to potential users and the
developer has greater control over enhancements and problem fixes. All SoftLib capabilities are
available (in the Ames domain) through the World Wide Web.

Results and Lessons Learned

The NSI NSR/RFS application is in production and being used. When the approved prototype
was delivered, the users were not happy and required 4 additional months of part time
development. Most of the users are actually on Macintoshes using MacX for X-Windows
emulation, although the system was mostly developed and demonstrated on a Sun workstation.
The result is that the delivered system is very different from what the users expected. The
system feels slow for this application on this network. Part of the problem appears due to

heavy server loading and the earlier version, redueexl-capability of Gain data managers.
Macintosh client performance is less than half Sun workstation performance due to remapping
for MacX screen display. Also screen size and pixel density are very different, giving a
degraded look and feel on the Macintosh. NSI Macs are currently being upgraded with larger
screens and graphics accelerators. Because an earlier version of Gain was used on this project,
much additional GEL scripting was needed for database transaction management.

SEW Proceedings 17 7 S EL-94-006

The SoftLib application has recently gone into production (October 1994) after successful beta
testing in August and September. The performance is faster than NSI's application and quite
acceptable. It was developed in the newer Gain version and deployed on a different host. As
with the NSI project, the SoftLib prototype was primarily developed and de.m..onstr .a_ed .on a Sun
workstation while many users are on Macintoshes. However, w_th the SoRLib appucauon, me
Librarian is promoting the reuse library and is using the colorful, more capable interface as

advertising leverage to attract users.

These projects are characterized as successful because they went into production and are being
used. They completed within 20% of originally planned schedule and resources. The C-Y
OOA/D methods were introduced, learned and used in development. The initial C-Y object

class models and OO Unit metrics provided an acceptable basis for project estimating and
planning. Data points were generated to calibrate the metrics methods. Connell/Shafer rapid
prototyping approaches were used to iteratively generate a hands-on requirements model the
users requested and then a deliverable product. A new object oriented development
environment was used to produce applications which are fairly easy to change. Preliminary
measurement of development time is about 3 hours per OO Unit for SoftLib and about 4
hrs/OOU for NSI. The NSI figures axe higher due to the larger amount of GEL and SQL
written. These results are from inexperienced developers leveraged by visual development
environments. And we had fun! ! [

We feel that an OO Unit is very similar to a Function Point as described by Dreger [5]. Dreger
(based on work by Capers Jones) provides a list of relative effectiveness of implementation
languages including 4GLs. However, Dreger only provides one single-figure productivity
metric--an average of 20 hours of COBOL development to produce one Function Point.
(Capers Jones [7] declines to give language-dependent single figure metrics. Jones prefers to
give high-low ranges for productivity, probably to prevent comparisons in papers like this.)
We generated single-figure productivity figures by taking the median of the productivity ranges
provided in Dreger's and Jones' figures. Since Jones' and Dreger's figures are given in
Function Points per staff month, we assumed 21 working days per month and 6 working hours

per day to normalize to hours per FP. From this, we show productivity figures for C (24
hours/FP), FORTRAN (20 hours/FP), C++ (15 hours/FP), Ada (14 hours/FP) and

ObjectiveC/Smalltalk (4 ho_).

We axe not entirely comfortable with our single-figure interpretations of Jones figures. Jones'
collected metrics are from a wide range of project types and environments including MIS,

military, and system software among others. We feel that today's versions of the languages

would permit at least twice the productivity of our medians of Jones ranges. Using that
adjustment, C would be 12 hours/FP, C++ 8 hours/FP and Ada 7 hours/FP. These adjusted

figure_ are consistent with the high end of the. produ.cti.vity range Jones does provide for_.ehh of
the languages. Following that, what our projects w_th mexpenenced developers accomplis ed
in 3 and 4 hours still compares favorably to what Dreger/Jones data shows as 8 hours per
Function Point in a standard OO programming language such as C++ or 12 hours in a lower

level language such as C.

We feel our productivity could have been even better. We think about 10% of total effort on the
NSI project was spoilage due to conflicting advice provided by competing consultants from
different organizations. On both projects, productivity.wasle.Xssenedby .thesteep lear_g curve
of multiple elements (OOMOOD, Gain, rapid prototypmg, _L_L. ana.o_m oeve_pment.
experience). We estimate that overall on-the-job learning constatuteo at teast ._ ot total
implementation cost on these two projects. On both pro.jects the majority of implementation

problems and effort expended were related to overcoming the data managers and database

SEW Proceedings 178
SEL-94-006

interface. On NSI, much GEL scripting was written to overcome the earlier version of data

managers. On SoftLib, the newer production release data managers are quite powerful, but
developers had to struggle with alpha versions and multiple Beta releases. All in all, we
estimate it took at least 20% additional development time for each project to overcome the
maturing data base interface.

Prototype size growth from initial OO model to delivered system was flat for SoftLib and about
2.5 for the NSI system. Both systems were estimated to grow to three times the OOU counts

from the initial OO model to the final system. The initial SoftLib model had an unrealistically
high OOU count because the graphic widgets were modeled as separate objects with services
rather than services of objects. A remodeling of the SoftLib initial OO model produced a 25%
lower OOU count with an actual growth of 0.5 to delivered system. The SoftLib growth was
incorrectly estimated because the SoftLib model was a detailed and almost complete model of an
existing application rather than an initial OO model of a future system. The actual hours needed

to complete SoftLib were also less than half that initially estimated, partially due to learning
from the NSI experiences.

Reuse was minimal due to the mismatched capabilities of the development environment versions
and the different application domains. The overall application framework and a few of the GUI
widgets were mused between the two projects. With a bit more care, several of the NSI object
classes (person, organization, etc.) might have been reused within SoftLib. Many of the NSI's
classes hold the possibility for futm'e reuse in any resource management system.

In SoftLib, the Gain development environment allowed easy modification of the applications.
Because very little code is written outside the development environment, the production version
is still as flexible as the prototype was during iteration. The small amount of C code written to

provide SoftLib security and controlled file transfer was easily replaced using the more portable
Xmosaic's file Wansfer and security features.

There was some learning transferred from one project to the other. The SoftLib developers
were able to make some use of NSI lessons learned. The different versions of Gain data

managers prevented more knowledge from being transportable. The SEPG members consulting
on the NSI project also consulted on the SoftLib project That connection was lost as the
project team members assumed all responsibilities from the SEt_.

There were _ some harder to measure productivity loss factors. The inexperienced developers
made some mistakes that more senior software engineers might have avoided. One side effect

of inexperienced prototypers was the hesitation to demonstrate a prototype that didn't appear
excellent. This resulted in fewer iterations and less frequent user feedback. User commitment

to requirements approval was difficult to obtain. On SoftLib there was one primary developer.
With better initial team building and work partitioning, communication would have improved
and the primary developer's workload lessened. Both projects had to pick between a less

capable GalnMomenmm version 2 or an in-development alpha/beta version 3. There were many
handicaps to overcome with either choice. Additionally, the inexperienced developers were not
always amenable to the mentoring available from the SEPG. This is because the application
was their first masterpiece and suggestions and proposed alternatives were often perceived as
criticism and therefore not well received.

A major lesson learned from these two projects relative to the application of the Connell/Shafer
rapid prototyping approach is that delivering a system (Macintosh) with a different look and feel

from the user approved system (Sun) diminishes much of the requirements stability gained from

SEW Proceedings 179 SEL-94-006

prototypeiterations.In ordertoachieverequirementscompleteness,correctness,and exactness

through rapidprototyping,thefollowingmust occur:

*realrequirementsmust exist
•correctidentificationof userrepresentativesin adevelopment plan

•establishmentof requirementsownership ina development plan

•usercommitment toprototypereview and approvalas planned.

Execution of thesebasicrapidprototypingprincipleswas flawed on both projects,resulting in
some userdissatisfaction.Experiencedrapidprototypersknow that successfulrap_dpro_typ,ing

isan evolving team-based processowned mutually by usersand developers,ine _pacc _itauon

Centrifuge project, for instance, proved that the OORP approach can be used to overcome group
dynamics or political fragmentation problems if users become sufficiendy involved in prototype
iterations. On the Centrifuge project, solid requirements definition was achieved in 14 iterations
over a 10 week period with approval from 100 users. These users were in three different groups

(operations, controls, and human factors) each competing for system resources and

requirementsimplementation.

Good News

These projects were sized and scheduled using estimates derived from OO metrics applied for
the first time to real projects at Ames. A conservative factor of four hours per OO unit was used
for NSI project estimating. The actual productivity figure is just about that. On SoftLib, we
used 2 hours per OO unit based on an preliminary estimate of the NSI metrics and hopes for the
more mature version of Gain. Preliminary figures indicate a productivity figure at about 3 hours

per OO unit. With the results and the offsetting productivity losses mentioned above, we feel
the metrics have been initially validated and will continue to be used and refined. From

previous and concurrent experience with other prototyl?ing tools, we feel the metrics can be
generalized for the entire class of visual-programming m very high level rapid prototyping tools
similar to GainMomentum. These kinds of tools are much faster than procedural languages
such as C and FORTRAN. They measure several times faster than OO languages such as C++,

and hold promise to be significantly faster than OO development environments such as
ObjectiveC and Smalltalk. On our projects, when such tools are combined with a formalized
approach to OORP, the development lame (with inexperienced developers on first time projects)
has been measured at equal to any other approach we customarily use. If we adjust our

project's productivity's by the estimated losses for learning curve and tool problems, we have
an approach about twice as fast as the figures put forth by Dreger for ObjectiveC and SmaUtalk.

The OO paradigm is difficult for many developers to master. We have found at Ames that non-
complicated modeling methods assist developers in learning and users in understanding. Our
modeling activities provided an easy way to depict the initial requirements and explain them to
the user before the first prototype was started. The model also acted as an alternate design
mechanism with the alternatives or not-yet-built components shown in a different color or
otherwise called out. The modeling activities paralleled or led the early development; however,

once the major components and inheritance were established, the modeling activity fell to a
lower priority. Subsequent metrics determination required the model to be updated and
reviewed--which should have been done concurrent with development.

The services provided by the SEPG proved to be valuable and particularly necessary for new
developers. The learning curve was too steep for the inexperienced staff to contemplate without
the training and on-project consulting provided by SEPG members. At Ames, the SEPG
advises, rather than controls, projects. This means that staff may always feel free to ignore

SEW Proceedings 180
SEL-94-O06

SEt_ advice. It has been found that staff are much more likely to heed the advice when it is
perceived as free help rather than criticism.

In the course of these two projects a happy accidental discovery was made: there need be no
difference between a good Coad/Yourdon OOD object class model and a good RDBMS schema.
A mapping can be done such that each object class on the OOD model maps to a table in the

database and all required database tables are modeled as object classes. This mapping is
possible because the Coad/Yourdon methods work very well for data oriented applications. The
methodology guidelines for identification of good object classes map well to normalized
RDBMS tables. This is not to say that these methods do not work well for other kinds of
applications. One of the most successful applications of OOA/OOD and OORP at Ames is the
development of real-time data acquisition software for the new 250,000 LOC Standardized
Unitary (wind ttmnel) Data System.

Summary

The Rapid Prototyping approach combined with Object Oriented methods and leveraged by
visual programming development environments show solid promise to significantly improve
development productivity while generating the system the users request. Although the
productivity metrics are preliminary and based on a few data points, it appears possible to easily
exceed the productivity compared to creating an application with ObjecfiveC or Smalltalk. The

projects' productivity measures about twice as effective compared to the high productivity range
of Dreger/Jones' C++ metrics. We have also shown it is possible for less seasoned engineers
using these approaches and assisted by skilled mentors to exceed the productivity of seasoned
developers using less effective techniques. We look foreword to measuring fully experienced
developers using these highly leveraged environments.

On future OORP projects, there are some things we will do differently, as a result of these

projects. We will strive to make sure that we always deliver the system the users really
approved, and not slip in a new, unapproved look and feel for delivery ! We will pay more
attention to psychological factors in dealing with inexperienced staff and uncommitted users.

We also need to keep our O0 models in better synchronization with the development activity;
.perhaps.that can identify more intentional reuse opportunities. We will try to be more thorough
m assuring that original plans are carried through to ensure that users' needs are truthftflly
identified and responsibilities met.

We would like to compare our metrics to other OO projects in different domains and

environments. We used project data captured by Lorenz and Kidd [4] to do a rough comparison
to Smalltalk and C++. Their averaged data indicates Smalltalk productivity of less than 1 hour
per OOU and a lower productivity for C++ at 3 hours per OOU. This three-to-one ratio is

consistent with the Jones and Dreger data. The Lorenz data are from only a few projects but
imply a higher productivity than our projects. However, as with the Jones data, we would need

more contextual information about developer experience, environment capability and accuracy
of the collected data to gauge the comparison and possibly the leveraging effect of different
methods on productivity.

There are some other things these projects have caused us to think about, but we have not as yet
come to any conclusions. We need to devise some more efficient means for providing expert
design guidance to projects so that guidance is heeded more consistently. We need object
oriented design and quality metrics in addition to sizing and estimating metrics. We also need

object reusability guidelines and metrics. Furthermore we wonder if it would improve

SEW Proceedings 181 SEL-94-006

application of SEPG services and better serve)he customer if we withdrew SEPG support to a
project rather than compete as one of several consulting source.s.

Bibliography

1. Coad, P. & Yourdon, E. Object-Oriented Analysis, New York: Yourdon Press (Prentice-

Hall), 1990, 1991.
2. Coad, P. & Yourdon, E. Object-Oriented Design, New York: Yourdon Press (Prentice-

Hall), 1991.
3. Connell, J. & Shafer, L., Object-Oriented Rapid Prototyping, New York: Yourdon Press

(l_ntice-Hall), 1995.
4. Lorenz, M. & Kidd, J., Object-Oriented Software Metrics, New York: Prentice-HaU, 1994.

5. J. Brian Dreger, Function Point Analysis, New York: Prentice-Hall, 1989.
6. Connell, J. and EUer, N., "Object-Oriented Productivity Metrics", NASA Quality and

Productivity Conference, 1992.
7. Jones, Capers, Applied Software Measurement, Assuring Productivity and Quality, New

York: McGraw-Hill, Inc., 1991.

SEW Proceedings 182
SEL-94-006

LEVERAGING

OBJECT ORIENTED DEVELOPMENT

at NASA AMES

Greg Wenneson and John Connell

SEPG

Sterling Software

at NASA Ames

November 30, 1994

SEPG Experiences,

Lessons Learned

Combination of :

• OO Methods

• Rapid Prototyping

• OO Metrics and Estimating

• Leveraged by Tools

Leveraging OO Development at NASA Ames
_ j//

SEW Proceedings 183 SEL-94-006

SEPG

Supports By:

• Training, Consulting, Guidebooks and Tools

I

"Supported" Methods:

• Coad-Yourdon OOA/D

• Connell-Shafer Rapid Prototyping

• OO Metrics and Estimating

• HyperCard, JAMM, GainMomentum

"Approved" Methods ...

Leveraging OO Development at NASA Ames I_Frw--_ 3
..-"

.°o"

//"

Coad-Yourdon O0 and...

• Object Classes,
Attributes and Services

• Subject Layering

• Problem, Human I/F,
Task and Data Mgt
Domains

plus

• Source-Sink Diagram

• Object Control Matrix

. Leveraging O0 Development at NASA Ames I_ 4 !'
lJ

SEW Proceedings 184 SEL-94-006

/

OORP Process Model
"....

Leveraging OO Development at NASA Ames

/

°.°-

OO Rapid Prototyping

• Identify Requirements Commissioners

• Initial Analysis, OO Model, Estimate and Plan

• Prototype Initial OO Model

• Iterate with User: ~ lhr New Functionality

• Final Req'ts User Approval

• Tune, Re-engineer, Document, Inspect

° Acceptance Test and Deliver

m

Leveraging OO Development at NASA Ames • 6

SEW Proceedings
185 SEL-94-006

w

..,,-

//" O0 Unit Metrics Matrix

Simple Average Complex

< 7 ln[o Items 7-14 Info Items • 14 Info Items

Component 3 CUs

Service 4 CUs

External < 3 Components

Entity 7 CUs

5 CUs 8 CUs

5 CUs 6 CUs

3-5 Components • 5 Components

10 CUs 15 CUs

• Object Complexity by Number of Attributes

• External I/F Complexity by Number of Objects

• Effort = OOUs X Hrs/OOU X 3 (Prototype Growth)

Leveraging O0 Development at NASA Ames

/

I1_____.., 7
.--"

..7--

/

Visual Development Tools

GainMomentum (Selected in 1993)

• Object Oriented

• GUI Development

• Data Management

• Function Libraries

• 4GL-like Scripting Language

Leveraging O0 Development at NASA Ames
j.*"

SEW Proceedings 186
SEL-94-006

f_

/

Project Descriptions
\
\

NSI Service Request (NSR): Intemet Connections

° Manage, Track and Schedule Resouces

° Automate Manual and Separate Systems

° Potential 100+ users

SoftLib Library Management System

• Reusable Library Component Xwindow Interface

° Re-engineer Text Based System

• Ames-wide User Base

\ Leveraging OO Development at NASA Ames B__--/]--tf----_ 9 /

./.-

Common Factors

• Both systems Small and Low Technical Risk

• Staff Inexperienced; Then Trained

• Introduced OO and RP

• Introduced New Development Tool
GainMomentum v 2. and Beta v3.0

• Users Spread Over LANs: Macs and Suns

"\.. Leveraging OO Development at NASA Ames B ___ 10
°.--

SEW Proceedings 187 SEL-94-006

.o-

..-"

./"

Results - NSI

• Planned 6 mo.; Approved Delivered in 7 mo.

• Initial Model -140 OOUs; Delivered -550 OOUs

• Estimated 4 hrs/OOU; Delivered ~4hr/OOU

• Performance Not as Expected

• Needed Much Additional SQL

• Delivered Approved Prototype Not Used

• 4 More Months Development

• Problems Not Technical

"-",..

- Leveraging OO Development at NASA Ames
-+.+

B_ 11 ../

.f++-

,/

Results - SoftLib

• Planned 11 mos; Delivered in 11 mos.

• Initial 453 OOUs; Delivered ~ 450 OOUs

• Estimated 2 hrs/OOU; Delivered ~3hrs/OOU

• Some C Code; Replaced by xMosaic

• Newer Version of GainMomentum

• Some Structure and Widget Reuse

• System Performance Satisfactory!

_ Leveraging OO Development at NASA Ames

--'+-

+

i

,]

12 /"
j-+

SEW Proceedings 188
SEL-94-006

What Worked

• O0 & RP Work Well

• OOU Metrics and Estimates Work

• Development Tool Leverages Productivity

• SEPG Assistance Critical to Success

• Productive Development Approach

...... Leveraging OO Development at NASA Ames B 13,

Improvement Needs

• SEPG Advice Optional

• Steep Learning Curve: 30%

• NS110% Multiple Consultant Spoilage

• Following RP Approach

• Non-Technical Issues

- User Buy-In / Commitment

- Developer Ego

• Reuse Criteria

........ Leveraging OO Development at NASA Ames
14 /_

JJ

SEW Proceedings 189 SEL-94-006

°-

Learned

• Deliver what Users Approve ...

• Make sure Users knowledgeably Commit

• RP Can Help Overcome Scattered Users

• Tools Have Warts - Know Them!

• C-Y OOD Obj-Class Model like RDBMS Schema

• C-Y OOA/D Methods Simple and Powerful

• Promoted Methods Leverage Productivity

Leveraging OO Development at NASA Ames B_ 15
_..J"

SEW Proceedings 190
SEL-94-006

