
N95. 31245

Lessons Learned in Transitioning to an
Open Systems Environment

Dillard E. Boland, David S. Green, Warren L. Steger

Computer Sciences Corporation

10110 Aerospace Road

Lanham-Seabrook, Maryland 20706

< -- ,," /

D ' "/

Abstract

Software development organizations, both commercial and governmental, are

undergoing rapid change spurred by developments in the computing industry. To

stay competitive, these organizations must adopt new technologies, slalls, and prac-

tices quickly. Yet even for an organization with a well-developed set of software
engineering models and processes, transitioning to a new technology can be

expensive and risky. Current industry trends are leading away from traditional

mainframe environments and toward the workstation-based, open systems world.

This paper presents the experiences of software engineers on three recent projects

that pioneered open systems development for the National Aeronautics and Space

Administration's (NASA 's) Flight Dynamics Division of the Goddard Space Flight
Center (GSFC).

Introduction

How can an organization effectively accomplish
technology transition? Introducing a new tech-

nolog3: into an organization requires an invest-
ment. But what is the nature and size of that

investment, and how long will it be before bene-

fits are realized? How can one quantitatively
define these benefits and measure the results?

Whatever the ultimate reward of the technology,
transition is a step into uncharted waters. Tech-

nolog?' infusion requires managers to rethink the

way they approach the ordinary, project man-

agement challenges of developing effort esti-

mates, achieving planned productivity, and

dealing with evolving requirements.

The authors of this paper develop soft_are sys-

tems under contract to the NASA/GSFC Flight
Dynamics Division (FDD). For more than two

decades, the FDD has successfully fielded soft-

ware systems to support NASA spacecraft

missions in a relatively stable mainframe/-

minicomputer environment. This stability has
allowed the FDD to optimize its software

development process. During the first half of the

1990s, the authors worked on three projects in
the forefront of the FDD's transition from its

legacy environment to a workstation-based open
systems environment. We discovered that our

established development process had to transition

as well, in unanticipated ways. Our experiences
in this transition and our lessons learned are

recorded here with some recommendations for

managing technology transitions.

A model commonly used for technology transfer

conceives of technology as moving from a pro-
ducer to a consumer organization. The transition

moves through the phases of early experimenta-

tion and exploration to technical maturity. The

projects discussed in this paper fall primarily
within the exploratoo" phase, where work has

progressed from initial experiments to full-scale

development, but the technology is still used by a

SEW Proceedings 191 SEL-94-006

https://ntrs.nasa.gov/search.jsp?R=19950024824 2020-06-16T06:35:15+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42780493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


minority of the organization's staff. Marvin
Zelkowitz defined these phases in a paper pre-

sented at the 18th Annual Software Engineering

Workshop, 'Software Engineering Technology

Transfer: Understanding the Process."

This paper provides information on the software

development organization, then summarizes our
observations on each of the case study projects.

We then organize the lessons learned and rec-
ommend elements of a technology transition plan

and ways in which new technology projects

might be better managed.

The FDD Software

Development Organization

The FDD entered the transition with a mature

sofbvaxe development organization that included

the Software Engineering Laboratory (SEL), a

research and process improvement group whose

mature measurement program, cost and schedule
estimation models, and management guidelines

support software development and technology
transfer in this environment.

The FDD had patterned its success on a basic

scientific method of gradual, continuous improve-

ment in software engineering technology in a

stable computing environment. Controlled inno-
vations were introduced to test new techniques

and tools. Studies usually were conducted

through pilot projects that applied the new tech-

nology under strict controls, with the results

evaluated against the organization's norms. The
FDD would then incorporate proven beneficial

technologies into the standard technology suite.

The FDD had made little investment in explor-

ing open systems technologies. The FDD's few

projects outside the mainframe environment were
considered out of the organization's mainstream.

Developers collected few statistics, and few

software engineering experiments were con-

ducted on these projects. When the computing

industry began to shit_ toward workstations, the

C language, and open systems concepts, the
FDD had little background in these technologies.

Since 1990, the FDD has been moving toward

workstation computing platforms and open sys-
tems technology, driven primarily by factors

external to the development orgamzation. They
have done so without the benefit or lead of SEL

experiments. Figure 1 illustrates the FDD's

Approximate percent
of yearly software

budget spent on

projects using open
systems technology

Schedules of case

study projects

70

60

50

40

3O

20

10

Technology Exploration Technology Maturity

/

/

/

/

/

/

/

/

1•J 01

I 1991 I 1 1993 I 1994 11"6
Nutxs _ss P,otowp,Ill

I =x I
L_.=Z.V__=

I 1996 n

Figure 1. FDD Transition to Open Systems

SEW Proceedings 192
SEL-94-006



investment in new technology exploration and the

quickening pace of the transition. The case

studies discussed in this report are shown at the

bottom of the figure in their chronological

context.

The Case Study Projects

Table 1 provides an overview of the three case

study projects, listing the size and language,

operational computing environments, and devel-

opment tools. The projects were planned by

tailoring the domain-specific FDD cost and

schedule models. The tailoring allowed for some

training on specific new technologies. As work

progressed, plans were revised to reflect the

technology issues. Figure 2 summarizes the

development results compared to the plan.

Case Study 1 : User Interface

Executive (UIX)

The FDD saw a need for a common framework

in the new environment. The FDD planned the

UIX as a common user interface and executive

framework for distributed mission support sys-

tems. The decision to base the user interface on

X/Motif was primarily driven by industry trends.

The aim was to create a configurable system to

be used by developers working in Ada, C, or

FORTRAN to build application programs that

shared a common set of interactive tools. The

application developers would not be required to

code in X/Motif or to use a GUI builder. The

UIX would allow application users to control

multiple, distributed processes in a platform-

transparent manner. Finally, the FDD required

that the UIX support existing hardware

Table 1. Case Study Project Characteristics

Project

Descriptors

Size in KSLOCs

and Language

Platform and

Infrastructure

Software

Development

Tools

Case Study 1: UIX

65,000 C

* 386 and 486 PCs

• Santa Cruz Operation (SCO)
UNIX

• HP 9000/7xx series

workstations

• I-[P/UX

• External Data Representation

(XDR)

• X/Motif(X11R4, later R5)

• Intersolv PVCS version

control

• SCO Open Desk'top toolset

Case Study 2: GSS

212,000 Ada

• Digital Equipment Corp.

(DEC) VAX 8820 (later Alpha

AXP/4000), open VMS

• 486 PCs

• SCO UNIX

• kip 9000/7xx series

workstations

• HP/UX 9.0.3 or higher

* DEC Configuration Manage-

ment System (CMS)

• DEC VAXSet Development
Toolset

* DEC Ada Compiler Version

2.2

• Rational Software Corp.

VADSelfAda for 486 SCO,
HPRJX

Case Study 3: XTE AGSS

66,000 C

58,000 FORTRAN

9,000 User Interface Language

(UIL)

• Hewlett-Packard (liP) 7xx
workstations

• HP/UX

• X-terminal and V'I2000

emulation

• X/Motif(X11R5)

• Builder Xcessory (X Window

GUI builder)

• HP full-screen editor

• HP desktop environment

SEW Proceedings 193 SEL-94-006



KSLOC

240

220

200

180

160

140

120

100

8O

60

40

20

0

Size

97% growth 33% growth 177% grow_

212

65

159

133

120 "

110 "

100 -

90-

80-

7O

Weeks s0

50

40

30

2O

10

0

Schedule _.

24% grow/11 18"/, growm 29'/, growth

104
97

88

UIX GSS XTE AGSS UIX GSS XTE AGSS

Ill planneda ac,ua,I
Compare to size growth in 20% to 40% range and schedule growth in 5% to 35% range
on recent maintenance and VAX development projects

Figure 2. Planned Versus Actual Size and Schedule

(the IBM mainframes and Intel-386 PCs) to the

ma,ximum extent possible.

Prototyping played a critical role. The ambi-

tious goals of the UIX project were all the more

challenging because it was the first to use open

systems technology within the FDD. To learn

the technology and refine the requirements, the

development team built a prototype that covered

all major facets of the proposed UIX. Develop-
ment and evaluation of the prototype ultimately

spanned a year and a half. In parallel with the

prototype evaluation, the team began specifying

the content of the actual UIX. The prototyping

experience led to architectural and conceptual

changes in the specified product, including aban-
doning the goal of supporting the IBM main-

frame as an application host and deferring

implementation of distributed process control

until indust_' capabilities had further evolved.

Lack of a technical infrastructure and an

organizational transition plan caused difficul-
tTes. Without a preestablished infrastructure

('h]iddleware" such as a network file server), the

traditional separation of concerns between the

systems support and software development

organizations was blurred. It was sometimes

unclear whether responsibility for selecting an

infrastructure product lay with the project that

first needed the capabilit 3' (in this case, the UIX)

or with the support organization that maintained
the FDD's institutional hardware resources.

Although cross-organizational groups addressed
these issues, the lack of an overall transition plan

led to misunderstandings and organizational
friction.

The FDD's traditional functional requirements

and specifications methodology was not

sufficient for establishing the infrastructure.

Software developers, especially those fi-om

mainframe backgrounds, tend to take the exis-

tence of a computing system architecture for

granted, but this was not the case with the UIX.

The developers attempted to define the required

software infrastructure using data flow diagrams

and functional specifications, the method with

SEW Proceedings 194
SEL-94-006



which they were familiar. Unfortunately, their

limited knowledge of the technologies involved

and the immaturity, of available products mud-

died the development effort. One round of proto-

typing followed by one round of specification

development was not sufficient, nor was the

specification formalism conducive to iterative
refinement.

Prototyping experience led to technical learning

but not better planning. Although the proto_p-

ing experience clarified technical issues, it taught

the developers little about planning the develop-

ment project. The3' believed that the effort saved

by rapid protot3.ping would offset the additional

effort needed to come up the learning cur_,e on

the new technologies. In the actual project
experience, there was still a substantial learning

curve in spite of an overlap of development team

members _dth the prototypmg team. (For

example, the comple.'d_' of X/Motif coding was

underestimated.) The prototyping team achieved

the organization's average productivi_' based on

historical data. However, productivi_, on the

actual UIX development was initially only half

that of the proto_l_e project, as the team faced

continued technical learning as well as the

documentation and inspection demands of a dis-

ciplined development methodolog3'. Further-

more, the final system was larger (by a factor of

about two) and more complex than indicated by
the prototyping

Case Study 2: Generalized

Support Software (GSS)

The GSS project transinoned the post-

integration development phase only. The GSS

is a multiapplication flight dynamics support

class libra,, designed to interface with the UIX.

The GSS project was the FDD's first Ada lan-

guage soft_'are development project to make the

transition to the open systems workstation envi-

ronment. Unlike the other two case studies pre-

sented in this paper, the GSS was not developed

in an open systems environment. The GSS was

designed, coded, and integrated in the standard

development environment for Ada-based

software projects in the FDD, which was a DEC

VAX system (later, a DEC Alpha system). The

code was then ported to the SCO UNIX envi-

ronment on PCs for integration with the UIX to

create the operational system (an attitude

telemetry, simulator), with the UIX providing the

user interface services. Thus, the technological

"leap" taken by GSS was considerably smaller.

The infrastructure needed for a workstation-

based development was underestimated. When

the GSS project started production in January
1993, the FDD did not have sufficient worksta-

tions and associated Ada development tools to

support a development the size of the GSS on

workstations. The GSS project was not budg-

eted to procure the workstations and tools needed

to develop the system totally in a workstation

environment. FDD management decided that the

most cost-effective approach would be to

develop the GSS software on the institutional

Ada development platform, a VAX 8820 mini-

computer, until the build integration test phase.
At that time, the sottware for the build would be

ported to the workstation environment.

A familiar development environment helped

control system growth. The growth in size of

the GSS is fairly consistent with FDD projects

over the past 5 years. The reasons for the rela-

tively limited gro_ compared to the other case
studies are

* GSS is developed in Ada, a language FDD

software developers have been using for
almost a decade.

* The developers were familiar with the GSS

development environment and toolset, and

only the latter phases of the life cycle (build
integration through independent test) were

performed on the workstation platforms.

The GSS project comprised pure computational

applications software, not interactive software.
The GSS project did not have to deal with user-

system interface issues in the new open systems

environment. Because the UIX system provides

the GUI for GSS-based flight dynamics

applications, the GSS project was "shielded"

SEW Proceedings 19 5 SEL-94-006



from many of the technological hurdles and

learning curve relating to building GUIs on

workstation platforms. This experience suggests

that scientific application development is less

affected when moving to open systems platforms

than is user interface software development.

Case Study 3: X-Ray Timing
Explorer Attitude Ground Support

System (XTE AGSS)

The FDD faced a new requirement to deliver

software on workstations. On this project the

FDD developed mission attitude ground support

applications in an open systems workstation
environment. The FDD had developed these

types of applications before but only in an IBM
mainframe environment. The FDD was required

to deliver the applications to a separate GSFC

organization, the Mission Operations Division

(MOD), for integration into their operational

system. Such applications had previously been

installed and operated only within the FDD envi-

ronment. The MOD systems use a locally devel-

oped package called Transportable Payload
Operations Control Center (TPOCC) to provide
the client-server framework.

Project planning was largely based on experi-
ence in the legacy environment. The project

planners estimated size (in lines of code) of the

applications based on previous FDD systems.

The planners determined they could reuse a large
amount of FORTRAN computational code being

developed concurrently on the mainframe. Since
XTE AGSS was a first-of-a-kind project, the

planners lacked good comparisons to help esti-
mate how the use of TPOCC and X/Motif

graphics would affect the size. A productivity

rate 20 percent lower than the FDD norm was
used to account for the new technology learning

CHIVe.

The XTE development effort was stgnificantly
underestimated. As it turned out, the size of the

applications was underestimated by a factor of

three, primarily because

• Planners underestimated the size of the

TPOCC and graphics-related code.

• Reused code was larger than expected.

• Requirement changes added major new

functionality.

Productivity on the initial builds was considera-

bly lower than expected. The main causes of the

lowered productivity were underestimation of the

complexity of the new technology, the lack of
X/Motif expertise on the team, and skill mix

problems. Productivity increased in the later

builds as the team became more experienced

vdth the technology and as the skill mix

improved; some builds met or exceeded the FDD

norm.

The traditional methodology had to change to

incorporate iteratTon. Only about half the unit

designs had been completed by the time of criti-

cal design review. (FDD methodology called for

all unit designs to be complete at that point.)

This indicated trouble, but the developers and

their management did not realize the full extent

of the effort underestimation until the coding

phase. Then it became clear that they could not

complete the project according to the original

plans, and they had to renegotiate the delivery,
schedule and add staff. The new schedule was

still highly compressed because of XTE mission
deadlines, forcing the developers into an iterative

approach of designing and coding build by
build. For the most part the iterative approach

worked well, though it made assessing progress
difficult.

Requirements instability exacerbated problems.

It is common in FDD development projects that

sot_vare requirements evolve during the course

of development. The XTE project encountered

challenging, though not unprecedented, require-

ments instability, partly because the FDD ana-

lysts thought of ways to make the software more

generic well a__er design and implementation

were underway. System specifications were

changed on several occasions to serve the best

long-term interests of the FDD. The resulting

perturbations were far more severe than they
normally would have been because the project

was in technology transition.

SEW Proceedings 196
SEL-94-006



The development team needed immersion in the

technology to come up to speed. One of the

major challenges of the project was learning the

TPOCC system. This amounted to technology
transfer from the MOD to the FDD. The

TPOCC system is large and complicated, and the

XTE development team could find no single per-

son who was expert m all aspects of the system.

Early m the implementation phase, part of the

development team relocated to the MOD devel-

opment facility for 2 months. The relocation

was very useful for promoting communications,

though interaction was limited because the MOD

developers were busy with their own projects.

The early builds implemented the TPOCC inter-

faces and were kept relatively small to allow

quick feedback. To get a testable framework m

place, the team split the first build m two when it

turned out to be far larger than planned.

Unrecognized technological assumptions created

transition problems. The biggest problem
encountered with TPOCC was not m implement-

ing the application interfaces, but m installing
TPOCC m the FDD. Differences between the

MOD and the FDD computer environments and

system administration approaches became evi-

dent. For instance, the FDD used network user

accounts, with which TPOCC was not compati-

ble. Other problems developed when the MOD

moved to new releases of the HP operating sys-
tem and Motif before these versions were avail-

able to the FDD. In retrospect, the memoranda

of understanding between the FDD and the

MOD, which only addressed XTE AGSS release

dates, should have also specified TPOCC ver-

sion delivery dates, versions of system and sup-

port software to be used, and all applicable
standards.

Increasing personal interaction and emphasiz-

ing slall mix helped allewate problems. After

the FDD tested the releases m-house, the plan

called for delivering them to the MOD for inte-

gration into the operational environment.
Because of all the unexpected problems

encountered thus far m the project, the FDD

development team decided to work with the

MOD developers informally to integrate the

system before formal delivery. The main prob-

lems found during informal integration and test-

ing were with installation instructions, not with
the software itself.

A final factor very important to the success of
the XTE AGSS was stat_g. Once the true

magnitude of the development effort was under-

stood, project management committed highly

experienced and motivated individuals to the

team. They provided a good skill mix that

included both software development and appli-

cation domain knowledge and C and FORTRAN

experience. In spite of the pressures, this

commitment led to a very good team spirit and a

successful product.

Lessons Learned

The complexity of open systems was much

deeper than anticipated in all three case study

projects. The developers learned that '_ndustry

standards" are often evolving or competing con-

ventions, that COTS products are marketed

before they are mature, and that mteroperability

does not always live up to advertised expecta-

tions. They discovered how much middleware it

really takes to make a distributed system work.

The organization realized how significant the
choice of hardware is to the viability of the final

system, how much hardware is needed to fully

support a distributed development effort, and

that the costs for support software and develop-
ment environments can rival or exceed the cost

of the hardware. They also had to find ways to

overcome compartmentalization of open systems

knowledge in their own and in interfacing organ-

izations. We have grouped these lessons around

organizational, technological, and managerial
themes.

Organizational Lessons

Organizatmnal transition plan. A planned
transition for the entire organization, backed by

management commilment, is needed. The case

studies indicate that the FDD approached the

transition on a project-by-project basis, not only

SEW Proceedings 19 7 S EL-94-006



reducing coordination but also slowing the dis-

persion of knowledge. Management did attempt
to coordinate activities at the top levels of the

organization, but the staff on the individual proj-
ects received little information as to how their

project fit into the plan. As a consequence,

people focused almost exclusively on the chal-

lenges of using the new technology on their own

projects, with little incentive to share their expe-
riences with others in the organization.

Changing organizatTonal roles. Changing tech-

nology can blur traditional roles, garble com-

munications, and cause friction. No doubt this is

part of what makes transition plans hard to cre-

ate in the first place. Effects of technology

change can ripple across organizations in ways

they cannot readily accommodate. The leaders

of the organization must define and communicate

a vision for doing business using the new tech-

nology and help the staff make organizational

changes stemming from it. Changing technology

does not necessarily mean business reengineer-

ing, but if the organization is making a major

technology change it should carefully evaluate
the tmpact on its business model as well.

Outreach across organizatTonal boundaries.

Sharing experiences across project and depart-

ment boundaries is critical during technolog).,

transition. "Department" here means an), por-

tion of the organization that traditionally prac-
tices "information hiding" from other portions.
The case studies shiny that information barriers

can exist even at the lowest levels. Groups of 5

or 10 people do_aa the hall from each other may

not share information even though they are

engaged in parallel transitions. This may seem

counterintuitive to anyone who has experienced

the "office grapevine." but people do not grasp

organizational plans through the grapevine. Per-

sonal contact works well for transferring detailed

knaowledge when people have a focus and goals,

but it takes a special effort to find that focus.
Management must provide forums, whether

formal or informal, for sharing new technolog3"
experiences in real time without 'turf" issues

interfering.

Disseminating lessons learned. The FDD has a

tradition of writing good history documents after

each project to capture lessons leamed, but often

they come out too late to help the project plan-

ners who really need them. Also, if a procedure

for using them is not integral to the development
methodology, the lessons may sit on the shelf

unheeded. An organization should document

lessons learned at points in the development
process well before the project's end and should

make producing and using them part of the
development procedure. The lessons should be

disseminated in a way that will make them easy

to access (for example, in a cross-indexed on-line

libra,'). The goal should be to coalesce the les-

sons into an institutional knowledge base.

Technological Lessons

CultTvatTng market awareness. The competitive

marketplace drives the evolution of open tech-

nologies, so using them effectively requires culti-
vating and maintaining market awareness. An

organization coming from a stable mainframe

environment that does not emphasize compati-

bility with the world beyond the vendor may be a

'_:losed shop," especially if that organization

produces a very specialized product (such as

space ground support systems). The case studies

suggest that the FDD was not prepared to deal

with rapid market evolution. In the past, the

organization usually had time to choose tech-

nologies carefully and experiment with "seed"

projects. This approach was not geared to the

pace of change the developers had to adopt to

accomplish the transition to open systems. The
transition forced a cultivation of market aware-

hess, which in turn requires applying the disci-

pline and resources to track all aspects of

industrT evolution. Management must actively
encourage technical staff to follow market trends

and pursue continuing education.

Training for front-line workers. Beware of

unrealistic optimism on the part of both manag-

ers and technical staff regarding the ease with

which staff can master the new technologies.

The case studies revealed that people had a ten-
dency to think in terms of distinct skills to be

SEW Proceedings 198 SEL-94-006



learned, new, but similar to existing skills. In

reality, the myriad interrelationships of a new

suite of technologies, and the industry context in

which they are evolving, are very complex. Our

experience was that the amount of ramp-up time

needed to learn new technologies, from least to

most, was for UNIX, C, networking, and

X/Motif (most difficult to acquire even using a

GUI builder). When most of the team has to

learn all the technologies together, the time

invested is significant.

Technical compatibility. When a software

development shop first adopts open systems

technology, it may expect to easily interface with

open systems in client and peer organizations.

This expectation was not realized in the case

study projects; "plug and play" is not yet the

norm. Incompatibilities result if the organization

does not have detailed knowledge of the tech-

nologies used by the interfacing organization.

Open systems invite cooperation but do not

guarantee compatibility. Interacting organiza-

tions should discuss and document their agree-
ments on issues such as standards, COTS

product versions, and configuration management

assumptions.

Retooling the infrastructure. Organizations

such as the FDD with long-standing stable com-

puting environments have usually developed

customized software development toolsets and a

supporting infrastructure. When moving to a

new technology, problems that were previously

solved in the legacy environment may need to be

solved again because the infrastructure and tools

have changed. Even a technically mature organ-

ization may be unprepared for the extent to

which it must develop new approaches to basic

software engineering problems that it thought it

had solved long ago. A mature organization may

be at a disadvantage because of a high comfort

level with its proven techniques.

System engineering. In all three cases studied,

the transition to open systems caused the

developers to shift from a purely software engi-

neering viewpoint to more of a system

engineering perspective. In the absence of a

stable technical infrastructure, the developers
had to devote considerable time and effort to

understanding engineering topics for which their

previous project experiences had not prepared

them. Both hardware and software components

had to be treated more or less equally. Emphasis
shifted from crafting systems from lines of code

to selecting and integrating the right combination

of hardware and software components. When no

established computing infrastructure exists,

developers must perform systems engineering

analysis at the start of the project to plan for and

procure sufficient resources.

Project Management Lessons

Realisttc expectations. Project managers cannot

expect to achieve all the goals during a technol-

ogy transition that the organization achieved in

the stable technology. Aiming for these goals

can lead to over-commilxnents and compromise

the success of the transition. The project man-

ager must be strategically aggressive but tacti-

cally conservative, and careful when making
commitments.

Accurate effort estzmanon. Technology transi-

tion requires investment. The SEL Manager's
Handbook, source of the FDD's project estimate

models, recommends applying an additional

effort multiplier of 2.3 when a project type and

the technical environment are new to the organi-

zation. Had the case study projects followed this

guidance, the UIX and XTE AGSS projects
would have started with much more realistic

effort estimates. The GSS project, which did not

involve the same degree of transition as the other

two, came closer to the standard model, and the

effort multiplier may not have applied to it.

Staffing and skill mix. The manager in the leg-

acy environment faces a particularly difficult

staffing and training issue. The case study proj-

ects used 'hot" technology, but because the

FDD's existing technology was mainframe

based, it did not tend to attract and retain people

with expertise in new technologies. Those

recruits who did have open systems experience

generally were not experienced in either

SEW Proceedings 199 SEL-94-006



application development or in the FDD's legacy

systems and problem domain.

Training for technical managers. One problem

with this technology transition was that the

technical managers and senior technical people

were reared in an older technology. The case

studies show a tacit assumption that project

managers would somehow "pick up" the open

systems concepts sufficiently to competently

plan and manage these projects. In fact, when

project planners lack an understanding of the

technology their team is using, they may not

understand the real issues and cannot make good

planning decisions. Open systems approaches

bring significantly different problem-solving

tools and techniques. Technical managers need

training and hands-on experience. They need to

know what they are up against when setting

schedules and budgets.

Role of prototyping. Although useful for

avoiding disaster, prototyping is not in itself a

sufficient basis for project planning. A proto-

type does not confer organizational learning
Even a second-time use of a technology may not

uncover all the possible pitfalls. Organizations

have to assimilate information until they reach

the point of "intuition."

Methodology. Methodolo_, requirements ori-

ented toward the routine design problem may

actually impede learning, because they assume

the problem-solving technology is already well
understood. For example, the requirement that

all unit designs be completed before any units are

coded makes it impossible to feed lessons learned

about the new environment into the design proc-

ess. Although progress is harder to measure,

iteration promotes learmng the new environment.
When introducing new technologies, a more

appropriate approach may be to develop the
system framework first and the application func-

tionality later. The project can then be broken

into numerous small builds and progress and

expended effort assessed after each build. The

development plan should be readjusted accord-

ingly. To gaiv integration experience in the new
environment, functionality, should be slipped

from early to later builds rather than delaying

delivery of early builds.

Software metrics. Metrics are critical to under-

standing the new technology. However, meas-

urement programs established for the old

technology may not be adequate for the new.

Predictors based on source lines of code may not

be meaningful when using GU1 builders, code

generators, and COTS packages.

Conclusions and

Recommendations

A technology transition plan. While it is not our

purpose to develop a model for technology
transition planning, our observations do suggest

issues that a transition plan should address.

Table 2 presents our suggestions from the per-

spective of a fairly large organization with a
mature and stable, but dated, technology infra-

structure. (The ordering of topics does not imply

a procedural sequence.)

Climbing the hills of technology infusion.

Adopting a new technology is like climbing a hill

representing the cost of the transition. Few

computing professionals and managers are

expert at estimating the height of the hill and the

rate of progress over it. Yet as Figure 3 shows,

the increasing pace of change brings whole

ranges of hills to climb. The FDD, having suc-

cessfully applied the SEL process improvement

concepts in a stable environment, was unpre-

pared for the rapid pace of the transition to open

systems. Perhaps the FDD, with its stable envi-

ronment and funding, had become accustomed to

investigating technologies at its ovm pace. In the

current technological environment, however, we

may not have the luxury to control which tech-

nology hills we will climb or when.

Can we learn to adopt technologies faster and

more efficiently? A common element in these
case studies is a failure to realize that technology

transition alters the essence of the design prob-

lem. The literature on the design process distin-

guishes between routine design and variant, or

SEW Proceedings 2OO
SEL-94-006



innovative, design. In routine design, both the

problem domain and the problem-solving process
are well understood, and the main issue is

accommodating an established solution to proj-

ect-specific needs. But in variant design, while

the problem domain may still be well understood,

the problem-solving process is not. Approaching
the variant design problem as if it were just a

more difficult instance of the routine problem, to

which slightly adjusted models and procedures

can be applied, leads to problems.

Improving management models for "emerging

technology" projects. Variant design problems

can be expected whenever new technologies are

adopted. The software industry needs to sys-

tematize its knowledge of them. Project

planners must understand when the organization

is going through a transition that fundamentally

changes the problem-solving process so they can

approach it the right way. Of course, the

problem is compounded by the fact that teclmol-

ogy drives organizational structures; as industry

Table 2. Recommended Content of Transition Plan

Topic Conmumts

How mature is the technology? Look at the hardware/softwaresolutions being adoptedby other
organizations. Attendtrade shows andconferences. Challenge the assumptionthat your organi-
zation is unique in its needs or functions. Be proaetivein definingbusiness directionin terms of
new technologies.

Hardware/ Challenge the assumptionthat existing equipment must be retained for cost-effectiveness. The
software tradeoffs cost of software development and development environments may outweighequipment cost.

Pilot projects Define realistic goals for pilot projects; avoid developing products best left to industry (such as
distributed operating systems). Concentrate on using new technology to bolster the organiza-
tion's traditional strengths. Keep initial transition projects small.

Personal contact Expedite personalcontact across departmentboundaries. Establish mechanismssuch as cross-
departmentworking groups, butavoid too much structure Allow teams flexibility to discover
what areas need focus and how to work together.

Methodology An iterative approachpromotes learning. Use numeroussmall builds to gain integration experi-
ence in the new environment. Slip functionality rather than delay delivery. Challenge
methodologyrequirements focused on the routine design problem.

SEW Proceedings 201 SEL-94-006



Where are we on Infusion Hill?
Where are we going and when will we get there?

cost

old technology

?
?

time

?

B=,=_
V

Figure 3. The Hills of Technology Infusion

retools, organizations discover possibilities that

prompt them to reexamine their missions.

Although this exploration can be guided only in
broad outline, the need to steer projects through

these uncharted waters remains.

New Directions for the FDD

Despite transition problems, the software devel-

oped by the projects we studied appears to be of

good technical quality. The XTE systems were

proved reliable in testing and are being reused by

other projects for upcoming missions. New proj-

ects are using the UIX and the GSS in their

designs. The FDD itself is embarking on full-

scale conversion to a distributed system, porting

or replacing up to 6 million lines of legacy sot_-

ware. A stable infrastructure for open systems is

beginning to evolve within the FDD, improving

prospects for success.

Moving a large organization from a mainframe

legacy to a new environment of open systems is a

complex technology transition problem. The
transition involves much more than a simple

switch of tools and techniques. Transitions that
cause sudden shifts from routine to variant

design problems are likely to become more
common in the future. Our challenge is to apply

organizational learning techniques in staying

abreast of industry developments, and to effec-

tively incorporate them in our experience base.

Acknowledgments

The authors gratefully acknowledge the help of
Marvin Zelkowitz of the University of Maryland

and Myrna Regardie of CSC in clarifying our

concepts and consulting on the presentation. The

original inspiration for this report was
Zelkowitz's paper on the technology transfer

process.

References

Landis, L., S. Waligora, F. E. McGarry, Rec-

ommended Approach to Software Development

(Revision 3), Software Engineering Laboratory,
SEL-81-305, June 1992

Landis, L., F. E. MeGarry, S. Waligora, et al.,

Manager's Han:h_ for Soflwoe ZX,wJopr_

(Revision 1), Software Engineering Laboratory,
SEL-84-101, November 1990

Zelkowitz, M. V., 'SoRware Engineering Tech-

nology Transfer: Understanding the Process,"

Proceedings of the Eighteenth Annual Software

F_ng/neermg W_, SoRware Engineering

Laboratory, SH.,O3-(X)3,_ 1993

SEW Proceedings 202
SEL-94-006



Lessons Learned in Transitioning to an
Open Systems Environment

Dillard Boland
Dave Green

Warren Steger

Purpose and Method

D Problem: Transition to a new technology requires investment
before benefits are realized -- how can we plan and manage
efficient transitions in the midst of rapid industry evolution?

[] Method: Study three projects in the GSFC Flight Dynamics
Division (FDD) moving from a mainframe environment to
"open systems" workstation technology

[] Goal: Improve our understanding of technology transition
and identify lessons learned

SEW Proceedings 203 SEL-94-006



Background: The FDD Software
Development Organization

[] Through the SEL process, the FDD has achieved a track
record of continuous improvement in reuse, error rates,
and other software characteristics

17 Stable development environment: IBM mainframe with
FORTRAN, and DEC VAX with Ada

I-I Focused SEL experiments: OO, Ada, Cleanroom, IV&V,
resources usage

[] Computing environment held relatively constant while
process and products evolved

e,,e=lp

Background: Transition of the FDD to
Open Systems

[]

[]

[]

I"f'e"
I,,=R=

FDD/SEL achievements were within the context of
stable mainframe and VAX computing environments

Now FDD is moving toward open systems

• Workstation computing platforms, industry
standards, and conventions

• Use widely available COTS products; emphasize
portability and interoperability

• Goals are economic and technical: less vendor
dominance, more competing solutions, •more
bang for the buck •

How will this dramatic change in computing
environment affect our products and processes?

SEW Proceedings 204
SEL-94-006



Background: Transition of the FDD to
Open Systems

Percent of yewly

l_Jdget spent on

software projects

using open

technoJogles

Schedules of case

study projects

70_

60.

50"

40"

30"

20"

10"

Technology Exp_oraNion Technology Maturity

e
,s

,s

•s

_."

/

t"

7

/I

!_1 1992 1_3 1994 t_5 19Q6

V/////_//////_

I x'reA_ssI

ffr

The Case Study Projects

UIX PC (SCO UNIX), HP 65,000 C MultJapplication user
Interface system

GSS DEC Alpha, HP 212,000 Ads Multiapplication attitude
support components

XTE AGSS HP 150,000 C Mission attitude ground

(awo_) Mid FORTRAN support applications

Planned using SEL models based on local mainframe and VAX experience

with adjustments for new technology

ffr

SE W Proceedings 2 0 5 S EL- 94-006



Case Study Projects: Comparision of
Results

2410-

I;'L im_
Z29"

1110-

1GO-

140-

KSLOC 120-

100-

I0

LII_!!

7z _

112
m

GSS RI XTE AGSS

120"

110"

100-

gO-

80-

70-

Weeks SO-

SO-

40-

30-

20-

IO-

O-

z+m_

UIXR1

17

GSSR1 XTE AGSS

_m to _m _'owth In 20% to 40% range and schedule growth in 5+/o to 35% range

¢_ recent malmemmce and VAX devetol:_nent I:¢OjeCts

Case Study I -- UIX

[] We wanted to develop a common user interface and
executive framework for interactive, distributed mission
support systems

[] We did the logical thing: up-front prototyping

• Led to necessary architectural and conceptual changes

• Not a good basis for project planning: final system is
much larger and more complex than prototype indicated

[] Lack of a preestablished system architecure ("middleware")
proved to be a significant technical and organizational
stumbling block

[] The project was refocused on the user interface and
extended: wait for industry middleware to evolve before
attacking distributed executive

I_l-f
tla=lM= ,0=_+ .

SEW Proceedings 206
SEL-94-006



Case Study 2 -- GSS

[]

[]

[]

[]

We wanted a class library of flight dynamics capabilities
from which we could build our systems; we prototyped it
along with the UIX

We wanted to transition Ada development to workstation
environment, but have not been able to except for
integration and test phases

We discovered that matching development toolset
capabilities available on DEC/Alpha/Open VMS is not yet
cost effective on our target platforms

Current plan is to phase in development tools as market
forces drive the costs of Ada development systems down
(this is already happening)

Case Study 3 -- XTE AGSS

[]

[]

We needed to integrate with client/server software developed by
another group at GSFC, and to provide our first interactive X/Motif
system for mission support (UIX was not ready)

We assumed we could achieve our current norms: compressed
development schedules and reusable software

[]

[]

[]

We severely underestimated the complexity and functionality
required to meet these goals in a new environment

We underestimated the difficulties of interfacing with other group's
software (same "open" technologies, but environment differences
such as COTS products at different version levels)

Technology transfer facilitated by relocating developers to the
other organization's site to infuse their technology, and by
adopting highly iterative implementation approach

e_lPlp,

SEW Proceedings 207 SEL-94-O06



Lessons Learned: Organizational

[]

[]

[]

A coordinated organizational transition plan, with
management commitment, is essential

Changing technology can blur traditional roles,
garble communications, and cause friction,
because the "old ways" do not always adapt well to
new technology

The organization must find ways to cooperate and
share lessons learned across departmental
boundaries; technology transition is not the time
for information hiding!

e"lPdP'
Ik.=ll,.

Lessons Learned: Technological

[] Open systems and rapid industry change demand
we cultivate market awareness to replace our
"closed shop" outlook

[] Open systems invite cooperation but do not
ensure compatibility: stress coordination and
communication

[] Early training is important for both the technical
managers and the frontline workers

[] Problems previously solved in legacy environment
(e.g., CM, reuse) often must be solved again in the
new environment

SEW Proceedings 208
SEL-94-006



Lessons Learned: Project Management

[]

[]

[]

[]

Open systems require open minds: awareness of market
trends, continuous organizational learning, structured
feedback of lessons learned

Use prototyping to avoid disaster but not as a basis for
project planning

Don't expect to achieve the goals of a technologically mature
organization while you are transitioning

We need a better management model for "emerging
technology" projects

¢=,e=,r
I==1t=

Conclusions and Recommendations

[] We need scientific data about technology transitions: The
industry needs to honestly appraise successes and failures
and learn from them

[] Our existing SEL models are not adequate for technology
transitions: Upgrade them

[] Open systems concepts and decreasing hardware costs
force a systems (not just software) engineering approach

[] Personal contact is the most effective means of information

sharing on technology transition - need an institutional
mechanism

[] We must plan for continuously infusing technology and
commit resources to that end

SEW Proceedings 209 SEL-94-006



[]

The Hills of Technology Infusion

In a rapidly evolving industry and an open marketplace, we
must learn better skills for evaluating and adopting new
technologies

COSt

l_lPf =
l,,_l=

thlte

Where are we on Infusion Hill?
Where are we going and when will we get there?

D

BOLSEWlI_

New Directions for the FDD

[] XTE AGSS subsystems are being reused for upcoming
missions

[] EOSTGSS project just completed PDR

• Up-front emphasis on system engineering

• Using UIX as part of infrastructure

[] Flight Dynamics Distributed System

• Port or replace the 6 million SLOC of our mainframe
and VAX legacy

• Will use GSS and UIX

• infrastructure is now coming into place

SEW Proceedings 210
SEL-94-006


