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Abstract

The potential for a revolutionary step in the durability
of Reusable Rocket Engines is made possible by the
combination of several emerging technologies. The

recent creation and analytical demonstration of Life

Extending (or Damage Mitigating) Control technology
enables rapid rocket engine transients with minimum

fatigue and creep damage. This technology has been
further enhanced by the formulation of very simple
but conservative Continuum Damage models. These
new ideas when combined with recent advances in

Multidisciplinary Optimization provide the potential
for a large (revolutionary) step in reusable rocket
engine durability. This concept has been named the

Robust Rocket Engine Concept (RREC) and is the
basic contribution of this paper. The concept also
includes consideration of design innovations to

minimize critical point damage.

Introduction

Durability remains a paramount issue in the area of
reusable rocket engines. The world's only reusable

rocket engine, the Space Shuttle Main Engine
(SSME), has exhibited a variety of durability issues as
summarized in reference 1. A number of issues have

been corrected by redesign of some of the

components, however, significant life improvement
remains possible in some areas for example, the
turbine blades and thrust chamber. Recent advances in

the area of Life Extending (Damage Mitigating)
control, continuum damage modelling, and multi-

disciplinary optimization allow the vision of a
revolutionary step in reusable rocket engine durability.
This vision has been called the Robust Rocket Engine

Concept (RREC). The fundamental idea is to
simultaneously optimize both the design and operation
of the rocket engine to minimize damage while

maintaining good dynamic response and with
minimum impact on performance. This is done at
critical times in the mission and for critical points in

the engine structure.

The robust rocket engine concept also considers the
addition of hardware to allow damage minimization to

be effected. This might include such things as the

capability to preheat turbine engine blades to
minimize start-up thermal transient effects.

Multidisciplinary Aspects

The development of the robust rocket engine concept
will require an advanced form of multidisciplinary

engineering. It must bring together simultaneously:
aspects of cycle design, pumping and turbine issues,
combustion initiation, engine control issues, as well as
advanced multidisciplinary optimization techniques.
For the RREC concept to be successful it will require

a variety of disciplines to work together effectively
and at the detail level. This includes aerodynamics,

structures,materials science, combustion science and

controls. The following discussion attempts to

highlight some of the areas and issues.

Critical Damage Points/Operatin_ Domains

Important aspects of the robust rocket engine concept
are the location of the critical damage points in the

rocket engine structure and identification of the

critical operating domains. Based on the Space
Shuttle Main Engine (SSME) experience the critical
damage points will be those points of high

temperature, pressure, speed, and rates of change of
temperature with time. Typically this will include
areas like the turbine blades, particularly the turbine

blade roots, possibly, the pump impellers and areas of
extreme high temperature and heat flux such as the
main chamber jacket and nozzle liners,



Theperiodsof extreme operating conditions have
been clearly identified in the SSME to be the start-up
transient prior to going into controlled operation and
the shut-down condition. Obviously the overall

design of the engine must include the effects of steady

state operation, although this would not likely have a
dominant impact on the overall fatigue damage
accumulation.

Cycle Desi2n
Traditionally the choice of cycle for rocket engines
has been based on performance, cost, and weight with

typically after-the-fact attention to such issues as
durability. Clearly the choice of the cycle is important
relative to the issue of engine durability. The effect

of the cycle on durability, particularly during start-up
and shut-down transients is critical.

The cycle-optimization needs to be done at two levels.
The first level is the gross choice of the cycle

topology, ie. the component selection and the
plumbing connections. Literally hundreds of cycle
topologies, variations, and advanced concepts are

possible (Ref. 2). Various cycle studies often yield a
generalization of both the benefits and limitations of
the major cycles. It may be possible to design specific
cycles or to alter existing cycles to improve durability

of critical components with little loss in performance.
With current technology the gross selection of the

cycle topology will probably be done in a non-
automated manner.

After the topology is chosen the second level of

optimization is the refinement of the flows,pressures,
and bypass requirements and the way in which the
cycle is balanced and optimized for both steady and
transient performance and durability. This is done for

the operating conditions expected for the engine. It is
important that the high damage operating conditions
also be considered, in particular the start-up and shut-
down modes of operation. This second level of

optimization is best done as a part of the overall
multidisciplinary optimization (discussed later). A
discussion of_several different types of rocket engine

cycles and a traditional design study are presented in
(ref. 3).

Combustion Initiation
The constraints on the establishment of combustion in

the main chamber and if necessary in pre-burner

chambers may require better definition than in the

past. It is important to know. in defining the

constraint space of the optimization process, how
broadly one may choose various combustion delays,
and hence the rates of change of propellant flows

since these indirectly determine the critical stresses
and hence damage accumulations. Currently the rocket

engine start-up process is somewhat of an art form,
with propellant delays and ignition delays empirically
based. This approach was satisfactory in the era of

expendable engines. However, optimization of the
start-up (and shut-down) process will likely require
more a more detailed understanding of the combustion

initiation process.

Additional research may be needed to describe the
domains of safe light-off conditions, acceptable rates

of change of power, flow rates, etc for the chosen

propellant combinations for use in the optimization
studies.

Pumping/Turbine Issues

The requirements for pumping initiation critically
affect the condition of the turbo-pumps at start-up
conditions. The chill-down requirements which
establish cryogenic initial temperatures in the turbo-

pump are followed by a flow of high temperature gas
over the turbine blades. This creates extreme rates of

temperature change in the turbine blades and induces
large stresses which add to those caused by flow
forces and rotation. This is one of the primary causes

of turbine blade damage. Methods must be developed
to reduce the rate of change of temperature with

respect to time of the turbine blades. This is contrary
to the manner in which we have approached engine
chill-down in the past which has been to cold soak

long enough to assure cryogenic flow in the pumps to
avoid the possibility of cavitation. It is now necessary
to try to minimize the chill-down time not only to

minimize propellant usage but to attempt to keep the
turbine blades at as high a temperature as possible to
minimize thermal stresses. Previously investigated

mechanisms such as pump coatings (Ref 4) may be

useful in this regard.

Design innovations which will minimize thermal
conduction between the pumps and the turbines will
also be useful. In addition to this, the consideration

of adding mechanisms to allow pre-heating of the
turbine blades prior to introduction of hot gases to the
turbines would also allow for a reduction of thermal
shock to the turbine blades.

Part of the optimization process for the robust rocket
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engine concept would likely include aero structural

optimization. That is, use of multidisciplinary
optimization to design more robust turbine blades and
turbine blade shapes to optimize blade life with
minimum impact on performance. This process should
be somewhat analogous to the multidisciplinary design

of wing airfoils/structure for aircraft,which has been
demonstrated (Ref 5).

Operation for Minimum Damage

Important to the design of the Robust Rocket Engine
Concept is the manner in which the engine is operated

particularly through transients. Recent research results
(references 6 and 7) have indicated the ability to tailor
the manner by which an engine is controlled through
transients to allow damage to be reduced in a

profound way. The ratio of accumulated damage for
unoptimized transients versus optimized transients
have been shown to be as high as three to one or

greater. The technique used to accomplish these
results is called Life Extending (or Damage

Mitigating) Control. Key results ( Ref. 7) for a
reusable hydrogen oxygen bi-propellant rocket engine

(schematic Figure 1) going through controlled
transients determine the propellant valve positions

(flows) verses time to minimize turbine blade root

fatigue damage for various sets of constraints (Figure
2). The constraints are on damage rate and include
the cases of unconstrained damage rate, and damage
rate constrained to 5* 10 -6 and 2* 10-6. Similar benefits

are achieved when the creep damage of the rocket

chamber cooling jacket are also incorporated into the

optimization(Ref. 8).

It can be seen from the above results that the

accumulated damage of both the hydrogen and oxygen
turbines is a strong fimction of the manner in which

the engine is carried through the transients. It is also
apparent that the dynamic response of chamber

pressure and mixture ratio are nearly unaffected by
the constraint chosen. This is due to the extreme

non-linearity of damage with stress (Ref. 9). The
technology developed for Life Extending Control thus
becomes a powerful tool which can be applied to the

RREC concept.

The achievement of such results is greatly enhanced

through the availability of a continuum damage
model as opposed to cyclic based damage models. A

continuum damage model also enables the

optimization process in a practical sense. Recently
very concise continuum damage laws have been
derived based on the local strain, cyclic damage

model (ref. 9). These results also give very simple

damage expressions for both the zero mean stress
condition as well as the condition of positive or

negative mean stress. Figure 3) shows the damage
rate as a function of a stress level (for a critical

component) with mean stress (c m) as a parameter.
Also shown on the figure is a maximum damage rate

8'(Cr)m= where

_,max(a) = 2(1 + ,b)-O ÷b)/b

O'f- O"

Here b and t_f" are material properties and o is the
critical location stress. This concise equation form

will be particularly useful for optimization studies.
In as much current technology is to start rocket

engines in an open loop manner it is proposed that at
least initially the Life Extending Control technology
be used to determine open loop valve schedules that

would be applied during the start-up. Later the
benefits of closed loop control during start-up may be
determined.

Engine Control Issues
While it is not necessary, to control(in a closed loop

sense) the rocket engine during start-up or shut-down
transients, it may be desirable during steady-state

operation to add sensors and/or actuators to reduce
the up-side excursions of critical temperatures. Likely
locations of these, for example, may be in pre-burners
and at the turbine blades. This capability has been
demonstrated (ref. 7). In addition, while full closed

loop control is not necessary during start-up or shut-
down, it may be desirable to accommodate hysteresis

and/or slow response in large valves by the
introduction of vernier valves and appropriate sensing

and logic. Damage can also be reduced during normal

operation ( i.e. not in start-up or shut-down) through
the use of Life Extending Control (Ref. 6 and 7)

during controlled transients.

Optimization and Computation Issues

Important to the robust rocket engine concept is the
simultaneous optimization of the operation and the
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design of the engine. With the availability of the Life
Extending Control theory and the development of

compact continuum damage models the emerging art
in multidisciplinary optimization can be used as a
fundamental tool to the development of the Robust

Rocket Engine. Important progress has been made in

recent years in the area of multidisciplinary
optimization by various researchers (Refs. I 1-13). The
achievements include: aircraft aft tail design for

minimum drag, aircraft flutter suppression, dynamic
decoupling of oblique wing aircraft (Ref. I l) and
aero/structural design of lifting surfaces (Ref. 5 ).

The application of multidisciplinary optimization to
the design of the RREC can be viewed as a combined

design and trajectory optimization problem where the
valve schedule during start-up and shut-down is the
trajectory. The performance criteria for this problem
will consider: traditional performance, weight,damage

and life cycle cost. Some of these may of course be
combined.

The flow chart Fig(4) shows one possible way to
approach this optimization. Substantial parts of the
flow chart can be automated using computer

optimization and design codes, however, not all parts
of the process should be automated. In particular the
function of choice of.gross cycle topology may be
difficult to automate initially.

The process breaks down into the key steps shown in

the figure. The initial steps are; choice of a gross
topology,, selection of specific sizes, flows, and
design point conditions of that topology, and aero/
structural optimization of turbine blades, pump blades,

chamber design, and other critical components of the
engine. Once the hardware design is temporarily fixed
the operation may be optimized. This will determine

key transient conditions such as thermal rates causing
stress conditions in the turbine blades. The process as
shown and discussed here is serial. However, it is

important to simultaneously optimize both the design

and operation of the engine.

Following convergence of the internal optimization

loop the performance over a single flight would is
calculated. The calculation would include a system

weight, propellant weight increment caused by the
start-up transient and/or shut-down transient, thrust

response time and life or durability. This is followed
by a decision point to see if the performance measure
is continuing to improve in which case the geometry

may be continued to be varied until it stabilizes. If
the geometry stabilizes on a constraint, the question
would then be, can the constraint be relaxed by the

choice of the cycle or the implementation of the

cycle.

Clearly the overall process is computationally intense

and would probably require advanced parallel
processing to implement. In addition a fast, concise,
and reasonably accurate start-up and shut-down
simulation of the rocket engine (including structure)

will be required as well as very simple damage forms
that can be used in the optimization. How much of

the process should be computerized is a matter of
finding the fight balance between computer based
formal optimization and conventional design iteration.
It will be the challenge for the initial applications of

this approach. Clearly, minimal damage of the
critical components over the entire flight with high

performance is the optimization goal.

New Hardware

As mentioned in several of the previous sections, it

may be desirable to introduce new hardware into the
rocket engine. These would include a. a turbine

preheat capability, b. vernier valves for accurate
control over flows to allow more accurate control of

mean turbine blade stresses and c. possibly new
materials for the thrust chambers to minimize creep

damage and d. isolation methods in the turbo pumps
to minimize heat conduction and chill down of the

turbine blades. Finally, the addition of
sensors/actuators to the control system during steady

state operations should help minimize thermal
excursions of the turbine blades and increase

durability.

Summary

This paper has presented a concept for a potentially
revolutionary step in rocket engine durability. The

concept is based strongly on recent advances which
minimize damage accumulation through transients
using the methods of life extending control and the

availability of concise continuum damage models
together with advanced forms of multidisciplinary
optimization. The cost of progress along these lines is
the transition to a highly interdisciplinary or

multidisciplinary approach, heavy use of computers
for design and optimization, and the availability of
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fast engine start models, which includes the effects of
fill-time as well as other transient effects. It is

believed that durability improvements of greater than
ten times may be achieved by such an approach with
little loss in steady and dynamic performance.
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Figure 1. Schematic diagram of bipropellant rocket engine
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Figure 4.--Multidisciplinary optimization process for robust rocket engine concept.
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