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ABSTRACT

Three transition interpolation schemes for use in h or r-refinement have been analyzed in

terms of accuracy, implementation ease and extendability. They include blending-function

interpolation, displacement averaging, and strain matching at discrete points along the

transition edge lines. The results suggest that the choice of matching depends strongly on

the element formulations, (viz. displacement or assumed strain, etc.) and mesh refinement

criteria employed, and to a lesser extent the choice of computer architecture (serial vs.

parallel) and the equation solution procedures. A recommended paring of some of the

elements with the choice factors is suggested.





1. Introduction

The h-version and/or r-version of mesh refinements have been steadily gaining popularity

in recent years. A primary reason for this popularity has been due to the simplicity

of data handling for subsequent refinement and solution strategies. The error estimate

criteria employed for these refinements are by and large deduced from the assumption

that there is no loss of accuracy in the transitional meshes or the transitional meshes

are sufficiently remote from the regions of rapid stress or strain gradients (Babuska and

Dorr, 1981; Felippa, 1976; Shephard and Gallagher, 1979; Zienkiewicz and Zhu, 1987).

Two techniques most frequently adopted for discretizing the transitional regions are the

displacement matching and the blending function interpolations (Gordon and Hall, 1973;

Surana, 1980; Gordon, 1970; Cavendish and Hall, 1984).

From the viewpoint of element formulations, these techniques go well in hand with the

displacement-based elements as they involve only displacements at the element boundaries.

Hence, it appears that transition interpolations for other element fornmlations such as hy-

brid and assumed strain elements would require the matching of different field quantities.

A recent numerical study of mesh refinement strategies that utilize displacement matching

has shown that the displacement-based 9-node element yields a nmch better mesh refine-

ment pattern compared to the assumed natural-coordinate strain (ANS) 9-node element

(Stanley et al., 1989). This has motivated us to examine various interpolation sclmmes

used in transition elements and classify the desirable conjugacy of element formulations

vs. transition interpolation schemes.

2. Formulation of Transition Discretization

Consider two quadrilateral shell elements that have one common transition boundary as

shown in Fig. 1. Although one eould avoid transition nodes in triangular elements, such

a strategy can lead to different nodal patterns or severe element distortion, which in turn

deteriorates the accuracy in the transition regions. This is illustrated in Fig. 2. Conceiv-

ably, the distortion brought about by an h-refinement can be regularized to some extent

if an r-refinement is followed up after each h-refinement. However, such an r-refinement

follow-up may not contribute to overall accuracy improvements.

During the present study of transition discretizations, we will impose one important imple-

mentation requirement: the construction of transition boundary conditions should involve

only the nodal degrees of freedom (dofs) along the transition element edges. If one views

the nodes along the transition element edges as connectors for tying element A to elements

B and C in Fig. 1, there exist three possibilities. These possibilities include blending

displacement interpolation, displacement averaging, and strain (or stress) matching. We

will describe in detail the three procedures.



() 0 ()

4-Node Element and

Transition Node(X)

) A O

) x 0 x

B

I

C

0

9-Node Element and

Transition Nodes (X)

()

Transition Node(s) Belong to Element A

Fig. 1 Transition Nodes for quadrilateral elements due to (h, r)-refinements

Use of Two Transition Nodes

Allows Accurate Triangular
Discretization:

/
/

/
t'

K = ( K + K )/2
[] F1

Without Transition Nodes

Union-Jack Pattern Develops,

Hence Loss of Accuracy
in General

Fig. 2 Transition Nodes vs. Union-Jack Pattern for Triangular h-Refinements



2.1 Blending Displacement Interpolation

This is by far the simplest procedure to introduce additional nodes as connectors so that

the generalized degrees of freedom associated with the additional nodes remain linearly

independent of the remaining ones. For example, when a 4-node element possesses one

transition edge, one introduces the following blending interpolations:

where

N

u = E Nj((,r/)ui (1)
j=l

N, = Ll(q). Qx(() ]

]

N2 = L,(r/) Q2(()

N3 = L2(r/) LI(()

N4 = L2(r/) L2(()

N5 = Ll(r/) Q3(()

(2)

in which L's and Q's are linear and quadratic Lag'range interpolation functions. A similar

blending interpolation can be constructed for a 9-node element with one or more transition

edges.
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Fig. 3 Blended Interpolation of Transition Nodes

It should be pointed out that while the interpolation procedure is straightforward, the

resulting element would require a (2 × 3)-integration rule instead of (2 × 2)-integration in

order to preserve rank-sufficiency.
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2.2 Displacement Averaging

Displacement averaging is by far the simplest procedure.

at node 5 can be obtained by an average of

For example, the displacement

u5 = au2 + (1 - o)u_,
E1

gl + t2 (3)

where gx and g2 are the side length from node 1 to node 5, and node 5 to node 2, respectively.

If ga = g2, then we have

1¢ = u5 - _(ul + us) = 0 (4)

Hence, u5 can either be eliminated or the constraint equation (4) can be augmented via the

method of Lagrange multipliers (X) and u and .k can be solved as the system unknowns.

2.3 Strain Matching

Instead of displacement matching or interpolation, one may impose strain matching as

a connector requirement. For this case, in conjunction with the present implementation

requirement, viz., the use of dofs along the transition edges only, we are to match the

membrane, transverse shear and bending strains:

10ue

e_ - A_ O_

1 Ow_

"_ = Ae O(

1 O0

_- A_ O_

(5)

where A_ is the first fundamental coefficient of the neutral surface of the shell along the

boundary _, (u_, w_, 0_) are the tangential, normal and rotational deformation along _.

For a 4-node element having one transition edge as shown in Fig. 3, it turns out the strain

matching is the same as the displacement averaging as long as the transition node 5 bisects

nodes 1 and 2. To exasnine the strain matching for a 9-node case, we adopt a flat plate



for illustrative purposes as shown in Fig. 4.
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Fig. 4 Strain Matching Along A 9-Node Edge

Since there are two transition nodes with (u, w,/9,)-dofs affected, a total of six constraints

are required in order to eliminate them. Hence, we must enforce the strain matching of the

three strain states given by (5) at two locations along the transition edge. Among several

candidates, it has been determined that the most desirable strain-matching locations are

the two Barlow points (_ = -t-1/x/_). Matching the strains at the two Barlow points yields

the following constraints:

I) =

8u, - (3u, + 6u2 - u3) = 0

8u5 - (-ul + 6u2 + 3u3) = 0

8v4 - (3Vl 4- 6v2 - v3) = 0

805 - (-v, + 6v2 + 3v3) = 0

804 -- (301 4- 6/92 -/93) ----0

8/95 -- (--/91 4- 6/92 4- 3/93) -- 0

8/34 - (3fl, 4- 6fl2- fl_) = 0

8fl5- (-fl, 4-6_2 4-3fl3)= 0

8w4 -(3wx +6w2 - w3) 4- {(03 - 202 4- 0,) = 0

g (03 - 2/92 +/9, ) = 0
8w_ - (-w, + 6w2 + 3w3) -

(6)
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Rewriting (6), one obtains

Bsd = 0, d = [u 1 _)1 Wl 01 #1, ..-, .-., ..., u5 u5 w5 05 /35 ]T (7)

If the displacement averaging is adopted, one replaces the two strain constraint equations

on the transverse shear strains by

8w4 - (3w, + 6w2 - w3) = 081/35 --(--Wl +61/32 -_" 3w3)=0 (8)

3. Implementation

There are two distinct needs for implementing the blending function approach vs the

method of Lagrange multipliers. We shall describe the two procedures separately.

3.1 Blended Assumed Natural-Coordinate Strains

To illustrate the blended assumed natural-coordinate strain (ANS) interpolation, let us

consider the following 5-noded membrane square element.

"rl, y, v

)
3 4

1 5 2

) x (

•_ _,X,U

Figure 5 5-Node Blended-Function Square Plate Element

From the above figure one readily obtains the following strain expressions:
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To see whether (9a) yields a rank-sufficient stiffness matrix, it is adequate to check

f
= ] B_EB_ge=z T dV

Jy

where

(9)

(10)

ezz = Bzzu, u = [Ul,

= [_(-1 +2_)g,(r/), _(1 +2_)gz(r/),B_

in which

112, U3, U4, us J T ill)

(12)

Nz(T/) = ½(1 -- r/), N2(_) = ½(1 + 17)

and E is Young's modulus. Evaluation of (10) for a constant thickness plate (h) gives

14

2
Eh

K_zz - 18 3
-3

-16

2 3 -3 -16

14 -3 3 -16

-3 3 -3 0

3 -3 3 0

-16 0 0 128

(13)

which has the required correct rank since there is only one physical rigid mode. Hence,

(2 x 2)-integration of the transition element involving node 5 will have a correct rank.

For higher order elements, e.g., 9-node element, similar ANS transition elements can be

constructed.

3.2 Augmentation of Displacement Averaging or Strain Matching Condition

For linear cases, the transition conditions given by (6) or (7) can be augmented as follows:

so that one obtains

6H = 6uTKu + 6ATBu + 6uTBTA -- 6uTf = 0 (14)

[KB BT] {u}= {f}0 X 0 (15)



Partitioning u further into the transition node ut and the original node u0, (15) can be

rearranged as

K,o K,t B T u, = ft (16)

Bo Bt 0 A 0

So that (15) can be solved directly or by

Koouo=fo (17)

where

I_oo Koo KotB71Bo T -T T -T -1= -- -BoB t Kto+BoB t K.B t Bo

T -T
f= fo-BoBt ft

(18)

4. Strain Matching for 9-ANS Transition Element

As alluded to in Introduction, the ANS family of shell elements are constructed by inter-

polating the strains along the element edges and certain interior natural-coordinate lines.

Hence, displacement matching or blended function approach can destroy much of the good

ANS element attributes. A preferred construction of transition strategies for ANS elements

is to match the strains along the transition edges at some discrete points. To this end, let

us consider Fig. 6 in which the element edge A is to match with the element edges B and

C as shown below.

T

_- 2 _ Edge A

"b JStrain Mat_hin9 Points_5 "b

Figure 6 Strain Matching Along Three ANS Curved Element Edges
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The position vector of the particle point P (Fig. 7) on the deformed shell is given by

r = r ° + _b3 (19)

where

r° = xe, + re2 + ze3, (x V z) = {(X + u) (V + v) (Z + w)} (20)

in which x, rand z are the deformed neutral shell surface position coordinates, (u, rand w)

are the displacements measured in the inertial e-system, _ is the distance of the material

point P from the shell neutral surface measured in the b-system attached on the deformed

cross-section of the shell, and the vector b is related to the vector e by

b = Re (21)

The linearized (or incremental) displacement vector, U, is obtained from:

tl = uTe + _£1 (22)

where the pseudo-rotation vector, fi, is related to the shell-surface, pseudo-rotation quan-

tities, _ according to

{/31} /)= T/s&Tb. (23)fl = (--tTg(2) tTg(1)) /32 '

in which tTg(i) represents the i-th row of the transformation matrix, Tsg, defined by

s = Tsge (24)

that are attached to the deformed shell surface; and, Tb, relates the shell-surface basis

vectors s, to the inertial basis vectors according to

b = Tb,s (25)

The covariant natural-coordinate unit vectors are then obtained by:

1 Or ° 1
-- (x,( e, + y,(e2 + z(e3)= tie (26)

a_ = _- 0_ A_

1 Or ° 1
-- (X,_ el + y,,e2 + znea)= tTe (27)

a'7- A n Oq A n

a( x a n _(z,¢el +y,(e2+z,(e3)=t_'e
a<- [a(x an[

(2s)
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£'* xe!÷ ye2÷ze 3

1 (,. ,. ,l.{Ix+ul. _x+,l. _z+,,)}
!2

r !1

Figure 7 Geometry of Shell Surface

where the two fundamental shell surface quantities, Ae and A_, are given by:

vOr° 0r ° Or ° Or °

AI= 0_ _-' A_= 07 07 (29)

For subsequent applications, we express the above relation in a compact form:

{<}a=T.ge= t T e (30)

Finally, the covariant partial derivatives axe given by:

0 1 0 0 1 0 0 1 0

OS_ - A e O_ OS, 7 - A,_ OrI 0S¢ = -A¢ O( A¢ = h((, rl)/2 (31)

where h(_, 7}) is the shell thickness.

First, the membrane strains, eee, at the two Barlow points along the edge A are given (

see Park et al.(1989) for details in the natural-coordinate strain formulation), respectively,

by:

_(_)= ! _ •1½(-_--,)+_(u_- 2._+ u,)
A¢, t¢,

(32)
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1

_l_(_b ) ---- A__bt_. [½(u 3 -- Ul)-}-_b(U3 -- 2u 2 -}- Ul) (33)

where _b and _b are the two right and left Barlow points along the edge A.

On the other hand, the assumed strains at the same location along the edge B and C can

be derived, respectively, as

C (_h) = '(1+ _}' C , ½(1 _}_e c f_'_ (34)

e_,_,(5_)= ½(1+ --5}_)e_,_,(_,)+ ½(1- ____b)e¢,¢,(_b)5'LB -,g
(35)

in which c , ce_,_,(_b) and e_,_,(_) are the strains at the two Baxlow points along the edge C,
and B , Be_,_,(%) and (_;) axee_,_, the strains at the two Barlow points along the edge B.

Equating e_(_b) and c ,e_,_,((L) one obtains the following constraint at (b = 1/V_ on the

edges A and C:

cy.u, + 4.u + cy.u2+c1 .Ul= o (36)

where ci are given by

c5 = (1 - V_)_-¢ t:; + (1 - l"f_' 1 t C

1 C

.f4_1 t c 5/v_) _-___c3 = -(0.5 + 1/V_)A--_t_, + }(1 + v oj_-_ _ + }(--3 + t_

1 C 1/V_) 1 C= 2 1 tf, + }(-5 + 3x/_ _--c-t,, ¼(1 + t_;

cl = (0.5- 1/V_)A--_t_,

(37)

where the superscript C denotes the quantities pertaining to the edge C.

Similarly, the membrane strain matching constraint at _b = --1/X/_ along the edges A and

B is obtained by:

eT.u4 + eT.ua + eT-u2 +eT'ul : 0 (38)

where c:i are given by

12



c4 = (1 - l/v/3) ' c (1 v_)2-_-.t_; + - ' t C

e3 = (0.5 - 1/x/3) '-Lt -
A(b _b

2 I

(:2 -- v_ A<bt& - ¼(1 + 1/x/g) _-qt_;' " + I(-5 + 3v_l..ql -,B

_:, = -(0.5 + 1/V_)A--_t & + ¼(--3 + 5/V/3) A--_-t,; + ¼(1 + V_>A--__ t_B

(39)

It should be noted that the two bending strain constraints at the two Barlow points

axe obtained by replacing u by fi in the preceding membrane matching conditions. The

remaining two strain matching conditions, viz., the transverse shear strains,

T 1 0u

lead to the following two constraints:

----+tga (40)

dsT.us+dT-ua+dT-u2+dT.u,+eT-fi5+eT-fia+eT-fi2+eT.fil =0 (41)

-T -T -T -
d4 .u 4 q_ d3 .u 3 nc d2 .u 2 q_ dlT . Ul + @T. 1714 .it_ @3T " £1 3 _it_ _2 T " 1712 q_ _1T " 1711 : 0 (42)

where di and di are obtained by replacing t_ with to, etc., into ci and _:i, respectively,

and ei and ei axe given by

e5 = (1 - 1/v_)t_ + ½(V_- 1)t_

ea = -_(1 + X/3)t_b + 6-_t_ + _(Vf3 - 2)t_

=2 '(3- 2v_)t_ ___1 Ce2 _t_, + g gt_

e, = -_(1- X/_)t_b

1)t + (1- 1/v%t 

2 1 B

e2 = _t& + gt_ + _(3- 2x/_)t_

_, = -k(1 + v_)t& + _(V/3 - 2)tg; + 4t_

(43)

(44)

Finally, the displacement u. and fin, namely, those perpendicular to t( and t( ( t, =

t( x t(), can be obtained by

gT'u5 -k-gT'ua + gT'u2 -{'-gT'ul = 0

13
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gT.u, + gT.u, + g[.u_ + gT.u, = o

where

g3 -----tn(_b) g3 = tn(_b)
g2 - ' g2 -

gl +3 gl -3

The interpolation functions for ft, at the two Barlow points are the same as for u,.

(46)

(47)

Combining the six strain matching constraints and the four displacement interpolation

conditions together, one obtains the following equation:

_S = BANS{q} (48)

where qi = (ui, I[li) T and BANS is given by

BANS =

_ o c_ o cT o o o c_ o
o cT o c_ o c_ o o o c_

d T e T d T e T d T e T 0 0 d T c T

gT 0 gT 0 gT 0 0 0 gT 0

0 gT 0 gT 0 gT 0 0 0 gT

eT o eT o _T o eT o o o
o _1 o _ o _ o e_ o o

- -T -T -T
d T _T d2 _T d3 _T d4 6T 0 0

gT o g_ o gT o e£ o o o
o g_ o gT o g_ o g_ o o

(49)

It can be shown that the above expression reduces to the flat, straight edge case given by

(6). It should also be noted that fi introduced in (23) must be replaced by (/3a, /32) in (48)

in actual implementation in order to avoid singularity.

5. Discussions

The present study has examined three possible ways for discretizing the mesh transi-

tion regions. It has been shown that for four-noded elements the displacement averaging

and the strain matching yield the same transition discretization expressions. For plates

with straight edges discretized by nine-noded elements, the Barlow-point displacement and

strain matching becomes the same except for the transverse shear strains.

The transition interpolation schemes for curved shell boundaries for the nine-noded ANS-

shell element (Park and Stanley, 1895; Stanley, 1985; Park et hi., 1989) has been carried

in detail for implementation in h-version mesh refinement. It is noted that the transition-

boundary strain matching directly affects the resulting assumed natural-coordinate strains

14



employed in the formulation of ANS-shell element generation. Suchexplicit enforcement
of strain-matching conditions along the element edgesis considereda distinct advantage
of the ANS-shell element.
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