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The optimum phase detector is presented for tracking square-wave subcarriers

that have been bandwidth limited to a finite number of harmonics. The phase detec-

tor is optimum in the sense that the loop signal-to-noise ratio (SNR) is maximized

and, hence, the rms phase tracking error is minimized. The optimum phase detector

is easy to implement and achieves substantial improvement. Also presented are the

optimum weights to combine the signals demodulated from each of the harmonics.

The optimum weighting provides SNR improvement of 0.1 to 0.15 dB when the

subcarrier loop SNR is low (15 dB) and the number of harmonics is high (8 to 16).

I. Introduction

This work was motivated by the need for near-optimum demodulation of the extremely weak signal

received from the Galileo spacecraft. This demonstration is accomplished in the buffered telemetry

demodulator (BTD). Since the BTD is a software demodulator, it is practical to tailor the processing

more closely to the Galileo signal conditions than would be practical in other systems, such as the
Block V Receiver.

A limitation of the BTD is that the input signal has been recorded by the full spectrum recorder

and contains only the first four harmonics of the originally transmitted square-wave subcarrier. The

subcarrier phase detector initially implemented in the BTD uses a windowing technique similar to that

used in the Advanced Receiver II and the Block V Receiver [1] but modified for the four-harmonic case

[3]. There is a parameter, Wsc, that is analogous to the fractional window width in a square-wave sub-

carrier phase detector. As shown in Fig. 1, this phase detector results in a degradation (loss in symbol

signal-to-noise ratio (SNR) due to harmonic truncation and phase tracking error), which does not mono-

tonically decrease as the number of harmonics is increased. 1 In fact, when the tracking error is large, and

when the harmonics are combined using the usual 1In weighting for the nth harmonic, it is sometimes

better to use only four harmonics than to use all harmonics. This suggests two things: First, it tells us that

1Based on work by D. Rogstad, 2Yacking Systems and Applications Section, and Y. Feria, Communications Systems
Research Section, Jet Propulsion Laboratory, Pasadena, California, October 1994.

87

https://ntrs.nasa.gov/search.jsp?R=19950025808 2020-06-16T06:11:56+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42780341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


-0.3i I I I I

Wsc = 1/4
-0,4

-0,5

,6

_-0.9! | Delta = 9.0 deg- I =10°'Y ' -
I Bc:,=o.!Hz _

-1.o-I 8,c:°°sHz -
Bsy = 0.02 Hz _

-,.1-I -
-1.2 I I I I I

0 5 10 15 20 25

NUMBER OF HARMONICS

Fig. 1. Degradation as a function of the number of
harmonics, using the current BTD.

the phase detector may not be using the harmonics optimally. Second, it indicates that the demodulated

harmonics may not be optimally combined.

The phase detector used in [3] is derived from a window used on a square-wave subcarrier loop. This

phase detector may not be the optimum for a finite-harmonic subcarrier. As a previous work [2] indicates,

the higher harmonics get larger phase noise jitters. Therefore, the effective signal amplitude on the nth

harmonic is no longer 1/n but some number smaller than that. The optimum weights to combine the

demodulated harmonics should account for the SNR losses due to the loop.

II. Optimum Phase Detector

Here we derive a phase detector (PD) that is optimum in the sense that the loop SNR is maximized.

To show the derivation, let us first take a look at the current phase detector used in the BTD. The

current phase detector is the product of the combined in-phase signals v/-P-ddk cos¢c(8/Tr 2) _L-01(1/(2n

+ 1) 2) cos[(2n + 1)¢sc] and the combined quadrature signals v/_dk cos¢c(8/7r2) _L-1 Wn(1/(2n

+ 1))sin[(2n + 1)_b_c] where the wn are the weights used to combine the quadrature signals and, in

the current BTD, these weights are

sin[(2n + 1)(Tr/2)Ws¢l
w, = 2n + 1

The loop SNR using the current BTD is derived as 2

C_fl2pd( 1 ) -1

where

2 H. Tsou, personal communication, Communications Systems Research Section, Jet Propulsion Laboratory, Pasadena,

California, October 1994.
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where L is the total number of harmonics used in the phase detector, Pd/No is the data power-to-noise
ratio, Es/No is the symbol SNR, and Bsc is the subcarrier loop bandwidth.

Now in order to maximize the subcarrier loop SNR, p_c, let Wk, k = 0,..., L - 1, be unknown and a

be the same as before, and differentiate the loop SNR, P_c, with respect to wk and set the expression to
zero. We then have

OPsc 2/37 - 2fl2wk 1 Pd c_
Owk = 72 B_ No a+ 1/(2Es/No)

=0

Since Pal�No 7/=O, a _ O, and _, Bsc are finite, the above is zero if and only if

(1)

- 3wk = 0

That is,

or

L-1 L-1

2
E Wn -- E WnWk _- 0

n=O n=O

which implies that

L-1

E Wn(Wn - wk) = O, for all k
n=O

w,_ = wk, for all n and k

The conclusion is that the optimum weights to combine the quadrature signals in the phase detector

are a constant for all (finite) harmonics. Note that, for infinite harmonics, the parameters /3 and 7 do

not converge; therefore, the above weights cannot be used for square waves. When the optimum weights
are used in the phase detector, the loop SNR becomes
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r Pd c, (2)
P'° - B,< No <_+ II(2EUNo)

Using the optimum weights in the phase detector (called the optimum phase detector), we can improve

the loop SNR by 9.5 dB over the current BTD with window size = 1, and by 1.1 dB over the current
BTD with window size = 1/4 (see Fig. 2). The same figure also shows that, using the optimum phase

detector, the loop SNR obtained by using only one harmonic is higher than that using the current BTD
with the window size being either 1 or 1/2. Note that when we use only one harmonic in the optimum

phase detector, we may still use all the available harmonics to demodulate the subcarrier.
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Fig. 2. Comparison in loop SNR using the optimum
phase detector and the current BTD.

Degradations due to a finite-harmonic subcarrier loop can be computed using the expressions given in

[2]. Degradations as a function of the number of harmonics are shown in Fig. 3. Clearly, we can observe
that, using the optimum phase detector, we obtained a lower degradation with more harmonics. This

agrees with our intuition.

With the increase of the loop SNR, that is, with the increase of the number of harmonics, the linear

region shrinks. See the normalized S-curves shown in Fig. 4. As the number of harmonics approaches

infinity, the linear region of the S-curve approaches zero. In other words, this optimum phase detector is

only for a finite number of harmonics.

III. Optimum Combining Weights in Demodulation

The demodulated harmonics are currently combined with the weight 1/n for the nth harmonic. These

weights are optimum if each of the harmonics of the subcarrier is demodulated with the same phase jitter.
In our case, however, we know that if the first harmonic has a phase jitter with a variance of a _, then
the nth harmonic would have a variance of (na) 2. The weight 1In is no longer optimum.
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Fig. 3. Degradation as a function of the number of

harmonics, using the optimum weights.
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To derive the optimum combining weights, we assume that the harmonics are combined using unknown

weights bn. We then express the SNR in terms of the weights. Differentiating the SNR with respect to
the weights and setting it to zero, we should obtain the optimum weights.

The optimum weight to combine the demodulated (2n + 1)th harmonics is derived in the Appendix as

b_ = cos[(2n + 1)¢sc] 1
_oosCsc 2n + f (3)

When Csc is assumed to have a Tikhonov distribution,

cos(2n + 1)¢8c = / exp[(1/4)psc cos¢_c]
7rIo(psc/4)

o

r2n+l ")

Assuming that we have 4, 8, and 16 harmonics, the degradations in symbol SNR versus the subcarrier

loop SNR, using the optimum weights and the usual 1/n weights, are compared in Figs. 5 through 7.

IV. Approximated Optimum Combining Weights in Demodulation

Since the cosine function is "smooth" in the vicinity of zero, for small phase jitters, nest, the expected
value of cos(nCsc) can be approximated by

(72
E{cos(_¢sc)}_ 1-n 2-2 (4)

The approximated optimum weights are
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Fig. 5. Symbol SNR degradation when using
optimum weights (four harmonics).

Fig. 6. Symbol SNR degradation when using
optimum weights (eight harmonica).
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Fig. 7. Symbol SNR degradation when using
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1-(2n+1)2o 2 1 (5)
bn

1 - 02/2 2n + 1

Note that this approximation is valid only when n¢sc is small. Using the approximated optimum weights

for four harmonics, the symbol SNR degradation is only slightly more than that using the optimum weight

as shown in Fig. 5.
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V. Conclusion

We presented an optimum way of tracking and demodulating a finite-harmonic subcarrier. We found

an optimum phase detector in the sense that the loop SNR is maximized. The more harmonics used, the

higher the loop SNR we obtain. However, the linear region of the phase error signal shrinks with the

increase of the number of harmonics. Therefore, this optimum phase detector is only appropriate for a

finite number of harmonics. Using the optimum phase detector, the loop SNR is about 9.5 dB higher

than that of the current BTD using window size 1, and is about 1 dB higher than that of the current

BTD with window size 1/4.

For demodulation, we found the optimum combining weights that account for the losses due to the

phase jitter. Compared to using the usual 1/n combining weights, the use of the optimum combining

weights can improve the symbol SNR by 0.1 to 0.15 dB at a low loop SNR (15 dB) and a high number
of harmonics (8 to 16).
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Appendix

Derivation of the Optimum Combining

Weights in Demodulation

After each of the harmonics of the subcarrier is demodulated, the signals from each harmonic demod-

ulation need to be combined. Assume that the combining weight for the (2n + 1)th harmonic is b,_; the

signal amplitude at the lth symbol is

2L-: 1S = v_dd, cosec b_:-: cos[(2n + 1)¢_c]
(A-l)

where Pd is the data power, and ¢c and Csc are the phase offsets of the carrier and subcarrier, respectively.

The noise variance is

L-I 2 NO R (A-2)

n=0

Taking the ratio of the average signal power and the noise variance, we have the average symbol SNR of

the combined signal:

£{(4/_2)Pd cos 2 ¢c()--_'_L-0:bn cos[(2n + 1)¢_]/(2n + 1)) 2 }
L-1

(A-3)

Differentiating the symbol SNR with respect to bk, k = 0,-.., L - 1, we have

O(SNR)

Obk PdCOS2¢c(4/Tr2)L-: C{I2_bnC°S[(2n+l)¢_C]2n+ 1 cos[(2k +1)¢_c]'2k+ 1
(E,_:o b2yoR_um) 2 ,,=o

2

cos,,2n  0.c,]2bk 0R  m/- bn _n +
kn=O

=0

L-1

b,_NoR_um
n=l

(A-4)

Simplifying the above equation, we have

L-1 L-1

cos[(2k + 1)¢,c] _ b2n_ _ bn
£ { 2k-+ 1 _=0 ,_=0

"l

cos[(2n + 1)¢SC]bk _ = 0
2n+l J

(A-:)
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Let k = 0 and b0 = 1; we have

L-1 L-1 b cos[(2n + 1)¢sc] = 0cos,_---:Z _ - Z n 2-_+1
n_0 n=0

(A-6)

That is,

L-I [ cos[(2n + 1)¢_c]E b,_ cos ¢_cb_ - 2n + 1
n=O

=0 (A-7)

Finally, solving for b_, we have the optimum combining weights,

bl"_

cos[(2n + 1)¢sc] 1

cos Csc 2n + 1
(A-8)
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Enhanced Decoding for the Galileo Low-Gain

Antenna Mission: Viterbi Redecoding With

Four Decoding Stages

S. Dolinar and M. Belongie
Communications Systems ResearchSection

The Galileo low-gain antenna mission will be supported by a coding system that
uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes

of four different redundancies. Decoding for this code is designed to proceed in

four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In

each successive stage, the Reed-Solomon decoder only tries to decode the highest
redundancy codewords not yet decoded in previous stages, and the Viterbi decoder

redecodes its data utilizing the known symbols from previously decoded Reed-
Solomon codewords.

A previous article [1] analyzed a two-stage decoding option that was not selected

by Galileo. The present article analyzes the four-stage decoding scheme and derives

the near-optimum set of redundancies selected for use by Galileo. The performance
improvements relative to one- and two-stage decoding systems are evaluated.

I. Introduction

This article is a follow-on to [1], which analyzed two enhanced decoding options planned for the Galileo

low-gain antenna (LGA) mission: Reed-Solomon redecoding using erasure declarations and Viterbi re-

decoding using Reed-Solomon corrected symbols. The analysis in [1] produced tables of gains achievable

from enhanced decoding under an assumption of infinite interleaving for one, two, or four stages of Viterbi

decoding, but no Reed-Solomon redecoding, and for one or two stages of Viterbi decoding, with or with-

out Reed-Solomon redecoding, under the actual Galileo conditions of depth-8 interleaving. The present

article looks at the case of four stages of Viterbi decoding and depth-8 interleaving. The four-stage coding
system has been selected for implementation to support the Galileo LGA mission.

II. Block Diagram of Coding Options

A block diagram of the various coding options is shown in Fig. 1. A Reed Solomon encoded data

block is interleaved to depth 8 and then encoded by the (14,1/4) convolutional encoder. The Reed-

Solomon codewords can have four different levels of redundancies, as depicted by the lightly shaded
areas at the bottom of the code block in Fig. 1. The encoded data are modulated, passed over an ad-
ditive white Gaussian noise (AWGN) channel, demodulated, and presented to a Viterbi decoder. After
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