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We consider the problem of finding a trelfis for a linear block code that minimizes

one or more measures of trellis complexity for a fixed permutation of the code. We

examine constraints on trellises, including relationships between the minimal trellis

of a code and that of the dual code. We identify the primitive structures that can

appear in a minimal trellis and relate this to those for the minimal trellis of the

dual code.

I. Introduction

Every linear block code can be represented by a minimal trellis, originally introduced by Bahl et al. [1],

which is a labeled graph that can be used as a template for encoding or decoding. As shown by McEliece, 1

the minimal trellis simultaneously minimizes the maximum number of states, the total numbers of vertices

and edges in the trellis, and the total numbers of additions and path comparisons required for decoding

with the Viterbi algorithm.

In this article, we examine properties of the minimal trellis representation of a code and its dual for

a fixed permutation. A companion article [2] uses these results to examine the problem of finding a

permutation that minimizes one or more trellis complexity measures.

Section II reviews the subject of minimal trellises for a fixed permutation of a code. We examine the

building blocks of such trellises and identify several different measures of trellis size or complexity. In

Section III, we illustrate the connection between the minimal trellis of a code and that of the dual code.

The section includes results that describe the structure and complexity of trellises for self-dual and other

special codes.

1 R. J. McEliece, "On The BCJR Trellis for Linear Block Codes," submitted to IEEE Trans. Inform. Theory.
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It can be shown in [7] that for 0 _<x < 1,

k + L-4 xk (B-6)k \_---_]
k=0

Using Eq. (B-6) in Eqs. (B-4) and (B-5), we then obtain, for 0 _<x < 1,

L - 2 (B-7)
l < fL(Z) <_ L- 3

The upper and lower bounds given in Eq. (B-7) are both asymptotically tight in the limit as L --+ c_. So
we can conclude that for 0 _< x < 1, fL (x) _ 1 as L ---* oo, where the convergence is uniform in x.
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II. Minimal Trellis Representation of a Code

A. The Minimal Span Generator Matrix

For any linear (n, k) block code C over GF(q) there exists a minimal span generator matrix (MSGM)
representing C. A minimal trellis T for the code can be constructed from the MSGM. The trellis has

n + 1 levels of vertices and n levels of edges. The vertex levels, called depths, are numbered from 0 to n;

the edge levels, called stages, are numbered from 1 to n. Each stage of edges corresponds to one stage of
encoding or decoding using the trellis. Each vertex at depth i represents a possible encoder state after

the ith stage of encoding. The ith stage corresponds to the ith column of the generator matrix, whereas
the ith depth corresponds to the "space between" columns i and i + 1.

The edge span of any row of the generator matrix is the smallest set of consecutive integers (stages)
containing its nonzero positions. The vertex span of the row is the set of depths i such that at least one
nonzero symbol occurs before and after depth i. Using the generator matrix to encode k information

symbols in n stages of encoding, the edge span of the jth row represents the interval of stages during

which the jth information symbol can affect the encoder output. The vertex span of the jth row is the
set of depths at which the jth information symbol can affect the encoder state.

For example, the (6,3) shortened Hamming code has the minimal span generator matrix

[ 1100G= 1 0 1 0

0 1 1 1
(1)

The edge spans are {1,2, 3}, {2, 3, 4, 5, 6}, and {3, 4, 5}. The vertex spans are {1, 2}, {2, 3, 4, 5}, and
{3, 4}. We use the term span length to refer to the cardinality of a span.

A remarkable result is that the MSGM simultaneously makes all of the spans as short as possible: The

edge spans (vertex spans) for any other generator matrix representing C always contain the corresponding

spans of some row-permuted MSGM. 2 Any generator matrix can be put into minimal span form using the

following greedy algorithm: At each step, perform any row operation that reduces the edge span of any

row of the matrix. The rows of the MSGM are then "atomic codewords," according to the terminology
of Kschischang and Sorokine [5].

Each vertex or state at a given depth can be uniquely labeled using k or fewer symbols from GF(q).

But any given state-label symbol can be reused to represent several information symbols, as long as the

vertex spans of the corresponding rows of the generator matrix do not overlap. This reassignment of
state-label symbols to multiple rows of the generator matrix is the key to efficient trellis representations
of the code.

For example, the minimal trellis T produced for the (6,3) shortened Hamming code with MSGM given
in Eq. (1) is shown in Fig. 1. For this trellis, we can define the binary state label to be s2sl, where s2 = 1

at depth i if the second information bit is 1 and i is within the vertex span of the second row, and Sl = 1

if either (1) the first information bit is 1 and i is within the vertex span of the first row or (2) the third
information bit is 1 and i is within the vertex span of the third row. This time-sharing arrangement for

state bit sl is possible because the vertex spans of the first and third rows do not overlap.

In the sequel, we will be interested primarily in nondegenerate codes, which we define as codes whose

minimum distance d and dual code minimum distance d± are both at least 2. Degenerate codes have a

simple interpretation: If d < 2, the vertex span of some row of the MSGM must be empty; if d ± < 2,

2 Ibid.
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0 1 2 3 4 5 6

STATE 1 2 3 4 5 6
$2S1 0 0 0 0 0 0

o,  oXO;:_or
1 1 0 0

DEPTH

STAGE

Fig. 1. A minimal trellis for the (6,3) shortened Hamming code.

some column of the generator matrix must be identically zero. For a degenerate code, we can simply

ignore the extraneous symbol positions (if d± < 2) and/or separately decode the unprotected information

symbols (if d < 2). The code consisting of the remaining code symbols is then nondegenerate.

B. Pest and Future Subcodes

Following Forney [3], let us define the ith past and future subcodes, denoted P= and 9v_, to be the sets
of all codewords whose vertex spans are contained in [0, i - 1] and [i + 1, n], respectively. The dimensions

of these codes can be easily determined from the MSGM: fi _ dim(_'i) is the number of rows for which

the leftmost nonzero entry lies in column i + 1 or later, and pi _ dim(P,) is the number of rows for which

the rightmost nonzero entry lies in column i or earlier. 3 This implies that Pi and fi are monotonic,

0=p0_<pl <_... <pn=k= fo> fz >_'" >_fn=O (2)

and never change by more than 1 from one index to the next.

For each 1 < i < n, we define the left- and right-basis indicators, li, ri E {0, 1}, to identify the positions

where the future and past dimensions change:

/x

li _ fi-1 - fi ri = Pi - Pi-z

For any i, li = 1 if and only if the edge span of some row of the MSGM G begins in column i, or

equivalently, the ith column of G is linearly independent of the i - 1 columns to the left. Similarly, ri = 1
if and only if the edge span of some row of G ends in column i, i.e., the ith column of G is linearly

independent of the n - i columns to the right. The columns where l= = 1 and the columns where ri = 1
each forms a basis for the column space of G, and these sets are called the left basis and the right basis,

respectively. The positions of the left and right basis columns can be regarded as information positions
when the generator matrix is used to encode the information left to right or right to left, respectively.

C. Primitive Structures of a Minimal Trellis

There are four basic building blocks that can be used to construct the minimal trellis for any nonde-

generate code. At any given stage i, all primitive structures are of the same type, which is determined

by the values of li and r_. The primitive structures are

3 Ibid.
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(1) Simple extension (-): This primitive structure appears at stage i when l_ = 0, ri = 0,
e.g., stage 4 in Fig. 1. Simple extensions at stage i imply a single edge out of each vertex

at depth i - 1 and a single edge into each vertex at depth i; hence, the number of vertices
remains constant.

(2) Simple expansion (<): This corresponds to li = 1,r_ = 0, e.g., stages 1 and 2 in Fig. 1.
There are q edges out of each vertex at depth i - 1, and a single edge into each vertex at

depth i, hence, multiplying by q the number of states from one vertex depth to the next.

(3) Simple merger (>): This corresponds to li = 0, ri = 1, e.g., stages 5 and 6 in Fig. 1. A

simple merger is a time-reversed simple expansion, reducing the number of states by a
factor of q.

(4) Butterfly (x): This corresponds to l_ = 1,ri = 1, e.g., stage 3 in Fig. 1. There are q

edges out of each vertex at depth i - 1 and q edges into each vertex at depth i; hence,
the number of states is constant.

The total numbers of such primitive structures in the trellis are denoted by N_, N<, N>, and N x ,

respectively. For example, the trellis in Fig. 1 has N< = 3 = N>, N_ = 2, N_ = 4. Because the graph

has exactly one initial node and one terminal node, the total number of simple expansions must equal
the total number of simple mergers:

N< --- N>

The total number of edges in the trellis, E, can be found by counting the number of edges associated
with each primitive trellis structure:

E = N_ + qN< +qN> + q2N x (3)

Similarly, the total number of mergers M is the sum of the number of simple mergers and the mergers
included in butterflies:

M = N> + qN x (4)

If we count the total number of vertices associated with each primitive structure, then each vertex in
the trellis (excluding initial and terminal nodes) will be counted twice, so the total number of vertices V
satisfies

2V- 2 = 2N_ + (q + l)N< + (q + l)N> + 2qN x

which gives

V = 1 +N_ + (q+ 1)N< +qN X (5)

Combining Eqs. (3), (4), and (5), we find

E-V+I
M-

q-1

This is the generalization of the binary version of this result found by McEliece. 4

4 Ibid.
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D. Measures of Trellis Complexity for Viterbi Decoding

The vertex space dimension at depth i is

v_ =k-A-p, i =0,.-.,n (6)

and the edge space dimension at stage i is

e_=k-A-pi-1, i=l,...,n (w)

The total number of vertices at depth i is q_', and the total number of edges at stage i is qe,. Of course,

v_ __ 0 for all i since at least one vertex must exist at each depth. Also, for nondegenerate codes, ei >_ 1

for all i, i.e., no stage consists of a single edge.

The most commonly used measure of Viterbi decoding complexity for a minimal trellis is the maximum

dimension of its state space,

(8)
8max _ max vi

i

This complexity metric has been cited as one of the essential characteristics of any code [6]. Similarly,

the maximum dimension of the edge space is

zx (9)emax = max ei
i

Forney argues that this is a more relevant complexity measure because, unlike $max, this quantity cannot

be reduced by combining adjacent stages of a trellis [4].

A different metric, used in McEliece's derivation of the MSCM, 5 is the total length of all the edge

spans of the rows of the MSGM:

k

---- _j

j=l

(10)

where Ej denotes the length of the edge span of the jth row of the MSGM. A similar span length metric

is the total length of all the vertex spans:

k

j=l

where v3 = Ej - 1 is the length of the vertex span of the jth row of the MSGM. These two metrics are
equivalent to the sums of all the edge dimensions or vertex dimensions (summed over stages or depths,

respect ively):

5 Ibid.
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T'8 n

i=1 i=0

McEliece argues that more meaningful measures of Viterbi decoding complexity are the total numbers

of edges E, vertices V, and mergers M, rather than simply the vertex or edge dimensionality: 6

n

E = E q_' (11)
i=1

z=O

n n

= = = liq ei = riq ei
= i=1

(13)

E is equal to the number of binary additions required to compute path metrics, and M is the number of

q-ary comparisons required to merge trellis paths• The computational complexity of Viterbi decoding is
proportional to E. 7

III. Minimal Trellis Representation of the Dual Code

In this section, we explore the relationship between the minimal trellises for a code C and its dual C3-.

A. Past and Future Subcode Relationships

As discussed in Section II.B, li = 0 if and only if the ith column of the MSGM can be written as some

linear combination of the i - 1 columns to its left. In other words, there exists a dual codeword y of theform

y = XXX...X 1 000...0

i-1 n-i

Where XXX...X denotes some sequence of symbols from GF(q). Defining Yl,Y2,"',Yn-k in this
manner for each of the left-dependent columns in the MSGM produces n - k dual codewords of the form

Yl = XXX...XIO00... 0

Y2 = X X X . . . X1000...0

Yn-k = XXX... X1

These dual codewords are clearly linearly independent and, thus, can be used as the rows of the generator

matrix for C±. We see that the positions where r_ - 1 are precisely the positions where li = 0; the same

argument applied to the right-dependent columns shows that the positions where l_ = 1 are precisely the

6 Ibid.

7 Ibid.
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positions where ri = 0. Here l_ and r_ are the left- and right-basis indicators for C±. These observations

lead to the following theorem.

Theorem 1. For each 0 <:_i < n, the left- and right-basis indicators for a code and its dual are related

by

l_+ r_ = l_ + r, = i

and the dimensions p_, f_ of the past and future subcodes of a code are given in terms of those of the

dual code p_, f_ as follows:

Pi =k-n+i+f_

.fi = k-i+p_

We believe that this result, which relates minimal trellises of a code and dual for any fixed permutation,

is more fundamental than similar dual relationships for permutations of codes. This result is also contained

in [4], but is derived by first considering permutations of codes.

B. Primitive Trellis Structures for the Dual Code

Much information about the trellis for the dual code can be inferred from the trellis structure of the

code. For example, if the code has a simple expansion at the ith stage, then l, = 1, r, = 0, which implies,

using Theorem 1, that the dual code has l_ = 1, r_ = 0; hence, the trellis of the dual code also has a

simple expansion structure at this stage. Repeating this procedure, we find the "dual" of each primitive

structure, shown in Table 1.

Given an unlabeled trellis, Table i can be used to determine the number and type of primitive structures

present at every depth of the trellis for the dual code. However, we cannot in general determine the
interconnections without additional information about the code.

The dual relationship for primitive structures shown in Table 1 implies that

N_< =N<=N>=N> i

and

N_ = qN_

C. Dual-Code Complexity Measures

The following well-known result, first noted by Forney [3], is a consequence of Eq. (6) and Theorem 1.

Lemma. A code and its dual code have equivalent vertex spaces, namely, for each i,

'Ui --_ V/l-
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Table 1. Dual primitive structures.

Code structure Dual structure

Simple extension (-)

It = O,r_ = 0

Simple expansion (<)

li : 1,ri = 0

Simple merger (>)

li = O, r i : 1

Butterfly (x)
li = 1,ri = 1

Butterfly (x)

li"L= 1,r/J- ----1

Simple expansion (<)

li"1"= 1,r_ =0

Simple merger (>)

l_ = O, r_ = 1

Simple extension (-)

;,_= o,r,_= o

Consequently, many of the trellis complexity measures for a code can be determined by evaluating the
same measure on the dual code:

V =V l-

2.
8ma x = Sma x

e-k =u=u ±=c ±-(n_k)

Note that this implies e = e ± for any rate 1/2 code.

The number of edges in the minimal trellis of a code and its dual is not as conveniently related. Prom
Eq. (7) and Theorem 1,

e, = 4 + (1 - r? - l_)

for each 1 < i < n. Consequently, since 11 - r_ - l_l < 1, and from the definition of E,

1
-E < E J- < qE
q

Equality is possible only for the degenerate (n, n, 1) code or its dual.

D. Minimal Trellises for Self-Dual and Other Special Codes

For self-dual codes, the theory of the previous two sections collapses neatly to yield stronger results

because, for any such code, l_ = l_ and r_ = r_ for all i. Consequently, from Theorem 1,

Theorem 2. For any self-dual code C, for each i = 1,2,...n, either

(1) l_= 1 andri=0, or

(2) li=0andri= 1
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i.e., every stage corresponds to an information symbol when encoding from one direction and a parity

symbol when encoding from the other direction. The only primitive trellis structures in T(C) are simple

expansions and simple mergers.

The converse of Theorem 2 does not hold: A code whose minimal trellis contains only simple expansions

and mergers need not be self-dual. However, such a trellis can always be relabeled to represent a self-dual

code.

The following theorem, which is a consequence of Theorem 2 and Eqs. (3), (4), and (5), shows that,

for self-dual codes, the complexity measures E, V, and M are linearly related, and the maximum edge

and vertex dimensions are equal.

Theorem 3. For any self-dual code,

V = q+-----[1E+l
2q

1
M =--E

2q

.Sma x = 6max

There is another case where we can restrict the type of structures that can appear in the trellis for a

code:

Theorem 4. If C is a code with all codeword weights divisible by some integer m > 2, then,

(1) There does not exist a position i such that li = ri = 1, i.e., T(C) contains no butterfly

structures.
1

(2) C cannot have rate greater than _.

(3) emax = Smax

(s) M < 1--E
- 2q

(6) V± <_ (qql) E± + I

(7) M ± > 1E±
- 2q

Proof: If li = ri = 1, then the ith column begins and ends spans in the MSGM. This implies the

existence of codewords of the form x = XXX.." X10 TM and y = 0_-1(-1) XXX'" .X, where (-1)

denotes the additive inverse of 1 in GF(q) and XXX... X denotes some string of symbols in GF(q).

Then x + y is a eodeword of weight Ixl + lYl - 2, which cannot be divisible by m. This proves (1). From

(1), we have/_+r_ < 1 for all i, so 2k = _=l(/i+ri) <- _=1 1 = n, which proves (2). The fact that T(C)
can have no butterfly structures proves (3). Prom Eq. (13), 2qM = _in=l(li + ri)q e' <- Y]in--=lqe, = E,

proving (5), and (4) follows directly. Since l_ + ri < 1, Theorem 1 implies l_ + r_ >_ 1, which gives (6)- CI

and (7).
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Codes for which all codeword weights are divisible by some integer other than one are called divisible

codes [7]. Examples of divisible codes include the (31,10,12) binary cyclic codes and doubly even self-dual
codes such as the extended Golay code.

The converse of Theorem 4 does not hold--a code is not necessarily divisible when li + ri <_ 1 for all
i. If a code and its dual satisfy the conditions of Theorem 4, then the code strongly resembles a self-dual

code: The code must have rate 1/2 and its trellis contain only simple expansions and simple mergers.

IV. Conclusion

In this article, we have examined the trellis complexity problem by first considering the minimal span
generator matrix for a fixed permutation of a code. McEliece showed that the so-called minimal trellis

indeed minimizes not only the maximum state dimension of the trellis but also a whole gamut of com-
plexity measures, s Here we have augmented the list of reasonable complexity measures and interrelated

them. We have also illustrated the connection between the complexity measures and the four primitive
structures of a minimal trellis for a nondegenerate code.

We developed some useful relationships between the minimal trellis of a code and that of its dual.

The duality relationships lead to interesting connections among several of the complexity measures for
the special case of self-dual codes.
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