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The process of combining telemetry signals received at multiple antennas, com-

monly referred to as arraying, can be used to improve communication Hnk perfor-

mance in the Deep Space Network (DSN). By coherently adding telemetry from

multiple receiving sites, arraying produces an enhancement in signal-to-noise ratio

(SNR) over that achievable with any single antenna in the array. A number of differ-

ent techniques for arraying have been proposed and their performances analyzed in

past literature [1,2]. These analyses have compared different arraying schemes un-

der the assumption that the signals contain additive white Gaussian noise (AWCN)
and that the noise observed at distinct antennas is independent.

In situations where an unwanted background body is visible to multiple antennas

in the array, however, the assumption of independent noises is no longer applicable.

A planet with significant radiation emissions in the frequency band of interest can

be one such source of correlated noise. For example, during much of Galileo's

tour of Jupiter, the planet will contribute significantly to the total system no&e at

various ground stations. This article analyzes the effects of correlated noise on two

arraying schemes currently being considered for DSN applications: full-spectrum

combining (FSC) and complex-symbol combining (CSC). A framework is presented

for characterizing the correlated noise based on physical parameters, and the impact

of the noise correlation on the array performance is assessed for each scheme.

I. Introduction

Arraying spacecraft telemetry has a number of desirable applications in the Deep Space Network. By

combining signals from multiple antennas, arraying has the benefit of increasing the signal-to-noise ratio

(SNR) of the combined signal over that achievable with any individual antenna in the array. Arraying

may be used to coherently track signals that are too weak to be tracked by a single antenna or to allow an

increase in the supportable data rate for stronger signals. Several different schemes for performing arraying

have been proposed and analyzed in past literature [1,2]. These schemes differ in the synchronization

processes that are used to combine and demodulate the signals. Thus, a benchmark used to compare

different arraying schemes is symbol SNR degradation, which is a measure of the SNR reduction due to
imperfect synchronization for a particular scheme.
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Previous analyses that have compared arraying techniques in terms of symbol SNR degradation have

used an additive white Gaussian noise (AWGN) model to describe the deep-space channel and have

assumed the noise waveforms received at distinct antennas are independent. However, if a strong radio

source is within the antenna pattern of multiple antennas in the array, the noise observations at different

antennas become correlated. For a substantial fraction of Galileo's encounter with Jupiter, for example,

the planet will have an angular separation from the spacecraft that is less than the beamwidth of a
70-m antenna at S-band (2.3 GHz). 1 Further analysis is thus needed to characterize the performance of

arraying schemes in cases where correlated noise is present.

Prior work has been conducted on this subject but has not exhausted research possibilities. A study

by Dewey [3] examines correlated noise effects due to planetary sources, focusing mainly on physical
considerations. A correlated noise model is presented, taking into account properties of the source and

the array geometry. The impact of the background source on arrayed symbol SNR relative to a case
of uncorrelated noise is then'analyzed. The results obtained are applied to observation of the Gahleo

spacecraft from a four-element array in the DSN's Australia complex. However, Dewey's study does not
take into account the effects of imperfect synchronization in telemetry arraying, which are dependent on

the specific arraying technique used. Thus, the analysis does not identify the relative advantages and

disadvantages of different arraying schemes under conditions of correlated noise.

The purpose of this article is to analyze the effects of correlated noise on the full-spectrum combining

(FSC) and complex-symbol combining (CSC) arraying schemes. In Section II, background material needed
to understand the physics underlying background noise in receiving systems is presented. Parameters used

to characterize the noise correlation properties will be introduced and explained. Sections III and IV then

apply this model to the FSC and CSC techniques and compute the symbol SNR degradation for each
scheme. Section V applies the results of the previous sections to the Galileo mission. Predicts for the

signal and noise parameters are used to evaluate the performance of both arraying schemes in this scenario.

Finally, Section VI summarizes tile main results of the work.

II. Background Noise Properties

Here we present basic terminology used to describe broadband sources that will be used for the

remainder of the analysis. The discussion that follows is included only to summarize major results from

previous work; readers interested in a more thorough treatment of the subject material may refer to a
text on radio astronomy, such as [4], or the work performed by Dewey alluded to earlier [3].

Consider first the effect of a background source on a single receiving system. The noise observed at

an antenna consists of both thermal noise due to front-end receiver electronics and radiation due to any

radio sources in the antenna's field of view. Such sources typically have an emission spectrum that varies

very slowly with frequency and can, therefore, be considered white over the bandwidth of interest. 2 The
increase in total system temperature due to the background source is found by integrating the source's

brightness distribution over the antenna's reception pattern, i.e.,

T_=_

where Ae is the effective receiving area of the antenna in m2; k is Boltzmann's constant, 1.379 × 10 -23

W/K/Hz; B(_) is the brightness of the source in W/m2/Hz/sr (sr stands for steradian, a measure of solid

angle); PN(s) is the normalized antenna reception pattern; and g is a unit vector specifying direction.

• ' ' n "

1 G. Resch, "Jupiter's Contribution to the Total System Temperature at S-Band During the Gahleo Mmslo , JPL Interoffice

Memorandum 335.3-92.02 (internal document), Jet Propulsion Laboratory, Pasadena, California, June 23, 1993.

2 Ibid.

212



The one-sided power spectral density of the noise due to the source is then given by N8 = kTs. Note that

in the upper limit, when the source is concentrated in the peak of the antenna's reception pattern, the
temperature increase is given by

T, = (2)

Ae

= (3)

where S is the total flux density of the source in W/m2/Hz. As the angular separation between the source

and the spacecraft increases, the background source moves out of the peak of the antenna pattern, and

its temperature contribution diminishes. In addition, the flux density for a particular source is dependent

on its distance to Earth; the greater the range, the smaller the observed flux is. Thus, the temperature
contribution for a body depends on both its strength and its position.

Now consider a pair of antennas physically separated by a baseline vector /_k observing a common

source. The cross-correlation function for the baseband (BB) noise processes fi_(t) and ilk(t) can bewritten as

= sin(27rBT)

7_T (4)

where B is the one-sided bandwidth of the noise waveforms, and a is their cross-power spectral density.
If the bandwidth B is wider than the telemetry bandwidth, then the cross-spectrum is white over the

bandwidth of interest, and the "sinc" function sin(2uBr)/(_r) can be approximated by an impulsefunction, i.e.,

(5)

It can be shown [3,4] that the cross-power spectral density level is given by

2

where fo is the observation frequency, and c is the speed of light, 3 x 10s m/s. In radio interferometry
applications, the quantity IVleJ¢,, is known as the complex visibility of the source. A few important

observations regarding Eq. (6) are made here. First, note that the exponential term eJ2"foB, k4/c produces

a sinusoidal variation over the spatial extent of the source. This variation is known as the fringe pattern

formed by a particular pair of antennas. The period of these fringe oscillations is given in radians/cycle
by C/foBik,,, where Bike, is the projected baseline length in the direction of the source. If a source has

an angular size much greater than the fringe period, the cross-correlation magnitude then tends to zero

due to the averaging effect of the sinusoid. Thus, in the long baseline limit (i.e., B_k,, >> c/(foRs) ' with
R_ being the angular radius of the source), lal --_ 0, and the noise observations due to the source become

uncorrelated. By contrast, for Bik,, << c/(foRs) , the magnitude of the cross-power spectral density
achieves its upper limit, namely
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(7)
2

Thus, the degree of noise correlation observed by an array of antennas depends heavily on the geometry of

the array. This point is stressed in [3], where it is stated that the more compact the array configuration,

the greater the impact of a background body on the array.

Finally, we introduce the correlation coefficient, describing the degree of correlation that exists between

the noise at two antennas, defined as

I, 1 (8)

Note that in the upper limit (i.e., source size small compared to fringe period), the correlation coefficient

becomes

, T _,Tsk (9)

where Ts,, Tsk are the source temperatures at antennas i, k, and T_, Tk are the total system temperatures
at the two antennas. Thus, the greater the contribution of the source to the total system temperature,

the higher the correlation coefficient, as is intuitively expected.

Combining Eqs. (5), (6), and (8), the cross-correlation function for the noise observed at two antennas

can be expressed as

Ra,ak(_') = p_kv_o, Nok ej_'\ 6(T) (10)

where _bi_ is used to express the correlation phase, denoted by Cv in Eq. (6).

lU. Full-Spectrum Combining Performance
Given a mathematical description of noise correlation properties, we now apply the model to analyzing

correlated noise effects on arraying. Full-spectrum combining is described in detail in [2] and summarized

here briefly. Assume the array consists of L antennas, where antenna 1 is taken to be the "master"

antenna (i.e., the antenna with the highest G/T.) As shown in Fig. 1, each signal is first downconverted
to baseband 3 by local oscillators in phase quadrature. Each signal pair, which can be thought of as a

single complex signal, is then shifted in time by some amount _ to compensate for differing arrival times
of the spacecraft signal at the various antennas. The complex baseband signals are then aligned in phase,

multiplied by prespecified weighting factors, and added. Finally, the combined signal is processed by a

single carrier, subcarrier, and symbol loop.

Two quantities used to describe arraying performance are the ideal arraying gain, denoted by GA,

and the symbol SNR degradation, denoted by D. The arraying gain is defined as the ratio of the ideal

symbol SNR of the arrayed signal to the ideal symbol SNR of antenna 1 [1]. Here, "ideal" means the

3 Analysis presented in [2] actually assumes all processing is done at an intermediate frequency, rather than at baseband.

A baseband system was assumed here to simplify the analysis. This represents no loss of generality, since final results are

not dependent on what frequency processing is done at.
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Fig. 1. Full-spectrum combining.

symbol SNR that would be achieved in the absence of synchronization errors (i.e., perfect signal combining

and perfect carrier, subcarrier, and symbol references.) Note that the arraying gain GA is independent

of which arraying technique is used, since synchronization losses are ignored. Thus, G A describes the

maximum SNR enhancement that can be achieved by arraying, but is not useful for evaluating the relative

performance of one arraying scheme over another. The ideal arraying gain is computed in [1] for a set of

antennas observing independent noise waveforms. Our first step in evaluating the impact of a background

body on arraying will be to compute GA for the case of correlated noise. This analysis is analogous to
that found in [3], although the notation adopted here is different.

Degradation is defined as the ratio of the actual SNR of the arrayed telemetry to that achieved with

perfect synchronization (i.e., the ideal SNR). Clearly, degradation is (]ependent on which arraying scheme

is used, since synchronization losses depend on the specific processing used to combine and demodulate

the signals. Degradation for full-spectrum combining and complex-symbol combining was computed in

[2], also under the assumption of independent noises. Thus, the second step in analyzing correlated noise
effects will be to derive degradation expressions for the two schemes.

A. Ideal Arraying Gain

The signal format for deep-space telemetry is binary phase shift keyed (BPSK) employing a squarewave

subcarrier. After time alignment, the IF signal from the ith antenna can be expressed as [1]

y_(t) = si(t)+ni(t)

= 2V/-_T, cos (WSFt + Oi + Ad(t) sqr(w_ct + O_c)) + ni(t)

= 2X/_c, cos (wiFt + 8i) - 2V/_D,d(t) sqr(wsct + Osc) sin(wlgt + 8_) + ni(t) (11)

where PT, is the total signal power in watts; aJSF is the intermediate frequency in radians/s; Oi is the

carrier phase in radians; A is the modulation index in radians; d(t) is the binary data, taking on values

of _:1; sqr(x) is the squarewave function, given by sqr(x) = sgn(sinx); Wsc is the subcarrier frequency

in radians/s; 0_ is the subcarrier phase in radians; Pc, is the carrier power in watts, given by Pc, =

PT_ cos 2 A; PD, is the data power in watts, given by PD, = PT, sin 2 A; and ni(t) is an additive white
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Gaussian noise process with one-sided power spectral density No, W/Hz. The corresponding complex

baseband signal is given by

= v/-p_,eJ(_bt+o,)+ jv/-P-_d(t)sqr(w_ct + Osc)e j(_bt+°') + fii(t)

(12)

(13)

where Wb is the baseband frequency (which, by definition, is close to zero), and _(t) is the complex
baseband noise, the real and imaginary parts of which each has one-sided power spectral density No,.

The spectrum of the baseband telemetry is shown in Fig. 2.

= BASEBANDCARRIER FREQUENCY
_c =SUBCARRIER FREQUENCY

Pc

$-a $_tsc o b $* sc
Fig. 2. Spectrum of the baseband telemetry signal.

Note that the bandwidth needed to transmit the signals/_i(t) to a common location for combining is

determined by the subcarrier frequency, fsc = wsc/27r, and is much greater than the actual data rate.

As an alternative to the method described in [2], a version of FSC that only transmits portions of the

spectrum containing signal energy can be used to reduce this bandwidth requirement. Each signal can

be passed through a bank of matched filters separately, passing the subcarrier harmonics with the data
modulation; the total transmission bandwidth is then proportional to the data rate. This alternative

is mentioned briefly in [1]. However, the drawback of such a system is that the processing required

is dependent on the subcarrier frequency and data rate and must be modified for each mission. For

simplicity, we will focus on the more basic implementation of FSC described in [2], keeping in mind that

a more bandwidth-economizing option also exists.

Let the phase difference between the 1st and ith signal be denoted by _1_ -- 81 - O_. In the algorithm

described in [1], signals 2 through L are phase rotated by an estimate of this quantity, _1_, to align them

with signal 1. The aligned signals are then multiplied by prespecified weighting factors, fl_, and summed.

The combined signal is thus given by

_lcomb(t) = gcomb(t) + h_o,_b(t) (14)

L L

i=1 _=1

(15)

L

= Efliej$,, (_-p-_eJ(_bt+o,) + jv/-_d(t)sqr(wsct +Osc) ej(_bt+O'))
i=1

L

.i.=1

(16)
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where the weights _i are chosen to satisfy the condition

(17)

for i -- 1,..-, L. It is shown in [1] that these weights maximize the combined SNR when the noises

fi_(t) are independent. Note that this is not necessarily the optimal choice of weights for the correlated

noise case, as pointed out in [3]. Furthermore, the optimal choice of phases used to array the signals is

not necessarily the relative signal phases, ¢1_. Using the phases ¢1i will certainly maximize the arrayed

signal power, but not necessarily the ratio of signal to noise power, which is the relevant criteria for

optimization. The problem of optimal combining weights and phases for signals with correlated noise

has been analyzed in [5], where the results are applied to an array of antenna feed elements. However,

computation of these weights requires knowledge of the pairwise correlations between the noises, _ijeJ¢_'J,
for all i, j pairs. A scheme can be devised to estimate the required parameters in real time and modify the

weights accordingly, but would significantly complicate the problem. Our goal, instead, is to determine

the performance impact of the correlated noise assuming the traditional combining scheme is used.

The total combined signal power, PT, is given by

PT _=E [Scomb(t)] E [_*omb(t)] (18)

If the relative signal phases are estimated perfectly (i.e., ¢1_ = ¢1/ for i = 2, • • •, L), the combined signal
power becomes

PT = PT, 7_ + "YC/j (19)
i=1 _=1

where 7i _ [(PT,)/(PT1)][(No_)/(No,)].

The one-sided power spectral density of the real and imaginary parts of the combined noise is given
by

No_=!E -,2B [_comb(t)n_omb(t)] (20)

where B is the one-sided bandwidth of the noise waveforms. Note that the factor of two in the denominator

of Eq. (20) results from the fact that the real and imaginary parts of the noise each has half the power

of the complex noise. From the definitions of power spectral density and cross-power spectral density, it
follows that

E[Fzi(t)fi_(t)] = 2No. B (21)

E [_,(t)_i(t)] = 2_,je'O:; B (22)

Equations (20), (21), and (22) can be combined to find the power spectral density of the combined noise,
yielding
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No = No, 7, + _#,S (¢5-_)
i:i j=l

The PT/No of the combined signal is thus given by

(23)

L 2

No No, EL:I _, + _]L:, EL:, _ p_j eJ¢',

where _b_j _ ¢,_ -¢ij. The parameters Pij and _b_j describe the relevant statistics for the noise correlations
between the various antenna pairs and determine the correlated noise impact on the ideal arraying gain.

The combined signal is finally processed by a single carrier, subcarrier, and symbol loop. Assuming

perfect references at each of these three stages, the symbol SNR of the arrayed signal becomes

SNR dea,= No,RsvrnEL=I7i + EL=, ( i j)i/2fliJ eJxbo

2Po, cA (25)
No, R,ym

where C A is the ideal arraying gain due to combining the signals. Note that setting all the noise correlation

coefficients Pij to zero results in GA = _]L= 17i, which is the ideal arraying gain in the case of uncorrelated

noises, as discussed in [1].

F_rther note that the ideal arraying gain in the presence of correlated noise can be higher or lower than

the uncorrelated noise case, depending on the phases _ij. This point can be understood by considering

an array of two equal antennas (i.e., 71 = 72 = 1.) Figure 3 shows values for GA for two equal antennas

as a function of p and ¢. For p = 0, the ideal arraying gain is a constant 3 dB, as expected. Now suppose
the noises have some nonzero correlation coefficient, p, and some correlation phase, Cn. If _ = 0 deg,

then the phase difference of the spacecraft signal as observed by antennas 1 and 2, ¢, is equal to the noise

correlation phase ¢=. Thus, phase aligning the two signals also phase aligns the correlated component
of the noise. The noise from the background source adds maximally in phase, and the combined noise

power increases. Thus, the combined SNR decreases, and hence the arraying gain falls below 3 dB. By
contrast, if _b = 180 deg, phase aligning the signal results in combining the correlated component of the

noise 180 deg out of phase. Thus, the noise combines destructively in this case, and the arraying gain

is now greater than 3 dB. For intermediate values of ¢, the arraying gain varies continuously from its

minimum value at _b = 0 deg to its maximum at _b= 180 deg.

B. Symbol SNR Degradation

In practice, perfect phase alignment and ideal carrier, subcarrier, and symbol references are not avail-
able. Some degradation in the arrayed symbol SNR is, therefore, incurred due to synchronization errors.

To quantify the degradation, we first find the set of density functions for the phase alignment errors

A¢I_ g ¢1, - ¢1,, i = 2,-.., L. This set of functions is then used to compute the PT/No of the arrayed

signal. Adding in losses due to carrier, subcarrier, and symbol tracking, the symbol SNR at the matched-

filter output can be computed. Finally, comparing the actual symbol SNR to the ideal symbol SNR given

by Eq. (25) yields the degradation for full-spectrum combining.
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Fig. 3. Ideal arraying gain GA for various p,¥.

1. Antenna Phasing. A set of phase estimates q_li for i = 2,...,L are needed to align signals

2,..-, L with signal 1. In the description of FSC given in [2], the phase difference between gi(t) and

_l(t) is estimated by filtering the two signals to some lowpass bandwidth Btp Hz, multiplying them, and

averaging their product over Tco_ s. The phase of this complex quantity is then computed by taking the
inverse tangent of the ratio of the imaginary to real parts. A block diagram of this scheme is shown in
Fig. 4.

The complex product of the baseband signals after averaging, Z, is given by

1/Z - T_o_ (Stp, (t) + film (t))(Slp, (t) + fil*_, (t)) dt

,/= (_ + V/_D_PD'H)eJ¢" + T--_orr (fis,n(t) + filp,(t)fi_p,(t)) dt

where H is given by

(26)

H

(4) e _ 1,= 2i--_ (27)
i odd

and M is the highest harmonic of the subcarrier passed by the lowpass filter. The term fis,n(t) is
composed of signal-noise terms in the product and has zero mean. Note, however, that the noise-noise
term, fitp, (t)fizp, (t)*, does not necessarily have zero mean, due to a possible correlation that exists between

the two noise waveforms. The expected value of this noise product can easily be computed from the cross-
power spectral density of nl(t) and fi_(t); thus,

E[z] = ( P_c_Pc, + V/_D_PD, H)eJ¢" + 2p,#v/-_o_No Blpe2*_, (28)

Since ¢_ is not necessarily equal to ¢1=, the noise product introduces a "bias" to the estimate of the

relative signal phase. This situation is represented pictorially in Fig. 5. The complex quantity E[z] can
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Fig. 5. Complex correlation vector.

be thought of as a vector sum of a signal-to-signal correlation, S, and a noise-to-noise correlation, /q.

Note how the presence of the noise vector biases the measurement of the phase of the complex correlation.

The relative magnitude of these vectors is given by

I, I - 2p,, B,p No,

For typical parameters, even relatively modest levels of noise correlation can lead to a substantial biasing
effect in estimating the relative signal phase. For example, consider correlating two signals, each having

a PT/No of 20 dB-Hz with a 1-kHz correlation bandwidth. Even if all subcarrier harmonics are included
in the correlation, making H = 1, a correlation coefficient as low as p = 0.1 makes the ratio in Eq. (29)

equal to 0.5. The phase estimates are then influenced more by the relative noise phases ¢_i than the
desired quantities ¢1i, leading to a high amount of degradation in combining the signals. If the alternative
method described in Section III.A is used, where the subcarrier harmonics are filtered individually prior to

combining, the effective correlation bandwidth can be lessened, thus reducing the impact of the noise bias.
Nevertheless, a practical implementation of full-spectrum combining requires a modified phase estimation

algorithm if correlation levels encountered will generate significant biases.

The method of phase estimation shown in Fig. 6 can be used for this purpose. Here, each signal is

filtered to some bandpass bandwidth Bbp, and an additional complex correlation is performed between
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Fig. 6. Modifiedphase estimator.

the resulting waveforms. The center frequency of this filter is chosen so as to not capture any energy
from the telemetry; this can be accomplished by locating the filter at an even multiple of the subcarrier

frequency, for example. After scaling the noise-only correlation by the ratio of the lowpass-to-bandpass
bandwidths, this quantity provides an estimate of the contribution of the noise to the total correlation.

The bandpass correlation can then be subtracted from the lowpass correlation to compensate for the
mean correlation vector 12VI. The compensated correlation can thus be expressed as

1/Z = (_, 4- V/-_D1PD:H) eJ¢,, 4- T____orr (ns,n(t) 4- _l,lp,(t)Tt_p,(t)) dt

Blp 1 /Bbp Tco_r _bp_(t)_p,(t) dt

= (V/_c_Pc, + X/_D, PD, H)e j¢'' + IV
(30)

where the the noise term N now has zero mean. The phase estimate is then found by taking the inverse
tangent of the ratio of the imaginary-to-real part of Eq. (30), i.e.,

_1i = tan_ 1 [(V/_IPc, 4- _H)sin¢l, 4- NQ]

L(v/Pc, Pc, + v/PD, PD, H) cos¢,, + NI J
(31)

where N1 and NQ are the real and imaginary parts of/V, respectively. Note that although NI and

NQ have zero mean, their joint statistics are still influenced by the correlation between ill(t) and _i(t).
These statistics^ are analyzed in Appendix A, and the density function for the phase estimation error
A¢li _--_¢1i -- ¢1i is derived.

In [2], a quantity known as the correlator SNR is introduced, defined as

E[Z]E*[Z]

SNRco_r = E[ZZ*] - E[Z]E'[Z] (32)

The correlator SNR is a measure of the spread of the phase error density p¢(A¢li) and is inversely related

to the variance of the phase error. In [1], where FSC is analyzed for independent noises, it is shown that
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the phase error density can be expressed solely in terms of the correlator SNR. For the correlated noise

case, the density is given in Appendix A in terms of the correlator SNR and the correlation parameters

Pli and 91i.

Figures 7 through 9 show the density function p_(A¢) for various values of p and _b. The signal

parameters chosen for these curves are (PT/No)I = (PT/No)2 = 25 dB-Hz, A = 90 deg, with seven
subcarrier harmonics included in the correlation. The correlator parameters are Blp -- Bbp = 15 kHz,

and Tcorr = 3 s. Note that even for a noise correlation as high as 0.4, the density function looks remarkably

like that of the uncorrelated noise case. Simulations were performed for the same parameters and densities

collected for the measured phase estimates. These results are shown with the analytical curves in Fig. 10.

2.0

1.5

/,

1.0 ]_j oL
I I _ (deg)

-75 -50 -25 0 25 50 75

p=O

Fig. 7. Phase estimate density.

2. Arrayed Symbol SNR and Symbol SNR Degradation. Using the set of estimated phases to

align the signals, the combined signal becomes

fl¢omb(t) = gcomb(t) + hcomb(t) (33)

L L

i=l i=l

(34)

L

=
i=l

L

i=1

(35)

The combined signal power conditioned on the set of phase errors A_li is thus given by

= E [ comb(t)]E (36)

i=l i=1 j=l

(37)

Similarly, the conditional noise power spectral density is given by

222



(a) P (_')

2.0-

1.5

1.0

-75 -50 -25 0

(c) P (_)

2.0

1.5

,1(,o.
-75 -50 -25 0

25 50

L
25 50

(e)

75

(b) P (_)

2.0_

1.5

1.0

-75 -50 -25 0 25 50
I

75

I ¢
75

P ((h)

2.C

1.5

/
1.0

(d) P (_)

2.0

1.0

0.5

I I
-75 -50 -25 0 25 50 75

L
25 50 75

Fig. 8. Phase estimate densities: (a) p : 0.4, _t'= 0 deg, (b) p = 0.4, W = 45 deg, (c) p = 0.4,
= 90 deg, (d) p = 0.4, W = 135 deg, and (e) p = 0.4, W = 180 deg.

1

N o -_E[ comb(t)ncomb(t)] (3s)

= No, "_i q- E E(_i_[j)I/2p'j eJ¢" 6_J(A¢"-ACJ"_)
/=1 i=1 j=l

(39)

Taking the ratio of Eq. (37) to Eq. (39) yields the conditional PT/No of the combined signal, i.e.,

L_o ] NO1 L _ L (40)

After carrier and subcarrier demodulation and matched filtering, the conditional symbol SNR of the
arrayed signal is given by
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(41)

where Co, Csc, and Csu are the carrier, subcarrier, and symbol reduction functions, respectively. The

unconditional symbol SNR is obtained by integrating Eq. (41) over the density functions for _21," ', _L1

and the loop errors _bc, _bsc, and Csu. In order to simplify this computation, the loop errors and phase

estimates are generally assumed to be independent. Taking expectation with respect to each of these

quantities separately yields an expression for the unconditional symbol SNR, namely

SNR - 2Pr, c}y
Nol Rsym

x dace12"" dA_IL
(42)
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where the density functions p¢(A¢l+) are as given in Appendix A. Finally, taking the ratio of Eq. (42) to

the ideal SNR, Eq. (25), yields the degradation for full-spectrum combining:

D f,c = C_ C_c %

x dA¢12-., dA¢l L GA 1
(43)

Note that Dis c is equal to one in the upper limit, where A¢1 _ = 0 for i = 2,..., L and _ = _ = C_y = 1.
The second moments of the reduction functions 2 2

SNRs of the three loops, and are given in [1]. C_, Cs¢ , and C2_ can be expressed in terms of the loop

C. Simulation Results

A simple two-antenna array was simulated under conditions of correlated noise to verify the analysis

given above. The symbol SNR of the combined data was measured using the split-symbol moments

estimator and divided by the ideal symbol SNR to obtain measured degradations. The signal parameters

used were P:rl/No, = pT2/No2 = 25 dB-Hz, Rsy,_ = 200 symbols per second (sps), and A = 90 deg.

The carrier, subcarrier, and symbol loops were operated with bandwidths of 3.5, 0.75, and 0.15 Hz,

respectively, with a symbol window of 1/2. The correlation coefficient between the noises, p, and the
relative noise phase, ¢, were varied over a range of values.

Figure 11 shows simulation values along with curves describing analytical results for a "high" correla-

tor SNR. The correlation bandwidths and integration time were chosen so that degradation resulting from
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imperfect phasing is negligible compared to the carrier, subcarrier, and symbol losses. The curves show

that more degradation is incurred with increasing noise correlation for _b = 0 deg, and that degradation

decreases as p increases for _b = 180 deg3 This can be explained by noting the effect of varying p and _ on

the arraying gain. For _b = 0 deg, increasing p causes a decrease in arrayed symbol SNR, as explained in

Section III.A. The loop SNR of the three loops, therefore, decreases, resulting in more carrier, subcarrier,

and symbol loss. By contrast, when ¢ = 180 deg, increasing p increases the combined PT/No and raises

the three loop SNRs. This results in less degradation in demodulating the signal. Since the correlator

SNR is high in this example, the demodulation losses are the dominant source of degradation, and the

trend shown in Fig. 11 is thus explained.

Figure 12 shows the same results performed for a relatively "low" correlator SNR. Here, the degradation

curve for _b = 180 deg actually lies below the curve for _b = 0 deg. This result, although seemingly counter-

intuitive, can nevertheless be explained qualitatively. Note from Eq. (41) that the phase error terms A¢li

appear in both the numerator and the denominator of the SNR expression; the phase errors affect both

the arrayed signal power and the arrayed noise power. This is in contrast to the uncorrelated noise case,

where only the numerator depends on the phase errors A¢1_; since the noises are uncorrelated, the choice

of phases used in combining them does not affect their arrayed power. The phase errors A¢1_ always

decrease the arrayed signal power, but can decrease or increase the arrayed noise power, depending on

the phase parameter ap. For _ = 180 deg, the noise power is increased by errors in estimating ¢1i,

since phasing the array perfectly results in maximum noise cancellation. Therefore, estimating the phase

imperfectly results in a twofold penalty: The combined signal power is lessened, and the combined noise

power increases. This results in increased degradation due to imperfect phase alignment. On the other

hand, when _b = 0 deg, phase misalignment decreases the arrayed noise power. Since ¢1i - ¢_ in this

case, aligning the signals imperfectly also lessens the constructive addition of the noise. The reduced

noise power due to phasing errors, therefore, has a mitigating effect on the degradation incurred.

It should be noted that the fact that the _b = 180-deg case has more degradation than the _b = 0-deg

case in this example does not mean that the overall performance of the array is worse for _b = 180 deg.

Recall that degradation is defined as the deviation from the ideal arraying gain, GA. In the above example,

4 The phrase "decreasing degradation" is used loosely to mean decreased synchronization losses; in actuality, numerically

lower degradation implies greater losses incurred.
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although the degradation for _ = 180 deg is slightly higher, the ideal gain is substantially higher than it

is for ¢ = 0 deg. Thus, to determine the absolute performance for the array in terms of total combined
SNR, both the ideal gain and the degradation must be accounted for.

IV. Complex-Symbol Combining Performance

A block diagram of the complex-symbol combining arraying scheme is shown in Fig. 13. Each signal

is open-loop downconverted to baseband with quadrature tones and tracked by separate subcarrier and

symbol loops. Since the carrier is not tracked coherently, each signal consists of both an 'T' and "Q"

component, which can be thought of as a single complex signal. Furthermore, since subcarrier and symbol

tracking are performed in the absence of carrier lock, the loop SNRs of these loops are different from the

case where the carrier is tracked first. Two types of subcarrier and symbol loops that may be used in

complex-symbol combining are discussed in [2]: the conventional, or 'T' loop, which uses only one of the

two signals in the complex pair to track, and the "IQ" loop, which uses both real and imaginary channels.
We will assume the IQ loops are used, since they have higher loop SNRs.

The matched filter outputs consist of data modulated by complex baseband tones. These complex

symbols are transmitted to a central location for combining. As in the case of full-spectrum combining,

correlations are performed to phase align the carriers, after which the signals are weighted and summed
coherently. A baseband Costas loop is finally used to demodulate the carrier.

Since the ideal arraying gain GA is independent of which arraying technique is used, the expression

computed in Section III.A is valid for complex-symbol combining also. Thus, it is only necessary to

evaluate the degradation for CSC, taking into account combining and demodulation losses. Once again,

the presence of correlated noise creates complications in phasing the array. A technique similar to the one

used for FSC can be employed to reduce the biases in estimating the relative signal phases, as discussedbelow.

A. Antenna Phasing

The complex-symbol stream from the ith antenna is given by

_(k) = V/-_D_Csc, Csy, d(k) d ('bT,k+°,) + IVy(k)
(44)
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where Csc, and Csw are the subcarrier and symbol reduction functions for the ith receiver, Ts is the

symbol time, and _/i(k) is the noise output from the ith matched filter. Taking the complex product

between the 1st and ith streams yields

(45)

where the signal-noise term l_ls,n(k) has zero mean. Once again, the complex-noise product Nl(k)fil*(k)

has nonzero mean if the correlation coefficient is nonzero and introduces a bias to the signal correlation

vector. Note, however, that the spectrum of the signals at the point of combining, Yi(k), does not contain

empty bands as in the case of full-spectrum combining. Demodulating the subcarrier collapses all the data

sidebands to baseband, allowing a much narrower combining bandwidth. Since the shared information

rate for CSC is equal to the symbol rate, there is no excess bandwidth that can be used to measure the

correlation of the noise alone. This problem may be solved by adding an extra matched filter for each

receiver to capture noise only. Before investigating this possibility, however, we calculate the expectation

of the noise product, E[_(k)_;(H].

Consider the block diagram of Fig. 14, which shows the processing for complex-symbol combining up

to the matched filter outputs. The signal si(t) is the subcarrier reference from the ith subcarrier loop,

given by

s_(t) : sqr(wsct + Osc + ¢sci) (46)

where 8so is the instantaneous subcarrier phase and _bsc, is the instantaneous phase error in the ith loop,

for i = 1,- • •, L. The limits of integration for the ith matched filter are given by

tl, = kT8 + _'_
(47)

t,,, = (k + i)T_+ _,
(as)
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where r_ is the timing error in the ith symbol loop. The matched-filter noise samples are, therefore, givenby

(kT1)T8 +ri

1/N,(k) = _ fi,(t) sqr(wsct + 0so + ¢s_i) dt (49)

kT_Tri

(k+DT,+rj

'/fi[j(k) = _ fij(t) sqr(ws_t + 8s¢ + ¢,cj) dt (50)

kT,+rj

The conditional expectation of N_(k)l_r;(k) given the subcarrier and symbol timing errors can then

be calculated by combining the above expressions with the cross-correlation function for the complex
baseband noises, i.e.,

(51)

yielding

- (k+l)T.+-r, (k+l)T, +Tj

_2 E fi,(U)S,(U) fi;(V)Sj(V) du dv

kT_+ri kT_+rj

(k+l)r,+v_ (k+ 1)T_ +rj

Ts2 / / 5(u - v) s,(u)sj(v) du dv

kT,+r, kT_+rj

oqjej¢2j t ....

- _ / s,(v)sj(v) dv

trnin

(52)
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where the limits of integration of v are given by

tm_,_ = max(kTs + ri, kT8 +r j) (53)

tma_ = rain ((k + 1)Ts + ri, (k + 1)T8 + rj)
(54)

Finally, integrating with respect to v yields

o_ijeJ_'_ (2 )7I"

(55)

%

= c_i_eJe7J Rs_m C_c,j C_y,j (57)

.C-

Note that, in the absence of phase errors in any of the loops, Eq. (57) reduces to c_je _ o R_yr_, which is

simply the cross-power spectral density of the noises _i(t) and _j(t) times the effective bandwidth of the
matched filter. Thus, in addition to reducing the effective signal power at the matched filter output, the

subcarrier and symbol phase errors also reduce the noise correlation at this point.

Calculating the unconditional covariance of the matched filter noises requires taking the expectation

of Eq. (57) with respect to the phase errors ¢_c,, espy, Csy,, and Cs_j. Two approximations are made to

perform this computation. First, the densities of the phase errors are assumed to be Gaussian. This
condition is nearly satisfied for loop SNRs above 10 dB and is consistent with the approximation made in

[1]. Second, the phase errors of all loops are assumed to be mutually independent. This statement is not
strictly justifiable, since the subcarrier and symbol loops from a single receiver are affected by the same
noise and, furthermore, because the noises viewed by separate receivers are correlated. Nevertheless, it is

invoked for the purpose of making a first-order approximation to evaluating the unconditional covariance.

The quantities _b_c, - ¢_j and _su, - ¢syj are then Gaussian-distributed with known mean and variance,

and the unconditional expectation E[IV_(k)fiI_(k)] becomes

1 ( _._, +

Equations (58) and (45) can be combined to calculate the ratio of the signal-to-noise correlation magni-

tude, analogous to that computed in (29):

= v-2 (E,, Es, 
INI o,jV o,No,Rs m (59)

where Es/No = PDTs/No is the bit SNR. In malting the approximation of Eq. (59), the effects of synchro-
nization have been ignored for simplicity. This result provides a useful rule of thumb for determining if the
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noise correlation is a significant bias in estimating the relative signal phase. If tSI/INI is much less than

1, then an extra correlation is needed to compensate for the noise vector, as mentioned earlier. On the

other hand, if this quantity is much greater than 1, then it is unnecessary to add the extra matched filter

channel to perform the noise-only correlation. Note that collapsing all the data sidebands to baseband

and performing matched filtering before the correlation takes place substantially decreases the correlation

bandwidth relative to that of the FSC scheme described in [2]. The full-spectrum combining scheme can

optionally be modified to employ a similar strategy by using a series of matched filters for each subcarrier

harmonic, as discussed earlier. Estimating the degree of correlation p that will be observed for a particular

antenna pair and applying the rule described above will indicate whether or not the noise contribution to

the total correlation is substantial and must be compensated for by performing an additional correlation.

Here we briefly describe how the extra matched-filter outputs can be used to measure the noise cor-
relation: The complex baseband signal from each antenna can be shifted in frequency so that an empty

portion of the spectrum is located at baseband. This may be accomplished by shifting by an even multiple

of the subcarrier frequency, i.e.,

91_(t) = (X/-_c ej(_'t+°') + jv/-_,d(t) sqr(wsct + Osc)e j("Jbt+O') + fii(t)) e jNw'_t = 81i(t) q- ftli(t) (60)

where N is an even integer. The shifted signal can then be multiplied by the subcarrier reference from
the ith antenna and passed through a matched filter using timing from the/th symbol loop, as shown in

Fig. 14. Thus,

1 f(k+l)7:_+_, fi'i(t) sqr(w_ct + Osc + ¢_i) dt (61)

From the above analysis, it is clear that E[IY_(k)IVj(k)] will be given by Eq. (58). Correlating the two
noise-only matched filter outputs then yields a quantity that can be subtracted from the total correlation,

Z, to compensate for the noise bias. The density function for the phase estimate computed using this

technique is similar to the FSC case and is analyzed in Appendix B. Note, however, that performing

this compensation requires increasing the combining bandwidth beyond what is required for CSC in the

uncorrelated noise case, as well as additional hardware to process the extra channel containing noise only.
A tradeoff in performance versus complexity must, therefore, be made to determine if complex-symbol

combining is an attractive option when correlated noise is present.

B. Arrayed Symbol SNR and Symbol SNR Degradation

An expression for the conditional arrayed symbol SNR can be obtained in a similar manner as is the

full-spectrum combining case. The combined signal for complex-symbol combining is given by

L

-- EZ, 'S" +
i=l

(62)

The conditional signal power, defined as E[Scomb(k)lE[Scomb(k)] , is given by

P_omb PD1 2 2 2= "7iCsc, Csy, + ?i_jCsc, C_cj Csy, Csuj ej(A¢"-A¢_j) (63)

i=l i=1 j=l

231



where, as before, A¢li is defined as the error in estimating the phase difference between the 1st and ith
signal, ¢,i - ¢,_. The one-sided power spectral density of the real and imaginary parts of N'cornb(k) is

given by

(64)

Using the relations

Yol

=

E[N,(k)N;(k)I = P'J _ e ¢",
T_

(65)

C.c,, Csy,j (66)

Eq. (64) can be shown to be equal to

Nto = No1 "7_+ v Iz 13w3 scij sy,_

_ki=l i=1 i=1

Taking the ratio of Eq. (63) to Eq. (67) then yields the combined PD/No for CSC. The combined signal

is finally processed by a baseband Costas loop, and the conditional SNR adding in carrier losses is given

by

_,2 ,".2 p2 L L

(68)SNR' - 2PD, y-_C=, + _-'_=' Y_[_I "_*"/JCsc'CscjCs_'Cs_je'(a¢"-A¢")
L

No, n_m EL=' _' + EL=' Y'_I:I _PoCsc'JC'y'Jei¢'Jej(A*"-a_'D

Computing the unconditional symbol SNR requires taking the expectation of the above quantity with

respect to the phase errors ¢8c, and Csy, for i = 1,-. •, L, the phase estimates ¢1, for i = 2,. • •, L, and

the carrier phase error ¢c. Once again, we assume all loop phase errors and phase-aligning errors are

mutually independent. Thus, integration over the carrier phase error ¢_ is accomplished easily by consid-

ering the carrier reduction function C_ separately. However, unlike the case of full-spectrum combining,
the subcarrier and symbol phase errors appear in both the numerator and the denominator. The expec-

tation with respect to the subcarrier and symbol phase errors, therefore, cannot be given in closed form.

Calculating the unconditional symbol SNR for even a simple two-element array would thus require a fifth-

order numerical integration. Rather than resort to such brute-force tactics, we make further simplifying

assumptions to allow evaluation of some of the integrals in closed form.

In taking the expectation with respect to the Csc, and ¢8y, terms, we apply the approximation

E "_ E[yl

to the ratio of Eq. (68), yielding
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SNR - 2Pdl
Nol R_m

x E¢
(70)

where @8_ is the set of subcarrier phase errors ¢_c, for i = 1,..., L, @By is the set of symbol phase errors

¢_u, for i = 1,..-, L, and _ is the set of phase estimates ¢1, for i = 2,-..,L. The approximation of

Eq. (69) is reasonable if the mean of y squared is much greater than the variance of y (i.e., if y is nearly
a constant). This condition is met for the case under consideration, since it is implicitly assumed that

the loop SNRs of the subcarrier and symbol loops are high enough to maintain lock, with 13 dB being a

typical threshold. Thus, the variances of the reduction functions Csc,j and C_y,j, which contain the loop
phase errors, will be small compared to the mean of the entire denominator term.

By the above argument, the unconditional SNR can be evaluated as

2PD1 --

SNR - No, R_y,_ C_

X p(/k¢12) • • .p(A¢IL) ] dA¢12.., dAdPlL (71)

The ideal symbol SNR for complex-symbol combining is identical to that for full-spectrum combining;

since SNRid_,I is defined as the SNR that would be obtained in the absence of synchronization errors,

its value is independent of the order in which combining and demodulation occur. Thus, the degradation

for complex-symbol combining is found by combining the results of Eq. (71) with Eq. (25), yielding

Dc_c =C2_

EL1 2 2 L

X p(A¢12)...p(A¢lL) ] dA¢12.., dZ_¢IL GA 1 (72)

C. Simulation Results

Simulations of a two-antenna complex-symbol combining system were performed. The signal pa-

rameters used were the same as those used for the full-spectrum combining simulations: PTi/No_ =
PT2/No2 = 25 dB-Hz, R_,, = 200 sps, and A = 90 deg. The loop bandwidths were also set as before; the
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carrier, subcarrier, and symbol loop bandwidths were 3.5, 0.75, and 0.15 Hz, respectively, with a symbol

window of 1/2. Both the compensating and noncompensating methods of estimating the signal phase

difference were implemented. In Figs. 15 and 16, simulated and analytical degradation values are shown

for various values of p and lP.

For the uncompensated case, the degradation curve drops down sharply for _b = 90 deg and _b =

180 deg. One cause for this is the bias in the complex correlation used to estimate the relative signal

phase. For the parameters being used, ISI/]/V[, given by Eq. (59), is equal to 3.15 for p = 0.5. Thus, the
noise vector is of comparable but lesser magnitude to that of the signal in estimating the phase. Note

that for ¢ = 0 deg, the noise correlation phase is equal to the relative signal phase (¢ = _bn), and the

vectors S and/V are colinear (see Fig. 5). The noise vector, therefore, does not bias the measurement

away from the desired quantity, and the downward trend is not present.

For the compensated case, less overall degradation is observed. However, the _b -- 180-deg curve still

drops down with increasing p. Recall from Section IV.A that imperfect subcarrier and symbol tracking
tend to decrease the power levels of the individual signals at the matched filter output and decrease the

correlation of the matched filter noises. When _b -- 0 deg, this has a beneficial effect on the arrayed

SNR, since it reduces the coherent addition of the noise. By contrast, when _b = 180 deg, a high degree
of correlation between the noises is desirable, so that the noise cancels maximally. Thus, decreasing

this correlation lessens the arrayed SNR and causes more degradation. This explains the fact that the

_b = 0-deg curve tends upwards with increasing p, while the _b = 180-deg tends downward. Note, however,
that the reverse trend is true of the ideal arraying gain, GA. For example, for p = 0.8, GA = 10 dB for

-1

eft
-2

2
_o
t-
< -3
Q
<
tv

m -4

_b = 180 deg, but only 0.46 dB for _b = 0 deg.

0 ' I I ' I ' I

¥ = 90 dog

I

t

• _=Odeg
t

= _=90deg k_ =180deg _

• ¥ = 180 deg ,
t

t
-5

-6

O_ I I I ' I '

m
"10

2
0

-11
I

-21

-3

. _,"... ¥ = 90 deg

_/=180deg _
I

All

• ¥ = 0 deg •

x ku= 90 deg

• _ = 180 deg _

f , I , I , I , I , -4 , I , I , I , I L

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

p P

Fig. 15. CSC degradation, phase uncompensated:
theory and simulation.

Fig. 16. CSC degradation, phase compensated:
theory and simulation.

V. Example: Galileo Scenario

In order to illustrate the major concepts presented in this article, the performance of full-spectrum

combining and complex-symbol combining is analyzed for the Galileo signal. An array of DSS 14, which
is a 70-m antenna, and DSS 15, a 34-m high-efficiency (HEF) antenna, is chosen for this example.

First, predicts for physical parameters describing the signal strength and degree of noise correlation are

developed. These quantities are then used to calculate the arraying gain and degradation for each of the

two schemes.
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A. Signal Parameters

In the case of the Galileo spacecraft, correlated noise will be contributed by Jupiter being in the beam

of both antennas. As discussed in Section II, the contribution of a background body to total system noise

depends on its angular separation from the spacecraft and on its total flux, which varies with its distance

from Earth. Values for the Jupiter-Earth probe (JEP) angle and Jupiter-Earth distance can be found

from ephemeris information for the Galileo tour. For the purpose of this example, we select values that

maximize the noise contribution of the planet to estimate the impact of correlated noise in a worst-case

scenario. Thus, we assume the JEP angle is zero and that the Jupiter-Earth range is at its minimum

value during the tour, which is Rj = 4.0 AU. Using these values, the temperature contribution of Jupiter

for DSS 14 and DSS 15 are Ts_ = 6.6 K and Ts_ = 1.4 K, respectively. Note that the temperature

contribution is higher for DSS 14 due to the greater aperture size and antenna efficiency.

The predicted signal parameters are as follows: (PT/io)l = 22.0 dB-Hz and (PT/No)2 = 11.6 dB-Hz
for the 70- and 34-m antennas, respectively; A = 90 deg; and Rsym = 200 sps. Note that since we are

assuming that the planet and spacecraft are at their closest range, the spacecraft signal is also at its peak

strength, in addition to the noise contribution of Jupiter. The total system temperatures predicted for
DSS 14 and DSS 15 are 22.6 and 42.2 K, respectively. 5

To determine the degree to which the source is resolved on this array baseline, we must compare the

fringe spacing to the angular size of the source. In our example, the observing frequency fo is 2.3 x 109 Hz,

and the maximum possible projected baseline is the physical separation between the two antennas, which

is approximately 500 m. Thus, the smallest possible fringe spacing is 2.5 × 10 -4 rad. At a range of 4.0 AU,
Jupiter has an angular size on the order of 1 x 10 -3 rad. Since these values are comparable, we cannot

use either the long baseline limit or the short baseline limit in evaluating p (see Section I). However, for
the purpose of determining the impact of the correlated noise in the most extreme case, we overestimate
the degree of noise correlation using the upper bound on p, given by

P= V_ _0'1 (73)

B. Arraying Performance

Using the two PT/No levels and correlation coefficient p found above, the ideal arraying gain GA can

be computed as a function of ¢ using Eq. (25). A graph showing this relationship is shown in Fig. 17.
Note that the arraying gain in this example is much smaller compared to our previous examples of two
equal antennas, since the signal level of one antenna is approximately 10 dB lower than the other. For

¢ = 0 deg, the correlated component of the noise adds maximally in phase, thus decreasing the arraying
gain. By contrast, the background noise interferes destructively for ¢ = 180 deg, resulting in greater
arraying gain. Since the correlation coefficient is relatively low in this example, the difference between
the best-case and worst-case scenarios is only about 0.45 dB.

Representative values for the carrier, subcarrier, and symbol loop bandwidths were chosen as 1.5, 0.4,
and 0.07 Hz, respectively. For full-spectrum combining, a correlation bandwidth of Bcor,.= 2 kHz was

used, with a correlation time of 15 s. The total degradation for FSC as a function of ¢ is shown in Fig. 18,

along with simulation points. Because the correlation coefficient p is relatively low in this example, the

degradation is almost constant with respect to the phase parameter _. The combined PT/No only varies
by roughly 0.4 dB as _ ranges from 0 to 180 deg; thus, the loop SNRs of the three loops also do not
change much, and synchronization losses remain essentially constant.

5 Predicts for noise and signal parameters were obtained from the Galileo S-Band Analysis Program (GSAP).
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The same signal parameters and loop bandwidths were used to simulate the complex-symbol combining

case. A slight variation of the basic scheme, known as complex-symbol combining with aiding (CSCA),

was implemented. This scheme is discussed in [2] as an option for arraying the Galileo signal. In CSCA,

the subcarrier and symbol references from the receiver tracking the stronger signal are used to track the

signal from the 34-m antenna as well. This technique can be used to perform complex-symbol combining

even if the 34-m antenna signal is too weak to achieve subcarrier and symbol lock on its own. Thus,

the loop SNRs for the 34-m antenna subcarrier and symbol loops are equal to the corresponding 70-m

antenna loop SNRs.

Equation (59) can be applied to determine whether or not the "noise-only" channel is needed to phase

the array. Substituting in values from above, we find

= 2.39 (75)

Thus, the magnitude of the noise correlation vector is less than but comparable to that of the signal

correlation vector. To illustrate the impact of the phase bias in aligning the signals, CSCA was simulated

with both the compensating and uncompensating method for estimating the relative signal phase. In

Fig. 19, we show the degradation for CSCA for these two cases. The correlation time used to estimate

the relative signal phase was 2 s. Note that a shorter estimation interval than the full-spectrum combining

case can be used here since the effective correlation bandwidth is equal to the data bandwidth of 200 Hz

as opposed to 2 kHz for FSC. For the compensated case, the degradation is essentially constant since,

once again, the noise correlation does not affect synchronization losses much. For the uncompensated

case, the degradation becomes greater as the difference between the noise and signal phase ¢ grows larger,

since the noise correlation begins to bias the phase estimate further away from the relative signal phase.

This effect can be seen graphically by referring once again to Fig. 5, where the complex-signal and noise

correlations are represented as vectors.
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VI. Conclusion

The effects of correlated noise on the full-spectrum combining and complex-symbol combining arraying

schemes have been analyzed. As seen in Section II, accurate modeling of the noise correlation properties

for a given antenna pair requires detailed analysis of factors such as the source structure and position,

the antenna gain patterns, and the geometry of the array. However, the correlation coefficient can be

determined easily in cases where the baseline is either very short or very long. These two extreme cases

can be used to obtain a rough idea of what degree of noise correlation can be expected for a given scenario.

Describing the correlation between the various antenna pairs in an array by the parameters Pij and

¢ij, expressions for the ideal arraying gain and arraying degradation were derived. Several important

differences from the uncorrelated noise case were noted. For a given set of signal levels (PT,/No, ), the

ideal arraying gain when the noise is correlated may be higher or lower than when the noise waveforms

are independent. This reflects the fact that the noise may add constructively or destructively, depending

on the relative signal and noise phases (i.e., the _Pij parameters).

In addition, correlated noise can have a significant impact on the synchronization processes used to

combine and demodulate the signals, which vary with the specific arraying technique used. Most notably,

a bias due to the noise correlation is present in the conventional method of estimating the relative signal

phases. Since the magnitude of this bias is proportional to the correlation bandwidth used, full-spectrum

combining is potentially more sensitive to this problem than complex-symbol combining, depending on

the specific method used to correlate the signals. A modified method of phase estimation, where the

correlation due to the noise alone is measured and compensated for, can optionally be employed for both

FSC and CSC, as necessary.
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Appendix A

Performance of the FSC Correlator

For full-spectrum combining, the phase difference between two signals is estimated by performing one

lowpass and one bandpass correlation, as described in Section III.B. After being filtered to some lowpass

bandwidth, Btv Hz, the signals from antenna 1 and antenna i are given by

_,pl(t) = [V/-_+Jv/-_Ld(t)(4) MEt=_ sinkwsct] e(j_t+°l)+flp](t)
(A-l)

= + j d(t)
k=l

k odd

(A-2)

where the subcarrier is expressed in terms of its sinusoidal components that are passed by the lowpass

filter. The two signals passed through the bandpass filter of bandpass Bbp Hz contain only noise and are

given by

 bv,(t) = (t) (A-3)
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#b_,(t) = '_b,,,(t) (A-4)

The complex quantity used to estimate the relative signal phase ¢1i = 01 - 8_ is given by

Z = I+jQ

-'STcor_ _ltp__ltp, dt Btp 1 iBb p Zcor r fflbpa_tb*pidt

( ) 'i S= _ + V/-_ -_D'H eJ*" + _ (ns,,_ + hip, hi*p,) dt- Btp 1
" Bb p Tcor; _2bplnbp ,dt

In most cases, the contribution of the signal-noise term hs,,_(t) to the total noise power is much smaller

than that of the noise-noise terms, and can be ignored. This is especially true if the PT/No levels of the

two signals are very low, or if large correlation bandwidths are used. By the Central Limit Theorem,

the complex noise N can be approximated as Gaussian if the correlation extends over many independent

samples (i.e., if Tcorr is much greater than the inverse correlation bandwidths). After averaging, the
variance of the real and imaginary parts of 7? can be shown to be equal to

1 ( B2P_ (No, No + cl_,cos2¢_)AI = Yar(Nl) - Tcorr BlP + Bbp]
(A-6)

1(AQ = Var(Nq) - Tco_r B,p + Bbp) (N°lN°i -c12'c°s2¢_'_) (A-7)

where N1 and NQ are the real and imaginary parts of N, respectively. The covariance of NI and NQ can
be shown to be equal to

1(AsQ= Cov(Ns, NQ) - Tco,_ Bt, + BbptI ct12isin2¢_,
(A-8)

Furthermore, it is clear from Eq. (A-5) that the means of the real and imaginary parts of Z are given by

m, = (_i -i" _D'DIP-_D_H) COS(_l i (n-9)

TY_Q : (_ -}- _g) sin¢l i (i-l.O)

Equations (A-6), (A-7), (A-9), and (A-10) can be combined to compute the correlator SNR as defined in
[1],i.e.,
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S N Rcorr,f sc
E[Z]E*[Z]

= E[ZZ*] - E[Z]E*[Z]

I \
2

--+ No,)
Pc, /PD, PD, H (A-11)

= 2(B,p + (B2p/Bbp)) _V_o_ No,

Equations (A-9), (A-10), and (A-6) through (A-8) can be used to determine the joint density function

pI,Q(I, Q). Since the density of 4)1i = tan-l(Q/I) is the desired quantity, we express the joint density
function in terms of polar coordinates, using the variable definitions

v/_ Q2 (A-12)r = +

0 =_ tan-l(Q) (A-13)

The density function for jointly Gaussian random variables is given in polar form by

r

Al(rcos¢- ml) 2 - 2AiQ(rcos¢- ml)(rsin¢- mQ) + AQ(rsin_b- mQ)2_x exp 2(AIAQ - AIQ) /

(A-14)

Integrating Eq. (A-14) with respect to r yields the marginal density of ¢ alone. Expressing the phase

estimate density in terms of the estimation error A¢ = ¢1, - Cu yields

( 1-p2c°s2_) [l+v_G2eC_erf G2+l)]f¢(A¢_) --GI exp -SNRcor_jsc f--_-_
(A-I_)

where

G1 -----
1 - p4 (A-16)

2. (1 - p2cos(2¢ - A¢))

cos A_ - p2cos(2¢ - A¢)
G2 = x/SNRcorr,fsc (1 - p4)(1 - p2 cos(2_b - A_b))

(A-17)
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Appendix B

Performance of the CSC Correlator

The method of estimating the relative signal phases for complex-symbol combining is analogous to

the full-spectrum combining algorithm; using the extra correlation to compensate for the noise bias, the
complex correlation can be expressed as

N

1 _-"_(k]_*(k]- 1 N
z = _ __.._.. _ _,(k)_;(k)

k=l k=l

1 N 1 N 1 N

+ -_ _ v_,C_°,c'_,e-J°'_(k) + -_ F_,_,(k)_;(k) - _ _2 _(k)_"(k)
k=l k=l k=l

(B-l)

where N is the number of symbols averaged over, given by N = Tco,.,./Tsum, and the noise term N has

zero mean. The statistics of this noise can be analyzed in the same manner as before; here, the effective

correlation bandwidth for both the lowpass and the bandpass correlation is R, um/2. Using the definition

given by Eq. (32), the correlator SNR can be shown to be equal to

P,_, Toorr_ __ _,_ _,_,_
SNR_o,.,._¢ = No, C]_, C2_, +C_, C2m(1/3q ) + (No,/PD,)2R,_m

(B-2)

The density function for the phase estimation error can be found in a manner analogous to that applied

in Appendix A. The only difference is in the expression for the correlator SNR; otherwise, both problems

are inherently governed by the same mathematics. The density function for the phase estimation error

A¢1, is thus given by Eq. (A-15), with SNRco,-_,Isc replaced by SNRcor,.,csc.
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This article presents a study of seismic data compression techniques and a com-

pression Mgorithm based on subband coding. The algorithm includes three stages:
a decorrelation stage, a quantization stage that introduces a controlled amount of

distortion to allow for high compression ratios, and a 1ossless entropy coding stage

based on a simple but efficient arithmetic coding method. Subband coding methods

are particularly suited to the decorrelation of nonstationary processes such as seis-
mic events. Adaptivity to the nonstationary behavior of the waveform is achieved

by dividing the data into separate blocks that are encoded separately with an adap-
tive arithmetic encoder. This is done with high efficiency due to the low overhead

introduced by the arithmetic encoder in specifying its parameters. The technique

could be used as a progressive transmission system, where successive refinements of

the data can be requested by the user. This allows seismologists to first examine
a coarse version of waveforms with minimal usage of the channel and then decide

where refinements are required. Rate-distortion performance results are presented

and comparisons are made with two block transform methods.

I. Introduction

A typical seismic analysis scenario involves collection of data by an array of seismometers, transmission

over a channel offering limited data rate, and storage of data for analysis. Seismic data analysis is

performed for monitoring earthquakes and for planetary exploration, as in the planned study of seismic
events on Mars. Seismic data compression systems are required to cope with the transmission of vast

amounts of data over constrained channels and must be able to accurately reproduce both low-energy

seismic signals and occasional high-energy seismic events.

We describe a compression algorithm that includes three stages: a decorrelation stage based on subband

coding, a uniform quantization stage, and a lossless entropy coding stage based on arithmetic coding.

Rate-distortion performance results are presented and comparisons are made with two block transform
methods: the discrete cosine transform (DCT) and the Walsh-Hadamard transform (WHT).

Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as

seismic events. For most seismic data, signal energy is more concentrated in the low-frequency subbands,

which suggests the use of nonuniform subband decomposition. The decorrelation stage is implemented

by quadrature mirror filters using a lattice structure. Adaptivity to the nonstationary behavior of the
waveform is achieved by dividing the data into blocks that are separately encoded.
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