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TABLE 4.- MULTIPLE REGRESSION ANALYSIS OF THE RESULTS FOR THE

FIRST MODE

DF:

119 1.938

Multiple Regression

R:

Source DF:

I:L=Gt_SS_DN 3

RESIDUAL 1 6

Y1 :DAMPING (%) 3 X variables

R-squared: Adj. R-squared: S1d. Error:

168 1856 107 ]
Analysis of Variance Table

Sum Squares: Mean Square: F-test:

.581 .1 94 39.399

.079 .005 p - .0001

TOTAL 19 .66

Residual Information Table

SS[e(i)-eli-1)]: e>0: e<0: DW test:

1.147 Ill 19 11.863 [

Multiple Regresslon YI:DAMPING (%) 3 X variables

Parameler:

Beta Coefficient Table

Value: Sld. Err.: Sld. Value: t-Value:

i I¢I'ERCEPT .315

Im(H)/FRQ -.01 7

Probability:

.007 -.337 2.5 .0237

MASS'MS'_2 ;7.362 .g74 .813 7.555 .0001

i.005 .495 4.277 .0006GAP (ram) l.o2

2

Multiple Regression YI:DAMPING (%) 3 X variables

Parameter:

II/ERCEPT

95% Lower:

Confidence Intervals and Partial F Table

95% Upper: 90% Lower: 90% Upper: Partial F:

Im(H)/FRQ -.032 -.003 -.029 -.005 6.248

MASS'MS^2 5.296 9.428 5,66 9.063 57.072

GAP (ram) .01 .03 .012 .028 18.289
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TABLE 3.- DAMPING ESTIMATES FOR THE THIRST MODE

Test File Damping Mass Gap Im(FRF) Freq. _d
% (kg) (m) (m/s2/N) (Hz)

TA Ill 10F3 0.356 0.017 0 188.9 22.12 1.436

TB 11111F3 0.692 0.017 0.013 100.4 22.2 1.436

TB 11112F3 0.384 0.017 0.008 134.66 22.2 1.436

TA 11113F3 1.27 0.017 0.003 35.82 22.2 1.436

TB 11121F3 0.693 0.013 0.013 99.22 22.16 1.436

TB 11122F3 0.473 0.013 0.008 164.28 22.16 1.436

TA 11123F3 1.535 0.013 0.003 41.54 22.16 1.436

TA 11131F3 0.461 0.008 0.013 145.48 22.38 1.436

TB 11132F3 0.638 0.008 0.008 86.48 22.38 1.436

TA 11133F3 0.82 0.008 0.003 83.17 22.38 1.436

TD 11210F3 0.318 0.017 0 101.61 24.32 0.837

TD 11211F3 0.408 0.017 0.013 84.71 24.38 0.837

TD 11212F3 0.446 0.017 0.008 70.64 24.38 0.837

TD 11213F3 0.504 0.017 0.003 73.66 24.38 0.837

TC 11221F3 0.357 0.013 0.013 95.23 24.38 0.837

TD 11222F3 0.392 0.013 0.008 81.41 24.38 0.837

TD 11223F3 1.086 0.013 0.003 35.35 24.38 0.837

TD 11231F3 0.371 0.008 0.013 91.95 24.38 0.837

TD 11232F3 0.341 0.008 0.008 98.01 24.38 0.837

TD 11233F3 0.559 0.008 0.003 62.49 24.38 0.837
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TABLE 2.- DAMPING ESTIMATES FOR THE SECOND MODE

Test File

TA 11110F2

Damping
%

0.37

0.566

Mass

(kg)

0.017

Gap

(m)
Im(FRF)

(m/sJN)

170.86

Freq.

13.05 1.393

TA 11111F2 0.017 0.013 113.2 13.07 1.393

TA 11112F2 0.728 0.017 0.008 92.94 13.07 1.393

TA 11113F2 0.62 0.017 0.003 99.33 13.07 1.393

TA 11121F2 1.97 0.013 0.013 32.77 13.07 1.393

TA 11122F2 1.19 0.013 0.008 53.49 13.07 1.393

TA 11123F2 0.765 0.013 0.003 87.67 13.07 1.393

TA 11131F2 0.593 0.008 0.013 112.06 13.19 1.393

TA 11132F2 1.08 0.008 0.008 60.38 13.19 1.393

TA 11133F2 0.621 0.008 0.003 104.19 13.19 1.393

TA 11510F2 0.447 0.017 0 127.11 13.61 0.988

TA 11511F2 0.684 0.017 0.013 82.82 13.62 0.988

TA 11512F2 0.652 0.017 0.008 85.96 13.62 0.988

TA 11513F2 0.828 0.017 0.003 70.39 13.62 0.988

TA 11521F2 0.602 0.013 0.013 93.04 13.7 0.988

TA 11522F2 0.63 0.013 0.008 90.05 13.7 0.988

TA 11523F2 0.608 0.013 0.003 92.73 13.7 0.988

TA 11531F2 0.592 0.008 0.013 94.83 13.67 0.988

TA 11532F2 0.601 0.008 0.008 92.8 13.67 0.988

0.008 83.09TA I1533F2 0.003 13.67

tI) d

0.683 0.988
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TABLE 1.- DAMPING ESTIMATES FOR THE FIRST MODE

Test File

TN 21000

TM 21111

TM 21112

TM 21113
m

TM 21121

TM 21122

TN 21123

TN 21131

TN 21132

TN 21133

TA 21510F1

TA 21511F1

TA 21512F1

TA 21513F1

TA 21521FI

TA 21522F1

TA 21523F1

TA 21531F1

TA 21532F1

TA 21533F1

Damping
%

0.336

0.976

0.797

0.503

0.855

0.59

0.461

0.617

0.532

0.391

0.31

0.482

0.359

0.344

0.53

0.456

0.356

0.452

0.383

0.311

Mass (kg)

0.017

0.017

0.017

0.017

0.013

0.013

0.013

0.008

0.008

0.008

0.017

0.017

0.017

0.017

0.013

0.013

0.013

0.008

0.008

0.008

Gap (m)

0

0.013

0.008

0.003

0.013

0.008

0.003

0.013

0.008

0.003

0

0.013

0.008

0.003

0.013

0.008

0.003

0.013

0.008

0.003

Im(FRF)

(m/sJN)

72.34

25.66

33.11

54.83

29.56

49.86

63.16

34.68

54.8

70.81

41.06

30.06

37.41

38.29

24.84

30.89

39.7

30.23

34.61

43.48

Freq.

4.44

4.44

4.44

4.44

4.467

4.467

4.467

4.5,

4.5

4.5

5.535

5.54

5.54

5.54

5.55

5.55

5.55

5.565

5.565

5.565

_d

1.857

1.857

1.857

1.857

1.857

1.857

1.857

1.857

1.857

1.857

0.869

0.869

0.869

0.869

0.869

0.869

0.869

0.869

0.869

0.869
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Figure 4.- Variation of Damping with Mass and Gap
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Mode I (fa = 5.53 Hz) - Spring at 81.5 in

Mode 2 (f2 = 13.04 I-Iz) - Spring at 121.25 in

Mode 3(f3 = 22.12 Hz) - Spring at 121.25 in

Figure 2.- Modes Shapes of the Test Structure
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to broadenthe scopeandthe rangeof the parameters governing the behavior of flexible

structures. Numerical simulation of the behavior of the problem would be needed to predict the
behavior of the flexible structure under operating conditions in space.

0.25 in. _ slots to adjust
mmjl_== clearanceTn constraning

force

_ transducer

free
rna_

force

screw

screws

bar
• clamp

Figure 1.- Details of the Impact Damper
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as follows.

Where:

v,(x),
l

elm

&(AT 

the initial and final velocities, respectively.

the length of the test structure.
an infinitesimal mass of the test structure.

the force supplied by the shaker.

the impulse exerted by the damper.

The increase in the damping ratio of the test structure may be attributed to the presence

of the third term in the L.H.S in the impulse and momentum equation above. The momentum

of the beam is expected to be in the same direction before and after the impact. Therefore if the

impulse is in the opposite direction to the momentum of the test article, it is then expected that
the resulting momentum at the end of the half-cycle duration will be less due to the contribution

of the impulse from the impact damper.

Figures 4 shows a plot of the variation of the damping ratio as a function of the moving

mass of the damper and the gap. It is somewhat difficult to draw general conclusions about the
behavior of the test structure form these figures.

A multiple linear regression analysis was performed using the StatView software. We

observed, from the numerous tests we conducted, that in order for the damper to be active, it is

necessary to drive the test structure at a certain level of excitation necessary to overcome friction
between the damper and the guide rods on which it travels. We further hypothesize that the

effectiveness of the damper depends on:

,

2.

,

The velocity of the impact mass {Xl = Gap}

The mass multiplied by the square of the amplitude of the mode shape at the
location of the damper, assuming a unit modal mass for the test structure {X2 =

m._}, where _ is the ordinate of the mode shape at the location of the damper.

The velocity of the test structure at the location of the damper {X3 =
Im(FRF)/Freq}, where Im(FRF) is the imaginary part of the inertance frequency

response function.

A multiple regression analysis based on the above hypothesis is presented in Table 4.

From the statistical point view, the results indicate that the hypothesis is valid. For the first

mode, the statistical analysis indicates that 88% of the variation in the damping ratio can be
attributed to the independent variables {X1, X2, X3}.

CONCLUSIONS

Impact dampers can be effective in increasing the damping ratio of lightly damped

flexible structures. The increase is damping is attributed to contribution of the impulse of the

damper to the impulse and momentum equation of the test structure. Statistical analysis of the

data obtained offers a degree of confidence in the multiple regression analysis performed in this

study. It is believed that additional analysis of the data obtained can offer some insight in the
behavior of the test structure. Additional experimental work on earth and in space is necessary
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2. Usingthemultipleregressionmethodto correlatethedata.

INSTRUMENTATION

A 50-1b electromagnetic shaker was placed at a distance of 40.5 in from the center of the

metal bracket. Eight accelerometers were placed approximately equally spaced along the length
of the test structure (Halpin 1994). In addition a ninth accelerometer was used as a reference
accelerometer at the point of excitation. A force transducer was attached to the test article at the

location of the drive point to measure the input force. In addition, two force transducers were

used to measure the impulsive force of the impact damper. Each steel billet was also

instrumented with four accelerometers. Data acquisition was accomplished with the ZONIC 7000
48-channel data acquisition system.

TEST RESULTS AND ANALYSIS

Initial tests conducted on the test structure with impact occurring between the bare metal

of the test article and the mass was recorded on magnetic tape and later digitized at rate of l&

samples per cycle. The results indicated that impact occurs at two impact per cycle at frequencies

of 5, 10 and 20 Hz. It also showed that the impact force has the general form of an impulse with
a duration of about 0.15 ms. A cushioning tape layer of about 0.1 in was used at both ends of

the moving mass to widen the duration of the impact. This was necessary, first to eliminate the

ringing effect of the noisy impact, and second to allow the capture of the impulse within the

sampling limitations of the ZONIC 7000 system of 12,800 samples per second. The introduction
of the cushioning tapes at both ends of the travelling mass resulted in impulse duration of about
1.5 ms, well within the limits of the ZONIC system.

To determine the damping ratios, twenty sine-sweep tests were performed for each of the

first three natural frequencies for a total of sixty tests. Tables 1,2 and 3 show the results

obtained. Six tests were conducted with the impact damper inactive, ie. the mass is restrained
from moving. These tests form the baseline for comparison. It is noted that the intrinsic

damping ratios _"for the test structure are (0.336% and 0.31% for the first mode, 0.37% and

0.447% for the mode second, and 0.356% and 0.318% for third mode of vibration. Figure 2

shows the mode shapes for the test structure used in this investigation.

In performing the data acquisition, the maximum allowed block size of 4096 samples
under triggered-continuous condition with 50% overlap was used. The Nyquist frequencies used

were equal to 8, 16, 32 Hz for the first, second and third mode, respectively. The linear sweep
rate recommended by Ewins (1983) was used to achieve accuracy.

The circle fit method was used to obtain an estimate of the damping ratio for each mode.
Figure 2 shows a sample FRF and Coherence Functions. The results indicates that the

parameters which was utilized in the acquisition and analysis of the data produced a good quality

fit and hence an accurate estimate of the damping ratios. It is observed that the impact damper
increases the damping ratio by as much as five folds.

Consider a mechanical system consisting of the test structure acted upon by the force

supplied by the shaker and two impulses per cycle from the impact damper. The equation of

impulse and momentum in the y-direction can be written covering a duration of one half cycle
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TEST SETUP AND CONFIGURATION

The test structure consists of a 122 inch long brass tube, weighing 3.043 lb. It is simply
supported at one end using a metal bracket and a universal join. A linear helical spring is used

to support the test structure at a variable distance from the simple support end. The stiffness of

the spring was determined in the laboratory to be equal to 15 lb/in. The impact damper consists
of a PVC cylindrical tube housing two aluminum discs at the top and bottom (Figure 1). The

bottom disc is secured to a ring which fits around the brass tube with 4 screws. A sliding
aluminum disc is used to adjust the distance in which the impacting mass is allowed to travel.

The reader is advised to refer to Halpin (1994) for additional information related to the test setup

and configuration.

The test structure was installed on two 2,000 pound steel billets. The billets were placed

on steel supports to raise their levels high enough for shaker installation. The test structure was
installed to the long sides of the billets for testing in the horizontal direction (Y+). One billet

was used to attach the metal bracket providing the simple support for the test structure. It

remained stationary throughout the test. The spring support was attached to the other billet which

was moved as needed to vary the span between the two supports.

a°

b.

C.

The test configurations can be summarized by the following conditions:
Two spring support locations.

Three impact damper locations.

Three gaps.

TEST AND ANALYSIS PROCEDURES

To achieve the desired objectives of this investigation, the following test procedures were
observed:

.

2.

.

4.

°

°

7.

8.
9.

10.
11.

12.

Check the quality of input forcing functions and driving point responses.

Confirm requested frequency range of 3 to 30 Hz is sufficient to obtain the desired
flexural modes of test article.

Perform three tests at frequencies of 5, 10 and 20 Hz. Record the data on magnetic tape.

Digitize the data at a rate of one million per second and investigate the characteristics of

the impact force at the top and bottom of the damper.
Determine optimum block size for data acquisition to have proper resolution for lowest
test article flexural mode.

Find optimal input force level.
Document linearity and reciprocity of test structure (I-Ialpin 1994).

Document repeatability of test structure from test to test.
Document modal characteristics of test structure.

Perform data quality review.
Perform sine sweeps of the test structure and record data.

Record time histories of all channels for selected tests an at selected frequencies.

°

Analysis of collected data was completed in two phases:

Using the SDRC-IDEAS software to obtain an estimate of the damping ratio using the
circle fit method. The same software was used to obtain the mode shapes and natural

frequencies.
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INTRODUCTION

Attenuation of excessive vibration is an important design consideration in structural

systems exposed to dynamic loads during their service. This can be achieved by actively or

passively controlling the dynamic behavior of the structure. Methods of passive vibration control
are quite often successful in achieving their objective at a relatively lower cost. They are often

preferred over comparable active methods of vibration control if the structure will be used in a

hostile operating environment, such as in outer space, where maintenance or monitoring is

expensive.

An impact damper belongs to the category of passive vibration control devices. It
consists of a free mass constrained to travel between two container walls. It produces substantial

amount of damping in the structure it is attached to through momentum transfer.

Since the 1930's, numerous analytical and experimental studies have been conducted on

SDOF and MDOF impact damped systems. However the experimental investigation of impact

damped continuous systems was not undertaken until the early seventies.

In 1973 Masri (1973) performed experiments on a class of nonlinear dissipative cantilever

and simply supported beams subjected to external sinusoidal excitation. He concluded that a

heavier mass at an optimal clearance added to the systems damping. In addition the damper was
more effective when located away from the node of the mode shape. In 1975 Roy and others

(1975) produced similar results for fixed-fixed and simply supported beams subjected to base
excitation.

Yousef and Akl (1987) performed a study of the free and forced vibration response of

a vertical cantilever steel stack. Sliding and pendulum impact dampers were used in that

investigation. A condition of two impacts per cycle was observed at frequencies higher than the

fundamental frequency of the system. In addition it was concluded that an optimal clearance was
associated with each impactor's mass.

Recently the second mode of a cantilever beam was studied by Chalmers and Semercigil

(1992). They performed experiments with and without a rubber lining inside the boundaries of
the damper's container. It was concluded that the rubber produced a characteristic behavior

which was quite insensitive to the changes in particle clearance. Maximum damping was obtained

by locating two dampers each at the locations of the largest amplitude.

l,

2.

3.

OB_C_VES

The objectives of this study are:

to investigate the effect of an impact damper on the dynamic behavior of a flexible
structure where the effect of gravity is minimized.

to perform a number of tests on the flexible structure to study the effect of the mass, gap

and location of the impact damper on the damping in the first three modes of vibration.

to analyze the data obtained in order to gain a better understanding of the behavior of the

impact damper.

2-3



ABSTRACT

Impactdampers belong to the category of passive vibration devices used to attenuate the

vibration of discrete and continuous systems. An Impact damper generally consists of a mass
which is allowed to travel freely between two defined stops. Under the right conditions, the

vibration of the structure to which the impact damper is attached will cause the mass of the

impact damper to strike the structure. Previous analytical and experimental research work on the
effect of impact dampers in attenuating the vibration of discrete and continuous systems have

demonstrated their effectiveness. It has been shown in this study that impact dampers can

increase the intrinsic damping of a lightly-damped flexible structure. The test structure consists
of a slender flexible beam supported by a pin-type support at one end and supported by a linear

helical flexible spring at another location. Sinusoidal excitation spanning the first three natural

frequencies was applied in the horizontal plane. The orientation of the excitation and the test
structure in the horizontal plane minimizes the effect of gravity on the behavior of the test

structure. The excitation was applied using a linear sine sweep technique. The span of the test

structure, the mass of the impact damper, the distance of travel, and the location of the impact

damper along the span of the test structure were varied. The damping ratio are estimated for

sixty test configurations. The results show that the impact damper significantly increases the
damping ratio of the test structure. Statistical analysis of the results using the method of multiple
linear regression indicates that a reasonable fit has been accomplished. It is concluded that

additional experimental analysis of flexible structures in microgravity environment is needed in
order to achieve a better understanding of the behavior of impact damper under conditions of

microgravity. Numerical solution of the behavior of flexible structures equipped with impact

dampers is also needed to predict stresses and deformations under operating conditions of

microgravity in space applications.
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