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ABSTRACT

This paper investigates the steady-state responses of a ro-

tor system supported by auxiliary bearings in which there
is a clearazace between the rotor and the inner race of the

bearing. A simulation model based upon the rotor of a pro-

duction jet engine is developed and its steady-state behavior

is explored over a wide range of operating conditions for var-

ious parametric configurations. Specifically, the influence of

rotor imbalance, support stiffness and damping is studied.

It is found that imbalance may change the rotor responses

dramatically in terms of frequency contents at certain oper-

ating speeds. Subharmonic responses of 2nd order through

10th order are all observed except the 9th order. Chaotic

phenomenon is also observed. Jump phenomena (or double-

valued responses) of both hard-spring type and soft-spring

type are shown to occur at low operating speeds for sys-

tems with low auxiliary bearing damping or large clearance

even with relativelysmall imbalance. The effectof friction

between the shaft and the inner race of the bearing is also

discussed.

NOMENCLATURE

CB = auxiliary bearing support damping, lb.s2/in.

CB,_ = auxiliary bearing torsional damping, lb.in.s

Fn = normal force, lb

Ft = friction force, tb

Fx = external force vector acting on the rotor in X direction

Fy = external force vector acting on the rotor in Y direction

Ia = rotor inertia matrix

JB = moment of inertia of auxiliary bearing, lb.in.s 2

KB = auxiliary bearing support stiffness, lb/in.

Kc = contact stiffness, lb/in.

MB = auxiliary bearing mass, lb.s_/in.

Mk = mass of kth rotor element, lb.sZ/in.

N = total number of modes considered

NB1 = node number at auxiliary beating _1

NB2 = node number at auxiliary bearing _2

Qx = rotor modal coordinate vector in X direction

Qy = rotor modal coordinate vector in Y direction

/_B = radius of auxiliary bearing bore, in.

/_m = radius of auxiliary bearing pitch, in.

RR = radius of rotor journal, in.

XR ---- rotor physical coordinate vector in X direction

YR = rotor physical coordinate vector in Y direction

e = rotor imbalance eccentricity,in.

g ---gravitational acceleration,in./s2

t = time, s

A = deformation at the contact point, in.

r = _Prla_
= rotor free-free modal rotation matrix

-- rotor operating speed, raxi/s

@ = rotor free-free modal displacement matrix

6 = R B - RR, auxiliary bearing clearance, in.

p = dynamic friction coefficient

/z_ = rolling friction coefficient

tb B = angular displacement of auxiliary bearing inner-race

= modal damping coefficient
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INTRODUCTION

One of the most innovative developments in the turbo-

machinery field involves the use of active magnetic bearings

(AMB) for rotor support. This technology provides the po-

tential for significant improvements in the dynamic behavior

of rotor systems, allowing for loading, eccentricity, shaft po-

sition and vibration to be continuously monitored and con-

trolled. In order to protect the soft iron cores of the magnetic

bearings and to provide rotor support in die event of failure

of the bearing or during an overload situation, backup (or

auxiliary) bearings, with a clearance between the rotor and

the inner race of the bearing, are usually included in the ro-

tor design. This clearance introduces a nonlinear dynamical

feature which may significantly impact the behavior of the

rotor.

Magnetic bearing systems appear to provide particularly

great promise for use in aerospace applications. There are

active programs at many of the major jet engine manufac-

turers to develop engines supported by magnetic bearings.

Safety is a major concerns in any aeronautical design. To-

ward this end, it is desirable to design the rotor system to

take maximum advantage of the backup bearings and use

them as true auxiliary bearings to provide support during

critical situations in a safe and consistent manner. An im-

portant concern in this regard is the dynamic behavior of the

rotor when it comes into contact with the auxiliary bearing.

If safe and effective operation of the engine is to be ensured

during these periods, it is essential that designers have a very

good understanding of the steady-state dynamics of rotor

systems with clearance effects.

There axe a number of studies in the literature concerned

with the dynamics of rotors with clearance effects. Ya-

mamoto (1954) conducted a systematic study of rotor re-

sponses involving bearing clearance effects. Black (1968)

studied the rotor/stator interaction with a clearance. Iie

concluded that rotor/stator interactions may occur in a vari-

ety of forms and circumstances, including jump phenomena.

Ehrich (1966) repotted the first identification of a second

order subharmonic vibration phenomenon in a rotor system

associated with bearing clearance (1966). Bently (1974) pub-

lished experimental observations of second and third order

subharmonic vibration in a rotor system. Later, Muszynska

(1984) cited the occurrence of second, third, and fourth order

subharmonic responses in a rotor rubbing case and Ehrich

(1988 and 1991) observed eighth and ninth order subhar-

monic vibration as well as chaotic vibration in a high speed

turbomachine. Childs (1979 and 1982) published two papers

to explain the mechanism for the second and third order

subharmonic responses noted above. He stated, with great

insight, that " motion due to nonsymmetric clearance effects

is a fractional-frequency phenomenon."

While those studies have greatly enhanced the understand-
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FIG. 1 DIAGRAM OF THE FEM ROTOR MODEL

lag of clearance effects on rotor dynamics, a more detailed

understanding of the dynamical behavior of such systems is

needed. The perspective of much of this earlier work is that

the clearance exists as a result of manufacturing error or mis-

fitting. That is, it is due to an abnormal situation. However,

in a rotor system fitted with magnetic bearings and auxiliary

bearings, the clearance becomes a design parameter rather

than an irregularity. From this point of view, it is impor-

tant to develop a detailed quantitative understanding of the

dynamic responses that are to be expected. Such knowledge

will provide guidelines for the selection of auxiliary bearing

parameters.

It seems that there have been little work to date that is

specifically concerned with auxiliary bearings in magnetic

bearing supported rotor systems. Two papers that are di-

rectly related to research on auxiliary bearings were both fo-

cused on transient responses. Gelin et al. (1990) studied the

transient dynamic behavior of rotors on auxiliary bearings

during the coast down. Ishii and Kirk (1991) investigated

the transient responses of a flexible rotor during the rotor

drop after the magnetic bearings become inactive. In both

papers, idealized rotor models are used and it is assumed

that once the magnetic bearings fail, the torque is cut off

and consequently the rotor speed approaches zero.

In this paper, simulation results are presented for a

complex rotor system supported by auxiliary bearings with

clearance at each end of the rotor. This work is specifically

concerned with systems in which the clearances are quite

small (on the order of a few mils), which is appropriate

for jet engine applications in which the backup bearing is

acting to provide rotor support on a consistent basis. The

influence of rotor imbalance, support stiffness and support

damping are investigated using direct numerical integration

of the governing equations of motion and the harmonic

balance method. Some insights are obtained with regard

to the frequency and amplitude behavior of the steady-state

vibration of such a system.
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FIG. 2 AUXILIARY BEARING MODEL

SIMULATION MODEL

The rotor is modelled using free-free normal mode shapes

and natural frequencies obtained through finite element

analysis. The model data is representative for the rotor

of a jet engine. Fig. 1 shows a schematic diagram of the

FEM rotor model. Parametric information about the model

is listed in Table 1. The torsional motion of the shaft is not

considered in this paper. Using state space representation

and modal coordinates, the equations of motion for the rotor

are expressed as

coordinate transformation:

N

Xnk = _ q_;kQxi,
i=l

N

Ynk = _ '_k Qri,
i=l

(k = NB1,NB2)

The equations of motion for the auxiliary bearings are

derived using the model shown in Fig. 2

MB_ffBk + CBkXBk + KBkXBk

= Fn_ cos a_ - Ftk sin cr_ + MBk g, (2.a)

MBJ.YB_ + CBk)ZBk + Ko_YBk

= Fn_ sin ak + Ftk cos a_, (2.b)

Jok Bk + CsCk( B 

= F, kRnk -- _¢F.k/?_k, (2.c)

where

a_ = tan-l Ynk - YBk
Xnk - Xnk

(k = NB1,NB2)

At this point, the rotor and the back-up bearings appear

to be uncoupled. However, the force vectors gx and Fy

on the right hand sides of equations (1) are partially due to

rotor/auxiliary bearing interaction. In fact, we have

where

Qx+2_,,Qx + nrqr
+ 2f_(w.Q). = _IirFx, (1.a)

Qv+2(,_,Qv - _rqx +,_?,qv

- 2f2(wnQx = _TFy, (1.b)

Fx = {Fxl,Fx2,...,fx,,} -l,

Fr = {Fr ,Fr2 .... ,Ft.,}
Qx = '_-lXn,

Qy = _-lya,

Fxk = - F,,_ cos crk + Ftk sin ctk

+ Mkg+ Mk ef22cos(_t),

Fy_ = -- Fn_ sin a_ -- Ftk cosotk

+ M_ e_ _ sin (f_t).

The rotor/bearing interaction is represented with the normal

force Fn_,

{ Kc_, A_ < O,F,,_ = O, A_ >_O,

where

with

Xn = {Xm, Xn_,..., Xn,,} -t,

YR = {Ym, Yn_,..., YR,n} -_.

(rn = total number of nodes)

The physical displacements of the rotor at the two aux-

iliary bearing locations can be obtained using the following

A_ = (XR_ --XB_)cosa_ +(Yn_ - YBi)sina_ -_

and the Coulomb friction force Ft_.. As long as there exists

slip at the contact point, the friction force obeys

F,_ = p F._. (3.b)

However, when there is no slip at the contact point, the

friction forces are solved from equations (1) and (2) using



thekinematicconstraintthat the circumferential velocities

of the rotor and the inner-race of the back-up bearing at

the contact point equal to each other. At the same time, if

this solved friction force exceeds the maximum static friction

force (= I2.,Fnk), equation (3.b) applys again.

DISCUSSION OF RESULTS

The rotor is modeled with 34 stations (a s shown in Fig. 1)

and the first four modes (two rigid body and two flexible

modes) are included in the simulation model. The two

auxiliary bearings are located at nodes 3 and 33, respectively.

This arrangement is taken to represent one of the most

technically feasible configurations in that it greatly simplifies

bearing maintenance. It is assumed that the two auxiliary

bearings are identical in terms of stiffness, damping and

friction characteristics. Some nominal system parameters

used for the simulation study are Ko=2.855e+6, _=0.03,

_rne =1.1 RBk, t/s =0.5 and _qj=0.002. To avoid excessive

cluttering of plots, all the results that are presented in this

paper correspond to node 3, the location of bearing _1.

Since the total system which includes two bearings and

associated friction forces as well as the inner-race motions

is rather complicated and requires considerable amount of

computer time for the solutions to converge, the friction

effect is examined first to see if the model can be further

simplified. It turns out that the steaxty-state results obtained

with and without friction are virtually identical. Even the

differences in transient responses are quite small, as can be

seen in Fig. 3(a) and 3(b). The only remarkable effect is

on the transient responses of the inner-race as shown in

Fig. 3(c). This observation is confirmed by numerous runs

using different system parameters and rotor speeds. The

lack of significance of friction may be attributed to several

factors. First, the inertia of the inner-race is quite small in

comparison to the rotor mass, so vibration of the bearing

has little influence on the rotor vibration. Second, bail

bearings exhibit quite negligible torsional resistance under

normal conditions. As a result, the terms that are related

to the friction forces and the rotational motion of the inner

race are not included in the simulations that are discussed in

the following paragraphs.

The steady-state response characteristics of the system

are obtained through numerical integration of the simplified

version of governing equations (1) and (2). Near-zero initial

conditions are used, simulating situations where the AMBs

are functioning properly prior to a system failure. Multiple

solutions with other initial conditions are not sought at

present.

It is well known from linear analyses that imbalance

greatly affects the steaxiy state vibration amplitudes of a

rotor system. However, it is observed from the current

work that imbalance may also influence frequency content of

the rotor responses quite dramatically at certain operating

speeds. A typical case with such an imbaJance effect is shown

in Figs. 4 and 5, where orbits and corresponding frequency

spectra of the rotor for different values of imbalance at the

speed of fl = 1000 are plotted. For this particular case,

there exist eight ranges of imbalance values that result in

eight different types of rotor responses.

For c < 0.0009, the rotor rotates near the bottom of

auxiliazy bearings and the responses are predominantly syn-

chronous (Figs. 4(a)-4(b) and S(a)-5(b)). As imbalance in-

creases, the 2_ superharmonic component approaches the

magnitude order of the synchronous component (Figs.4(b)

and 5(b)). However, the responses are of small amplitude.

For 0.0010 < e < 0.0013, the responses are dominated by

f_/2 subharmonic components (Figs. 4(c) and 5(c)). In other

words, the amplitude of _/2 component is greater than that

of the synchronous. For 0.0014 <_ e _ 0.0016, the £t/2

subharmonics disappear and the _/3 subharmonics become

dominant (Figs. 4(d) and 5(d)). So far, the overall amplitude

of the responses are not large, the rotor just bounces near the

bottom of the auxiliary bearings. For 0.0017 < e < 0.0027,

the orbits become chaotic-looking (Fig. 4(e)) and the spec-

trum contains a lot of noise (Fig. 5(e)). In this range of

imbalance, the rotor changes from bouncing near the bot-

tom to bouncing around the full clearance of the bearing as

imbalance increases. In the middle of this transition range,

true chaos is observed. The Poincare map shown in Fig. 6(a)

and the frequency spectrum shown in Fig. 6(b) demonstrate

that the response has aLl the characteristics of a chaotic

phenomenon. It should be noted that even though the or-

bits are chaotic looking, the amplitudes are not the largest

among all the cases for this particular parametric configu-

ration. For 0.0028 < e < 0.0034, the orbits orbits are no

longer chaotic-looking (Fig. 4(f)). The spectrum shows they

are _t/5 subharmonic responses (Fig. 5(O ). Notice the am-

plitudes are the largest for this parametric configuration. For

e = 0.0035, the amplitude suddenly becomes smaller even

though the imbalance has become larger (Fig. 4(g)). And

the rotor bounces near the bottom of the auxiliary bearings

again. The frequency spectrum shows it is _/8 subharmonic

response (Fig. 5(g)). For 0.003(5 __ e < 0.0042, the orbits

become chaotic-looking again (Fig. 4(h)). But the frequency

spectra are very similar to the subharmonic cases (Fig. S(h)),

only with some discrete noise. Finally, for e > 0.0043, the re-

sponses become predominantly synchronous again (Figs. 4(i)-

4(j) and 5(i)-5(j)). But this time as imbalance increases, the

2_ superharmonic component become smaller and smaller

(Figs. 4(j) and 5(j)).

Examining all the orbits in terms of amplitudes as imbal-

ance increases, we can see the characteristics of a jump-type

phenomenon (Cunningham, 1958). The jump-down takes

place around 0.0034 < e < 0035 where the rotor jumps



fromfull-clearance bouncing to near-bottom bouncing. Fur-

ther investigation is needed to better understand this type

of change.

imbalance responses at some other operating speeds and

for other parametric configurations exhibit similar changes

a.s imbalance varies, though the imbalance ranges and cor-

responding response types may not be as well defined as

in the above cases. In fact, subharmonic responses from

f_/2 through _/10 are all observed except _/O as shown

in Figs. 7. Surprisingly, those subharmonics are not di-

rectly related to the system's natural frequencies as were the

cases with other researchers' findings (such as Ehrich, 1988).

Moreover, several types of subharmonic responses may occur

at a single operating speed. It should be noted that Chen et

al. (1993) also reported occurrence of three stable subhar-

monic responses at a single rotor speed in a SFD supported

rotor system but did not provide any explanation for their

findings, in their case, even the imbalance did not vary. Ap-

parently, further research is needed to find a mechanism to

explain this multi-subharmonic vibration phenomenon. On

the other hand, it should be pointed out that these subhar-

monic responses are not typical cases. While some of them

are observed to exist within a certain range of parameters,

the majority of them occur only for some specific parametric

configurations.

Due to space limitations, results for other parametric

configurations are not systematically plotted. A genera.[

summation of the observations is presented instead. A

common feature among all the responses is that for very

small imbalance, the responses are always synchronous.

The imbalance range that result in synchronous dominated

responses depend on several system parameters. For small

back-up bearing stiffness (such as KB = 0.213e+6) and

normal damping (CB = 157.0), the responses are almost

always synchronous. Only _/2 subharmonic are observed

at a few operating speeds with a very narrow range of

imbalance. It should be noted that even though a lower

I'fB may leads to a better system response, it may also

fail to protect the magnetic bearings due to the fact that

it could result in a larger rotor orbit-center offset. However,

the dramatic response changes discussed above may occur

again if the damping becomes small (such as C'B ---- 57.0)

even though the stiffness still remains small. On the other

hand, increasing the damping C'B alone may not be able

to eliminate those dramatic changes. It is observed that

those changes can still occur for CB being a.s large as

700.0. Reducing the size of clearance 8 may not eliminate

the response changes at certain speeds. But it can narrow

the operating speed range where those changes occur. For

example, response changes are eliminated for f2 >_ [500

when /5 is reduced from 0.002 to 0.001 with all other

parameters remaining the same, but response changes still

occur for f_ < 1400.

It is obvious that rotor responses involving nonsymmetric

bearing clearance effect are very complex problems and

numerical integration alone is not a sufficient tool to obtain

a global picture of the system responses. The harmonic
balance method is then used for the investigation of global

system behavior. However, it is only attempted for situations

with very small imbalance values. In addition, only the 1_

harmonic is considered. The complex frequency contents

associated with medium and large imbalance values makes

it a formidable task to apply the harmonic balance method

for other cases. Nevertheless, some useful information can be

drawn from these results. After all, an adequately balanced

rotor system should have very small imbalance under normal

conditions.

Fig. 8(a) shows that nonsymmetric clearance effect is

equivalent to asymmetric stiffness effect with regards to

critical speeds. The clearance actually splits the first critical

speed into two pseudo-critical speeds. In the X direction,

the gravity force tends to keep the rotor in contact with

the bearing at low operating speed. Thus, the apparent

stiffness is almost the same as KB and the pseudo-critical

speed is nearly the same as the critical speed for the linear

case (/5 -- 0). But in the Y direction, the clearance

results in a lower apparent stiffness and, consequently, an

additional lower-value pseudo-critical speed. It is seen that

several higher order additional pseudo-critical speeds are

created in the operating speed range in addition to the

1st additional pseudo-critical speed. It is noted that the

response in the X direction also departs from the linear

case at high operating speed. This is because the imbalance

force becomes dominant at high rotor speed which in turn

makes the gravity force less significant and the clearance

effect more important. Fig. 8(b) shows that changing the

auxiliary bearing stiffness has little effect on the pseudo-

critical speeds of the system. However, for a larger value

of imbalance, a higher KB does leads to a greater tendency

of double-valued responses. In each direction, for either a

stiffness increase or an imbalance increase, the 1st pseudo-

critical peak tend to become a hard-spring type jump and

the 2nd one tend to develop into a soft-spring type jump,

with the tendency decreasing as the pseudo-critical's order

increases.

Fig. 9(a) shows double-valued responses in the ]I direction
for four different values of clearance. It is seen that a larger

clearance results in wider rotor speed range of double-valued

responses. It is also observed that as clearance increases,

the apparent stiffness decreases and the first pseudo-critical

speed shifts to a lower value. Fig. 9(b) shows the double-

valued responses in the X direction. Even though the jumps

themselves are smaller in magnitude, they are more obvious

in trend. Notice how little the change is for the first pseudo-



criticalspeed in the X direction.

Fig. 10(a) shows the influence of auxiliary bearing damping

on the double-valued responses in the Y direction. It is

observed that the damping has to be quite large to eliminate

the double-valued responses associated with the first pseudo-

critical speed. Fig. 10(b) shows the influence of CB on the

double-valued responses in the X direction. In both figures,

it should be noted that as CO decreases, the second pseudo-

critical speed peak will develop into a soft-,spring type jump

and the third pseudo--critical speed peak will evolve into a

hard-spring type jump.

The system behaviors for higher operating speed range are

not shown in Figs. (9) and (10) so that the jump phenomena

can be more clearly illustrated. It is also because that the

system's responses at high operating speed range with the

same parameters are more or less regular, in other words,

mainly amplitude changes.

CONCLUSIONS

As a summary of the results discussed above, the following

conclusions can be drawn:

1. Imbalance may change the rotor responses dramatically in

terms of frequency contents at certain operating speeds,

especially under conditions of large clearance, high bearing

stiffness and low bearing damping. With imbalance

changing, as many as eight different types of responses

may occur for a particular parametric configuration at a

single operating speed.

2. Subharmonic responses of second order through tenth

order are all observed except for the ninth order case.

However, the majority of them are not typical cases,

and were observed only for quite particular parametric

configurations.

3. Chaotic phenomenon is observed to occur occasionally.

However, the amplitudes associated with such motion are

not among the largest.

4. Nonsymmetric clearance effects influence the critical speeds

in a manner similar to asymmetric stiffness effects.

5. Double-valued responses in the form of both hard-spring

type jump and soft-spring type jump are observed to be

possible at low operating speeds with low auxiliary bearing

damping or high imbalance. With large clearances or high

bearing stiffness, the jump phenomenon may occur for

even relatively small imbalances.

6. The effect of friction between the shaft and the inner race

of a rolling element auxiliary bearing on the dynamics of

the rotor is quite small and can reasonably be neglected

for steady-state analyses.
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TABLE 1. FEM MODEL DATA

Station O.D. I.D. WT. Polar Mom.

(ill.) (in.) (in.) (Ib) (lb.in.s 2)

5.400

5.450

($.500

6.505

7.100

8.670
10.900

13.120

15.310

17.280

18.580

19.880

:21.120

22.380

23.670

24.900
26.120

27.400

27.750

27.800

32.000

37.000

-t3.000

-t8.000
53.000

58.000

61.950

62.000

($2.405
6-'t.600

($7.000

($9.500

($9.505

72.500

73.600

2.800

.800

2.800

7.300

7.300

7.300
.400

9.300

10.100

10.700

11.200

11.550

11.950

12.150

12.400
12.500

12.500

12.500

2.000

2.000

2.000

6.950

6.950

7.120
8.220

9.120

9.920

10.550

11.050

11.400

11.800

12.000

12.250

12.350
12.350

12.350

0.000
5.000

0.000

0.100

0.000

30.400

0.000

0.000

20.300

9.150

0.000

0.000

0.000
41.900

0.000

0.000

0.000

22.550

12.500

4.500

4.500

,t.500

' [ 1500

t.500

.i.500

-t•500

-t.500

6.000

6.000
6.000

6.000

6.000

2.850

2.850

2.850

2.500 1.027

2.500 7.733

2.500 25.022

2.500 17.961

2.500 17.961

2.500 16.328
2.500 16.328

2.500 1,t.614

2.500 6.531

2.500 0.95,t

5.670 34.935

5.670 0.000
5.670 117.000

5.670 0.000

1.250 0.000

1.250 10.197

1.250 0.000

0.000

5.000
0.000

0.100

0.000

425.000

0.000

0.000

538.000

302.000

0.000

0.000

0.000

1645.000
0.000

0.000

0.000

539.000

0.000

0.000

49.761

0.000

0.000
0.000

0.000
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