View metadata, citation and similar papers at core.ac.uk

L=
=
brought to you by .. CORE

provided by NASA Technical Reports Server

Y. Philip Li S8 S

li@aero.org

Aerospace Corporation

June 30, 1993

Abstract

A distributed version of the Clips language,
dClips, was implemented on top of two existing
generic distributed messaging systems to show that:
(1) it is easy to create a coarse-grained parallel
programming environment out of an existing language
if a high level messagirg system is used, (2) the
computing model of a parallel programming
environment can be changed easily if we change the
underlying messaging system. dClips processes were
first connected with a simple master-slave model. A
client-server model with intercommunicating agents
was later implemented. The concept of service broker
is being investigated.

Introduction

In the process of exploring the opportunities
of utilizing multiple workstations on a network as a
single parallel computing environment, we have built
a simple distributed Clips environment, named
dClips, running with multiple parallel Clips
processes on a Sun network. Clips, C language
integrated production system [Clips91], is a forward-
chaining rule-based language with object definition
capability. Clips was developed by NASA Johnson
Space Center.

dClips Master

dClips Slave
dClips Slave

dClips Slave
dClips Slave

dClips, was implemented on top of two
existing generic distributed messaging systems to
show that: (1) it is easy to create a coarse-grained
parallel programming environment out of an existing
language if a high level messaging system is used as
the underlying layer, (2) the computing model of a
parallel programming environment can be changed
easily if we change the underlying messaging system.
In this paper, we describe two versions of dClips
implementation on top of two different messaging
systems. One messaging system supports only the
master-slave model while the other supports a much
more flexible communication scheme.

A Master-Slave Model for Task Assignment

dClips was first implemented on top of AERO
[Sullivan89], the Asynchronously Executed Remote
Operations from UC Berkeley. AERO allows
parallel programming in a master-slave mode on a
UNIX network. Communication is only allowed
between the master and slaves, but not in between
slaves. The master process can assign tasks
asynchronously, but it has to block and wait for the
result to come back.

As depicted in Figure 1, a single dClips
master process controls multiple dClips slave

Legend:

Request (Task Assignment)
—

Figure 1. Master-Slave Model for dClips

E-99

https://core.ac.uk/display/42780064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

processes. The master process first asks all the slave
processes to load the necessary Clips constructs (ie.,
rules, objects, and functions) from the file system into
their runtime environments. The master then assigns
tasks to slave dClips processes by one of the following
three methods:

i). Assert a fact into Clips knowledge base — This
request from the master process is executed on all the
slave processes simultaneously. If a slave process is
busy, it first finishes its current task then asserts the
fact. By asserting facts into the working memory of
slave processes, the master process could change the
inferencing process in the slaves.

ii). Call a Clips function — Any built-in Clips
function and user-defined functions in a slave process
can be called from the dClips master process. This is
a form of remote procedure call in the context of Clips
language. Also, the state of the working memory ofa
dClips slave process can be examined by the master
by issuing Clips function call. This allows the master
to decide if further task assignment is necessary.

iii). Send a message to a Clips object — A Clips object
message can be sent from the dClips master process to
dClips slave processes. An active object instance
within the slave process can receive messages and
process the messages based on the behaviors defined
in a message handler. :

This version of the dClips implementation is
done in C using Clips 5.1. Four function calls are
available between the dClips master and slave
processes: loadClipsConstruct, assertClipsFact,
callClipsFunction, and sendClipsMessage. ~The
loadClipsConstruct primitive can take a list of
construct-files (i.e., a file with Clips rules, objects,
and functions) and process them based on the sequence

dClips Master

DataHub Data
Manager

Ocean Data Access

Viking Data Access

Voyager Data Access

Magellan Data Access

of the list elements. The sequence in the list is the
sequence of execution in the loading process. For
example, the list (function.clp object.clp rule.clp)
will cause a slave process to load function.clp first,
object.clp next, and rule.clp last.

The assertClipsFact primitive takes a string
with a single Clips fact and requests every slave to
assert it into the knowledge base. The
callClipsFunction primitive takes a string with a
single function name and the function parameters, and
sends it to all the slave processes.

The sendClipsMessage primitive is also
capable of passing a list of messages from master to
slave. Each message is itself a list in the form:
(class-name instance-name method-name method
args). The slave that receives a sendClipsMessage
request processes the messages based on the sequence
of the list elements. This allows multiple class
methods to be defined and executed in sequence as a
single work assignment.

An Application

A Clips-based image data access application,
DataHub [Handley92], has been ported to the
dClips/Aero environment. The master process issues
concurrent image data access/conversion requests for
different dataset types. Each dataset type has
different data format and data semantics. The
knowledge about the image datasets is stored in Clips
constructs, and loaded by the slave processes at
startup time. One dataset type is handled by one
slave process. There is no interaction needed among
slave processes. Data conversion tasks are both CPuU
intensive due to format changes (e.g., byte swap, data
decompression) and 1/O extensive due to massive read
and write of files.

dClips Slave

dClips Slave

dClips Slave

dClips Slave

Figure 2. DataHub Data Manager on top of dClips

E~100

The DataHub data manager with the same
master-slave task assignment scheme has also been
ported to the dClips/ISIS environment (see next
section for details). The master slave model stays
with the ISIS implementation because of the nature
of the application, rather than the limitation of the
ISIS computing model.

A Client-Server Model with Service Brokers

The master-slave process model imposed by
AERO is not desirable if we want to build systems
with communicating intelligent agents. After
evaluating Sun's ToolTalk™ [ToolTalk91] and
Cornell's ISIS [ISIS90] for an alternative distributed
computing model, we decided to build dClips on top of
ISIS. ToolTalk was not chosen because: 1) the
message arrival sequence from multiple senders in a
network environment is not guaranteed, 2) only 1
handler is allowed for a request message (others are
observers). Message arrival sequence is important
because the arrival sequence of messages for asserting
a fact or for updating object instances in the dClips
environment is critical to the local Clips inferencing
process. Different message arrival patterns could
result in different inference outcomes. Furthermore,
the constraint of having a single handler for a
request message makes it unnatural for task
distribution/assignment in a parallel programming
environment.

On the other hand, ISIS, developed at
Cornell University, provides a set of tools built
around virtually synchronous process groups and
reliable group multicast [Birman91]. A virtually
synchronous distributed system has the following
characteristics: (1) all processes observe events in the
same order (global order and causality), (2) an event
notification is delivered to all or none of the audience
(atomicity). A virtually synchronous system looks
synchronous to every process in the system, but
executes asynchronously. For the dClips
implementation, the virtually synchronous broadcast
(cbcast, for causal broadcast), which guarantees the
causality and atomicity, was the main reason for
using ISIS as the underlying distributed computing
model.

Figure 3 shows the architecture of ISIS-based
dClips, where a set of dClips Server processes team
up with a dClips Administrator process to form a
process group. This process group provides the
cooperative problem solving capability to the outside
world. The dClips Administrator plays the role of a
service broker, providing a consistent interface to the

E-101

outside clients, while the details of the server
processes are transparent to the clients. The interface
between a service broker and its clients has yet to be
defined. At this point, the CORBA (Common Object
Request Broker Architecture) IDL (interface
definition language) type interface is being
considered [OMG91]. The interface between the
dClips Administrator and the dClips Servers is a
shared knowledge base with a set of common access
methods.

The dClips Servers form a conceptual
hierarchy, which is known to the dClips world, but is
not visible to the ISIS environment. In other words,
this Server hierarchy is not a hierarchy of ISIS
process groups. In the ISIS environment, all the
servers are equal members of a single process group.
Broadcasts to the group will reach every server
process in the same order. Each server is an
autonomous problem solving agent with its own
knowledge base and its own task. The Server
hierarchy defined within dClips environment helps
a server to find another potential problem solver if a
problem cannot be solved locally.

A shared knowledge base is available to
dClips Servers for knowledge exchange and
interaction, which is designed to facilitate the
cooperative problem solving process conducted by
multiple dClips Servers. At the same time, cach
dClips server can have its own individual non-shared
knowledge base. The Server hierarchy is defined as
a Clips Class Hierarchy within the shared
knowledge base, which is known to every scrver. The
message communication between servers can be: (1) a
broadcast to the whole process group, or (2) a message
to a designated server.

The shared knowledge base is realized by having a
set of Clips constructs replicated in each server. Each
server loads in this shared knowledge base at
initialization time. Any update to any of the objects
in this shared knowledge base in any dClips Server
will trigger a broadcast of the update to other
members in the process group. A server applies the
updates sent in from other servers one by one as if
they are local updates to the knowledge base. Since
the shared knowledge is designed to keep only the
critical knowledge that needs to be shared among
servers, the size of this shared knowledge base
should be small. The effort to keep it consistent
across multiple servers, i.e., sending and receiving
update messages and applying updates triggered by
remote update messages, should be minimal.

|
Clients l Brokers

Servers

@O—4

dClips Server
Process

~

dClips Server

_J

-l - -

Legend:
g Request Message

Figure 3. Architecture of ISIS-based dClips

Future Opportunities

Based on the client-server model of dClips, we would
like to pursue the following extensions:

i). dClips with Database Access Capability — This
involves a dClips database gateway, which runs as a
database client to some database server. An
intelligent agent can not be intelligent without
necessary knowledge about the real world. Accessing
existing databases is one way of acquiring
data/knowledge from the outside world. As shownin
Figure 4, a database pass-through process can serve as

| Service
Clients . Brokers

the gateway to the database server. The function of
this gateway can be as simple as passing a SQL
statement to a relational database system and
receiving the results back in a buffer. Or it can
provide more sophisticated functions such as
allowing joins of tables across multiple database
systems.

ii). A distributed blackboard system on top of dClips
— The ISIS-based dClips implementation can easily
evolve into a distributed blackboard system. This can
be done by making dClips server processes run as
knowledge sources in a blackboard system and by

Servers

-

Process
Group 1

dClips Server
dClips Server

N

dClips Server
Process
dClips Server

Group 2

_/

el

db pass-thru

|
!

Process
database server Group 3

i
| |
- @ I | ¥ >
| | DBMS database
<>

Legend:
9 Request Message

Figure 4. dClips with Database Access Capability

E-102

using the shared knowledge base among dClips
servers as the blackboard [Nii86). A blackboard
system like this is a realization of the original
blackboard metaphor because there is no
centralized control mechanism involved in the
blackboard reasoning process. Each knowledge
source reacts only to the change on the blackboard.
A domain problem can be solved cooperatively this
way by multiple knowledge sources.

References

[Birman91) Birman, K., Schiper, A., Stephenson, P.,
Lightweight Causal and Atomic Group
Multicast, ACM Transactions on
Computer Systems, Vol. 9, #3, August
1991.

[Clips91] Clips, Version 5.1, Reference Manual,
Software Technology Branch, Johnson
Space Center, Sep. 1991.

[Handley92] Handley, T., Li, Y. P., DataHub:
Knowledge-based Data Manage-ment
for Data Discovery, ISY Conference on

E-103

Earth and Space Science Information
Systems, Feb. 10-13, 1992.

[ISIS90] ISIS, Version 2.1, User's Guide and
Reference Manual, Cornell University,
Sep. 1990.

[Nii86] Nii, H. P., Blackboard System: The Black-
board Model of Problem Solving and
the Evoluatioin of Blackboard Archi-
tectures, THE Al Magazine, Summer,
1986, p. 38-53.

[OMG91] Object Management Group and X/Open,
Common Object Request Broker:
Architecture and Specification,
December 1991.

[Sullivan89] Sullivan, M., Anderson, D., Marionette
(Also Known As Aero): a System for
Parallel Distributed Programming
using a Master Slave Model, IEEE 9th
International Conference on Distributed
Computing Systems, 1989.

[ToolTalk91] TookTalk, Version 1,0, Programmer's
Guide, SunSoft, Dec. 1991.

-
7

'.;’i//i'; Ve

N

6 -£661 YIOM pauue|d .
uoyssnasiq «

gssaifioid «

Bojuem 'w Ia
uuad "X "1a
uayo ni-uiyd 4a
6be31y) Jo ANSIBAIUN

siojeBnsanu| «
fuisueg ajoway o) senbiuyoa) uoneziensip
pue Hubew) jeoipay J0 uonedddy/ «
aanoalqo «

abeaesg ' 'Y 1a
ybnojloJoN "A "M 1d
soUbNH

JLNULLSN TYIGIN NINNYYA
OOVIHD S0 AUSHINNN

auIINO pue uonINpPoNU|
NOISN HOSNIS ONY NOLLYZIIVNSIA VIva

4 D
uoneIauUaY) a|qe] 10j0) paxapul -abew) «
(1eo09 sabew| g-g jo uoisodiadng
-UNSS ‘4eaul] -§10) SelIaW0aY ueds {BIBASS pue uonjeziensi /Buissaoold abew| g-¢ «
senbiuyoa | anoqy Buisn Bunjui sbew «
W)y §'Q O} W 0S W04} SBLIBA -UOHNIOSAY » Buipjoysaiy] pue Buunouo) «
sysewpue] buisn Buyoepy abew «
Hi | ‘9|qISIA | ‘@ABMOIDIN L -spued lenoeds « ejeq jedipay 13d pue
1VD uo pajsa] pue padojanag swyyiob)y
aARMOLOIN -I/NSS uonezijensip pue buissasoid abew) «
‘(41 2 SIA) S0 -AllliigelieAy e1eQ Jualinduoy «
ApmiS 10} paloa|as 19S eied dSWNA «
Ew_u_ownhéu dSWA -t1eq Bujsuas ajowsy Jo sIsUARIEYD Euu&.ﬁﬂ»ﬁﬂ:ﬁﬂuu& ?.a:.:.::w -ajeq ot ssaiboid
E NOISN3 HOSNIS ONV NOLLYZITVASIA V1v0 E NOISN4 HOSNIS ANV NOILVZIIVNSIA V1va
- _) m
- 0

€661 ‘v isnbny

Auedwo) yeidlyy seybnH
ybnojI0IIN 8dUBA M "1d

NOISNd HOSNIS ANV NOLLVZITVNSIA Viva

