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Abstract-A method of obtaining the probability density function (PDF) of

local properties from path integrated measurements is described. The

approach uses the discrete probability function (DPF) method to infer the

PDF of the local extinction coefficient from measurements of the PDFs of

the path integrated transmittance. The local PDFs obtained using the

method are compared with those obtained from direct intrusive

measurements in propylene/air and ethylene/air diffusion flames. The

results of this comparison are good.

INTRODUCTION

Deconvolution of local properties from line of sight measurements is

important in a wide variety of applications such as x -ray tomography,

nuclear magnetic resonance imaging, atmospheric sciences, optical

inteferometry and flow field diagnostics. The methods of obtaining local

properties from path integrated measurements involve the deconvolution of

Radon transforms and the inversion techniques of Abel integrals. The

Radon transform and its analytical solution provide the fundamental

framework for a large class of deconvolution problems and their

applications as reviewed by Deans. l Deconvolution of path integrated
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measurements requires the inverse Radon transforms. These are usually

obtained by fast Fourier transform, 2 convolution back projection, 3 or

series expansion methods.4

For axisymmetric data, the inversion methods of the Abel integral5-7

or "onion-peeling method" have been used in conjunction with both

absorption and emission measurements. The onion peeling technique was

later extended to asymmetrical fields by Chen and Goulard.g

Reconstruction tomography for the retrieval of local properties from path

integrated data has been applied to problems in combustion,9-1 1

inteferometry, 12 , 13 and plasma diagnostics.14

Tomography has been used for the reconstruction of mean local

properties in laminar as well as turbulent flows. Chen and Goulardg

demonstrated the feasibility of using multiray scanning to retrieve local

average species concentrations and temperatures in asymmetrical fields.

Santaro et al l O applied absorption tomography to obtain mean

concentrations of methane in a turbulent methane/air non reacting jet.

Tomographic inversion of line of sight infrared emission measurements

from flames were used by Tourin 15 and Uchimaya et all 1 to retrieve mean

temperatures. Emission and absorption measurements along a path in a

laminar diffusion flame have been used by Best et a1 16 to retrieve the mean

temperatures and concentrations.

All of the above deconvolution studies have been restricted to

obtaining average local properties. Understanding of non-linear processes

such as radiative transfer and finite rate chemical kinetics in turbulent
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flows requires the knowledge of the probability density function (PDF) for

the local properties. 17-20 There have been attempts to use fast

multiangular and multiray scanning techniques to obtain single snapshots of

the turbulent flow field over a small time interval. Snyder and Hesselink2l

used multiple holographic views of a transient helium jet obtained over a

time period of 0.3 ms and these were subsequently inverted to obtain the

helium concentration profile. Beiting 22 utilized fan beam tomography to

obtain the local concentrations in a diacetyl plume. However, both these

studies were attempts to show the principle of operation of fast

tomography. Considerably faster scanning and data acquisition rates are

needed to achieve reasonably noise-free single shot concentration profiles,

even for low Reynolds number flows. To obtain converged PDFs of

concentrations and temperatures in moderate Reynolds number flows, the

resources needed by the above methods are beyond current hardware and

software capabilities.

Based on the above observations, the objectives of the present

investigation were: (1) to develop an inverse solution method based on the

discrete probability function (DPF) procedure developed by us,23 (2) to

apply the inverse method to the reconstruction of the PDF of local

absorption properties using path integrated measurements, and (3) to

evaluate the method by comparing the deconvolution results with

measurements of local PDFs in turbulent propylene/air and ethylene/air

flames. Based on the encouraging results obtained in the present study, the

method has the potential to be utilized in a wide variety of turbulent flow

diagnostic problems.
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THEORETICAL METHODS

Following our earlier work23 the process associated with the

construction of a discrete probability function (DPF) is shown in Fig. 1.

The discrete probability function P(ti) of the transmittance r consists of a

finite number N of individual values ri, and the probability Pi of

occurrence of r in a small interval around Ti:

P (i) = ('Ci ; Pi), i=1,N;
	

(1)

where
(' ii+ATi

P1 
J ^i-D^i/2 PDF(

,u) dr,	 (2 )

and PDF( ,r) is the probability density function of the transmittance. The

values ri and ATi are chosen such that all possible values lie within one of

the N bins. Although, Fig. 1 shows uniform ATi, unevenly spaced bins may

be used as well. The choice of N depends on the required resolution. P(i)

can be designed to contain the same information as the PDF to a specified

accuracy by increasing the number of bins N.

The above definition of the DPF has been formalized and used in

conjunction with the equation of radiative transfer to obtain the PDFs of

radiation intensity leaving a path given the PDFs of local temperatures and

transmittances along the path. 23 For increasing the utility of non-intrusive

transmittance and emission measurements in turbulent media in conjunction

with tomographic techniques, an inverse procedure of the method

described by us previously23 is needed.

K

4



I7

Many of the popular tomographic reconstruction methods divide the

axisymmetric participating medium into approximately constant property

rings. The transmittance of the path crossing the outermost ring can be

used to calculate the absorption coefficient directly. The transmittance of

the second path consists of contribution due to the material in the two

outermost rings. In order to proceed with the tomographic reconstruction

process for PDFs, it is necessary to find the PDF of the absorption

coefficient for the material in the second ring, given that of the material in

the first ring and the PDF of transmittance for the second path. This leads

to a two segment problem demonstrated in the following before its

application to the overall deconvolution problem.

Deconvolution of the Transmittance PDFs for Two Segments.

The top panel of Fig. 2 shows the DPF of the transmittance PT (r)

for a path T. This DPF is obtained from measurements of the

instantaneous transmittance for the path T averaged over a sufficiently long

time to reach convergence. The path T consists of two segments OS 1 and

OS2 with individual transmittances T l and i2 such that:

TT=,t1,t2	 (3)

For the present problem, the DPF of the transmittance for segment 1,

P 1 (i) is also known aproiri. This DPF is shown in the bottom panel of

Fig. 2. In the deconvolution of axisymmetric flows, this information will

be available from a measurement for the outermost ring or from the

previous step in the procedure. The two DPFs in Fig. 2 contain

information regarding the DPF of the transmittance of segment 2, P 2(ti) in
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a convoluted form. The objective of the following steps is to extract this

information. The problem can be stated as:

given

and

find

PI ( r) = ( r Ii; P l i), i=1 ,N;	 (4)

PT ('r) = (TT i ; PT i), i= 1,N;	 (5)

P2 
(r) = ( r 2i; P2i), i=1,N.	 (6)

The superscripts 1, 2, and T indicate that the variables are for segments 1,

2, and the path T respectively.

The present deconvolution procedure starts with a consideration of

the bins with the highest transmittance (designated 1=1) in the DPFs of both

segment 1 and the path T. As seen in Fig. 2, the highest transmittance for

both T and 1 is unity (i.e. 't 1 1 =1, J 1 =1). Clearly all possible events

involving unity transmittance for the path T must originate from unity

transmittance for both segment 1 and segment 2. Hence r21=1 and P21=

PT 1 /P 1 1 . Naturally, the probability that the path T has a transmittance of

unity is always less than or equal to the probability that path 1 has a

transmittance equal to unity. The first bin in the DPF of segment 2 is thus

constructed.

Simultaneous occurrences of r l 1 =1 and r 2 1 =1 are convolved

together to form the first bin of the DPF of the transmittance for the path

T. Remaining occurrences of r2 l =1 are convolved with other bins of

P 1 ('z) contribute to the probability of the appropriate bins in PT (ti). In

order to proceed with the evaluation of the probability of the second bin in
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P 2 (T), it is necessary to remove the convolved occurrences of bin 1 of

segment 2 with all the bins of segment 1 from PT (T).	 The resulting

function is the conditional DPF (CDPF) of T for the path T with the

condition that the transmittance of segment 2 is not within bin 1 of its DPF.

The CDPF is denoted by C2,1 PT (T), where the prefix C2,1 indicates that

the DPF is conditional on the exclusion of occurrences of T2 1. To obtain

this CDPF, the convolution of the first bin of segment 2 with all the bins of

segment 1 is found out as C * 2,1 P T (T). The asterisk means that this

function is the complement of C2,1 P T (T) in the sense that the sum of

probabilities in C * 2 , 1PT (T) and C2 , 1PT(T) is 1. Using the method outlined

by us in Ref. 23, this complimentary CDPF is found as:

C* 2 , 1 PT (T ) = (TT i ; C * 2 , 1PTi), i= 1,N;	 (7)

where:
N

C*2,1PTi = b i (T * ) E P2 1 P1 ,	 (g)
=1

T* = T2 IT'j j= 1,N;	 (9)

where bi (T * ) is a statistical weight defined in the following.

If Tk < r* < Tk+Ai/2; then bi(T * )= 0 for i < k-1 and i > k+2;

b i(T* ) _ (Tk+l-*)/^^^ for i =k and S i (T * ) = (T * -Tk)/OT for i=k+1.	 (10)

If Tk -OT/2 < T * < Tk; then 6 i (T* )= 0 for i < k-2 or i > k+1;

b i (T * ) _ (T*-Tk_1)/OT, for i=k and b i (T * ) = (Tk-T * )/OT for 1=k-1.	 (11)

These statistical weights b i (T * ) distribute the probability of

occurrence of T * within neighboring bins when the individual realizations
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do not match the bin central value. The weights conserve the first moment

of the distribution function. For the first bin of the complimentary CDPF,

the conditional probability C* 2,1 PT1 is naturally PT 1. The probabilities

in the complimentary CDPF, C * 2,1 PT (17) represent the convolution of

occurrences of 1721=1 and r i j ; j=1,N. These probabilities, denoted by

C * 2 ,1 PTi, are to be subtracted from P Ti to yield C2,1PTi for 1=1,N. Note

that the value C2,1PT1 is identically zero.

The CDPF C2,1 PT(r) is shown in panel 1 of Fig. 3. Compared to

the probabilities shown in Fig. 2, there is a large diminution in Fig. 3

because the probabilities associated with all occurrences of bin 1 of

segment 2 have been removed from PT(-C). This CDPF and the DPF of 17

for segment 1 are used to construct the second bin in the DPF of segment

2. The transmittance value for the bin is selected as:

1722=17T2/1711
	 (12)

Based on the rules of multiplication of DPFs in Ref. 23 the probability of

occurrence of 17 22 is given by:

P22 = C2 1PT2 / P 11 (13)

Thus the probability associated with the second bin in the DPF of r for

segment 2 is obtained. The CDPF shown in panel 1 of Fig. 3 involves

contributions from the second and subsequent bins of the DPF of segment 2

in conjunction with all of the bins of segment 1. In order to proceed, the

occurrence of transmittance r 2 2, corresponding to the second bin of

segment 2 convolved with all the bins in segment 1 should be removed

from the CDPF C2 , 1PT(ti). This operation is achieved by first finding the
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complimentary CDPF C * 2,2PT (i) using Eqs. (7-11) with ti2 1 and P21

replaced by x22 and P22. The CDPF C2,2PT(ti) is the conditional DPF for

the total path with the probabilities associated with the occurrences of the

first two bins of segment 2 removed. The probabilities associated with this

CDPF, C * 2 , 2P T i are subtracted from C2 , 1P T i to obtain C2 , 2PT i for

i=1,N. The CDPF C2 , 2PT(ti) is shown in panel 2 of Fig. 3. Naturally, the

first two bins have a zero probability because of the exclusion by the

conditioning discussed above.

The CDPF C2 , 2PT (ti) is utilized in conjunction with the DPF of

segment 1 to construct the third bin of the DPF of segment 2. The

conditional DPF C 2,3 PT (ti) is calculated using Eqs. (7-11) and the

procedure is continued. The CDPF C2,3 P T(r) is shown in the bottom

panel of Fig. 3.

The above procedure is continued until all the bins in the DPF of ti

for segment 2 are obtained. The resulting P 2 (r) is shown in Fig. 4. With

each step of conditioning, the probability in one bin of the CDPF of for T

reaches zero and the probability	 of the remaining bins undergoes

progressive diminution. The conditional DPF C2 ,NPT ( ,r), has the trivial

value of 0 for all bins since occurrences of all possible values of ti2 are

eliminated by each successive step. During this process, the goal of

reconstructing the DPF of segment 2 is accomplished as shown in Fig. 4.

The same procedure can be used to find any two properties of a single

segment convolved together. For instance, if the PDF of transmission and

the PDF of intensity of any segment is known, then the above procedure
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can be used to find the PDF of temperatures for that segment provided that

the temperature and the transmission are uncorrelated.

DPF Deconvolution for the Turbulent Flame

Figure 5 shows an axisymmetric turbulent flame divided into N-1

rings and a central core. It is noted that with sufficient sampling time, the

measurements of PDFs of the transmittance over a fixed distance for the

individual rings are axisymmetric. The measurements can be collected at

frequencies satisfying the Nyquist criterion making it suitable even for

very high Reynolds number flows since only one channel of information is

required at any one time. The number of rings can be increased to obtain a

required spatial resolution within the constraints of the measuring

instrument. Transmittance measurements are conducted for paths crossing

the one or more rings to obtain DPFs of the transmittance P 1 , pT 2

pT3 ,..., pTN . In general the extinction coefficient of the material within

each of the rings fluctuates with time and space leading to the PDFs of

transmittances for the paths 1 to TN. However, the number of rings and

the width of each ring are chosen to satisfy the condition that within each

ring, the extinction coefficient is a function of time only to a desired

accuracy. The turbulent mixing and combustion processes result in the

formation of species that absorb and scatter light. In the axisymmetric

geometry of a turbulent jet flame, these processes can be made ergodic to

any desired order of moment of the PDF. Thus, in the limit of the desired

accuracy, PDFs of extinction coefficient for all individual rings are

independent of sampling time and the azimuthal angle.
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In order to utilize the measurements of DPFs of transmittance for

the N paths shown in Fig. 5 to find the DPFs of local extinction coefficient

(for a specified local segment length over which the extinction coefficient

is constant), the two segment deconvolution procedure described in the

previous section is to be successively applied. Based on the measurements

of transmittance for the outermost ring P l (-c), the DPF of the local

extinction coefficient of the ring is constructed using our earlier

approach23 for obtaining the DPF of a function F(X,Y) from those of X

and Y. In the present problem, the function F is defined as the local

extinction coefficient a l which depends on the transmittance i 1 over the

distance AS 1:

F(ali) = -In (til i) / OS1 = a li (14)

Using the measured DPF P 1 ( ,r), the DPF of local extinction coefficient

P 1 (a) is obtained. The path T2 over which the next set of transmittance

measurements are obtained consists of three segments. Two of these

segments are formed by material from the outermost ring and are of

identical length AS 1 2/2. The DPF of the combined transmittance of these

segments is constructed using the DPF of extinction coefficient for ring 1

P 1 (a) using the procedure outlined in Ref. 23.

F(al i) = exp (- a l i OS 1 2) = '021 (15)

Hence the DPF of rI2i is found from that of a l i. The path T2 effectively

consists of two segments, one with a known DPF of transmittance and a

second with a DPF of transmittance yet to be determined. The two

segment approach described in the previous section is readily applicable to

yield the DPF of the transmittance for the segment AS2. The DPF of
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extinction coefficient a2 for the material in ring 2 is calculated from that of

transmittance over OS2.

The path T3 over which the next transmittance measurements are

obtained consists of 5 segments. Two out of these have lengths AS' 3/2 and

extinction coefficients a l , the DPF of which was found earlier. Two of the

remaining segments have lengths OS 23/2 and extinction coefficient a2 , the

DPF of which was found as described in the preceding paragraph. The

fifth segment has the properties of ring 3 which are yet to be found. The

problem is reduced to a two-segment problem by combining the four

segments with known DPFs of absorption coefficients into a combined

segment SC. The DPF of transmittance for the combined segments is

found using the procedure described by us in Ref. 23 as follows:

pSC(ti) = (,rSCi ; pSCI ); i=1,N;	 (16)

where
zSC = C2kzlj ; J=1,N; k=1,M; and	 (17)

,r2k = exp (-a2k AS 3 2); k=1,M; and	 (18)

Tlj = exp (-a lj OS 3 1); J=1,N; and	 (19)

PSCi = bi (tiSC) E E P. l P 2 	 (20)
k=1j=1 J	 k

where 5 i(.tSC) is the statistical weights described by Eqs. (10-11). N and

M are the number of bins in the DPF of extinction coefficients for ring 1

and ring 2.

The problem is now reduced to a two-segment problem involving the

segment SC with a DPF of transmittance known from the above procedure
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and the combined path T3 whose DPF of transmittance is measured. Hence

the DPF of transmittance for the portion of ring 3, OS3 included in the

path T3 can be calculated. This DPF of transmittance is converted to that

of the extinction coefficient for material in ring 3, a3 , using the procedure

described above.

Similarly for any path M, the information concerning the DPFs of

extinction coefficients for the outer M-1 rings are used to compute the DPF

of transmittance for the part of the path consisting of portions of these

rings. This DPF combined with the measurements for the path M yield the

DPF of the local transmittance and the extinction coefficient for ring M.

This procedure is repeated until the transmittance measurement for the

path TN, which passes through the axis of the flame, is utilized to find the

DPF of extinction coefficient for the central core.

RESULTS AND DISCUSSION

The method described above was validated by comparing the

deconvoluted DPFs of local extinction coefficient with measurements

obtained using a purged optical probe. 19 A highly buoyant flame burning

propylene in air on a 50 mm diameter burner with an exit Reynolds

number of 670 studied by us 24 as well as a jet flame with a 6 mm

diameter, 9200 exit Reynolds number and ethylene burning in air were

used.

For the propylene/air flame, PDFs of local extinction coefficient

obtained with 6 mm diameter purged light guides at x/d=6.7 for a
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wavelength of 632.8 nm are available from Ref. 24. However,

transmittance measurements for paths 1-TN are not available. In order to

proceed, the path integrated data were generated synthetically from the

local data using the DPF method for the equation of transfer described by

us. 23 Local measurements were available for 12 positions spaced 7 mm

apart from the center-line to the edge of the flame.

The advantage of synthesizing the path integrated data is that the

PDF deconvolution procedure can be evaluated independent of the errors

caused by the underlying difficulties of: (1) spatial correlation between

adjoining rings, (2) electronic noise in the detectors, and (3) ambiguity

concerning centerline and true axisymmetry. The synthetically generated

DPFs are free of these difficulties allowing a clear evaluation of the

deconvolution procedure. It is important to demonstrate the procedure for

the noise-free data since this is the first time that the DPF method 23 has

been applied to an inverse problem.

Figure 6 shows the PDFs of the local extinction coefficient for the

propylene/air flames at three radial positions at x/d=6.7. The histogram

represents the local measurements and the solid line represents the

deconvoluted results from the synthetic path integrated data. As can be

seen from the excellent agreement, the present method is successful in

reproducing the PDFs of local extinction coefficient by deconvolution of

synthetic path integrated data. With this success, the method is tested by

using actual transmittance measurements.
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Transmittance measurements for chord like paths separated by 5 mm

were completed at x/d = 30 for the ethylene/air diffusion flame. The PDFs

of these data for four representative paths are shown in Fig. 7. The flame

half-width at this axial location was 50 mm providing a total of 11 path

integrated measurements. The shape of the PDF changes from nearly

Gaussian at the center to highly intermittent near and beyond r=30 mm.

For evaluating the results of the deconvolution procedure, measurements of

local extinction coefficient at several positions using the optical probe were

also completed. These measurements were conducted with a spatial

resolution of 10 mm to provide sufficient absorption along the path to

improve the accuracy of the measurements. The experimental uncertainties

in the first two moments of the PDF are less than 10% for positions close

to the center, while at the edge of the flame (r = 50mm), these uncertainties

increase to about 40%.

Figure 8 shows the PDFs of the extinction coefficient at four

different radial positions obtained from the deconvolution procedure

(Decon.) and from the local measurements (Probe). The resolution of the

DPF procedure is set at 10 mm to match that of the probe measurements

allowing this comparison. The effects of noise introduced by the

experiment and by the deconvolution procedure are observed particularly

at the x=20 mm position. However, the overall agreement between the two

is reasonably good. These results provide confidence in the new procedure

for obtaining PDFs of local absorption properties based on those of path

integrated measurements.

15



s	 i

In the present paper, the deconvolution procedure for PDFs is

developed and evaluated for spatially uncorrelated discretization. The

spatial resolution of the procedure can be improved significantly by

conducting closely spaced transmittance measurements and using the

spatially correlated DPF method described in an Appendix in our previous

work.23

CONCLUSIONS

A deconvolution procedure for obtaining the local PDFs of

extinction coefficients from path integrated measurements is described.

The new method allows local extinction measurements of PDFs for

optically thin (relatively) and thick media in turbulent flows. The method

has been validated using experimental data. Further work is necessary to

utilize the full potential of the method by conducting spatially correlated

measurements and deconvolutions.

REFERENCES

1. S. R. Deans, The Radon Transform and Some of its Applications,

Wiley, New York (1983).

2. L. A. Shepp and B. F. Logan, IEEE Trans. Nucl. Sci. NS-21, 21

(1974).

3. G. N. Ramachandran and A. V. Lakshminarayanan, Proc. Nat. Acad.

Sci. 68, 2236, U.S. A. (1970).

4. M. Ravichandran and F. C. Gouldin, Appl. Opt. 27, 4084 (1988).

5. H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964).

6. W. C. Barr, J. Opt. Soc. Am. 52, 885 (1962).

16



e	

1	

'

7. J. Glasser, J. Chapelle, and J. C. Boetlner, Appl. Opt. 17, 3750

(1960).

8. F. P. Chen and R. Goulard, JQSRT 16, 819 (1976).

9. P. J. Emmerman, R. Goulard, R. J. Santaro, and H. G. Semerjian, J.

Energy 4, 70 (1980).

10. R. J. Santaro, H. G. Semerjian, P. J. Emmerman, and R. Goulard,

Int. J. Heat and Mass Trans. 24, 1139 (1981).

11. H. Uchimaya, M. Nakajima, and S. Yuta., Appl. Opt. 24, 4111

(1985).

12. D. W. Sweeny and C. M. Vest, Appl. Opt. 12, 2649 (1973).

13. C. M. Vest and I. Prikryl, Appl. Opt. 23, 2433 (1984).

14. M. Hino, T. Aono, M. Nakajima, and S. Yuta, Appl. Opt. 62, 4742

(1987).

15. R. H. Tourin, Spectroscopic Gas Temperature Measurement,

Elsevier, New York (1983).

16. P. E. Best, P. L.. Chien, R. M. Carangelo, P. R. Solomon, M.

Danchak, and I. Ilovici, Combust. Flame 85, 309 (1991).

17. G. M. Faeth, J. P. Gore, S. G. Chuech, and S. M. Jeng, Ann. Rev.

Num. Fluid Mech. Heat Trans., vol 2, pp. 1-38, C. L. Tien and T. C.

Chawla eds., Hemisphere, New York (1986).

18. R. Viskanta and M. P. Menguc, Prog. Energy Comb. Sci. 13, 97

(1987).

19. Y. R. Sivathanu, J. P. Gore, and J. Dolinar, Combust. Sci. Technol.

76, 45 (1991).

20. S. B. Pope, Twenty-Third Symposium (International) on

Combustion, pp. 591-612, The Combustion Institute, PA (1990).

21. R. Snyder and L. Hesselink, Optic Let. 13, 87 (1988).

17



IL	 I I	
'

22. E. J. Belting, 28th Aerospace Sciences Meeting, 90 -0157, AIAA,

Washington, D.C. (1990).

23. Y. R. Sivathanu and J. P. Gore, JQSRT, in press (1993).

24. Y. R. Sivathanu and J. P. Gore, J. Heat Trans. 114, 659 (1992).

18



i	 1 '	 I

List of figures:

Fig. 1. The discrete probability function of the transmittance.

Fig. 2. The DPFs of transmittances for the radiation path consisting of

two segments (1 and 2) and for segment 1 alone.

Fig. 3. The complimentary DPFs of transmittances for the two segment

path obtained after elimination of transmittances due to the first,

second, and third bin of transmittance of segment 2.

Fig. 4. The DPF of transmittance for segment 2 obtained from the two

segment deconvolution procedure.

Fig. 5. The geometry of the path integrated transmittance measurements

to obtain the local DPFs in an axisymmetric turbulent flame.

Fig. 6. Comparison of the PDFs of transmittances obtained from the

deconvolution procedure and the synthetic data in a propylene/air

diffusion flame.

Fig. 7. Representative path integrated DPFs of the transmittance in an

ethylene/air diffusion flame which are used as input to the

deconvolution procedure.

Fig. 8. The deconvoluted PDFs of the local extinction coefficient

compared with intrusive probe measurements.

19



DISCRETE PROBABILITY FUNCTION Q
PROBABILITY DENSITY FUNCTION ---

L.L.

T 
^	 Ti	 TN

T
f



k	 `

35.0 Segment 1+2

	

30.0	 PT(,Z)

c 3.0
0

c 2.0

1.0

cN 0.0
m	 55
	

Segment 1v
50

P1(ti)

0
0.4	 0.6	 0.8	 1.00.2

Transmittance (-r)

.^

L.0
,^1,/^ Lr Cwt ^^ `^3^i c:^

v

.n

.n 2
0

CL 1

2



1.5
	

C2.1 P (T)

1.0

a ,. '

0.5

3 Sr'y^^^^► , ^^ G^i^d Gee

C2,2PT("r)

T_C2.3P(T)

0.4	 0.6	 0.8	 1.0

Transmittance (T)

0.0 kl=
0.2

0.5

0.0
1.5

1.0

0.5

0.0
1.5

1.0

C
0

U
c
7

-I-

c
m0

0
L.

CL



0.4	 0.6	 0.8	 1.0

2.0
0
o_

1.0

0.0
0.2

Segment 2
42.0

Transmittance (t)

E-yVlYC 4 S i t n ffi <.t^ 1 U F-fir j 3t; 7'^2-



DECONVOLUTION USING THE DPF METHOD
PT3(,r)	 P1 (,r)

I	 I	 I PT2 ('L) I
I	 ^	 I

I	 I	 I	
uv 3i

MEASUREMENTS:

P^(ti) = (ti^ i ,P l j ); i = 1,N

PT2(,U), PT3(,Z), etc.

FIND

P2(ti), P3 (ti), etc.
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