
DEPARTMENT OF
COMPUTER SCIENCE & ENGINEERING

(NASA-CR-199177) SOFTWARE
ENGINEERING CAPABILITY FOR Ada
(GRASP/Acia TOOL) Final Report, 22
Jun. 1994 - 21 Jun. 1995 (Auburn
Univ.) 58 p

N96-10104

Unclas

G3/61 0064557

I
I

COLLEGE OF ENGINEERING &
ENGINEERING EXPERIMENT STATION

AUBURN UNIVERSITY
AUBURN, ALABAMA 36849

https://ntrs.nasa.gov/search.jsp?R=19960000104 2020-06-16T07:06:29+00:00Z

GRASP/Ada

Graphical Representations of Algorithms, Structures, and Processes for Ada

GRASP/Ada
Reverse Engineering Tools For Ada

Final Report
for

Delivery Order No. 30
Basic NASA Contract No. NAS8-39131

Technical Report 95-09
June 21, 1995

Department of Computer Science and Engineering
Auburn University, AL 36849-5347

Contact: James H. Cross JJ, Ph.D.
Principal Investigator
(334) 844-6315
cross@eng.auburn.edu

GRASP/Ada

Graphical Representations of Algorithms, Structures, and Processes for Ada

Reverse Engineering Tools For Ada
Final Report

for
Delivery Order No. 21

Basic NASA Contract No. NAS8-39131

Technical Report 95-07
June 21, 1995

James H. Cross II, Ph.D.
Principal Investigator

Abstract

The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and
Processes for Ada) has successfully created and prototyped a new algorithmic level graphical
representation for Ada software, the Control Structure Diagram (CSD). The primary impetus
for creation of the CSD was to improve the comprehension efficiency of Ada software and,
as a result, improve reliability and reduce costs. The emphasis has been on the automatic
generation of the CSD from Ada PDL or source code to support reverse engineering and
maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code.
The current update has focused on the design and implementation of a new Motif compliant
user interface, and a new CSD generator consisting of a tagger and tenderer. The current
Version 4.0 prototype provides the capability for the user to generate CSDs from Ada PDL
or source code in a reverse engineering as well as forward engineering mode with a level of
flexibility suitable for practical application. This report provides an overview of the
GRASP/Ada project with an emphasis on the current update.

ACKNOWLEDGEMENTS

We appreciate the assistance provided by NASA personnel, especially Mr. Robert
Stevens, Kathy White, Amy Cardno, and Mr. Keith Shackelford. This work was also
supported, in part, by a grant from ARPA, which focused on the utilization of GRASP/Ada
in Computer Science and Engineering courses at Auburn University and preparation of
GRASP/Ada for distribution to other universities (May 3, 1994 - October 2,1995).

The following is an alphabetical listing of the team members who have participated
in various phases of the project.

Principal Investigator: Dr. James H. Cross n, Associate Professor

Current Graduate Research Assistants: Dean Hendrix, Brian Randies, Mark Sadler

Past Graduate Research Assistants: Richard A. Davis, Charles H. May, Kelly I. Morrison,
Timothy A. Plunkett, Narayana S. Rekapalli, Darren Tola

The following trademarks are referenced in the text of this report.
ActivAda is a trademark of Thomson Software Products (Alsys).
Ada is a trademark of the United States Government, Ada Joint Program Office.
Ada Vision is a trademark of Sun Microsystems, Inc.
Apex is a trademark of Rational.
Builder Xcessory is a trademark of Integrated Computer Solutions, Inc.
DevGuide is a trademark of Sun Microsystems.
ezX is a registered trademark of Sunrise Software International.
Fontographer is a registered trademark of Altsys Corporation.
Microsoft is a registered trademark of the Microsoft Corporation.
Motif is a trademark of the Open Software Foundation, Inc.
ObjectMaker is a trademark of Mark V Systems, Inc.
Open Look is a trademark of Sun Microsystems.
OSF is a trademark of the Open Software Foundation, Inc.
OSF/Motif is a trademark of the Open Software Foundation, Inc.
PostScript is a trademark of Adobe Systems, Inc.
ScreenMachine is a trademark of Objective Interface Systems.
Software through Pictures (StP), Ada Development Environment (ADE), and
IDE are trademarks of Interactive Development Environments.
Solaris and SUN are trademarks of SUN Microsystems, Inc.
TrueType is a registered trademark of Apple Computer, Inc.
VAX and VMS are trademarks of Digital Equipment Corporation.
VERDIX and VADS are trademarks of Verdix Corporation.
UNIX is a trademark of AT&T.
Windows is a trademark of the Microsoft Corporation.
X and X Window System are trademarks of the MIT X Consortium.

n

TABLE OF CONTENTS

Page

1.0 Introduction 1
.,1 Phase 1 - The Control Structure Diagram For Ada 1
1.2 Phase 2 - The GRASP/Ada Prototype and User Interface 1
1.3 Phase 3 - CSD Generation Prototype and Preliminary Object Diagram

Prototype 2
1.4 Update'92 - Preliminary Evaluation and User Interface Enhancements . . 2
1.5 Update'93 of the GRASP/Ada 2
1.6 Update'94-95 of the GRASP/Ada - The Current Phase 3

2.0 The Control Structure Diagram 5
2.1 Background 5
2.2 The Control Structure Diagram Illustrated 6
2.3 Observations 8
2.4 Control Structure Diagram - Future Directions 8

3.0 The GRASP/Ada System Model 10

4.0 User Interface 12
4.1 Interface Development and Conversion 12
4.2 Font Development 15
4.3 User Interface Description 17
4.4 User Interface - Future Directions 31

5.0 Control Structure Diagram Generator 32
5.1 Generating the CSD 32
5.2 CSD Generator - Future Considerations 41

6,0 Conclusions 47

REFERENCES 48

111

LIST OF FIGURES

Page

Figure 1. Ada Source for SearchArray 7
Figure 2. CSD for SearchArray 7
Figure 3. Ada Source for Task Body Controller 7
Figure 4. CSD for Ada Task Body Controller 7
Figure 5. Control Structure Diagram Constructs for Ada 9
Figure 6. GRASP/Ada System Block Diagram 10
Figure 7. GRASP Characters without Program Unit Symbols 16
Figure 8. GRASP Characters with Program Unit Symbols 16
Figure 9. Control Panel 17
Figure 10. Control Structure Diagram 17
Figure 11. Control Panel - File Menu 18
Figure 12. Control Panel - Preferences Menu 19
Figure 13. Control Panel - Help Menu 20
Figure 14. Control Panel - Help Version Menu 20
Figure 15. Credits Dialog 21
Figure 16. Feedback Dialog 21
Figure 17. Version Dialog 21
Figure 18. Control Structure Diagram - File Menu 22
Figure 19. Warning Dialog 23
Figure 20. Save As Dialog 23
Figure 21. Control Structure Diagram - Edit Menu 24
Figure 22. Go To Line Dialog 24
Figure 23. Control Structure Diagram - View Menu 25
Figure 24. Control Structure Diagram - Ada Menu 26
Figure 25. Control Structure Diagram - Ada Menu "Tear Off 27
Figure 26. Control Structure Diagram - Ada Menu - Cascading Loop 27
Figure 27. Code Attributes 28
Figure 28. Print Dialog 29
Figure 29. Search/Replace Dialog 30
Figure 30. CSD Generator (CSDgen) for GRASP Version 4 33
Figure 31. GRASP/Ada Version 4 Renderer Ada Module Diagram 35
Figure 32. GRASP/Ada Version 3 CSD Compactness Example 39
Figure 33. GRASP/Ada Version 4 CSD Compactness Example 39
Figure 34. GRASP/Ada Version 3 Guarded Select Example 40
Figure 35. GRASP/Ada Version 4 Guarded Select Example 40
Figure 36. Guarded Select GML File. 41
Figure 37. Example of New CSD Notation [SAD95] 46

IV

1.0 Introduction

Computer professionals have long promoted the idea that graphical representations of
software can be extremely useful as comprehension aids when used to supplement textual
descriptions and specifications of software, especially for large complex systems [SHU88,
AOY89, SCA89]. The general goal of this research has been the investigation, formulation
and generation of graphical representations of algorithms, structures, and processes for Ada
(GRASP/Ada). This specific task has focused on reverse engineering of control structure
diagrams from Ada PDL or source code.

Reverse engineering normally includes the processing of source code to extract higher
levels of abstraction for both data and processes. The primary motivation for reverse
engineering is increased support for software reusability, verification, and software
maintenance, all of which should be greatly facilitated by automatically generating a set of
"formalized diagrams" to supplement the source code and other forms of existing
documentation. The overall goal of the GRASP/Ada project is to provide the foundation for
a CASE (computer-aided software engineering) environment in which reverse engineering and
forward engineering (development) are tightly coupled. In this environment, the user may
specify the software in a graphically-oriented language and then automatically generate the
corresponding Ada code [ADA83]. Alternatively, the user may specify the software in Ada
or Ada/PDL and then automatically generate the graphical representations either dynamically
as the code is entered or as a form of post-processing.

The GRASP/Ada project was divided into three primary development phases followed
by three update phases: Update'92, Update'93, and Update'94-95, the current phase. Each of
these phases is briefly described below.

1.1 Phase 1 - The Control Structure Diagram For Ada

Phase 1 focused on a survey of graphical notations for software with concentration
on detailed level diagrams such as those found in [MAR85, TRI89], and the development of
a new algorithmic or PDL/code level diagram for Ada. Tentative graphical control constructs
for the Control Structure Diagram (CSD) were created and initially prototyped in a
VAX/VMS environment. This included the development of special diagramming fonts for
both the screen and printer and the development of parser and scanner using UNIX based
tools such as LEX and YACC. The CSD is described in Section 2.0.

1.2 Phase 2 - The GRASP/Ada Prototype and User Interface

During Phase 2, the prototype was extended and ported to a Sun/UNIX environment.
The development of a user interface based on the X Window System represented a major part
of the extension effort. Verdix Ada and the Verdix DIANA interface were acquired as
potential commercial tools upon which to base the GRASP/Ada prototype. Architectural
diagrams for Ada were surveyed and the Booch's module notation [BOO94] and the OOSD
notation [WAS89] were identified as having good potential for accurately representing many

of the varied architectural features of an Ada software system. Phase 2 also included the
preliminary design for an architectural CSD [DAV90]. The aspects of architectural CSD are
expected to be integrated into the fully operational GRASP/Ada prototype during a future
phase of the project.

1.3 Phase 3 - CSD Generation Prototype and Preliminary Object Diagram Prototype

Phase 3 has had two major thrusts: (1) completion of an operational GRASP/Ada
prototype which generates CSDs and (2) the development of a preliminary prototype which
generates object diagrams directly from Ada source code. Completion of the GRASP/Ada
CSD prototype (CSDgen) included the addition of substantial functionality, via the User
Interface, to make the prototype easier to use. The User Interface was reworked based on
the Athena widget set. CSDgen was installed and demonstrated on a Sun workstation at
Marshall Space Flight Center, Alabama.

The development of a preliminary prototype for generating architectural object
diagrams (ODgen) for Ada source/PDL was an effort to determine feasibility rather than to
deliver an operational prototype as was the case with CSD generator above. The preliminary
prototype has indicated that the development of the components to recover the information
to be included in the diagram, although a major effort, is relatively straightforward.
However, the research has also indicated that the major obstacle for automatic object diagram
generation is the automatic layout of the diagrams in a human readable and/or aesthetically
pleasing format. A user extensible rule base, which automates the diagram layout task, is
expected to be formulated during future GRASP research.

1.4 Update'92 - Preliminary Evaluation and User Interface Enhancements

Following Phase 3, the Version 3.1 prototype was used in several software engineering
classes at Auburn University, evaluated, and enhanced to create Version 3.2. A preliminary
analysis was done on data collected from students, and then changes were made to the User
Interface to reflect the indicated usage patterns. The UNIX man-page was drafted to provide
online documentation, and the installation guide was drafted to provide for limited distribution
of the tool. And finally, the prototype was modified so that it could be invoked from IDE's
CASE tool StP with a pspec or PDL file (see Appendix B).

1.5 Update'93 of the GRASP/Ada

Update'93 focused on the statistical analysis of the data collected in the previous
update and preparation of Version 3.4 of the prototype for limited distribution to facilitate
further evaluation. Since Update'92, the Version 3.2 prototype has undergone continual
upgrades which have resulted in Version 3.4 of the prototype. The CSD evaluation data
collected in the previous update was formally analyzed during Update'93 and reported in
Final Report for Update'93. Statistical analysis indicated highly significant differences
among five graphical notations when compared with respect to eleven performance

characteristics. There was a clear preference for the CSD for seven of the eleven
performance characteristics.

1.6 Update'94-95 of the GRASP/Ada - The Current Phase

Update'94-95 is the most recent phase of the GRASP/Ada project, and the one
described in the remainder of this report. Since Update'93, the Version 3.4 prototype has
been completely redesigned resulting in Version 4.0 of the prototype. In particular, the
GRASP/Ada tool was evaluated, the User Interface was completely reengineered to be Motif
compliant, and a new CSD generator was created as two components, the Tagger and the
Renderer, to provide a significant degree of language independence. Each of these tasks is
briefly described below.

(1) The GRASP/Ada Tool Evaluation. As part of the ongoing evaluation of
GRASP/Ada, Version 3.4 was used in CSE 422 (Introduction to Software
Engineering) by approximately 45 junior computer science and engineering students
in conjunction with the design, and implementation of their software project.
Problems encountered by the students and suggestions for improving the User
Interface to facilitate better utilization were factored into the design of the new Motif
compliant user interface in Version 4.0.

(2) Motif Compliant User Interface for the GRASP/Ada tool. A new Motif compliant
User Interface was developed for Version 4.0. Several GUI builders were evaluated
during the course of the project to determine their appropriateness for GRASP/Ada.
The new User Interface and the results of the evaluation of the GUI builder tools are
described in Section 4.

(4) CSD Generator (Tagger and Renderer) for the GRASP/Ada tool. A new CSD
generator was developed based on two components, a Tagger and a Renderer. The
Tagger parses the Ada source file and tags the control constructs and other useful
elements using a new markup language, called GRASP-ML, which is based on
Standard Generalized Markup language (SGML). The Renderer then inputs the
tagged source code and produces the CSD. The primary goals for using the
tagger/renderer approach were to provide a language independent Tenderer and to
improve the overall structure of the CSD generator to reduce future maintenance
effort. The new CSD generator is in Section 5.

(3) Installation and Online User Manual. Version 4.0 is currently a combination of
C and Ada 83. The User Interface, which requires access to Motif libraries during
compilation, and the Tagger are written in C, and compiled using Sun C. The
GRASP/Ada main program and the Renderer are written in Ada 83 and compiled
using Rational Apex. The Version 4.0 executable is created by linking the all C and
Ada components using Rational Apex. The current version of GRASP/Ada can be
downloaded via ftp as follows:

ftp ftp.eng.auburn.edu

user_id: anonymous
password: (your email address)

The files are located in pub/graspada/version4.0. The README file describes the
system requirements, installation procedure, and getting started. In a future version
of the tool, after the software is installed, an online User Manual is available via the
HELP button on the GRASP Control Panel or the CSD Window. The User Manual
will be hyperlinked to allow the user to view individual topics.

(4) Investigation of Object Diagrams. Existing CASE tools that utilize object diagrams
in one form or another were reviewed. The results of the review indicate that the
GRASP/Ada tool can play an important role as a natural extension to these existing
object diagrams and their supporting CASE tools. The control structure diagram
provides a detailed algorithmic level graphical representation which has statistically
significant advantages over other graphical notations, PDL, and source code. The
entire spectrum of re-engineering oriented CASE tools with respect to functionality
and availability has recently been well-documented in [OLS93, SIT92] .

(5) Presentation of Update'94-95. Specifications for this update and the expected results
were presented at the 2nd Working Conference on Reverse Engineering (WCRE'95),
July 14-16, 1995, in Toronto, Ontario [CRO95].

The following sections describe the control structure diagram, the GRASP/Ada system model,
the user interface, the control structure diagram generator, and future requirements. The
overall rationale for the development of the CSD is described in [CRO90], which was written
during Phase 1. A taxonomy and extensive literature review of reverse engineering can be
found in [CHI90, CRO92], which were written during Phases 2 and 3.

2.0 The Control Structure Diagram

Advances in hardware and software, particularly high-density bit-mapped monitors and
window-based user interfaces, have led to a renewed interest in graphical representation of
software. Although much of the research activity in the area of software visualization and
computer-aided software engineering (CASE) tools has focused on architectural-level charts
and diagrams, the complex nature of the control constructs and control flow defined by
programming languages such as Ada and C and their associated PDLs, makes source code
and detailed design specifications attractive candidates for graphical representation. In
particular, source code should benefit from the use of an appropriate graphical notation since
it must be read many times during the course of initial development, testing and maintenance.
The control structure diagram (CSD) is a notation intended specifically for the graphical
representation of algorithms in detailed designs as well as actual source code. The primary
purpose of the CSD is to reduce the time required to comprehend software by clearly
depicting the control constructs and control flow at all relevant levels of abstraction. The
CSD is a natural extension to existing architectural graphical representations such as data
flow diagrams, structure charts, and object diagrams.

The CSD, which was initially created for Pascal/PDL [CRO88], has been extended
significantly so that the graphical constructs of the CSD map directly to the constructs of
Ada. The rich set of control constructs in Ada (e.g. task rendezvous) and the wide
acceptance of Ada/PDL by the software engineering community as a detailed design language
made Ada a natural choice for the basis of a graphical notation. A major objective in the
philosophy that guided the development of the CSD was that the graphical constructs should
supplement the code and/or PDL without disrupting their familiar appearance. That is, the
CSD should appear to be a natural extension to the Ada constructs and, similarly, the Ada
source code should appear to be a natural extension of the diagram. This has resulted in a
concise, compact graphical notation which attempts to combine the best features of
diagraming with those of well-indented PDL or source code.

2.1 Background

Graphical representations have been recognized as having an important impact in
communicating from the perspective of both the "writer" and the "reader." For software, this
includes communicating requirements between users and designers and communicating design
specifications between designers and implementors. However, there are additional areas
where the potential of graphical notations have not been fully exploited. These include
communicating the semantics of the actual implementation represented by the source code
to personnel for the purposes of testing and maintenance, each of which are major resource
sinks in the software life cycle. In particular, Selby [SEL85] found that code reading was
the most cost effective method of detecting errors during the verification process when
compared to functional testing and structural testing. And Standish [STA85] reported that
program understanding may represent as much as 90% of the cost of maintenance. Hence,
improved comprehension efficiency resulting from the integration of graphical notations and
source code could have a significant impact on the overall cost of software production.

Since the flowchart was introduced in the mid-50's, numerous notations for
representing algorithms have been proposed and utilized. Several authors have published
notable books and papers that address the details of many of these [MAR85, TRI88,
SHN77]. Tripp, for example, describes 18 distinct notations that have been introduced since
1977 and Aoyama et.al. describes the popular diagrams used in Japan. In general, these
diagrams have been strongly influenced by structured programming and thus contain control
constructs for sequence, selection, and iteration. In addition, several contain explicit EXIT
structures to allow single entry / multiple exit control flow through a block of code, as well
as PARALLEL or concurrency constructs. However, none the diagrams cited explicitly
contains all of the control constructs found in Ada.

Graphical notations for representing software at the algorithmic level have been
neglected, for the most part, by business and industry in the U.S. in favor of non-graphical
PDL. A lack of automated support and the results of several studies conducted in the
seventies which found no significant difference in the comprehension of algorithms
represented by flowcharts and pseudo-code [SHN77] have been a major factors in this
underutilization. However, automation is now available in the form of numerous CASE tools
and recent empirical studies reported by Aoyami [AOY89] and Scanlan [SCA89] have
concluded that graphical notations may indeed improve the comprehensibility and overall
productivity of software. Scanlan's study involved a well-controlled experiment in which
deeply nested if-then-else constructs, represented in structured flowcharts and pseudo-code,
were read by intermediate-level students. Scores for the flowchart were significantly higher
than those of the PDL. The statistical studies reported by Aoyami et.al. involved several tree-
structured diagrams (e.g., PAD, YACC II, and SPD) widely used in Japan which, in
combination with their environments, have led to significant gains in productivity. The
results of these recent studies suggest that the use of a graphical notation with appropriate
automated support for Ada/PDL and Ada should provide significant increases productivity
over current non-graphical approaches.

2.2 The Control Structure Diagram Illustrated

Two examples are presented below to illustrate the CSD. The first shows the basic
control constructs of sequence, selection and iteration in Ada. These three control constructs
are common to all structured procedural languages such as Ada, C, and Pascal. The second
example illustrates a more complex control construct, the task rendezvous in Ada.

Figure 1 contains an Ada procedure called SearchArray that searches an array A of
elements and counts the number of elements above, below, and/or equal to a specified
element. Figure 2 contains the CSD for SearchArray which includes the three basic control
constructs sequence, selection, and iteration. Although this is a very simple example, the
CSD clearly indicates the levels of control inherent in the nesting of control statements. For
example, at level 1 there are four statements executed in sequence - the three assignment
statements and the for loop. The for loop defines a second level of control which contains
a single statement, the if statement, which in turn defines three separate level 3 sequences,
each of which contains one assignment statement. It is noteworthy that even the CSDs for
most production strength procedures rarely contain more than ten statements at level 1 or in
any of the subsequences defined by control constructs for selection and iteration. This
graphical chunking on the basis of functionality and level of control appears to have a

procedure SearchArray (A : in ArrayType;
Element: in ElementType;
Above,Below, EqualTo: out integer) is

begin
Above := 0;
Below := 0;
EqualTo := 0;
for index in A'first..A'last loop

if Element > A(index) then
Below := Below + 1;

elsif Element < A(index) then
Above := Above + 1;

procedure SearchArray (A : in ArrayType;

else
EqualTo

end if;
end loop;

end SearchArray;

:= EqualTo + 1;

Element: in ElementType;
Above, Below, EqualTo: out integer) is

begin
— Above := 0;
— Below := Q;

EqualTo := 0;
for index in A'first. .A'last loop

if Element > A(index) then
Below := Below + 1;

(h elsif Element < A(index) then
| Above : = Above + 1;

i-i else
EqualTo := EqualTo + 1;

end if;
end loop;

.end SearchArray;

Figure 1. Ada Source for SearchArray. Figure 2. CSD for SearchArray

substantial positive effect on detailed comprehension of the software.
Figures 3 and 4 contain an Ada task body CONTROLLER adapted from [BAR84],

which loops through a priority list attempting to accept selectively a REQUEST with priority
P. Upon on acceptance, some action is taken, followed by an exit from the priority list loop
to restart the loop with the first priority. In typical Ada task fashion, the priority list loop is
contained in an outer infinite loop. This short example contains two threads of control: the
rendezvous, which enters and exists at the accept statement, and the thread within the task
body. In addition, the priority list loop contains two exits: the normal exit at the beginning
of the loop when the priority list has been exhausted, and an explicit exit invoked within the

task body TASK_NAME is

begin
loop

for p in PRIOITY loop
select

/task body TASK_NAME is

accept REQUEST(p) (D: DATA) do

ACTION(D);

end;
exit;

else
null;

end select;
end loop;

end loop;
end TASK_NAME;

begin
loop

I for p in PRIOITY loop
select

accept REQUEST(p) (D: DATA) do

ACTION(D);

end;
— exit;

'-,else
- — null;

end select;
end loop;

end loop;
Lend TASK_NAME;

Figure 3. Ada Source for Task Body
Controller.

Figure 4. CSD for Ada Task Body
Controller.

select statement. While the concurrency and multiple exits are useful in modeling the

solution, they do increase the effort required of the reader to comprehend the code.
The CSD in Figure 4 uses intuitive graphical constructs to depict the point of

rendezvous, the two nested loops, the select statement guarding the accept statement for the
task, the unconditional exit from the inner loop, and the overall control flow of the task.
When reading the code without the diagram, as shown in Figure 3, the control constructs and
control paths are much less visible although the same structural and control information is
available. With additional levels of nesting and increased physical separation of sequential
components, the visibility of control constructs and control paths becomes increasingly
obscure, and the effort required of the reader dramatically increases in the absence of the
CSD. Now that the CSD has been briefly introduced, the various CSD constructs for Ada
are presented in Figure 5. Each of the CSD constructs should be relatively self-explanatory
since the CSD is designed to supplement the semantics of the underlying Ada.

2.3 Observations

The control structure diagram is a new graphical tool which maps directly to Ada and
Ada PDL. The CSD offers advantages over previously available diagrams in that it is
combines the best features of PDL and code with simple intuitive graphical constructs. The
potential of the CSD can be best realized during detailed design, implementation, verification
and maintenance. The CSD can be used as a natural extension to popular architectural level
representations such as data flow diagrams, object diagrams, and structure charts.

The GASP/Ada prototype, described in Sections 4 and 5, provides for the automatic
generation of the CSD from Ada or Ada PDL. A preliminary statistical evaluation of the
CSD is presented in [CRO93].

2.4 Control Structure Diagram - Future Directions

The CSD constructs shown in Figure 5 are expected to continue to evolve, especially
with Ada 95 on the horizon. Suggestions for improvements to the individual CSD graphical
constructs are continually solicited from users. While most of these suggested changes appear
to be minor when considered individually, their aggregate implementation in the current
prototype represents a major rework. Theoretically, the CSD and its individual constructs are
a separate issue from the automatic generation of the diagrams in a production environment.
However, in practice unless CSDs (or any other diagrams) can be automatically generated,
they will not be utilized. Additional future considerations concerning the overall system
model, the user interface, and the automatic generation of the CSD can be found at the end
of Sections 3, 4, and 5 respectively.

-- ABORT -- GUARDED SELECT -- RENDEZVOUS (RECEIVER)
.

/task body P is
L
begin
— S;

— Vabort P;
L

end;

-- BLOCK

.begin
P s'
F S;P S;Lend;
g .

—

4_

— 1

4—

"BLOCK WITH DECLARATIONS
S;
.declare

C : INTEGER;
begin

S;
— S;
— S;
Lend;

— S;

IF

-6-T
i
L

—-- CASE
S;
,case D is -- IN
0 — .when Cl =>

iF S;1 L
0 — .when C2 =>
T P S;
1 P
end case;

—— f

S;

-- LOC
-- EXCEPTION HANDLER

S;
S;
S;

exception
L _

—I

«-

— Q-i when Errl =>

1 S;

| L - PAC
(̂ when Err2 => r-

— S;
— -, select
<h when Cl =>

•
— accept M do

1 S;

Lend;

1 — S:

4-

— accept C do

F¥~
Lend;
S;

— null;

or -- SELECT
<h when C2 =>

— accept N do
I — . 1

S;
Lend ;

end select;

S;
if C then

S;
S;

.
else
— S;
— S;
.
end if;
S;

—1

•«-

—1

^ —

— S;
select

.

— accept I do
L 1

S;
Lend;

or

M i— accept J do
L

S;
Lend •

Uelse
-\— S;
- L
end select;

'INITE LOOP -- SEQUENCE
S; - I S;
loop S;
— S; \— S;
— S; P S;
— S;
end loop;
S; -- TASK SPECIFICATION

)P EXIT
S;
loop
— S;
— exit when C;
— S;
end loop;
S;

/task Y;
L
/
/task body Y is
L̂

.

oegin
— S;
— S;
end;

:KAGE -- TERMINATE ALTERNATIVE

I — S: [package Y is

(̂ when Err3 =>
j S;
1 L

.end;

r
1L
r

[

procedure Z;

function Z return Boolean ;

end Y;
-- FOR

jjfor F in R loop -- PROCEDURE

— S; I procedure X is
1 — ^ ; V- —
|Jend loop;
S;

-- GO TO

_j~<<L»

begin__

—,—

—

—1

«-•

•«-

— S;
— i select
9l •
— accept F do

L .
S;

Lend;

or

'hi /-
— Vterminate ;

i
end select;

— S;
S;
S;
S; -- WHILE
S;

Lend X;

1 s''
S; -- RAJ

4— | goto L; !

< 1

SE
S;

— S;
— I while C loop

F ̂ ;
S;

y end loop;
— S;

raise Err;

Figure 5. Control Structure Diagram Constructs for Ada.

ORIGINAL P^g is
POOR tJUALITY

3.0 The GRASP/Ada System Model

3.1 Overview

The major system components of
the GRASP/Ada system are shown in the
block diagram in Figure 6. Currently, the
Version 4 prototype is implemented in a
combination of the C and Ada 83. The
User Interface was built using a GUI
builder for Motif and the X Window
System. The user interface includes a
special CSD window (modified text
editor) and provides general control and
coordination among the other components.

The control structure diagram
generator, CSDgen, has a separate tagger
and Tenderer. The tagger has its own
parser/scanner built using LEX and
YACC. The tagger utilizes GRASP-ML
[CRO95], a markup language based on
SGML, to tag all necessary language
elements required for input to the
respective Tenderer. The tagger inputs
Ada PDL or source code and produces a
tagged file. The CSD Tenderer, built
using AFLEX, the Ada version of LEX, then interprets the tagged file and displays the
resulting diagram in the CSD window. When changes are made to the Ada PDL or source
code in the CSD window, the file is reparsed to produce an updated CSD. A CSD editor,
which will provide for dynamic incremental modification of the CSD, is currently in the
planning stages.

The object diagram generation component, ODgen, is in the analysis phase and has
been implemented as a separate preliminary prototype. The dashed lines indicate future
integration. The feasibility of automatic diagram layout remains under investigation. Beyond
automatic diagram layout, several design alternatives have been identified. The major
alternatives include the decision of whether to attempt to integrate GRASP/Ada directly with
commercial components. For example, the Verdix Ada development system (VADS) and
DIANA interface could be used for extraction of diagram information and (2) IDE's Software
through Pictures, Ada Development Environment (IDE/StP/ADE) for the display of the object
diagrams. ObjectMaker by Mark V Systems has also been reviewed and is a strong
contender as a basis for generating and displaying object diagrams. ObjectMaker was
recently ported to UNIX from a PC platform, and unfortunately it appeared to be somewhat
unstable in its current state.

The GRASP/Ada library component, GRASPIib, allows for coordination of all
generated items with their associated source code. The current file organization uses standard

GRASP/Ada

User Interface (x)

CSDgen ODgen

GRASPIib
UNIX File System

source code graphical reps

Figure 6. GRASP/Ada System Block Diagram.

10

UNIX directory conventions as well as default naming conventions. For example, all Ada
source files end in .a, the corresponding CSD files end in .a.csd, and the corresponding print
files end in .a.csd.ps. In the present prototype, library complexity has been keep to a
minimum by relying on the UNIX directory organization. Its purpose is to facilitate
navigation among the diagrams and the production of sets of diagrams.

3.2 System Model - Future Directions

The GRASP/Ada tool was conceived to be self-sufficient reverse engineering tool that
would generate control structure diagrams primarily, and then architectural level diagrams
(e.g., object diagrams) secondarily, all from Ada source code or PDL. An alternative to the
model presented in Figure 6 would be to concentrate on issues that improve the integration
capabilities of GRASP/Ada with commercially available CASE tools and programming
environments. The following are potential tasks.

(1) A CSD editor/generator should include full syntax checking with appropriate error
messages. Appropriate hooks to and from the compiler and debugger should be
considered.

(2) Appropriate hooks to/from the GRASP/Ada tool are necessary to facilitate integration
with commercially available CASE tools and programming environments.

(3) GRASP/Ada system model should include the capability of running in a stand-alone
mode in which several CSD windows are to be coordinated are coordinated by a main
window, similar to the current Version 4.3 prototype.

(4) GRASP/Ada system model should include the capability of running in a single
window mode, similar to opening an X Windows textedit application.

(5) Finally, GRASP/Ada system model should include the capability of running in a
single window mode, as an extension of a commercial CASE tool. For example,
when clicking on an object or module in an architectural diagram, a CSD window
could be opened with the PDL or source code represented in a CSD rather than
simply text. Many commercial tools are competing in this market. One of particular
interest is Rational's Ada programming development environment for UNIX (Apex),
which has recently been made available to universities. Apex is a state-of-the-art
environment which supports the Ada Semantic Interface Specification (ASIS) to
facilitate tool integration. The GRASP/Ada tool with a CSD editor/generator could
play an integral role in software development, maintenance, and reengineering when
integrated with an environment such as Apex.

11

4.0 User Interface

This section describes the approach taken to design a Motif interface for GRASP, and
serves to document the interface itself. The redesigned interface includes all of the
functionality of the existing GRASP system, while adding significant improvements.
Graphical User Interface (GUI) development tools were used during this project to enhance
code production, consistency, quality, and maintainability. Additionally, new PostScript®
Typel fonts were created for GRASP to provide portability between a UNIX™ version and
a future Windows™ version of the tool. The new interface conforms to Open Software
Foundation's OSF/Motif Style Guide. Existing GRASP screens and code (X Window
System™) were referenced to ensure retention of all required functionality.

The user interface incorporates the following improvements identified in the GRASP
UPDATE '93 specification: ease of use (e.g., "Pinnable" menus and Shortcut keys) and color
(e.g., default frame, background and foreground). The interface incorporates additional
functionality though the routines that are called to provide such functionality are not yet
written. These additional features have interface callback "stubs" created and so will not
require additional redesign of the interface. An example of such additional functionality is
the option to select a language other than Ada to parse and render. Another future
enhancement is the ability to select font attributes (type, size and color) for reserved words,
identifiers and comments.

Interface Development and Conversion are addressed in Section 4.1, which describes
the efforts to produce a Motif Compliant interface in Ada. Several GUI builders were tried
and the problems associated with each tool are described. Section 4.2 describes font
development efforts and includes the new GRASP font sets, with and without the program
unit symbols. Section 4.3 provides a description of the User Interface, in which each window
and option are displayed, identified and discussed. "Stub" interface items are identified and
the effort to complete them is estimated. Section 4.5 provides a summary and some ideas
for the future.

4.1 Interface Development and Conversion

The development of the GRASP user interface was complicated by the desire to use
a GUI design tool that would enhance the process. The theory is that such a tool enhances
the production process by generating good quality code from screens developed within the
tool. Additionally, maintainability of the code would be enhanced by segregating the user
interface design from the code packages incorporating the functionality of the program
(parsing, rendering, printing, etc.). Future changes to the interface could be made with little
impact on the functional packages. Development of the GRASP interface was performed
using Open Windows Developer's Guide™. ScreenMachine™, ezX® and Builder Xcessory™
were utilized to generate Ada code. The ActivAda™ GUI Builder was used to develop a
prototype Microsoft® Windows version of GRASP. The use of each of these tools is
addressed in the following sections.

12

4.1.1 OpenWindows Developer's Guide™

Sun Microsystems' OpenWindows Developer's Guide™ was used as a rapid
prototyping tool to design new GRASP screen images. DevGuide's ease of use allowed for
fast production of screen images. The tool provided for the interconnection (callbacks) of
the developed widgets that in turn allowed the design to be tested and validated.
Unfortunately, DevGuide supports neither Motif nor Ada, but Open Look™ and C. Once the
screen design was validated we began the task of selecting a tool for implementing these new
GRASP screens in Motif and Ada.

4.1.2 ScreenMachine™

Objective Interface Systems' ScreenMachine™ 1.4 was originally recommended as
the Ada GUI builder of choice by Air Force personnel at the Standard Systems Center and
by programmers at Harris Data Services Corporation. It was also recommended for use by
Rational with their Apex™ Ada development tools. Auburn acquired ScreenMachine from
OIS as a grant-in-kind to the University.

ScreenMachine lacked several important features which immediately impacted our
development process. First, the callbacks of windows, pop-up dialogs, and widgets were not
incorporated in the tool as had been the case with DevGuide. These callbacks had to be
added manually to the generated code. Second, regeneration of the code resulted in the
overwriting of any such added code. The actual callback functionality was segregated in a
separate package, but the callbacks themselves were not protected. Third, ScreenMachine did
not include Motif bindings, only allowing access to the widget set provided. The provided
widgets are a subset of the Motif set and do not include several critical widgets such as
FileSelectionDialog. We built our own FileSelectionDialog but only connected the
FileSelectionTextField and the OK Button. Fourth, geometry management is not supported
since managed forms are not provided. This resulted in either non-resizable windows or
windows that were unsightly after resizing. This included the CSD window and its text area.
We deemed these defects and missing functionality sufficient to dismiss the use of this
version of ScreenMachine. The new version of ScreenMachine (version 2.0), which addresses
at least three of these four concerns, was not available in time to complete this project.
When version 2.0 is available, we will evaluate it as well. As a result, we decided to
evaluate another Motif/Ada GUI builder.

4.1.3 EzX®

Sunrise Software International's ezX® 3.3 became available to the University through
the office of Logicon, Inc. in Montgomery. Having maintained contact with Air Force
personnel at the Standard Systems Center, we learned ezX had been included in the Integrated
Computer Aided Software Engineering (I-CASE) contract. I-CASE is a six hundred million-
dollar project to standardize software development for the Department of Defense. Logicon
is the prime contractor for the project and graciously invited us to use their demonstration
system in Montgomery.

Our experience with ezX was less than satisfactory. Although the tool was relatively
easy to use and included the full Motif widget set, it lacked stability and consistency. For

13

example: selecting a widget on the design screen and pressing the delete key on the keyboard
resulted in a program termination during any ensuing operation. Additionally, callbacks did
not behave properly. Even the provided callback examples behaved inconsistently. In one
particular example, which demonstrated the callback to pass the value in a text widget, the
callback worked as long as there was no text in the text widget. As soon as text was entered
into the widget, the callback ceased to function. A third defect in the tool is that on occasion
the Control Structure Diagram window's menu would collapse for no apparent reason. This
was disturbing as it was unpredictable and the only solution was to exit without saving. ezX
does not directly include callback code, but incorporates a "script" which allows the user to
specify the name of a callback function. ezX will then generate a function shell where the
user can place the callback code.

Geometry management is supported, resulting in the ability to resize screens without
unsightly widget behavior. This tool brought us to the point where we felt we had a
Motif/Ada version that was comparable to the original DevGuide design.

4.1.4 Builder Xcessory™

Integrated Computer Solutions Incorporated's (ICS) Builder Xcessory™ 3.1 was
acquired by the University for a thirty-day evaluation period. It directly supports the Motif
1.2 widget set, associated resources, and Xt Intrinsics. Geometry management is supported,
as is the ability to import DevGuide (.G) data files and User Interface Language (UIL) files.

Of all of the UNIX-based GUI builders evaluated, Builder Xcessory provided the most
promise for creating a GUI in Ada. It included an Ada/Motif binding developed by Systems
Engineering Research Corporation (SERC). However, problems were encountered with the
UIL2Ada conversion routine and the SERC Ada/Motif bindings. UILZAda generates Ada
source code from the UIL file created by Builder Xcessory. Apparently, these Ada specific
routines had not been updated to work with Rational Apex 1.6.1C. After four weeks of
attempting to build a GUI in Ada with Builder Xcessory, a decision was made to delay the
Ada implementation until ICS and SERC solved the problems.

The development of the GUI began to move forward again toward a C
implementation. Builder Xcessory was used to generate C (with direct calls to Motif) rather
than Ada. The generated C code then had to be completed with detailed, hand-written
callback routines written in C, not in Ada as planned. An Ada main program was required
so that Ada and C programs could be integrated. The main program (Ada) calls the GUI (C)
which, in turn, calls the routine Generate_CSD (Ada). This routine calls the Filter (Ada), the
Tagger (C), and the Renderer (Ada).

4.1.5 ActivAda™

Thomson Software Products' ActivAda™ 1.2 is being used to develop a Microsoft
Windows prototype for GRASP. Although we experienced several problems with it, the
ActivAda GUI builder is a more robust tool than most of the previously mentioned Unix
tools. This tool implements the Microsoft® Windows Win32's which are widgets and
operations utilizing them. The Win32 API includes, besides the open file dialog, a print
setup, font select and color select dialog.

Several problems were noted during the use of this tool as well. Once several
windows are created with this GUI builder, it becomes unstable. The names of windows tend

14

to change as a result of maneuvering through them. This resulted in the same name being
applied to two (or more) different dialogs. The only solution is to look at the dialog names
and rename them if necessary, before saving the file. Additionally, the GUI builder does not
support Ada strings very well. The Ada concatenate symbol "&" is not accepted by the tool
and so truncates strings at the "&" symbol.

This version of GRASP, though a prototype, is actually more functional than any of
the Unix versions. Some of the most important functionality yet to incorporate is the
Multiple Document Interface, printing and controlling screen font size. The print and screen
font selection should be implemented by the end of the quarter.

4.2 Font Development

In Version 3, screen display is facilitated by sending the CSD file to a CSD window
opened under an X Window manager. The default CSD screen font was a bitmap 13 point
Courier to which the CSD graphic characters have been added. The font was defined as a
bitmap distribution font (BDF) then converted to SNF format required by the X Window
System. Four additional screen fonts ranging from 9 to 24 point are user selectable. These
fonts were later converted to OpenWindows fonts which has since become the version
supported in the distribution tar file.

Printing in Version 3 was accomplished by converting the CSD file to a PostScript
file and then sending it to a printer. CSD Printer fonts were initially developed for the HP
LaserJet series. These were then implemented as PostScript type 3 fonts and all subsequent
font development has been directed towards the PostScript font. The PostScript font provides
the most flexibility since its size is user selectable from 1 to 300 points.

The upgrade from Athena to Motif widgets encouraged the use of a new Unix
compatible PostScript® Typel font. Altsys' Fontographer® 3.5 was selected as the font
building tool. Fontographer is a Microsoft® Windows™ program with which one can draw
each character of a font set. Once a font is created many different font files can be
generated, including PostScript Typel and TrueType.®

Each of the GRASP 3.0 characters (Figure 7) was individually re-created (Figure 8)
using Fontographer. During this font re-drawing process we decided it would be a significant
improvement to represent Ada program units (packages, subprograms, tasks and generics) as
individual character symbols rather than the old GRASP box drawings. These new program
unit symbols can be seen in the lower part of Figure 8. This new representation uses less
space and is visually more meaningful. Additionally, the CSD can now differentiate
graphically between the specification and body of a program unit.

15

Fontographer 3.5

File Edit View Eath Point Special Window Help

GRASP/Ada Font

®Key ODec O Hex O Oct O Width O Char O Unicode
A0160 A0161 A0162 A0163 A0164 A0165 A0166 A0167 A0168 A0169 A0170 A0171 A0172 A0173 A0174 A0175

A0176

fr
A0177 A0178 A0179

o
A0180

1

A0181 A0182 A0183

II-
I-

A0184

L
A0185

L

A0186 A0187

r
A0188 A0189

fi
A0190 A0191

A0192 A0193 A0194 A0195 A0196 A0197 A0198 A0199 A0200 A0201 A0202 A0203 A0204 A0205 A0206 A0207

O r T

Figure 7. GRASP Characters without Program Unit Symbols

Fontographer 3.5
File Edit View Path Point Special Window Help

GRASP/Ada Booch

O Key <§> Dec O Hex O Oct O Width O Char O Unicode
160 162 163 164 165 166 167 168 169 170 171 172 173

FF T \ L V r
176 177 178 179 180 181 1S2 183 184 185 186 187 188

0
192 193 134 135 196 197 198 199 200 201 202 203 204

_L O r T
208 203 210 211 212 213 214 215 216 217 218 219 220

Figure 8. GRASP Characters with Program Unit Symbols

16

4.3 User Interface Description

The Control Panel, shown in Figure 9, gives the user capabilities for creating or
viewing a Control Structure Diagram (CSD) in a CSD window, shown in Figure 10. A future
version of the tool will allow multiple CSD windows to be opened to access several CSDs
at once.

GRASP/Ada JOB
File Preferences Help

Figure 9. Control Panel

Figure 10. Control Structure Diagram

ORIGINAL P4£E IS
OF POOR tJUALITY

17

Control Panel Options. The Control Panel window options are described below.

File - Allows the user to select from the following menu items shown in Figure 11.

Create CSD/ODG - User may open an empty CSD (default) or ODG window.

Create CSD - a CSD window is opened.
Create ODG - ODG window option is for future use.
Open - Displays an Open File Dialog so the user may select a
file to load into the CSD/ODG window as it is created.
Save All Files - Saves each open CSD/ODG file with its
current name.
Exit - Closes the Control Panel and exits GRASP.

Prefere]

Create CSD?5l3

Figure 11. Control Panel - File Menu

ORIGINAL PA£E IS
OF POOR-QUALITY

18

Preferences - Allows the user to set the preferences using the menu shown in Figure 12.
Future

Backup Options - User may indicate a desire to keep backup copies of data files and
how they are to be named.

Location of Files - User may select a location for backup files.

Code Attributes - User may set font preferences for elements of the code.

JLl
•HP
File 'Preference

jfackup Options

GRASP/Ada

Location Of Files

Code Attributes

Figure 12. Control Panel - Preferences Menu

Help - Allows the user to obtain help on the following items from the menu shown in Figure
13.

On Context - Context sensitive help. Future.

On Help - User may obtain help on using the help facility. Future.

On Keys - Help on keyboard key functions. Future.

On Version - Display version menu as shown in Figure 14.

Credits - Information on the writers of GRASP (see Figure 15).

Feedback - To provide feedback on GRASP (see Figure 16).

Version Info - GRASP version number (see Figure 17)

On Window - User may obtain help on this window. Future.

Index - A complete index of the help facility. Future.

Search - User may search the help facility. Future.

19

;OnVe"••

Figure 13. Control Panel - Help Menu

Tutorial - A GRASP tutorial. Future.

On Window "Feedback

[index-;;: .Version]
sSearch

to rial

Figure 14. Control Panel - Help Version Menu

ORIGINAL
of I*

20

Figure 15. Credits Dialog

Dr. James Cross
Auburn University

Figure 16.
Dialog

Feedback
Figure 17. Version Dialog

ORIGINAL P^£E IS
Of POORTJUALITY

21

Control Structure Diagram Window. The Control Structure Diagram window, shown in
Figures 16, provides the user with capabilities for creating, editing or viewing CSDs. The
CSD window options are described below.

File - Allows the user to select from the following menu items as seen in Figure 18.

Clear Window - User may delete the contents of the text area. A warning
dialog appears to allow the user to verify (see Figure 19).

Open - Displays an Open File Dialog so the user may select a file to load into
the CSD.

Save - Saves the open CSD file with its given name.

Save As - Allows the user to rename the open file using the Save As Dialog
(see Figure 20) .

Print - Allows the user to select from the following.

Express Print - Prints the loaded file without accessing the
print dialog.

Print Setup - Allows the user to go to the print dialog.

Exit - Closes the CSD window.

Figure 18. Control Structure Diagram - File Menu

22

Do you wish to clear the CSD text area?

Figure 19. Warning Dialog

SAVE AS

Filter

I /1iDnw/cse_h3%raspitu/"[

Directories

.objects

.waste basket
.wpcorp
uunwr sample ri ana Jciw
Gunt£r_Samp 1 e ̂ Process .ss
Sample Executable?
ScreenMaehuie
Screcn_Machinfi_SampIe_E
backup
bitmaps
concord
grasp-Ada
grasp-C
lost^found
mail

Selection

/Iiom«/cse_h3/graipmsj

Figure 20. Save As Dialog

23

Edit - Allows the user to select from the following menu items as seen in Figure 21.

Undo - Allows the user to reverse the last edit operation.

Cut - User may remove a pre-selected section of text. The removed text is
placed in the clipboard.

Copy - User may copy a pre-selected section of text. The copied text is
placed in the clipboard.

Paste - Data from the clipboard is inserted into the CSD text area at the
insertion point.

Search/Replace - Opens the Search/Replace Dialog (See Figure 29). Text
strings may then be searched for and replaced as desired. Future.

Go To Line - Allows the user to specify, in the Go To Line dialog (see Figure
22), a particular line in the file to view. Future.

Figure 22. Go To Line
Dialog

Figure 21. Control Structure Diagram - Edit Menu

24

H- VV.
*'"''

View -Allows the user to select from the following menu items as seen in Figure 23.

Graphics - Allows the user to turn the GRASP diagram characters on and off.
Future.

Line Numbers - Allows the user to turn line numbering on and off. Future.

Line Spacing - Allows the user to select line spacing for the CSD. Future.

GRASP - Control Structure Diagram

Figure 23. Control Structure Diagram - View Menu

ORIGINAL P^e IS
OF POOR ̂ QUALITY 25

Ada - These menu items allow the user to insert syntactically correct blocks of Ada code
into the CSD text area at the location of the curser. This menu item is "pinnable" (see
Figures 24 - 26). Several options are available for inserting text from a menu. A straight
menu (as shown) could be used, or a cascading menu (e.g. only one "Loop" menu item
which, when selected, cascades into the three different loop constructs) could be utilized
to reduce the size of the pinned menu (see Figure 26). The Ada blocks include the major
Ada constructs as well as two user defined custom blocks.

CRASP - Control Structure Diagram

block with declaration*

exception hand!

guarded select

if/llwn

loop

pjMUuge spec

package body

procedure body

wleet '-

Mskipec »

task body :X
.CUSTOM 1

CUSTOM 2

cm-i
Ctrt-2

Figure 24. Control Structure Diagram - Ada Menu

26

ORIGINAL P^Sff IS
Of POOR-QUALITY

Gona-ate CSlI . * Prowct Fllti- Fait Siz»; •

Figure 25. Control Structure Diagram - Ada Menu "Tear Off

block Ctrl-B

block with declaration* "••

case

exception handler

select <

Figure 26. Control Structure Diagram - Ada Menu - Cascading
Loop

ORIGINAL P££E IS
OF POOR tJUAUTY 27

Protect Files - Allows the user to set an option to prevent overwriting existing files
without confirmation.

Generate CSD - This button generates a CSD from source code and/or regenerates a CSD
after modification. When the CSD window is opened and loaded with a source file without
a .csd extension, a separate CSD window is automatically opened to display the CSD when
it is generated. Note that CSD graphics characters, if any, are filtered prior to the parse or
reparse.

Font Size - Allows the user to select font sizes ranging from four points to one hundred
points. The default font size for the CSD window is 14 points.

Language - Currently, a language selector is not displayed on the Unix screens. Additional
consideration must be given to the location of this selector. If displayed on the CSD window,
the user may attempt to change to a different language after a file is loaded. Future.

Help - See the help section above for the Control Panel.

The Code Attributes window, shown below in Figure 27, provides a prototype screen for
setting text attributes in the CSD text area. The user may select the type (comment, graphics,
identifiers, pragmas or reserved words) and then the desired appearance. The OK button
would apply the settings to the text displayed in the CSD. Future.

Figure 27. Code Attributes

28

Print Window. The Print window, shown below in Figure 28, provides the user with
capabilities for selecting a printer, toggling page numbering, page header information, and
selecting a file to print.

Figure 28. Print Dialog

29

Search/Replace Window. The Search/Replace window, shown below in Figure 29, allows
the user to search for a text string entered into the upper text area and replace matching
string(s), if desired, with a text string entered into the lower text area.

Search/Replace .

Figure 29. Search/Replace Dialog

ORIGINAL

OF POOH QUALITY
ls

30

4.4 User Interface - Future Directions

The GRASP interface will require minor modifications as additional components are
connected. Further adjustments are anticipated as the tool is beta tested by Auburn CSE
students. The Version 4 GUI is a major enhancement over the previous version.

The attempt to find and utilize a state-of-the-art Ada/Motif GUI builder has been
frustrating. In the long run, however, the right tool should result in lower maintenance effort
and "better" code. The following are essential for a GUI builder tool: (1) the tool must be
capable of accessing all of the Motif widgets and their associated functions, (2) the tool must
be capable of administering all callback code within the tool, and (3) the tool must be capable
of managing multiple source files (e.g. one dialog per file). Once these criteria are met,
Ada/Motif GUI builders will have come of age.

The following three items would yield a product that would greatly enhance the
comprehension of software and allow the use of this tool by a large percentage of the
software engineering community.

1. A Windows version is a must. When GRASP is able to run on a X86 class
laptop in Windows, users will have the convenience and ease-of-use they have
come to expect from professional quality software products.

2. Hypertext in applications like GRASP will soon be the norm. For example,
double-clicking on a package specification symbol in an object diagram and
having a CSD window open to display the CSD of the package body.

3. Support for "collapsing" diagrams should be developed. Constructs such as
case statements and loops could collapse to a single symbol.

31

5.0 Control Structure Diagram Generator

The GRASP/Ada control structure diagram generator (CSDgen) is described in this
section from a technical and developmental perspective. Since display mechanisms for both
the screen and printer are an integral part of the CSDgen application, these are included in
this section as well. A more complete history and rationale for the development of the CSD
is contained in [CRO93]. The graphical constructs produced by CSDgen are summarized in
Figure 5 (Section 2).

5.1 Generating the CSD

The primary function of CSDgen is to produce a CSD for a corresponding Ada source
or PDL file. Although a complete parse is done during CSD generation, CSDgen assumes
the Ada source code has been previously compiled and thus is syntactically correct.
Currently, little error recovery and error reporting are attempted when a syntax error is
encountered. The diagram is simply generated down to the point of the error. In the case
of Ada PDL, non-Ada statements must be valid Ada identifiers so that they are treated like
procedure calls. For example, the PDL for "search array for largest element" could be
represented as "Search_array_for _largest_element" so that the phrase becomes a single
identifier.

In the new version, the source code is first parsed/tagged using the GRASP Markup
Language (GML), and then the tagged source code is rendered into a CSD. With a well-
developed scanner for the Renderer, the additional overhead of the two-step process should
prove negligible and language portability will be greatly enhanced. Using a markup language
also removes some of the deficiencies and constraints of Version 3. For example, the
Version 4 Tenderer maintains the location of user line feeds and comments, and attempts to
output a more compact CSD. Figure 30 shows a detailed view of the CSD Generator
(CSDgen).

5.1.1 The Tagger and Markup Language Concept

As indicated in Section 3, the tagger has its own parser/scanner built using LEX and
YACC. The tagger utilizes GRASP-ML [CRO95], a markup language based on SGML, to
tag all necessary language elements required for input to the respective Tenderer. The tagger
inputs Ada PDL or source code and produces a tagged file.

Markup is defined as the process of embedding special marks (tags) in the content of
document to explicitly indicate structure, formatting or other information. Several software
packages use markup but the "tags" are usually transparent to the user. WordPerfect, for
example, uses markup to control all aspects of its presentation of text and graphics. The
WordPerfect markup tags can be seen using the Reveal Codes feature but they can not be
entered directly by the user. The tag set that has been developed for Version 4 is based on
Standard Generalized Markup Language (SGML), an ISO standard meta-language for
specifying grammars that has been used for a variety of software tools [CRO95].

32

GRASP/ADA

POSTSCRIPT
GENERATOR

.ADA .GML .CSD .ADA .PS

Figure 30. CSD Generator (CSDgen) for GRASP Version 4.

33

The GRASP Markup Language (GML) tag set was developed to promote language
independence for the generation of graphical representations that has been previously
restricted to Ada [HEN95]. If a tag set is used as a basis for rendering, several different
language-specific taggers can be developed to work with the same language independent
Tenderer. Having been carefully crafted so as to parallel grammar rules which describe
program structures, the GML tags are used to further facilitate language independent CSD
rendering.

5.1.2 The Renderer

The initial CSD generator, developed for GRASP/Ada 3.0, was implemented in the
C programming language [MAY92]. The new Version 4 iteration is being developed in the
Ada programming language in the Rational Apex environment. Version 4 uses the GRASP
markup language, GML, to tag the source code during the parsing part of the CSD
generation. The Renderer processes a GML tagged file to produce the CSD file. Many of
the same construct ideas that appear in the C version are used in the new Ada version.
However, there are some fundamental differences that had to be addressed. The architecture
of the Renderer is shown in the Ada module diagram in Figure 31. Details on the
implementation of the Renderer can be found in [RAN95].

The main procedure body of the new Tenderer was implemented using AFLEX.
AFLEX was created by John Self of the Arcadia Project at the Department of Information
and Computer Science at the University of California, Irvine. AFLEX was developed to be
an Ada alternative to FLEX, the popular GNU lexical analyzer for C. It operates in much
the same manner as FLEX and uses many of the same "conventions." AFLEX is used to
build an efficient scanner that can read files and search for particular regular expressions.
Once these regular expressions are matched, specific program fragments can be executed
[SEL90]. The scanner built for the Renderer in GRASP Version 4 reads in source code
tagged with GML and generates the CSD by calling appropriate action routines.

The Renderer uses a doubly linked list of records as an efficient way to build the CSD
prefixes. This list can be thought of conceptually as going from left to right. Most of the
actions performed on the list occur on the right side of the list. The Renderer produces the
.CSD output file one line at a time. To accomplish this, both the CSD prefix and the
program text must be buffered. A record with two fields is used to accomplish this. One
field holds the prefix buffer and the other holds the text buffer. The text buffer simply
receives text straight from the AFLEX generated scanner. The prefix buffer is more
complicated. The prefix buffer is built by reading the prefix list starting from left to right.
At each node of the list, the Rule field and the Code fields are read. When the prefix is
output in procedure Output_Csd_Buffer, the ASCII characters in the prefix buffer are offset
by 96 to put them in their appropriate positions between 160 and 206.

Error Handling. The Tagger will tag an error when it occurs and then continue
tagging a file. The Renderer handles the error by capturing the error text and transferring it
to a file along with the line number that the error occurred on. This error information will
be used by the interface to show the user where the error occurred. The following is an
example of how an error is tagged:

end loop</_loop_x_error_>*missing semicolon*</_error_>

34

Renderer
Main

POSIX
(Packages)

Renderer lo

Renderer Dfa

Sequentialjo Char_Out

Figure 31. GRASP/Ada Version 4 Renderer Ada Module Diagram.

35

In the GRASP Tenderer most tags must have a tag to "begin" a construct and a tag to "end"
the construct. When an error occurs, there is no guarantee that every start construct tag will
have a corresponding end tag. When such a tag imbalance occurs, an Ada CONSTRAINT
ERROR (NULL ACCESS) is raised. The Renderer handles this particular error by ignoring
it and allowing rendering to continue. In such a case, the CSD may look grossly incorrect,
which provides a visual indication to the programmer that an error has occurred.

Creating A .CSD File. The CSD prefix codes are displayed and/or printed using a
custom font. The characters used to generate the prefix are mapped into positions 160 to
206, which supplement the standard ASCII characters in positions 0 to 127. Some Ada 83
compilers will allow Text_Io to handle characters beyond position 127. For Example, as part
of the migration to Ada 95, Rational's Apex compiler, will allow character positions 0 to 255.
However, in order to enable portability between all Ada 83 and Ada 95 compilers, a different
way of handling characters for CSDs was needed. One approach considered was to
implement an Ada user defined character set. The problem with this method was that all the
operations for the new character set would also have to be defined. Another approach, and
the one selected, was to represent the characters as a subset of Integer with a range of 0 to
255. An Ada representation clause was also used to ensure that the new integer type was
constrained to eight bits. Instead of using Textjo to output the characters to a file, the Ada
Sequential_Io package was used. This method seems to work well and appears to be
compatible on all compilers. This Ada Textjo problem will be resolved with the release of
Ada 95 compilers which support ASCII characters beyond 127.

5.1.3 Changes From Version 3 for Generating CSDs

Preserving Line Feeds. While GRASP 3.0 removes all user line feeds then inserts
line feeds only where it is necessary to draw the CSD, the new GRASP 4.0 maintains all
user line feeds. In addition, the Tenderer inserts the necessary line feeds for drawing the
control structure diagram. All user entered Line Feeds are captured at the scanner level.
Some of these line feeds are output immediately while others are stored temporarily and
output as soon as possible (in their appropriate position). The reason for this temporary
storage of line feeds is that occasionally the CSD Buffer must be changed before it can be
output. For example, a named loop requires changing the CSD Buffer. As described earlier,
the <_stmt_> tag is used to surround an assignment statement:

<_stmt_> A := A + 1 </_stmt_>

This same tag, however is also used to surround a named loop:

<_stmt_>A_LOOP:
<_pretest_loop_> for i in 1..25 loop

end loop </_loop_></_stmt_>

This created a problem since the beginning of the CSD prefix for an assignment
statement is different from the CSD prefix for the beginning of the named loop. The problem
occurred when a user line feed was entered between the <_stmt_> and the <_pretest_loop_>

36

tags. If this line feed was not buffered, the CSD buffer would be output at a point before the
<_pretest_loop_> tag was ever reached. The solution to this problem was to temporarily
store line feeds after the <_stmt_> tag and then change the CSD Buffer whenever
<_pretest_loop_> is processed. When <_pretest_loop_> is encountered, Handler uses a
Loop_Block_Tag "tag kind." Handler checks to see if Simple_Stmt is in the rightmost
position in the list. If so, it changes the buffer before adding the loop construct.

Even though user line feeds are preserved, not all user white space is rendered. All
user tabs and spaces at the beginning of a line are removed in order to maintain control
structure diagram consistency. However, All white space before a comment is preserved to
provide proper formatting as described in the next section.

User Comments. GRASP Version 3 does not handle user comments very gracefully
when rendering CSDs. Comments are completely removed from where they are located and
put on either the preceding or the following line. This is not considered appropriate because
the user may have intended the comment to remain on the same line. This would be
important if the user was commenting an enumerated type or the identifiers within a
statement as in the example below.

(ORIGINAL TEXT)
A := A — This is very important

+ B; — This is also important

(VERSION 3)

— This is very important
— This is also important
A := A + B;

(VERSION 4)

A := A — This is very important
+ B; ~ This is also important

(ORIGINAL TEXT)

X :Array(l.. 3) of Integers (1, --First
2, — Second
3); - Third

(VERSION 3)

-- First
— Second
-- Third
X :Array(1..3) of Integers (1,2,3);

37

(VERSION 4)

X :Array(1..3) of Integer:= (1, - First
2, — Second
3); - Third

The ability to maintain user comments in their current location is an important improvement
made by the latest Renderer.

Construct Changes. In the new GRASP Renderer every attempt was made to keep
the generated CSDs as compact as possible. One new addition is the short end hook on the
end of a nested compound statement. In GRASP Version 3, long end hooks were inserted
on a new line. This spreads out the code unnecessarily and is not particularly aesthetically
pleasing. The line feed buffering technique that was mentioned previously was used to put
in the short end hooks in the necessary places. Boxes around procedure calls were also
eliminated to facilitate code compactness and to make tagging procedure calls easier for the
parser. Figure 32 and Figure 33 illustrate the difference between compactness of code in
Version 3 and Version 4.

A guarded select is rendered differently in the new version. Figure 34 shows a
Version 3 CSD of the guarded select. Since the guard represents a conditional, it made sense
semantically to display a guard in a similar manner to a conditional. The rendering of the
guard on the select now resembles the when condition of a case statement. Figure 35 shows
a Version 4 CSD of the guarded select. Figure 36 shows the corresponding GML file. This
change was necessary because when the parser was looking at a select, it could not look far
enough ahead to determine that a guard was coming. There was no way to tag it so that the
Version 3 blackened circle could be output.

38

with Text_Io;

procedure BinarySearch (Key
out integer) is

in KeyType; A : in ArrayType; WhereFound

low, high, middle
begin
— WhereFound := 0;
— low := A'First;

high := A'Last;

integer;

Text_Io.Put("This starts the search");

while (WhereFound = 0) and (low <= high) loop
— middle := (low + high) / 2;
—(Vif (Key < A (middle)) then

i high := middle - 1;

<\elsif (Key > A (middle))
I low := middle + 1;

else
WhereFound := middle;

end i f ;
end loop;

.end BinarySearch;

then

Figure 32. GRASP/Ada Version 3 CSD Compactness Example

with Text_Io;

procedure BinarySearch (Key : in KeyType; A : in ArrayType; WhereFound : out integer) is

low, high, middle : integer;
begin
— WhereFound := 0;

low := A'First;
high := A'Last;
Text_Io.Put("This starts the search");

Pwhile (WhereFound = 0) and (low <= high) loop
middle := (low + high) / 2;
if (Key < A(middle)) then

high := middle - 1;
elsif (Key > A(middle)) then

low := middle + 1;
else

WhereFound := middle;
.end i f ;

end loop;
_end BinarySearch;

'•-, els

Lenc

Figure 33. GRASP/Ada Version 4 CSD Compactness Example

39

/task body TASK_NAME is

begin
—I select
,̂ when Cl=>

accept M do

end;
null;

when C2=>

accept N do

S;

Lend;

end select;
end TASK_NAME;

end K;

Figure 34. GRASP/Ada Version 3 Guarded Select Example.

/task body TASK_NAME is

begin
select

when Cl=>

accept M do

end;
I null;
or

when C2=>

accept N do

Lend
S;

_end;
Lend select;

.end TASK_NAME;
end K;

Figure 35. GRASP/Ada Version 4 Guarded Select Example.

40

<_unit_x_packbody_x_packheading_>package body K is</__packheading_>
<_declaration_x_decl_>
<_taskbody_><_taskheading_>task body TASK_NAME
is</_taskheading_x_taskstmtpart_>begin
<_select_>select
<_selection_x_guard_>when Cl=x/_guard_>
<_accept_x_accept_heading_>accept M do</_accept_do_heading_>
<_stmt_>S;</_stmt_>
<_end_>end;</_accept_>
<_stmt_>null;</_stmt_>
</_selection_x/_selection_x_or_>or</_or_>
<_selection_x_guard_>when C2=x/_guard_>
<_accept_x_accept_heading_>accept N do</_accept_do_heading_>
<_stmt_>S;</_stmt_>
<_end_>end;</_accept_>
</_selection_x/_selection_x_end_>end select;</_select_>
<_end_>end TASKJNAME; </_taskstmtpart_x/_taskbody_x/_decl_>
</_declaration_x_end_>end K; </_packbody_x/_unit_>

Figure 36. Guarded Select GML File.

5.2 CSD Generator - Future Considerations

As indicated above, the actual generation of the CSD and the subsequent display of
it on the screen or printer are in some ways inseparable. For example, margins, line spacing,
and indentation of the CSD constructs could be part of the actual generation of the CSD or
they could be a function of the display mechanism tightly coupled with a CSD editor. Hence,
there is some degree of overlap in the discussion below regarding generating and displaying
the CSD.

5.2.7 Generating the CSD - Future Considerations

Ada 95. The Ada 95 specification will impact the CSD generator in at least two
important ways.

(1) New 95 control constructs - Additional CSD graphical constructs must be
created as appropriate. Addressing the new 95 control constructs should be relatively
straightforward. Numerous examples will need to be diagrammed and evaluated for
comprehensibility and ease of implementation and integration into the current set of
constructs.

(2) The Ada 95 specification allows all 256 ASCII character codes - These are
allowed to facilitate international character sets. The use of all 256 character codes
presents somewhat more of a challenge. In the present prototype, ASCII codes above
128 have been used for the CSD graphics characters. Several operations in the user
interface have freely filtered these character codes during the regeneration process as
well as the "save as Ada" operation. Obviously, this approach will not be acceptable
if the source code itself contains character codes in this range.

41

Internal Representation of the CSD - Alternatives. Several alternatives were
considered for the internal representation of the CSD in the Version 4 prototype. Each has
its own merits with respect to processing and storage efficiency and is briefly described
below. These alternatives remain under consideration for future versions.

(1) Single ASCII File with CSD Characters and Text Combined. This is the most
direct approach and is currently used in the Version 4 prototype for the .csd file. The
primary advantage of this approach is that combining the CSD characters with text
in a single file eliminates the need for elaborate transformation. The major
disadvantages of this approach are that it does not lend itself to dynamic incremental
changes during editing and the CSD characters have to be filtered if the user wants
to regenerate the CSD or send the file to a compiler.

(2) Separate ASCII Files for CSD Characters and Text. In this approach, the file
containing the CSD characters along with placement information would be "merged"
with the prettyprinted source file. The primary advantage of the this approach is that
the CSD characters would not have to be stripped out if the user wants to send the
file to a compiler. The major disadvantage of this approach is that coordinating the
two files would add complexity to generation and editing routines with little or no
benefit. As a result, this approach would be more difficult to implement than the
single file approach and not provide the advantages of the next alternative.

(3) Single or Intermediate ASCII File Without Hard-coded CSD Characters.
The .gml file in Version 4 is the intermediate file in this approach, which represents
a compromise between the previous two. The file contains "begin construct" and "end
construct" tags for each CSD graphical construct rather than all of the CSD graphics
characters that compose the diagram. These are generated by the Tenderer for screen
display and printing in the current .csd file. A single .gml file approach would be
most beneficial in conjunction with a dynamic editor since the diagram could grow
and shrink automatically as additional text/source code is inserted into the diagram
(i.e., between the appropriate tags). The extent of required modifications to text edit
windows must be considered with this alternative.

Ada Coding Standards. Future CSD generators should provide the user with the
capability to generate CSDs (together with prettyprinted source code) according to a
prescribed standard. This may include conventions for keywords, identifiers, indentation,
layout for compound statements, placement of comments, etc.

Direct Generation Using the Ada Semantic Interface Specification (ASIS). If tight
coupling and integration with a commercial Ada development system such as Rational Apex
or Verdix VADS is desired, then the ASIS may provide for the direct generation of the CSD
from its underlying intermediate representation produced as a result of compilation. This
would require a layer of software which uses ASIS to call the appropriate CSD primitives as
control nodes are encountered. This approach may eliminate the possibility of directly editing
the CSD since the ASIS interface may not support modifying the underlying intermediate
representation, only reading it. In practice, it may prove more efficient to allow the CSD
generator to simply reparse the entire compilable unit being edited.

42

Dynamic Changes to the CSD. In the present prototype, there is no capability for
incrementally modifying the CSD. When the CSD or source code is modified in the CSD
window, the CSD must be regenerated by reparsing the entire file. While this has been
sufficient for prototyping, especially for small programs, editing capabilities with incremental
modification of the CSD may be desirable in an operational setting. A CSD editor would
function similar to the WordPerfect editor in that it will be able to read and interpret GML
tags. It will probably be implemented using X-Windows Motif and X-Windows libraries.
A CSD editor could also implement several prettyprinting options such as holding reserved
words. Currently, it is somewhat dubious as to which part of GRASP should handle
prettyprinting. It could be done by the Tagger, the Renderer, or a separate routine. The new
GML-based CSD editor would disambiguate this problem. The ASIS cited above may offer
a bridge for these incremental changes to the CSD.

Additional Languages. The current Renderer will, of course, be used to render CSDs
for other languages as soon as other taggers are developed. Languages that will likely be
implemented for GRASP after Ada 95 are C and C++.

5.2.2 Displaying the CSD - Future Considerations

Layout/Spacing. The general layout of the CSD is highly structured by design.
However, the user should have control over such attributes as horizontal and vertical spacing
and the optional use of some diagramming symbols. In the current Version 4 CSDgen
prototype, horizontal and vertical spacing are not user selectable. They are a part of the CSD
file generation and are defaulted to that of the input file. In order to change these, e.g., from
single to double spacing, the CSD file would have to be regenerated. In future versions of
the prototype, these options are expected to be handled by a new CSD editor, as such, can
be modified dynamically without regenerating the CSD file.

Vertical spacing options will include single, double, and triple spacing (default is
single). Margins will be roughly controlled by the character line length selected. Indentation
of the CSD constructs has been a constant three blank characters. Support for variable
margins and indentation is being investigated in conjunction with the new display routines.
In addition, several display options involving CSD graphical constructs are under
consideration. For example, the boxes drawn around procedure and task entry calls may be
optionally suppressed to make the diagram more compact.

Collapsing the CSD. The CSD window should provide the user with the capability
to collapse the CSD based on all control constructs as well as complete diagram entities (e.g.,
procedures, functions, tasks and packages). This capability directly combines the ideas of
chunking with control flow which are major aids to comprehension of software. An
architectural CSD (ArchCSD) [DAV90] can be facilitated by collapsing the CSD based on
procedure, function, and task entry calls, and the control constructs that directly affect these
calls. In future versions of the prototype, the ArchCSD will be generated by the display
routines from the single intermediate representation of the CSD.

Color. Although general color options such as background and foreground may be
selected via the X Windows system, color options within a specific diagram were only briefly

43

investigated for both the screen and printer. It was decided that these will not be pursued in
the Version 4 prototype.

Printing An Entire Set of CSDs. Printing an entire set of CSDs in an organized and
efficient manner is an important capability when considering the typically large size of Ada
software systems. A book format is under consideration which would include a table of
contents and/or index. In the event GRASP/Ada is fully integrated with a commercial CASE
tool, the document preparation system provided by the CASE tool may be utilized for this
function.

Navigating among CSDs, Module Diagrams, and Object Diagrams. A GRASP
library is required to provide the overall organization of the generated diagrams. The current
file organization uses standard UNIX directory conventions as well as default naming
conventions. For example, all Ada source files end in .a or .ada, the corresponding CSD files
end in .a.csd, and the corresponding print files end in .a.csd.ps. In the present prototype,
library complexity has been keep to a minimum by relying on the UNIX directory
organization. In future versions, a GRASP library entry will be generated for each procedure,
function, package, task, task entry, and label. The library entry will contain minimally the
following fields.

identifier - note: unique key should be composed of the identifier + scoping.
scoping/visibility
type (procedure, function, etc.)
parameter list - to aid in overload resolution.
source file (file name, line number) - note: the page number can be computed from

the line number.
CSD file (file name, line number)
OD file (file name)
"Referenced by" list
"References to" list

Alternatives for generation and updating of the library entries include the following.

(1) During CSD generation, the library entry is established and the entry is
updated on subsequent CSD generations.

(2) During the processing via the ASIS.

Alternatives for implementing the GRASP library include the following.

(1) Developing an Ada package or equivalent C module which is called by the
CSD generation routines during the parse of the Ada source.

(2) Using the Rational Apex library system along with ASIS.

44

Of these alternatives, the first one may be the most direct approach since it would be the
easiest to control. The ASIS library approach may be more useful with the addition of object
diagram generation and also with future integration of GRASP with commercial CASE tools.

New CSD Fonts with Program Unit Symbols. The current Renderer does not utilize
the new CSD fonts with program unit symbols. A future version will use the new notation
to represent subprogram, package, task, and generic bodies and specifications. It will be
implemented using a variation of the Version 4 Renderer. Figure 37 shows a CSD using the
new proposed notation.

Hypertext Links. Hypertext links could be used to visit a procedure from the
location it is called in the body of another procedure. This navigational feature would aid
in program development and in program understanding. It would probably be implemented
in part by using Rational ASIS to extract a the required information from Ada programs.

45

with Textjo, Queues, Trees, Line_Numbers, Words;

package body CONCORDANCE is

I function F (varl : float) return float;

begin
total := total + varl;
return total;

-end

B procedure INSERT (The_Word :Word; The_Line :Number) is

begin
— null;

for INDEX in RESULT'RANGE loop
if RESULT (INDEX) in 'A'.. 'Z' then

RESULT (INDEX) := Character'Val (Character'Pos(RESULT));
end if;

end loop

— RESULT := 16* 25;

! | exception

when Numeric_Error =>
raise Very_Bad_Error;

L end INSERT
end CONCORDANCE

Figure 37. Example of New CSD Notation [SAD95].

46

6.0 Conclusions

The GRASP/Ada project has provided a strong foundation for the automatic generation
of graphical representations from existing Ada software. The current prototype provides the
capability for the user to generate the Control Structure Diagram (CSD) from syntactically
correct Ada PDL or source code in a reverse engineering mode with a level of flexibility
suitable for practical application. The prototype is being used in two software engineering
courses at Auburn University on student projects in conjunction with other CASE tools. The
feedback provided by the students has been very useful, especially with respect to the user
interface. The prototype has been prepared for limited distribution (GRASP/Ada Version 4).

An important issue for all software tools in general, and graphical representations in
particular, is evaluation. An evaluation based on preference was conducted to provide
information on user perceptions of the CSD. An experiment was designed and data was
collected from software engineering students. Statistical analysis indicated highly significant
differences among five graphical notations when compared with respect to eleven
performance characteristics. There was a clear preference for the CSD for seven of the
eleven performance characteristics. Experience indicates that empirical evaluation of the
comprehensibility (rather than preference) of graphical notations such as data flow diagrams,
object diagrams, structure charts, and flowgraphs is difficult. However, such an evaluation
for the CSD and GRASP/Ada tool would provide further insight into the role that graphical
notations play in the comprehension of software and, as a result, their potential impact on the
overall cost of software.

The primary impact of reverse engineering graphical representations will be improved
comprehension of software in the form of visual verification and validation (V&V). To move
the results of this research in the direction of visualizations to facilitate the processes of
V&V, numerous additional capabilities must be explored and developed. A set of graphical
representations that directly support V&V of software at the architectural and system levels
of abstraction must be formulated. For example, the Object Diagram generator (ODgen)
prototype described earlier is one the components of the GRASP/Ada project which would
address architectural and system levels of abstraction. This task must include an on-going
investigation of visualizations reported in the literature as currently in use or in the
experimental stages of research and development. In particular, specific applications of
visualizations to support V&V procedures must be investigated and classified. Prototype
software tools which generate visualizations at various levels of abstraction from source code
and PDL, as well as other intermediate representations, must be designed and implemented.
Graphically-oriented editors must provide capabilities for dynamic reconstruction of the
diagrams as changes are made to other diagrams at various levels. These graphical
representations should provide immediate visual feedback to the user in an incremental
fashion as individual structural and control constructs are completed. Future directions and
specific tasks for the GRASP/Ada project have been described at the end of each of the
sections above.

The current prototype of the CSD generator, while only one of set of required
visualization tools, has clearly indicated the utility of the CSD. Future enhancements will
only increase its effectiveness as a tool for improving the comprehensibility of software.

47

REFERENCES

ADA83 The Programming Language Ada Reference Manual. ANSI/MIL-STD-1815A-
1983. (Approved 17 February 1983). In Lecture Notes in Computer Science,
Vol. 155. (G. Goos and J. Hartmanis, eds) Berlin : Springer-Verlag.

AOY89 M. Aoyama, et.al., "Design Specification in Japan: Tree-Structured Charts,"
IEEE Software, Mar. 1989, 31-37.

BAR84 J. G. P. Barnes, Programming in Ada, Second Edition, Addison-Wesley
Publishing Co., Menlo Park, CA, 1984.

B0094 Grady Booch and Doug Bryan, Software Engineering with Ada, 3rd Ed.,
Benjamin Cummings Publishing Co. Inc., NY, NY, 1994 p. 46-49

CHI90 E. J. Chikofsky and J. H. Cross, "Reverse Engineering and Design Recovery
- A Taxonomy," IEEE Software, Jan. 1990, 13-17.

CON80 W. J. Conover, Practical Nonparametric Statistics, Joh Wiley and Sons, New
York, 1980.

CRO88 J. H. Cross and S. V. Sheppard, "The Control Structure Diagram: An
Automated Graphical Representation For Software," Proceedings of the 21st
Hawaii International Conference on Systems Sciences (Kailui-Kona, HA, Jan.
5-8). IEEE Computer Society Press, Washington, D. C., 1988, Vol. 2, pp.
446-454.

CRO90 J. H. Cross, S. V. Sheppard and W. H. Carlisle, "Control Structure Diagrams
for Ada," Journal of Pascal, Ada, and Modulo 2, Vol. 9, No. 5, Sep./Oct.
1990.

CRO92 J. H. Cross, E. J. Chikofsky and C. H. May, "Reverse Engineering," Advances
in Computers, Vol. 35, 1992, 199-254.

CRO93 J. H. Cross, "Update of GRASP/Ada Reverse Engineering Tools For Ada,"
Final Report, G. C. Marshall Space Flight Center, NASA/MSFC, AL 35821
(Delivery Order No. 21, NAS8-39131), December 14, 1993, 41 pages +
Appendices.

CRO95 J. H. Cross and D. Hendrix, "Using Generalized Markup and SGML for
Reverse Engineering Gaphical Representations of Software," Proceedings of
2nd Working Conference on Reverse Engineering (Toronto, Ontario, July 14-
16, 1995), 2-6.

48

DAV90 R. A. Davis, "A Reverse Engineering Architectural Level Control Structure
Diagram," M.S. Thesis, Auburn University, December 14, 1990.

HEN95 D. Hendrix and J. Cross, "Language Independent Generation of Graphical
Representations of Source Code,", Proceedings of ACM Computer Science
Conference February 28-March 2, Nashville, TN, p. 66-72

MAY92 Charles H. May ,11, "A Tool For The Generation And Manipulation of
Control Structure Diagrams", RED Library: Auburn University, 1992 p.54-61

MAR85 J. Martin and C. McClure, Diagramming Techniques for Analysts and
Programmers. Englewood Cliffs, NJ : Prentice-Hall, 1985.

OLS93 M. R. Olsem and C. Sittenauer, "Reengineeing Technology Report, Volume
1," Software Technology Support Center, Hill Air Force Base, UT 840556,
August 1993.

RAN95 B. Randies and J. Cross, "A Language Independent Renderer For Control
Structure Diagrams," Department of Computer Science and Engineering,
Auburn University, AU-CSE TR-95-07, May 23, 1995.

SAD95 Mark L. Sadler and J. Cross, "A Motif Compliant Interface for Graphical
Representation of Algorithms, Structures and Processes", AU-CSE TR-95-08,
Department of Computer Science and Engineering, Auburn University, May
23, 1995.

SCA89 D. A. Scanlan, "Structured Flowcharts Outperform Pseudocode: An
Experimental Comparison," IEEE Software, Sep. 1989, 28-36.

SEL85 R. Selby, et. al., "A Comparison of Software Verification Techniques," NASA
Software Engineering Laboratory Series (SEL-85-001), Goddard Space Flight
Center, Greenbelt, Maryland, 1985.

SEL90 Self, John, "Aflex - An Ada Lexical Analyzer Generator, Version l.o",
Arcadia Environment Research Project, Department of Information and
Computer Sciences, University of California, Irvine, 1990.

SHN77 B. Shneiderman, et. al., "Experimental Investigations of the Utility of Detailed
Flowcharts in Programming," Communications of the ACM, No. 20 (1977), pp.
373-381.

SHU88 Nan C. Shu, Visual Programming, New York, NY, Van Norstrand Reinhold
Company, Inc., 1988.

SIT92 C. Sittenauer and M. R. Olsem, "Re-engineeing Tools Report," Software
Technology Support Center, Hill Air Force Base, UT 840556, July 1992.

49

STA85 T. Standish, "An Essay on Software Reuse," IEEE Transactions on Software
Engineering, SE-10 (9), 494-497, 1985.

TRI89 L. L. Tripp, "A Survey of Graphical Notations for Program Design -An
Update," ACM Software Engineering Notes, Vol. 13, No. 4, 1989, 39-44.

WAS89 A. I. Wasserman, P. A. Pircher and R. J. Muller, "An Object Oriented
Structured Design Method for Code Generation," ACM SIGSOFT Software
Engineering Notes, Vol. 14, No. 1, January 1989, 32-52.

50

NASA
National Aeronautics &
Space Administration

Report Documentation Page
1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENTS CATALOG NO.

4. TITLE AND SUBTITLE

Software Engineering Capability For Ada
(GRASP/Ada Tool)

5. REASON DATE

6. PERFROMING ORGANIZATION CODE:

Auburn University
0010090000

7. AUTHORS Dr. James H. Cross II
Principal Investigator

8. PERFORMING ORGANIZATION REPORT NO.

4

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Science and Engineering
Auburn Univeristy

10. WORK UNIT NO.

Delivery Order No. 30

11. CONTRACT OR GRANT NO.

NAS8-39131

12. SPONSORING AGENCY NAME AND ADDRESS

NASA/MSFC

13. TYPE OF REPORT AND PERIOD COVERED

Final Report
June 21, 1995
Period Covered:
June 22, 1995 - June 21, 1995

14. SPONSORING AGENCY CODE

15. SUPPLEMENTAL NOTES

NONE

16. ABSTRACT

The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for
Ada) has successfully created and prototyped a new algorithmic level graphical representation for
Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD
was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and
reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or
source code to support reverse engineering and maintenance. The CSD has the potential to replace
traditional prettyprinted Ada source code. A new Motif compliant graphical user interface has been
developed for the GRASP/Ada prototype.

17. KEY WORDS (SUGGESTED BY AUTHORS)

Ada, reverse engineering, software engineering

19. SECURITY CLASSIFICATION (OF THIS REPORT)

None

20. SECURITY CLASSIFICATION (OF THIS PAGE)

None

18. DISTRIBUTION STATEMENT

Unlimited

21. NO. PAGES

50

22. PRICE

N/A
ASA FORM 1626 OCT 86 ALT

