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Abstract

For monolithic high-Tc superconductors (HTSCs) calculations are presented of: (l) the initial flux jump
field, H0, in melt-processed YBCO based on a field- and temperature dependent Jc, and (2) the radial
and circumferential stresses in solid and hollow cylinders containing trapped magnetic flux. For model
multifilamentary (MF) HTSC/Ag strands calculations are presented of: (1) the limiting filament
diameters for adiabatic and dynamic stability, and (2) the hysteretic and eddy current components of AC
loss. Again for MF HTSC/Ag composite strands the need for filamentary subdivision and twisting is
discussed.

INTRODUCTION

Large-scale applications of high-Tc superconductors (HTSCs) stem not only from their
obviously high Tcs which offer the possibility of operation in liquid hydrogen, liquid nitrogen
as well as refrigerated gases, but also from their high Hc2swhen high operating temperature is
not the primary consideration. The thermal properties central to stable conductor design are
thermal conductivity, K(T), and specific heat, C(T). The former dominates at low
temperatures and there dictates the choice of a dynamic stability criterion. Specific heat takes
over at high temperatures where stability is controlled by adiabatic considerations. The much
higher C(T) of materials at 77 K than at 4 K guarantees a much greater adiabatic flux-jump
stability. Several effects related to stability, while present in LTSC materials, are much more
prominent in HTSCs; for example, a much more pronounced ramp rate dependence of flux
jumping (in non-stabilized samples).I In the first section of this paper, the field dependence of
flux jumping in large monoliths of HTSC, and its associated adiabatic and dynamic aspects,
will be considered. In the next section we calculate the Lorentz-force induced mechanical
stresses that are present in flux-trapped solid cylinders of melt grown YBCO. We then go on
to compare these results to those for hollow cylinders. The discussion on stability then
concludes with a note on flux-jump- and cryo-stabilization of Ag-clad HTSC strands. The
paper continues with a discussion of AC loss in multifilamentary HTSC/Ag composite strands.
Using a model strand configuration, typical hysteretic and eddy current losses are compared
with reference to practically attainable matrix resistivities and twist pitches. We conclude with
a discussion of the particular properties of filamentary subdivision in HTSCs.

MAGNETIC STABILITY OF HTSC MONOLITHS

A well known expression for the initial flux jump field, is Hi0= "_{Tz3C(T)ATo},in which ATo =-
J/(-dJ,./dT). In its more widely used form, in which ATo is replaced by (Tc-Tb),a number of
assumptions have been made: (1) Jc is linearly dependent on T, (2) Jc is field independent, and
(3) the sample is isotropic. These assumptions are convenient, and have worked reasonably
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well for LTSCs. However, Mfiller and Andrikidis 2 have recently developed an expression
which takes into account the field dependence of Jc based on the Kim model, Jc =

J_oHo/(H+Ho). Field dependence of J_ has been considered before, both experimentally 3 and
theoretically using a Kim-type model 4, although Mfiller et al.'s treatment: is the most
complete.

Mfiller et al.'s expression for this modified flux jump field for a semi-infinite slab on the

virgin run is given implicitly by

_(,H_, - ,H I)(IH_[ + Ho) + (]Hcj[ + Ho)(IH , + Ho)Ln(_oo + IH'l !.gIH° [, = Hjo: (1)

Here H0 is the new flux jump field, He is an intemal field due to previous flux jumps (we will
set it to zero), and I4-ois the Kim model parameter. Curves derived from this expression in
case (i) i.@Io= ,,_(H_ -- Hi0), (ii) goHo= 4 T and (iii) goHo= 0.1 T are plotted in Fig. 1. We
have chosen to plot H0 for the virgin run, where we additionally require He = 0, since it does
not involve the past history of the sample, and is easily compared to experimental results.
Following Mfiller et al., in calculating Fig. 1 we assembled previously published5 specific heat
data from two temperature ranges -- 1-17 K and 30-100 K -- extrapolating them both to 26 K
to complete the data set. This causes a discontinuity in slope of C(T) at 26 K and hence in
the slope of the resulting H0.

It is noteworthy that the temperature dependence of H0 responds strongly to the choice of the
Kim field, Ho. It is also expected that the temperature dependence of Jc will also have a strong
influence. We have noted from an inspection of several data sets for melt-processed YBCO
that the combined temperature- and field dependence of Jo can be expressed in the form
J_(T,H) = J_0oexp(-T/T_)Ho(T)/{Ho(T)+H}. In particular, based on data from Maley et al.6, we
have deduced for their sample that J_oo= 5.92 x 105 A/cm:, T, = 19.87 K, and Ho(T) = a-bT
(with a = 2.504 tesla, b = 2.79x10"2tesla/K).

Ignoring for a moment the field dependence, the exponential form of J¢(T) yields ATo = T_,
leading to a "field-independent" H0 of the form _]{x3C(T)T,}. Next, an H0 combining both Jc's
exponential T-dependence and Ho's linear T-dependence was calculated. The new curve, also
plotted in Fig. 1, covers just the region of exponentially fitted J_ data (up to about 80 K); at
higher temperatures, J_ must decrease to zero more rapidly -- linearly would be a good
approximation. The unusual shape of the final curve indicates that H0 is sensitive to the full
T-dependence of J_. Indeed, in one of the first published papers on flux jumping, just such an
effect was taken into account) Given the wide temperature range over which HTSCs operate,
and the wide variation in materials properties within it, inclusion of a T dependence as well as
an H dependence is important for a quantitative description of flux jumping.

An interesting offshoot of the use of Kim-model-Jc field dependence is the prediction of a
new flux jump regime -- that of the solitary flux jump. Flux jumping will occur when the
field (or for a given d, J¢) becomes large enough. In the Bean model this can happen with
equal likelihood anywhere around the M-H loop. However, for a Kim-type model, Jc (and
thus field gradients) will be larger in some parts of the M-H loop than in others. In particular,
two points on a Kim-type M-H loop which occur on the shielding branches, at relatively low
fields (on opposite sides of the M-axis) have maximum overall field gradients. If we imagine
following the trace of an M-H loop, once a flux jump is initiated at these high H-gradient
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Figure 1. H0 and I-_ vs T calculatedfor _ = oo Figure 2. Illustrationof the flux jump regimes.
(Hjo)(_), lat'Io= 4 T (----), and i.tl-Io = 0.1T Hjt-Ip vs I-Io/Hp for H_-Ip =1, where Hp is the
(----). Alsoshownis the resultfor _ = _ (H,T) penetrationfield and _ is the maximum field
(. • •., see text), sweepamplitude. After Mtillerand Andrikidis.2

points, the total field difference is reduced. As H is increased (as we continue to sweep out
the loop) the gradient cannot build back to its previously high value, since Jc(H) is lower. We
can then see that M-H loops executed in a certain range of temperature, and for certain Ho
values will exhibit pairs of "solitary" flux jumps. At lower temperatures, or as Ho --_ oo,
multiple flux jumps will occur (corresponding to the usual case). The solitary and multiple
flux jumps regimes are displayed in Fig. 2. We note that the partial flux jump boundaries
displayed in Fig. 1 will be extended somewhat by the solitary flux jump regime.

Another important idea which needs to be incorporated into the analysis of flux trapping
samples is the influence of cooling on flux jump stability. It has been asserted that for slower
ramp rates the ramp rate sensitivity of _ may be modified by dynamic cooling.: It seems
clear that significant cooling will also occur along a direction orthogonal to the dimension
along which the flux gradient is formed for flux trapping samples.7 This suggests that the
employment of a thin disk geometry may improve the stability of such samples.

It is also important to account for sample anisotropy. If H is parallel to c, then the problem is
essentially isotropic. However, with H perpendicular to c, the stability will presumably be
determined by the weaker of Hfi.__b and H_x. However, this question has not been directly
addressed.

STRESSES IN MELT GROWTH CYLINDERS AND POTTED MAGNETS ARISING
FROM LORENTZ FORCES.

We have calculated the stress for a cylindrical superconductive sample used for flux trapping.
While the literature concerning stresses in superconducting solenoids is extensive, we are
unaware of any solutions for solid cylinders. This type of sample is shown in Fig. 3(a), with
the field applied along the z-direction. Field independent J_ is assumed, and we have set the
crystalline c-axis to be along the z-axis as well, in order to describe the configuration of
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interest for flux trapping superconductors• Superconductive and mechanical properties will
then be 0-invariant. We calculate the stresses after the sample has been set up in the full flux
trapping state (presumably by field cooling), with the resultant flux profile shown in Fig. 3(b).
The Lorentz force is given by F = BrJJ10 (in cgs-practical units). Using dB/dr = 4rdJ10, the
Lorentz force can be re-expressed as a function of position in the sample as

F(r) ---4_'J._:(R - r). (2)
100

Following the procedure used to calculate the solenoidal solutions'9, we start with the
conditions of equilibrium for a 2-D 0-invariant problem in polar coordinates:

a or(r) - Go(r) + F(r) = 0. (3)
"_rGr(r) * r

The problem is similar to that of the spinning disk as described by Timoshenko. ]° Using his
method we find the following expressions for the radial and circumferential (hoop) stress
components, a, and (Se:

ar =-_cR(2 + v)[R - r] --_Nc(3 +v)[R2-r2],
(4)

(3e---._VcR(2 .v)R- 13._NcR(1+2v)r--_Nc(3 .v)R 2 . 18-.N(1+3v)r2.

It can be shown that these expressions satisfy Eqn• 3, above. In cgs-practical units, N¢ =
4rdc2/100,while in SI it is laoJc2. We have applied the boundary condition that cr = 0 at r = R.
crr and (:reare shown as a function of r in Fig. 4 for a sample with R = 1.27 cm and Jc = 109
A/m:. ,:so drops monotonically with r to (NcR2/12)(1-v)at the sample perimeter. _, however,
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has a minimum at r = (8/9)R(1 + v/2)/(1 + v/3), and g, is negative in this region. Physically
this represents the action of the hoop stresses set up in the outermost regions of the cylinder.
At r = 0, g, and ge are maximum and equal; they are given by

rd_R:
_,(7 + 5v) (5)

g_= = 600

in cgs-practical units (A/cm:, cm, dyn/cm:). To convert to SI units (A/m:, m, Pa) multiply the
right hand side of Eqn. 5 by 100po/4rt(= 105, numerically).

Substituting v = 0.3 in Eqn. 5 we find the maximum stress in the cylinder to be given by gm_x
= 0.35BoJc"R:,which can be re-written in terms of maximum (r = 0) field, as gm_ = 0.282
B_:. For these last expressions it is convenient to use SI units where B,,_ is in tesla and c_
is in MPa. This relation is shown in Fig. 5. The tensile strength of polycrystalline YBCO is
about 15 MPa, while for a single crystal, it is closer to 60 MPaJ _ This translates into a
maximum field of 14.5 T for crystalline YBCO, which is above the quench field at any
temperature (see above). If, as an approximation, we set the tensile strength of any grain
boundaries which might be present in this material to 15 MPa (that of the sintered material),
then the maximum field is 7.29 T. This is only somewhat lower than the maximum quench
field (=10 T), and it is only exceeded by _ in a small region near 60 K (under certain
assumptions). We may therefore expect that mechanical integrity is not a problem for these
flux trapping superconductors. However, the strains associated with the stress values listed
above may well degrade Jc, although we have not yet considered this.

Next we go on to consider the same sample, but with an axial hole of radius a. The boundary
conditions in this case are g_ = 0 at r = a and r = R. For the case of superconducting
solenoids, Wilson9 has developed an expression analogous to those above. If Jeff= J¢, these
expressions can be re-written for comparison to the monolithic case as

g (r,a,R) = g (a--'O) + g_aa

ge(r,a'R) -- Go(a--0)+ g_aa (6)
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where

c_aa= N(2 +v)_,g 1 - qr--i- - _(3 * v)a2 1 - q__

where q = 1 for c, and q = -1 for _o. In the above treatment, hollow cylinders and potted
Bi:HTSC/Ag pancake coils give the same results as solenoids. Plots for _, and _e for a =
R/10 are shown in Fig. 4 for comparison to the results for the monolith. We can see that the
presence of the hole decreases at, but increases _o. In Fig. 5, curves of maximum _ and _e
(for a given internal B) are shown as a function of the internal field, B (which is assumed
constant throughout the hole) and compared to the monolith results. For the case with the
center hole, oe still maximizes at the inner boundary, but _ maximizes somewhere within the
structure, as shown in Fig. 4. As we can see in Figs. 4 and 5, with the introduction of a hole,
_r becomes equal to or less than its counterpart for the monolith, while o e becomes equal to or
greater than its counterpart for the monolith. Thus, as shown in Fig. 5, in the limit of a --->0,
the maximum in _,_oleis equal to the maximum value of _,_o,o, while the maximum in _e.hol_is
twice that of _O.mo,o-This agrees with the idea of stress enhancement around holes typically
found in mechanics.

STABILITY IN MULTIFILAMENTARY STRANDS

Superconducting wires (strands) are generally produced in multifilamentary (MF) form. Low-
T¢ strands for accelerator magnet applications, for example, often consist of many thousands of
filaments (e.g. 5,000 to 40,000); they are small in diameter to provide stability and low
hysteretic loss, and twisted together to reduce eddy current loss to some fraction of the
hysteretic value. As we shall see, in HTSC strands filamentary subdivision serves some of the
above functions but also some additional ones. For practical reasons the number of filaments
tends to be smaller and consequently the twisting requirement is less stringent. The first
requirement in MF strand design is to prevent flux jumping. For NbTi, filaments smaller than
about 100 lam in diameter are immune to it. This is also approximately true for HTSC strands
at 4 K. But at 77 K they are adiabatically flux jump stable in diameters as large as several
cm. In general, requirements other than stability tend to dictate the choice of filament
diameter. For LTSCs these are low magnetization and low AC loss. For HTSCs the
dominating requirement has to do with grain alignment. For example in the Ag-clad Bi:HTSC
wires, alignment seems to take place when the superconductor "thickness" is less than about 50
lam. The following account demonstrates that this is certainly compatible with flux jump
stability.

In calculating the filament diameter requirements for flux jump stability two alternative criteria
may be applied -- the adiabatic and the dynamic. The former dominates if the heat capacity is
high and cryocooling can be ignored; in the dynamic case heat conduction to a cryogen bath
must be invoked. The maximum filament diameter under the adiabatic criterion (based on a
slab calculation1:"p.134)in c.g.s, units is

rid= _ 109(3)C(T)ATo/J(T,H) (7)
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The dynamic criterion (based on a cylinder calculation_:'p.156)yields

-- 8Isc /Jc(r,m (8)"' flag X

In these equations C(T) and Ksc are the heat capacity and thermal conductivity, respectively,
of the superconductor (SC), PAgis the silver stabilizer resistivity, _, is the volume fraction of
SC in the composite (herein 0.5) and ATo - J/(-dJ/dT).

The equations can be evaluated using the appropriate cryophysical property data.

Cryophysical Property Data

The temperature dependencies of the relevant thermal and electrical properties of YBCO and
copper (for model calculations of the stabilities of YBCO/Cu composites) were previously
listed.5 In what follows we repeat some of the earlier calculations but for the more realistic
case of YBCO/Ag, since the following data for Ag has recently become available. In addition,
for ATo and Jc(T,H) we draw on new data from Maley et al.6 As indicated earlier the Jc(T,H)
of melt processed YBCO (T¢ = 90 K) is well described by an exponentially decreasing
temperature dependence to about 80 K of the form (5.92 x 105 A/cm2)exp(-T/Ts) with Ts =
19.87 K, combined with a Kim-type field dependence quotient of the form H0(T)/{Ho(T)+H}
in which Ho(T) = a-bT (a = 2.504 tesla, b = 2.79x102 tesla/K). Above about 80 K, J¢ drops
linearly to zero at Tc. Thus at 4 K, ATo = 1", = 19.87 K; while at 77 K, ATo may be
approximated by the usual (Tc-Tb)= 13 K.

Electrical Resistivity of the Silver Stabilizer: Drawn wires of 99.99% Ag and an Ag-
0.1%A1 alloy were annealed in air for 24h/840°C during which they became charged with
oxygen and the alloy internally oxidized to Ag plus AI203. Their measured resistivities were:
Ag: P4K= 9.27 n_cm, P77z= 290.56 nf_cm; Ag+Ox: P4K= 247.42 nf2cm, P77z= 624.51
nD.cm.

Magnetoresistance of Silver: The magnetoresistivity of Ag over the temperature range 4.2-
159 K.has been measured by Iwasa et al._3 Based on their data we have deduced that at 4.2
K a field of 5 T adds to Ag a resistivity of 11.61 nff2cm. In the stability calculations we
assume this to be temperature independent and add it to both the 4.2 K and 77 K resistivities
to take into account the effect of a 5 T field.

Maximum Filament Diameters for Flux Jump Stability

Based on Eqns. (8) and (9) the maximum filament diameters for adiabatic and dynamic flux
jump stability, respectively, are as depicted in Table 1. The table indicates that at 4 K the
dynamic criterion applied to the pure-Ag-stabilized composite guarantees the stability of
filaments of the size expected in practice (certainlyless than 100 pro). Some dynamic stability
is lost when oxide-strengthened Ag is employed, in which case the adiabatic and dynamic
results are similar. At 77 K both YBCO and YBCO/Ag are "overstable" from both adiabatic
and dynamic standpoints; filaments thicker than those that would ever be encountered in
practice are immuneto flux jumping.
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Table I. Maximum Filament Diameters for

Adiabatic and Dynamic Stability

ADIABATIC
I

I |
4K 77K

I I
0T 5T 0T 5T

69 I.tm 213 I.tm 87 mm 130 cm

DYNAMIC
I

I i
4K 77K

i II I [ i

Ag _ Ag
0T 5T 0T 5T 0T 5T 0T 5T

339 [am 697 I.tm 66 I.tm 198 I.tm 6.3 rnm 93 mm 4.3 mm 64 mm

Strand Stability and Cryostability

Other aspects of strand stability, including maximum adiabatic strand diameter and
cryostability have been adequatelyexplored in an earlier publication.5 An importantfeature
of strandcryostability is the possibility of occurrence,as the result of some disturbance,of the
"minimum propagating zone" or MPZ, and the rate at which it expands (VMr_ to quench (and
thereby protect) the coil in which it was imbedded. In the referencejust cited it is clear that at
77 K the adiabatic VMpz is SOslow that special precautions must be taken to avert hot-spot
formation and possible strand burn-out.

AC LOSS

Hysteretic and Eddy Current Loss in HTSC/Ag MF Strands

At low temperaturesthe attractivecharacteristicof the HTSC is its high upper critical field.
Since advantage would not be taken of this property in an AC application it is doubtful if
HTSCs would ever replaceLTSCs in such conditions. For this reason we confine our analysis
of AC loss to the high temperatureregime around77 K.

According to the Carr's "anisotropic-continuum" representation of a multifilamentary
superconductor_4the AC loss experienced by a superconducting strand in a transverse magnetic
field consists of two components -- hysteretic (a property of the irreversible superconductor
itself) and eddy current (due to currents circulating around the composite). At low frequencies
of the applied magnetic field the hysteretic component in c.g.s practical units is given by

Qh-- 8x1043rt Lied H,_ Wlcm3 (10)
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where Hmis the amplitude of a sinusoidal field of frequency f. Again at low frequencies the
eddy current component is given by

(2,= 1o-7 H,."f W/cm3 (11)
2 P_a,,

where Lp is the twist pitch and p._m,, is the transverse resistivity of the strand in n_cm (which
in this case we will take to be the matrix (Ag) resistivity). To provide an estimate of the
magnitudes of these quantities to be expected in a typical situation, we imagine fields of
amplitudes, Hm,of up to 800 Oe, to be applied to a series of typical MF strands.

Our basic model MF strand is in the form of a central filament surrounded in succession by
rings of 6, 12, and 18 filaments. A double-stack strand is composed of a six-around-one
bundle of the above, for a total of (1+6+12+18)x7 = 259 filaments. Let strands of 1, 7, 19,
37, and 259 filaments of Jc(0T) = 1.228x104A/cm'-each carry a critical transport current of 10
A. The corresponding filament diameters under these conditions would then be 322, 122, 74,
53, and 20 lain -- a realistic sequence. The Hm-proportional hysteretic power loss would then
be as depicted in Fig. 6.

To model the eddy current loss we equate p± with the 77 K resistivity of oxidized Ag-0.1%A1,
viz. 624.51 n_cm, and assume twist pitches, Lp, of 1, 0.5, and 0.25 cm. The corresponding
eddy current power loss is also depicted in Fig. 6. The maximum possible eddy current loss
occurs when the filaments are all fully coupled. In this case Q_ is equivalent to the hysteretic
loss of a monocore of critical current density Lie equal in diameter, D, to that of the whole
filamentary bundle. Obviously the ratio Q,o_pldQ_,o_o_is just Qcoupl_4_..Represented by the
dashed line in Fig. 6 it places a limit on the magnitude of the low frequency eddy current loss.
The possibility of eddy current loss is most serious in strands with very large numbers of fine
filaments -- e.g. those intended for LTSC accelerator magnet windings. But even in the
present example, for _ = 800 Oe, the ratio of Q,(most strongly coupled) to Qh(finest
filaments) is 94.9/4.2 = 22/1.

I I I I
lo6

/_ (iii)
/ Figure 6. Per-unit-volumeAC lossfor a seriesof

80 - / _ modelMF YBCO/Ag strandsof fixed2.(= 0.5) and
/ Qh Ic (= 10 A), hencefixed SC area,but with filament

(v_ numbers/diametersof: (i) 259/10lain,(ii) 37/26l.tm,
._ 60 (iii) 19/36I.tm,(iv) 7/60 _tm,and (v) 1/158I.tm.

/ Depicted is the hysteretic loss, Qh, and the eddy
/ current loss, _, correspondingto strand twist

40 / pitches,Lp, of (i) 0.25, (ii) 0.5, and (iii) 1 cm.
/ Also shownas a dashedline is the limiting eddyo / current loss, that for a fully coupled strand, equal to

20 Qn.monoco_/_/_..The Qhdataare validfor Hmgreater
(ii)(i) than the full penetrationfields of: (i) 10, (ii) 26,
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Twist Pitch, Matrix Resistivity, and Filament-Diameter Considerations

Based on the above physical-propertydata set the ratio QJQh is just 0.7681(Lp'/d.m)Hmwhich
emphasizes the importance of reducing both twist pitch and filament diameter in the
minimization of eddy current loss. For equal loss at Hm = 500 Oe, for example, d,m = 384

Lpcm2. When d = 24 pm this calls for a twist pitch of 0.25 cm. For the strand diameter D =
d_(N/k) = 0.46 mm considered in these examples, this corresponds to a pitch/diameter ratio of
5.5/1 which would be quite tight even for a NbTi/Cu strand. The alternative to reducing Lp is

increasing the matrix resistivity.

If sufficient twist or resistivity cannot be introduced, full electrical advantage cannot be taken

of multi filamentary subdivision, especially since fine filaments often turn out to be
interconnected by "bridges". Nevertheless there are other advantages to be considered: (1)
Reduction of filament diameter aids in HTSC grain alignment. (2) The ductile interfilamentary

matrix with its crack-stopping potential can be expected to contribute a higher strain tolerance
to the finer-filament composite; in which case even bridging may be an advantage.
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