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1. Introduction

During the fifth semi-annual period under this grant we have pursued the following

activities:

• Characterization of the purity and further purification of lysozyme solutions: These efforts

are summarized in Section 2.

• Crystal growth morphology and kinetics studies with tetragonal lysozyme: Our observations

on the dependence of lysozyme growth kinetics on step sources and inpurities has been

summarized in a manuscript which was accepted for publication in the Journal of Crystal

Growth; see Attachment 1.

• Numerical modelling of the interaction between bulk transport and interface kinetics: For a

detailed summary of this work see the manuscript (Attachment 2) which was accepted for

publication in the Journal of Crystal Growth.

• Light scattering studies: This work has been summarized in a manuscript that has been

submitted for publication to the Journal of Chemical Physics; see Attachment 3.

2. Protein characterization and purification

Since our crystal growth studies indicated the presence of impurities that impede step

propagation on HEW lysozyme, we have systematically investigated the protein impurity

contents of the stock material obtained from various suppliers. Two lysozyme materials were

then further purified.

2.1. Protein impurity analyses

We have analyzed lysozyme (LYS) obtained from Sigma Chemical Company,

Boehringer-Mannheim Corp. (BM) and Seikagaku America, Inc. (SK) for higher molecular

weight protein impurities. The dissolution of these materials in buffer showed already significant
differences. Sigma LYS was more difficult to dissolve and filter (0.45 urn). It was also turbid

before filtering and upon standing for more than an hour at 5 °C a precipitate formed.

Electrophoretic analyses were performed with 12.5%T or 8-25 %T SDS PAGE gels

utilizing a silver staining system sensitive to 0.1 ng [X]. Sigma LYS contained four

contaminating proteins. Their molecular weights M were determined by comparison with

authentic protein standards. The band at M ~ 18 kDa is suggestive of avidin that is present in

egg white and has a monomeric M ~ 18-19 kDa. However, immunoblotting indicated that this

protein is not avidin. Sigma LYS also contained a M ~ 28 kDa LYS dimer in SDS PAGE gels.

The identity of this band was confirmed by binding a specific LYS antibody in immunoblotting

(western blot). Two more contaminants were identified as ovalbumin (OVA, M = 66 kDa) by

immunoblotting and ovotransferrin (OVT, conalbumin, M ~ 78 kDa) by its relative migration in



SDS gels compared to an authentic OVT standard. The protein identities of OVA and OVT were

further supported by RP FPLC retention time data for the authentic standards and impurity peaks.

In order to determine the quantities of these contaminating proteins by scanning

densitometry, we established concentration vs. optical density curves in SDS PAGE gels with

authentic protein standards of OVT, OVA and LYS. For the evaluation of the unknown 18 kDa

component, we assumed the same staining behavior as LYS. The results are summarized in

Table 1. Based on this assumption, the total contaminating protein concentration in weight

fractions were approximately: Sigma 5.7 %, Boehringer-Mannheim 3.8 %, and Seikagaku 1.5 %.

2.2. Lysozyme purification

Sigma LYS was purified by cation exchange Fast Protein Liquid Chromatography (CIE

FPLC). Starting with 1 g of LYS, approximately 200 mg were recovered as electrophoretically

pure as defined above. The CIE separation was isocratic in 10 mM CAPS buffer at pH = 10.4

with sodium chloride. A HiLoad semi-preparative CIE FPLC column yielded adequate

resolution. All fractions were collected directly from the column in sodium acetate buffer to

lower the pH to less than 7.0.

The purer SK LYS, when furtherpurified by the procedure used for Sigma LYS, retained

significant impurity concentrations (mostly LYS dimer). Hence, a new procedure was developed

using a pH gradient in 10 mM CAPS/sodium phosphate buffer. With a pH gradient from 10.4 to

12.0, the LYS could be purified with 30 %w recovery, however the sodium phosphate buffer

complicated SDS PAGE purity determinations by causing LYS streaking. The same pH gradient

in CAPS buffer alone and at low ionic strength caused precipitation of LYS near its isoelectric

point. Use of 20 mM CAPS at pH = 11.0 with a sodium chloride gradient (0-200 mM in 1 hr)

resulted in good separation. With significant ionic strength and a pH lower than the LYS pi, this

procedure yields a soluble preparation with maximal recovery of approximately 50% of

electrophoretically homogeneous LYS.

2.3. Conclusions

It is probable that all crystal growth and structure studies employing egg-white LYS have

been contaminated by protein impurities on the order of l-6%w and, hence, may not represent

the intrinsic behavior of LYS. Future studies of LYS should be conducted with enzyme which

has been demonstrably purified to the extent exhibited in this work or data should be given

detailing why the high impurity levels of commercial LYS will not affect the results.

The formation of the LYS dimers, which appears to occur at high pH values, but not at

typical crystal growth conditions (see Appendix 3) will be further investigated.
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Protein

Table 1. Summary of Protein Impurities in Lysozyme

Sigma BM SK

OVT (78 kDa)

OVA (66 kDa)

0.2 %w

0.04 mol%

3.8 %w

0.8 mol%

0.7 %w

0.4 mol% monomer

none detected

2.2 %w

0.5 mol%

0.45 %w

0.2 mol%

none detected

none detected

0.5 %w

0.3 mol%

Unknown (18 kDa) 1.0 %w as LYS

0.8 mol%

Total

Contaminants 5.7 %w

2.0 mol%

l . l%wasLYS

0.8 mol%

3.8 %w

1.6mol%

1.0%wasLYS

0.8 mol%

1.5 %w

1.1 mol%
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Abstract

Interferometric microscopy was used to investigate the growth morphology and kinetics of

{110} and {101} faces of tetragonal lysozyme crystals. Solutions were prepared from as-received

Sigma and Seikagaku material, and Seikagaku lysozyme further purified by cation exchange liquid

chromatography under salt-free conditions. The protein composition of the solutions was

characterized by SDS electrophoresis with silver staining. We found that on crystals smaller than

about 150 |im, 2D nucleation sites were randomly distributed over the faces. With increasing

crystal size, surface nucleation predominantly occured at facet edges and, eventually, at facet

corners. This reflects the higher interfacial supersaturation at these locations. However, on some

crystals, we observed 2D nucleation at preferred non-corner sites presumably associated with

defects. Upon abrupt temperature decreases, dislocation step sources formed on faces that

previously had none. Within groups of dislocations, the dominating step source changed

frequently. Depending on the activity of the dislocation groups, growth rates of different crystals

differed by up to a factor of five during the same experiment. On facets with dislocation step
sfc

sources, step generation by 2D nucleation became dominant above a critical supersaturation a . In

the absence of dislocations, nucleation-induced growth set in at a < a*. In solutions with higher
jfe

impurity concentrations, the density of the steps generated by 2D nucleation was higher and a

was lower. Hence, it appears that impurity adspecies are active in surface nucleation. The

presence of less than 1 % of protein impurities with molecular weigtht (MW) > 30 kD had

significant effects on the crystallization kinetics. Step motion was impeded even at high a,

presumably through blocking of kink sites. In solutions without these high MW impurities, facets

containing step sources did not grow below a= ln(C/Csaf) < 0.5. In the less pure solutions such a

"dead zone" was not observed. Hence, it appears that in lysozyme dead zones are caused by non-



protein impurities. In growth from the highly purified material no growth sector boundaries were

visible, in contrast to the as-received lysozyme, and striae formation on growth temperature

changes appeared drastically reduced.

1. Introduction

Lysozyme crystal growth has been investigated by standard [1-3] and interferometric

optical microscopy [1,4-7], electron microscopy [8], atomic force microscopy (AFM)[9-11] and

scanning tunneling microscopy [12]. These works showed that growth occurs through the

spreading of steps generated by dislocations or 2D nuclei [4,5,8-12] and kinetics is influenced by

the pH, precipitant concentration and impurities [1-5]. In this respect, as anticipated earlier

[13,14], there appears to be no fundamental difference between the crystallization of (globular)

proteins and small molecules [15].

Our recent high-resolution in-situ interferometry with digital signal processing [16,17],

supported by numerical simulations of bulk transport [18] and its coupling to interface kinetics

[19], has elucidated the dependence of the facet morphologies on the nonuniformities in solute and

impurity supply. Fluctuations in the kinetics, that were briefly indicated in Ref. [16], and their

possible role in lattice defect formation, will be dealt with in detail in Ref. [20]. The present paper

deals with the averaged local normal growth rate, vicinal slope and tangential (step) velocity, and

their dependence on supersaturation/temperature, layer source type and activity, and solution

impurity content. Averaging was performed over the duration of several fluctuations, i.e. over

periods of O(10 min). Both {110} and {101} faces were studied.

2. Experimental

The experimental procedures, solution preparation and the solubility data underlying the

supersaturation values, CT = ln[C/Csat(T)J, were as described earlier [1,16,21]. Solutions were

prepared from hen-egg-white lysozyme supplied by Sigma Chemicals and Seikagaku Kogyo. In

two sets of experiments, Sigma and Seikagaku materials were used as received. Electrophoretic

(SDS-PAGE) analysis, using silver staining, revealed considerably larger concentrations of higher

molecular weight (MW) impurities in Sigma stock than in Seikagaku lysozyme [17]. In addition,



we purified Seikagaku material by cation exchange under salt-free conditions, using a column

equilibrated at pH = 4.5, and isocratic elution at pH = 9. As the comparison of the gels in Fig 1.

shows, after this purification no higher MW protein impurities could be detected even on

overloading with as much as 80 ^g of protein per lane.

3. Morphology observations

3.1. Surface (2D) nucleation

Fig. 2 shows the development of the morphology of a (101) face with crystal size and

supersaturation during growth from a Sigma solution. On the small crystal (Fig. 2a),

interferometric intensity changes occurred uniformly across the facet, and growth was observed

only at a > 1.3 (see Sect. 4.1.). Hence, we conclude that growth steps were generated by

randomly distributed 2D nucleation, in agreement with earlier electron microscopy and AFM

observations with lysozyme [8,9]. With increase in supersaturation/growth-rate and facet size,

layer generation preferentially occurred along the crystal edges. The specific nucleation sites

moved with time; compare Figs. 2b and 2c. With further increase of facet size and a, the steps

were predominantly generated at the facet corners; Fig. 2d. We observed this trend in numerous

experiments with {101}and {110} faces growing from Sigma as well as the purer Seikagaku

solutions. This transition in nucleation locations reflects the increase in a-nonuniformity with

crystal size and growth rate [18,19,22,23].

In a few observations, however, steps persistently originated at locations near corners or

edges even at small crystal sizes, or low growth rates; see e.g. the frame sequence of Fig. 4 in Ref.

[17]. Yet, these crystals did not grow at a < 1.6. Thus, apparently no active dislocation step-

sources were present, and the pinning of the step generation locations was probably due to other

lattice defects [24-26] that can locally enhance 2D nucleation [26-29].

3.2. Dislocation step sources

In a (110) growth experiment with a Sigma solution, we first lowered the supersaturation

in six steps from a = 1.13 to a = 0.26, and then raised it to 1.38 in four steps over a total period

of about 30 hours. The interferograms of Fig. 3 present selected morphology responses to these



a-changes. The four growth hillocks that sequentially dominated the facet morphology (Figs. 3a -

3d) remained at their respective positions throughout two or three supersaturation steps, during

which the crystal grew from -1.5 to ~2 u.m per step. Note that these hillock are not positioned at

the edges, where the higher a [18,22,23] favors 2D nucleation. Thus, we conclude that the

hillocks represent dislocation growth spirals [8,9,30]. The change of the leading hillock is due to

the fact that, at the altered conditions, the new hillock provides a faster growth rate than the old

one. Only growth hillocks of equal activity can maintain coexistence on a facet.

Similar changes of the leading dislocation source have been observed in inorganic crystals

[31-33] and have been interpreted in terms of complex dislocation sources, consisting of several

dislocations [30]. In inorganic systems, the dislocation sources' interplay is usually reversible:

changing a to a previous value leads to the reemergence of the hillock that previously dominated

under this condition [32]. For our system, as reflected by Figs. 3a and 3d, this was apparently

not the case. Furthermore, in inorganic crystals the new dislocation step source usually possesses

higher activity as manifested by a higher hillock slope. Comparing, for instance, Figs. 3a and 3b

we see that in our system the new hillock slope is much lower than the slope of the previously

existing one. Assuming that the slope is not affected by impurities, and increases at most linearly

with a [30,31,34] this difference cannot be accounted for by the lower supersaturation. Yet, this

behavior can be explained if we assume that, in contrast to inorganic crystals [32], the distance

between the dislocations constituting the growth sources in Fig. 3, varies. Then, increase in the

distance between dislocations in the old growth source will lead to a drop of activity [30-32],

whence even a dislocation group with a lower original activity can dominate the facet. This

apparent mobility of the dislocation lines in lysozyme is probably related to the substantially lower

unresolved critical shear stress in protein crystals.

On renewed increase in a, in analogy to the (101) face of Fig. 2d, step generation was

localized to the upper right and lower left corner of the facet in Figs. 3d and 3e, respectively.

While the dislocations' activity in step generation increases less than linearly with a [31,34], the



activity of 2D nucleation is an exponential function of a [35,36]. Hence, as shown by Fig. 3e, at

higher supersaturations 2D nucleation became the dominating layer generation mechanism.

3.3. Creation of dislocation step sources

In another (110) growth experiment from a Seikagaku solution, initially no dislocation

step-sources were apparent. Similar to the (101) face of Fig. 2a, we see in Fig. 4a that at smaller

crystal size and growth rate (see Sect. 4.3.), the facet was flat, indicating growth by uniformly

distributed 2D nuclei. The higher growth rate at higher a in Fig. 4b results, again similar to Fig.

2, in dominance of the nucleation along the facet edges.

Next, using a ramp rate of 0.5 °C/min, we lowered the temperature from 19 °C (a = 1.80)

to 12 °C (a = 2.84) for 3 hours and then to 10 °C (a = 3.22) for about 4 hours. Then T was again

increased to 20 °C (a = 1.64). The facet morphology remained essentially the same as in Fig. 4b.

The only effect of these sharp supersaturation changes seemed to be the appearance of a second

crystal on top of the first one. No interference fringes appeared on its top face. Hence, the new

crystal was substantially misoriented with respect to the first one, and, thus, no steps originated

from the reentrant angle between the two crystals. The new crystal grew much more rapidly than

the first one, even at low a, as can be seen from their relative change in lateral dimensions in Figs.

4c - 4f. Thus we see that two crystals can grow with greatly differing rates under identical solution

conditions. From this difference in growth rate, and since the new crystal nucleated at lower T and

higher a, we speculate that it possesses a substantially higher defect density than the first crystal.

After overnight growth at a = 1.64, a hillock was observed at the lower left part of the facet

of the first crystal, Fig. 4c. Since this hillock existed for about a day, in which the studied face

grew about 13 (im, it probably indicates outcropping dislocations at this face location. Then, the

facet became covered by steps coming from the steeper hillocks depicted in Fig. 4d. The

supersaturation was kept constant for several hours, during which the top face grew by about 4 |im

and the growth hillock became much steeper, Fig. 4e. After an another overnight growth at a =

0.83, the hillock's steepness increased further, Fig. 3f, in spite of the lower supersaturation. On



further decrease of a to 0.55, the hillock slope remained practically unchanged; see Sect 4.3 for

kinetics details.

The continuing increase of the hillock slope at constant or decreasing a can be explained as

follows. The dislocation groups active in Figs. 4c - 4f have probably formed in response to the

drastic temperature lowering/supersaturation increases, likely by the trapping of a foreign particle

or a drop of mother liquor [37]. Since initially no growth activity resulted, the group must have

had a practically zero net Burgers vector, combined with a large circumference of the created

dislocation bunch [30-32]. Closely packed dislocations tend to diverge during growth since this

decreases the elastic energy of the group [38]. When the distance between any pair of neighboring

dislocations reaches about 10 critical 2D-nucleus radii [30,39,40], one (or more) dislocation

group(s) will start generating growth steps, provided that it has a shorter circumference and greater

net Burgers vector. Further, as the dislocations continue to fan out, their activity will increase. If

several of the secondary (or tertiary,...) bunches attain growth activity, they will compete, similar

to the observations in Sect. 3.2. This may lead to the changing growth hillocks pattern in Figs. 4d

-4f.

4. Kinetics measurements

4.1. (101) face growth from Sigma solution: 2D nucleation step sources

Fig. 5 presents the dependencies of the normal growth rate R, local slope p and tangential

(step) velocity v on supersaturation at a center and edge location of Fig. 2. For comparison, we

have also plotted some R(a) and vf G) data from our previous measurements [1,4,5]. We see that

in the current case, growth started at a considerably higher a ~ 1.4. This is probably due to the

presence of dislocation step sources in the earlier experiments, while Fig. 2 clearly indicated

growth step generation by 2D nucleation only. Note also that at cr >2.5 (T < 14°C), p(a) rises

less rapidly than in the lower supersaturation range. This is most likely due to reduced layer

generation at the lower temperatures. The lower slope at the facet center than at the periphery, Fig.

5b, was related to nonuniform surface impurity concentration, see details in Refs. [17,19].



The tangential velocity, Fig. 5c, is very low at a < 1.5, but sharply accelerates at slightly

higher a. This indicates the strong action of step blocking [41-43] impurities at low growth rates.

As R sharply increases due to the fast increase in p, the exposure time of the crystal surface

between the passing of steps decreases [44-46]. This leads to lower impurity surface

concentrations, weaker impurity action, and thus to a steep rise in vf o). We have observed similar

effects for dislocation-generated growth, where the much weaker p((j) dependence resulted in a

less pronounced rise in R(cr) [4,5].

At a > 2.4, v decreases with increasing supersaturation. Such deceleration of v has not

been observed before, neither in protein nor in small molecule crystal growth. Several

mechanisms, or a combination of them, could be responsible for the observed effect. It could be

related to the decreasing temperature through the activation energies of the incorporation processes.

Further, since adsorption is always exothermic and thus enhanced by lower temperatures, the

quantity of impurity adspecies may increase. Another cause, in analogy to inorganic crystals [32],

may be a variation in the step patterns generated by 2D nucleation. In addition, the decreasing vf a)

could be due to overlapping of the step (bulk [30,47] or surface [30,48,49]) diffusion fields with

the higher p. Evidence for the participation of surface diffusion in the incorporation process comes

form the strong coupling between fluctuations of the local slope and tangential velocity [20], and

from the response of the surface morphology to o-nonuniformity [17].

Another possibility for a decrease in v at high a/low T is a change in the lysozyme species

in the solution. This may either be a conformational modification, or a change in the aggregate

state of lysozyme molecules [3,50,51]. This, however, should also be reflected in the v(a) of the

{110} faces, which, as we will see below, is not the case. For further evidence for the absence of

equilibrium aggregates in lysozyme solutions see Ref. [52].

From the above we can conclude that the non-monotonic behavior of R at cr > 3 is due to

the opposite nonlinear changes in p and v at these supersaturations.



4.2. (110) face growth from Sigma solution: dislocation step sources

Fig. 6 presents kinetics data for the face depicted in Fig. 3, together with high-a results

obtained on another crystal whose morphological evolution was presented in Fig. 7 of Ref. [17].

Based on the morphology observations of Fig. 3, we concluded that, at low o-s, growth steps

were generated by different dislocation groups with varying activity. This is also reflected in the

non-monotonic behavior of p(cr) for o < 1, Fig. 6b. At low a, in the impurity influenced region,

higher/? leads to greater v. Similar behavior has been observed in the same a-range on the (101)

lysozyme face [5], and has been attributed to time-dependent impurity adsorption, see also the

discussion in Sect. 4.1.

In the high supersaturation region ((T > 1.3), we observed 2D nucleation localized at the

outcrops of lattice defects as described in Sect 3.1. We speculate that the decrease in the step

generation activity at higher a, leading to lower p, is due to some growth-induced spatial

rearrangement of the defects. The great differences in p and v measured at the facet periphery and

center at a > 1.5 are due to solute and impurities nonuniformities and are discussed in detail in Ref.

[17]. In this G region, a decrease mp leads to an increase in v. This indicates strong overlapping

of step (surface) diffusion fields for this face, as discussed in Ref. [17].

For 1.4 < a < 2.1, vat the facet edge increases roughly linearly with supersaturation. This

permits for a simple evaluation of effective step kinetics coefficients. Using the common

definitions

ff , (1)

we obtain bstep = 8xlO'6 cm/s, fistep = 1.4xlO"4 cm/s. In (1), the product QC accounts for the

change in mass density during crystallization, and Q= 3xlO~20 cm3 is the volume per lysozyme

molecule in the crystal. Comparing the bstep value to the one in the purer, Seikagaku solutions,

Sect. 4.3, we see that it is much lower in the Sigma solution. This means that some of the

impurities present in the system, see Sect. 2, are active even at high supersaturations. This

conclusion is in agreement with our observations of impurity influence on microscopic growth

morphology [17], that show strong impurity effects in the same supersaturation range. The fact



that, in spite of the impurity action, v increases roughly linearly with a, could indicate impurity

action by partial blocking of kink sites at the steps [53], in agreement with our assumptions made

in Refs. [17,19] to quantitatively account for the observed vicinal slope distributions across facets.

The R-data for a > 2 in Fig. 6a, strongly deviate from our earlier measurements in which R

increased with a up to a = 3. Contrary to the above observation for the (101) face in the same

solution, the v(l 10) at the facet edge, where the steps are generated, increased monotonically with

a, Fig. 6c. Thus the reason for much lower R values, and for the decrease of R with a in the

present experiment is the drop in step generation activity, indicated by the p(0) at high

supersaturation; Fig. 6b.

4.3. (110) face growth from Seikagaku solution

The dependencies of R, p and v on the supersaturation for this case are depicted in Fig. 7.

The measurements were performed on two crystals, in two different experiments: the morphology

of the first is shown in Fig. 4, and of the second, in Fig. 4 of Ref. [17].

In the 2D nucleation dominated region, the local slope, Fig. 7b, did not differ for the two

crystals. It was up to 2-3 times lower than for growth from Sigma solutions in Fig. 6. Moreover,

if no active dislocations outcropped on the studied face, 2D nucleation activity became significant

only at a > 1.8. This is much higher than for the Sigma solutions, where growth by 2D nucleation

consistently started at a = 1.1 - 1.3. These two facts may indicate the participation of the protein

impurities in the processes of surface nucleation, similar to deductions for dislocation-free (101)

ADP faces [54].

Fig. 7c shows that at a < 0.5, v is practically zero, the crystal does not grow although

dislocation step sources are available. Comparing this to the vf G) in Fig. 6c, we see that in the

Sigma solution the "dead zone" is narrower, or even absent. The same dependence of the "dead

zone" width on the source material was observed on the (101) lysozyme face [5]. Since now we

know that Sigma lysozyme contains higher amounts of protein impurities, we can speculate that the

"dead zone" at low a is caused by non-protein foreign species.
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Between 0.5 < a < 2.3, v sharply accelerates. Since this is accompanied by a fast increase

in /?, we can associate it with the shortening of the exposure times of the terraces between the

passing of steps as the growth rate increases [5,44-46], see Sect. 3.1. At a > 2.3 the tangential

velocity is a roughly linear function of supersaturation. This allows us again to determine the two

step kinetic coefficients, as defined in Sect. 4.2: bstep = 1.2xlO"5 cm/s, fistep = 2.3xlO~4 cm/s.

The difference between v at edge and center, when the facet width is > 200 |im, is discussed in

Ref. [17].

4.4. Growth from purified solution

The (110) tangential velocity obtained on growth fronts of comparable average slope with

the three types of solutions are compared in Fig. 8. In the experiment with purified lysozyme, no

dislocations outcropped on the studied face. Accordingly, the crystal grew only at a >1.4 by 2D

nucleation. However, in contrast to the less pure cases (see also Sect. 4.1.), there was no region

of rapid non-linear increase in v(a). We see that with the purified lysozyme, v is faster than in

Sigma and Seikagaku solutions. Since they were obtained with comparable slope (step density),

these differences in kinetics are likely due to impurity action even at high supersaturations. The

step kinetics coefficients, defined by Eq. (1), are bstep = 1.7xlO-5 cm/s and fistep = 3.6xlO'4

cm/s. For the (101) face £}step = 2.8xlO~4 cm/s [4,5]. This may be why at high 0, where impurity

effects are weaker, the (110) face grows faster and the crystals are more isometric. At low

supersaturations, impurities have a stronger effect on the (110) face, the (101) face grows faster,

and the crystals become elongated in the z-direction.

To assess possible effects of solution purity on crystal quality, we used differential

interference contrast microscopy to compare two crystals grown from the less pure Sigma and the

purified solution, respectively. During the growth, the temperature was changed in 1 °C steps for

the first crystal, and in 2, 6 and 12 °C steps for the second. In spite of these drastic changes, we

see that the resulting striations [1] are substantially weaker for the purer solution. Further, no

boundaries between the (110) and (101) growth sectors are visible in the second crystal. Thus,

high purity of the source material is highly beneficial for the quality of the grown crystals.
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5. Conclusions

We have investigated the growth morphology and kinetics of tetragonal lysozyme crystals

in unstirred solutions with characterized protein composition. We have shown that the presence of

less than 1 % of high MW protein impurities strongly affects growth kinetics and degrades the

compositional uniformity of the crystals.

In the absence of dislocations cropping out on a face, the crystals did not grow at

supersaturations below a threshold of 1.1 - 1.8 for both {110} and {101} faces. At high

supersaturations, growth layers were always generated by 2D nucleation. The threshold

supersaturation for growth by this mechanism increased with higher solution purity. 2D nucleation

occurred uniformly over the facet under conditions where supersaturation gradients were

insignificant. Larger crystal sizes and higher growth rates resulted in localization of 2D nucleation

to facet edges and corners, where the supersaturation is higher. On some crystals, 2D nucleation

always occurred at preferred non-corner sites, presumably at outcrops of structural defects.

In the supersaturation range in which growth steps are generated by dislocations, the

normal growth rate varied, presumably due to changing activity of the dislocation sources. This

was accompanied by frequent changes of the specific step generators that dominated the growth

morphology. Since in some occasions the victorious source possessed weaker activity than the

previously dominating one, we interpret these transitions in terms of spatial rearrangements of the

dislocations within the respective sources. By rapid dropping of the growth temperature, we were

able to induce dislocation growth step source on a crystal that previously had none. The activity of

this dislocation group increased at constant conditions, presumably because the constituent

dislocations attained divergent orientations to lessen the elastic energy of the group.

Protein impurities affect growth kinetics by slowing down step propagation in the whole

range of supersaturations investigated. A dead zone at a < 0.5 was present in growth from purer

solutions and, thus, is likely due to non-protein impurities. The growth rate of a (101) face

changed non-monotonically with supersaturation at a > 2.8 (T < 12 °C). Enhanced impurity

adsorption at this low temperature is the most probable cause. In solutions that did not contain
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these impurities, the density of steps generated by 2D nucleation was lower. This, and the increase

in the threshold supersaturation for 2D nucleation, make us believe that the impurity adspecies on

the interface facilitate surface nucleation.
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Figure captions

Fig. 1. Protein composition of hen-egg-white lysozyme solutions prepared from Sigma,

Seikagaku and purified Seikagaku stock. Sodium dodecyl sulfate polyacrilamide gel

electrophoresis (SDS PAGE) with silver staining. Protein loads indicated for each lane.

Fig. 2. Development of the growth morphology on a (101) face of a tetragonal lysozyme crystal,

with no active dislocation step sources, growing from a Sigma solution. Twenty minutes

elapsed between (b) and (c). Supersaturations indicated for each frame.

Fig. 3. Development of the growth morphology on a (110) face of a tetragonal lysozyme crystal,

with several dislocation step sources with varying activity, growing from a Sigma

solution.

Fig. 4. Development of the growth morphology on a (110) face of a tetragonal lysozyme crystal,

growing from a Seikagaku solution. Between (b) and (c) the supersaturation was

temporarily increased to 2.84 and 3.22 (see text), resulting in the dislocation step sources

seen in (c) - (f).

Fig. 5. Dependencies of (a) the normal growth rate R, (b) local slopep and (c) tangential velocity

v, on the supersaturation a, measured at two positions on a (101) face of a crystal

growing from a Sigma solution.

Fig. 6. Dependencies of (a) the normal growth rate R, (b) local slope p and (c) tangential velocity

v, on the supersaturation a, measured at three positions on a (110) face of a crystal

growing from a Sigma solution. Arrows indicate sequence of a-changes.

Fig. 7. Dependencies of (a) the normal growth rate R, (b) local slope p and (c) tangential velocity

v, on the supersaturation a, measured at two positions on a (110) face of a crystal

growing from a Seikagaku solution. Arrows indicate crystal size increase.

Fig. 8. Dependencies of the tangential velocity von the supersaturation a, measured at the edges

of (110) faces of crystals growing from Sigma, Seikagaku and purified solutions. The

respective slopes for the Sigma and Seikagaku runs are shown in Figs. 6b and 7b. For

the purified solution data, 3xlQ-3 <p(a) < 6xlQ-3.
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Fig. 9. Comparison of the quality of crystals grown from (a) Sigma and (b) purified lysozyme

solutions. Differential interference contrast microscopy images. Temperature steps to

induce inhomogeneities indicated in each frame. Growth from purer solution results in

much weaker striation formation in response to (larger) temperature/supersaturation

changes and absence of growth sector boundaries. Note that the focal plane is in the

interior of the crystals; hence, the edges of the larger crystal in (b) appear more blurred.
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Abstract

A model for the evolution of facet morphologies in growth from solutions is presented.

The numerical model links, for the first time, bulk transport of solute and impurities in a solution

growth cell with microscopic interfacial kinetics processes. The macroscopic transport is dealt

with as in the 2D model [H. Lin et al., J. Crystal Growth 151 (1995) 153] of a crystallization cell

used for lysozyme in our laboratory. The microscopic kinetics is incorporated through a meso-

scale continuum model of growth step motion in response to the interfacial concentration

distributions. Local growth step velocities are linearly interpolated from the values obtained at the

grid points of the bulk transport simulation. Experimentally determined kinetics and transport

coefficients are employed. We find that the facets remain macroscopically flat, in spite of the lower

nutrient and impurity concentrations in the facet center regions. This stabilization is achieved

through the formation of a microscopic depression in the facet, with nonuniform vicinal slope (step

density). If the step density in the facet center exceeds a certain value, no further stabilization

results on further steepening, and the facet loses its macroscopic morphological stability. This loss

of morphological stability depends sensitively on the value of the steps' kinetic coefficient. For

pure lysozyme-precipitant solutions, we obtain microscopic depressions with a higher slope at the

facet center than at the edge. However, with an impurity that impedes step kinetics and is

preferentially incorporated into the crystal, the simulations produce microscopic facet depressions

with higher slope at the edge. Impurity depletion at the interface, due to low initial concentration

and/or slow diffusion leads to mixed shapes, and eventually to shapes typical of growth from pure



solution. Quantitative agreement with facet morphologies observed on lysozyme crystals [P.O.

Vekilov et al., JCG, accepted] is obtained, assuming overlap of the steps' diffusion fields.

1. Introduction

In a previous paper [1], we numerically simulated the growth of lysozyme crystals by

coupling, on a macroscopic scale, transport in the bulk solution to isotropic interface kinetics

through a simple proportionality between normal growth rate and local interfacial supersaturation.

Both, convective-diffusive and purely diffusive transport simulations resulted in interfacial nutrient

concentration nonuniformities of up to 20%. Within the realm of this limited kinetics model, these

nonuniformities result in macroscopic depressions in the facet center; see also Sect. 3.1 below. In

reality, however, a macroscopically planar growth shape is retained [2-4].

Our recent high-resolution measurements showed that this stabilization is achieved through

the formation of a microscopic depression in the facet, with nonuniform vicinal slope (average step

density) [5,6]. For pure lysozyme-precipitant solutions, we obtained depressions with a higher

slope (step density) at the facet center than at the edge. This has been predicted theoretically [7-11]

and illustrated in detail by Monte-Carlo simulations [12-14]. However, in the presence of an

impurity that impedes step kinetics and is incorporated into the crystal, we observed, for the first

time, microscopic facet depressions with a higher vicinal slope at the edge [6]. Motivated by these

findings, we have now incorporated anisotropic interface kinetics into our earlier model. This is

achieved by relating the local supersaturation to the step (tangential) velocity (rather than the normal

growth rate R) and obtaining R as the product of the locally varying slope (step density) and step

velocity. Based on experimentally determined transport and kinetics coefficients, this approach

reproduces the observed vicinal morphologies.

2. Simulation model

The geometry and macroscopic transport aspects of the simulation model are identical to

those used in our previous model for the isothermal solution growth of lysozyme [1]. In this work

we found that convection causes only small changes in the distribution of the supersaturation



across the horizontal facet of the crystal considered here. Hence, to save computer time,

convection was ignored in the morphology simulations presented here.

2.1. Coupling between bulk transport and step motion

The layer growth mechanism, which has been clearly established for tetragonal lysozyme

[15-17], was incorporated as follows. As depicted in Fig. 1, growth step generation is assumed to

take place at the facet edges only. This is typical for the high supersaturations assumed in the

simulations [6,18]. From an assumed initial vicinal slope p°, initially equidistant positions of the

steps on the top facet are calculated as

*°(/i) = n(h/p°), (1)

where 1 < n < N is the specific step number, and h = 110 A is the unit cell dimension of lysozyme

in the <110> direction [19,20]. Due to the symmetry of the system, only step positions on one

half of crystal facet are calculated. Note that even for a p° as low as 10'3, N=27 for one half of

the facet of the 600 \im wide crystal. Hence, the step positions represent a much finer scale than

the 6 points on the macro-grid used across the half-width of the crystal for the bulk transport

calculation in Ref. [1]. To somewhat improve the resolution in the macroscopic concentration

distributions in the current model, we increased the number of grid points across the facet from 11

to 41.

The initial steps are assumed to move with tangential velocity v(n). This is obtained by

linear interpolation of the v(X)-values at the fixed macro-grid points X^ see Fig. 1. The v(X)-

values are calculated according to various kinetics laws v[o(X)J; see below. As the steps move,

their positions are periodically updated after time steps A/ used in the transport calculation

according to

xU+U = x(J\n) + v (n )At . (2)

The At is chosen much shorter than macroscopic diffusion times. The supersaturations at the

macro-grid points are updated with each time step.



New steps are generated at the edges with the rate Ve/d^, where ve and de = h/pe are the

tangential velocity and the interstep distance at the facet edge, respectively, with pe the local slope

at the edge. For simplicity, we assume that pe is proportional to the supersaturation at the edge Ge.

Thus, the interstep distance at the edge is calculated according to

de = d°e (a°/ae) , (3)

where d°e and o° are the initial interstep distance and supersaturation at the edge, respectively.

When a new step is generated, that is as soon as x(l) > de, the old steps are renumbered by

substituting n+l for n. As soon as a step reaches the facet center (x(N) = 300 fim), it is

annihilated, and the total number of steps is decreased by 1. Since step generation and annihilation

occur independently, N changes with the evolution of the vicinal shape. On "steeper" vicinal

shapes, N can reach several hundred.

From the set of step positions (x(n)} at a given time, the interstep distances

X(n), (4)

and the local slopes

p(n) = h/d(n), (5)

are calculated. The slopes at the macro-grid points p(X) are then obtained by linear interpolation

from neighboring p(n)- values. The normal growth rate is calculated from

R(X) = P(X) v[a(X)] , (6)

with the supersaturation defined as a = ln(p, /pf j , where pi is the transport-dependent interfacial

lysozyme concentration and p'? the equilibrium concentration of lysozyme at the growth

conditions. The new /?fX)-values are then used to update the boundary conditions (Eqs. 6 and 7

in Ref. [1]) for the transport calculations. Thus, Eq. (6) couples step kinetics and bulk transport.

Note that in Ref. [1] the normal growth rate was denoted by Vf rather than R, and the



supersaturation was defined as a linear rather than logarithmic function of solute concentration. In

the present work, we have studied only the evolution of the vicinal morphology of the top facet;

see Ref. [1] for geometrical details. The normal growth rate on the two side faces of the crystal

was assumed to be uniform and equal to the value at the edge of the top face.

2.2. Kinetics models and coefficients

2.2.1. Normal growth. As reference case for the effects of various step kinetics relations we

have first, as in Ref. [1], ignored step motion and assumed that for this normal growth mode

R(X) = bface a(X). (7)

The experimental value of the face kinetic coefficient bface = 8.5 x 1CH* cm/s [6,18], is based on the

above definition of supersaturation and, differs from the kinetic coefficient (3 used in Eq. (7) in

Ref. [1]. For this and all following cases we set the initial supersaturation o° = 2.78.

2.2.2. Step kinetics without step interaction. As a first approximation to the real system, we

assumed that the local step velocity v(X) is a function of the supersaturation o(X) only,

v(X) = bstep o(X). (8)

This applies to systems in which the characteristic surface diffusion length is much less than the

interstep distance. In accordance with our findings with pure solutions [6], we set the step kinetic

coefficient, bstep = 1.7 x 10'5 cm/s, and the initial slope at the facet edge p°t = 5 x 10'3. Note that,

with bface - bstep Pe > me above values result in the same bface as in Sect. 2.2.1, which allows for a

quantitative comparison of the results obtained for these cases.

2.2.3. Step kinetics with step field overlap. In the companion paper [6], we provided evidence

for the overlapping of both surface and bulk diffusion fields [21-23] in our system, rather than

direct incorporation with bulk step field overlap only [21,24-26]. Then the dependence of

tangential step velocity on the local supersaturation can be written as [6]



,
+ kp(X)

where k p is a Peclet number characterizing the relative importance of serial bulk/surface diffusion

and incorporation into steps from the surface, defined as k = (k2/Ash)(l + 6/A) [6]. The value of k

was estimated as follows. For the characteristic surface diffusion length we assumed A = 1 (im

[6]. The characteristic distance for surface-step exchange, As, was set equal to A [6]. Since Eq.

(9) was obtained for the characteristic length for volume-surface incorporation (impedance of

adsorption reaction) being large compared to A , we assumed A > 10 A . As above, the step

height h = l \OA. In Ref. [1] we obtained for the width of the solute depletion zone (diffusion

boundary layer width) 5= 150 }im. However, in the reference experiments [6] the normal growth

rates were considerably lower than in the earlier simulation [1]. Hence, the characteristic solutal

convection velocities resulting from the lower interfacial concentration gradient were likely lower

too, resulting in an increase in 6 . Therefore, we set 8 = 300 (im. Under these assumptions we

obtained k ~ 3000. The initial slope at the edge was again set to p°e = 5 x 10'3 [6]. The step

kinetic coefficient for this case was chosen as bstep = 2.72 x 10~4 cm/s. This value yields an

effective step kinetic coefficient bejfep = bstep/(l + kp) similar to the previous case.

2.2.4. Impurity effects on step kinetics. For the case of step motion impediment by foreign

adspecies, we assumed, as suggested by our experiments [6,18], that only impurities at steps

affect step propagation. Since bstep is considered inversely proportional to the distance between

free kinks along the step [27], we obtained [6]

V(X) =

Here, p° is the initial impurity concentration and ^ is a phenomenological coefficient for impurity

action on step motion. Since we have observed that the presence of impurities does not strongly

lower the tangential velocity, we assumed that % = 2. This value ensures, in agreement with

experiments, that v is about half that obtained for the pure cases. The values of bstep and k were



the same as in the previous case. The slopes observed in growth from impure solutions were

considerably higher than in the pure case [6]. Thus, we set p° = 10'2.

For the bulk transport of the impurities additional assumptions were made. Since the gel

electrophoresis results [6] showed that the protein impurities that are preferentially incorporated

into lysozyme have a much higher molecular weight, the impurity diffusivity D2 was set at half the

value for lysozyme [1]. Furthermore, as estimated from the gel results, p° = 2 mg/ml, i.e. 25

times lower than the initial lysozyme concentration. To calculate the impurity incorporation rate

into the crystal and, hence, the impurity flux towards the interface, we assumed an adsorption

coefficient a =100. This adsorption coefficient is the ratio of impurity concentration in the

adsorption layer to that in the bulk. For the volume of the adsorption layer we take the product of

surface area and step height h. Since the change in lysozyme density with crystallization

(pf^Vpf0') > 16, the above value of a ensures a considerably higher impurity to lysozyme ratio in

the crystal than in the solution, as the gels in Ref. [6] indicate. Based on these parameters, we

used the interfacial impurity boundary condition

n = ap2R. (11)

3. Results and discussion

3.1. Normal growth

Fig. 2a shows the normalized supersaturation a(X)/ae and growth rate R(X)/Re

distributions across the facet after 5,10 and 20 hours of crystal growth. The respective values at

the facet edge, ae and Re, used for normalization, are listed in Table 1 together with the initial

values. Since proportionality between normal growth rate and supersaturation was assumed, see

Eq. (7), their normalized distributions coincide. The surface shapes in Fig. 2b were obtained by

integrating R over time, i.e.,

T

£/?(X,f)Af . (12)
f=0



One sees that, in contrast to the experimental observations [6], the facet depression increases with

time in response to the increasingly nonuniform interfacial supersaturation.

3.2. Step kinetics without step interaction

The results for cr(X)/cre, p(X)/pe and R(X)/Re based on Eq. (8) are given in Fig. 3a. For

the evolution of the ae-, pe- and /?e-values see Table 1. The decrease in pe results from the

assumed proportionality between step generation rate and supersaturation at the edge of the facet.

The decrease in supersaturation reflects the depletion of the nutrient. The interfacial

supersaturation is higher at the facet edge than in the center, in agreement with experimental

observations [28] and various modeling results [1,14,29-31]. Note that the nonuniformity in

supersaturation remains essentially constant at about 2%, in contrast to the increase to almost 4% in

the normal growth mode. The difference of R/Re between the edge and center remains less than

0.3%. Hence, even the simplest linear assumption for v(a) results in uniform R over the facet.

As shown in Fig. 3b, the facet depression is less than 1.5 |im across 600 urn, i-e., the

facet remains macroscopically flat. However, on a microscopic scale the interfacial shape is

slightly convex. Of a pair of steps that moves down the supersaturation gradient, the trailing step

is always exposed to higher supersaturations and, thus, moves faster than the leading step. As a

consequence the step density increases towards the center of the facet. This result corroborates the

prediction of stability theory of polyhedral crystal growth [7-9]. That is, the slope increases with

distance from the facet edge to compensate for the transport-induced supersaturation

inhomogeneity. Note that the slope ratio Pc/pe is less than 1.03, in contrast to our experimental

finding of about 2 [6]. As discussed in Ref. [6], this discrepancy is likely due to strong overlap of

the step supply fields, that was unaccounted for in the above simulations.

3.3. Step kinetics with step field overlap

For this case, the step velocity was calculated from Eq. (9). The resulting distributions of

a(X)/cre, p(X)/pe and R(X)/Re are shown in Fig. 4a and 4b. The corresponding values of ae, pe

and Re are again listed in Table 1. In spite of increased nonuniformity in supersaturation, the



nonuniformity in normal growth rates is further reduced to about 0.2%. Moreover, due to the

strong step field overlap, the slope ratio Pc/pe increases to 1.6. This is in good agreement with the

observations in [6]. The corresponding interfacial shapes are shown in Fig. 4c. Note that, despite

the increase of interfacial supersaturation nonuniformity with time, the facet depression decreases.

In order to investigate the effects of the facet step kinetic coefficient bstep on the

morphology, we simulated a case with a doubled value (bstep = 5.44 x 10'4 cm/s) and otherwise

same conditions. As illustrated by Fig. 5a, the initially doubled normal growth rate results in a

stronger nonuniformity of the interfacial supersaturation. Note the increase of Pc/pe to 12 in Fig.

5b. This nonuniformity in vicinal slope is about six times larger than the experimentally observed

one [6]. The corresponding strongly convex facet shapes are shown in Fig. 5c. The continuous

deepening of the facet depression indicates that further increases in the slope in the center region

can no longer compensate for the cr-nonuniformity. When the steps already compete for nutrient,

the nutrient utilization cannot be further increased by further increases in step density. As a

consequence, the nonuniformity in R/Re increases with time and, eventually, morphological

stability is lost. The two cases dealt with in this section well illustrate the sensitive response of the

microscopic interface shape to changes in the step kinetic coefficient.

3.4. Impurity effects on step kinetics

Fig. 6a presents the evolution of the nonuniform interfacial impurity distribution obtained

for this case. One sees that the preferential impurity incorporation into the crystal causes lower p2-

values at the facet center than at the edge. This is due to the more ready replenishment of the

impurity to the edges. As the crystal grows, the impurity in the solution is continuously depleted.

This is illustrated by the consecutive horizontal concentration profiles, taken at the crystal half-

height, depicted in Fig. 7a. Figs. 6b-d present the results for o(X)/(ye, p(X)/pe, R(X)/Re and z(X).

for this case. Since our assumptions for the impurity effect cause a reduction in growth rate, the

curves were chosen for 10, 20 and 40 hours of crystal growth.

From Fig. 6c we can deduce that initially the growth steps are more retarded at the

periphery of the facet than in its center. Hence, we obtain p//?e-values lower than unity. After
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about 7 hours of growth (not shown in the figure), the slope at the edge was about 2.5 times that at

the facet center. This magnitude is in fair agreement with the experimental results (see Fig. 5, 6,7

in Ref. [6]). Correspondingly, as depicted in Fig. 6d, a microscopically concave interface is

obtained, in contrast to the convex vicinal shapes of growth from pure solutions. Note that during

this initial phase the nonuniformity in impurity distribution (Fig. 6a) is much more pronounced

than that in the lysozyme supersaturation. This is the result of the lower diffusivity and preferential

incorporation of the impurity.

As growth proceeds, with continuous depletion of the impurity, its impeding effect on

kinetics is reduced. Hence, the growth rate increases (see Table 1) and the nonuniformity in

lysozyme supersaturation becomes comparable to that of the impurity concentration. This results

in a transition of the growth morphology from the impurity-conditioned, concave shape to the

solute-conditioned, convex shape after about 20 hours. Such a transition was also observed in our

morphological studies of growth from impure solutions (see Figs. 7c and d in Ref. [6]).

4. Summary and Conclusions

We have numerically simulated the development of interface morphologies and kinetics

during the growth of tetragonal lysozyme crystals. For the first time, our model links bulk

transport of solute and impurities in a solution growth cell with microscopic interfacial kinetics

processes. This description of the dependence of step generation and propagation on the transport-

conditioned solution composition at the interface yields microscopic interface profiles that are in

good agreement with experimental observations.

We found that, irrespective of the specific formulation, anisotropic interface kinetics tend to

result in uniform normal growth rates over the crystal facet and, thus act morphologically

stabilizing on a macroscopic scale. This is in agreement with general observations of

macroscopically flat growth facets in the presence of nonuniform solute supply.

On a microscopic scale, in growth from pure solutions, the vicinal slope at the facet center

is higher than at the edge. This convex shape compensates for the lower supersaturation and,

hence, lower step velocity in the center region. If no step interaction is assumed, the slope ratio
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between the center and the periphery is inverse proportional to the ratio of the local

supersaturations. For the crystal size considered, this ratio remains below 1.02. However, if

step-field overlap is assumed, using a Peclet number compatible with the experimental

observations, the slope at the facet center can be up-to 2 times as high as at the edge. This is in

good agreement with experimental values. If the step density (vicinal slope) in the facet center

exceeds a certain value, no further stabilization results on further steepening, and the facet loses its

macroscopic morphological stability. This loss of stability depends sensitively on the value of the

steps' kinetic coefficient. Similarly, the initial vicinal slopes used in the simulations must be

realistic. Excessive assumed slopes cause nonuniformities in supersaturation and growth rate that

overpower the stabilizing effect of kinetics.

If step motion-impeding impurities are incorporated into the crystal, their lower

concentration at the facet center results in faster step velocities and, thus, lower slope in this

region. This concave shape also stabilize the facet morphology. If the impurity diffusivity is

lower than that of the solute, during growth the interfacial impurity concentration decreases more

rapidly than the interfacial supersaturation. This can cause a transition from the impurity-

conditioned concave to the solute-conditioned convex vicinal interface shape.
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Table 1. Compilation of simulation results.

Case

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Time [h]

0

5
10

20

0

5
10

20

0

5
10

20

0

5
10
20

0
10

20
40

ffe

2.78

2.37

2.15

1.69

2.78

2.42

2.26

1.98

2.78

2.38

2.17
1.75

2.78

1.96
1.57

0.95

2.78

2.39
2.05
1.22

Pe
—

—

—

—

5 x lO-3

4.35 x lO-3

4.07 x lO-3

3.56 x lO-3

5 x lO-3

4.28 x lO-3

3.91 x lO-3

3.16x10-3

5 x lO-3

3.53 x 10-3
2.86 x 10-3

1.74 x 10-3

l .OxlO-2

8.61 x lO-3

7.36 x 10-3
4.4 x 10-3

Re[A/s]

23.63

20.15

18.29

14.41

23.64

17.90
15.64

11.96

23.64

20.0
18.12

14.35

47.27
32.45
25.50

14.48

8.13
14.27

13.63

8.69
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Figure captions

Fig. 1. Model for step motion in nonuniform supersaturation at faceted interface. Upper part:

meso-scale view of vicinal interface; continuum coordinate x for step position. Lower

part: macroscopic view of interface with supersaturation distribution and discrete grid

points (Xi) used in macroscopic transport simulation.

Fig. 2. Effects of normal growth from pure solution, (a) Distributions of normalized

supersaturation and normal growth rate across the facet, (b) Facet shapes after 5, 10 and

20 hours of growth, dashed line: initial shape.

Fig. 3. Effects of step kinetics without step field overlap in growth from pure solutions, (a)

a(X)/oe, p(X)/pe and R(X)/Re . (b) z(X) after 5, 10 and 20 hours of growth, dashed

line: initial shape.

Fig. 4. Effects of step field overlap in growth from pure solutions, (a) G(X)/oe, and R(X)/Re.

(b) p(X)/pe . (c) z(X) after 5, 10 and 20 hours of growth, dashed line: initial shape.

Fig. 5. Effects of increased the step kinetic coefficient, (a) cj(X)/<je and R(X)/Re. (b) p(X)/pe .

(c) z(X) after 5, 10 and 20 hours of growth, dashed line: initial shape.

Fig. 6. Effects of impurity-impeded kinetics, (a) P2(X)/P2£. (b) o(X)/ae and R(X)/Re, (c)

p(X)/pe . (d) z(X) after 10,20 and 40 hours of growth, dashed line: initial shape.

Fig. 7. Concentration profiles in the solution at crystal half height: (a) impurity, (b) protein.
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Interactions in under- and supersaturated lysozyme solutions.

Static and dynamic light scattering results.

Martin Muschol and Franz Rosenberger

Center for Microgravity and Materials Research

University of Alabama in Huntsville, Huntsville AL 35899, USA

We have performed multi-angle static and dynamic light scattering studies of lysozyme

solutions at pH = 4.7. The Rayleigh ratio RQ and the collective diffusion coefficient Dc were

determined as function of both protein concentration cp and salt concentration cs with two different

salts. At low salt concentrations, the scattering ratio Kcp/Re and diffusivity increased with protein

concentration above the values for a monomeric, ideal solution. With increasing salt concentration

this trend was eventually reversed. The hydrodynamic interactions of lysozyme in solution,

extracted from the combination of static and dynamic scattering data, decreased significantly with

increasing salt concentration. These observations reflect changes in protein interactions, in

response to increased salt screening, from net repulsion to net attraction. Both salts had the same

qualitative effect, but the quantitative behavior did not scale with the ionic strength of the solution.

This indicates the presence of salt specific effects. At low protein concentrations, the slopes of

Kcp/Ro and Dc vs. cp were obtained. The dependence of the slopes on ionic strength was modeled

using a DLVO potential for colloidal interactions of two spheres, with the net protein charge Ze and

Hamaker constant AH as fitting parameters. The model reproduces the observed variations with

ionic strength quite well. Independent fits to the static and dynamic data, however, led to different

values of the fitting parameters. These and other shortcomings suggest that colloidal interaction

models alone are insufficient to explain protein interactions in solutions.



I. INTRODUCTION

The difficulty of growing protein crystals has become an impediment to molecular structure

determinations. The crystallization conditions depend on a large number of parameters. These

include the solution temperature and pH, precipitant type and concentration, protein concentration

and purity. The incremental variation of all these parameters in screening for crystallization

conditions is very time consuming. In addition, many proteins are only available in jig quantities.

Therefore it is important to establish correlations between readily measurable solution properties

and crystallization conditions. Both static and dynamic light scattering have been applied in studies

of protein solutions for decades, primarily to obtain molecular weights [1] and diffusivities [2]. In

protein crystallization studies, light scattering was used to determine nucleation conditions and

associated solution parameters [3-13].

Recently, George and Wilson [4] employed static light scattering to determine the sign and

magnitude of the second virial coefficient to characterize the net interactions of proteins in

undersaturated solutions. They found that reported crystallization conditions for numerous

globular proteins in various precipitants correlate with a band of slightly negative virial

coefficients. These results motivated us to study protein interactions in under- and supersaturated

lysozyme solutions with simultaneous static and dynamic light scattering. In particular, we

explored the changes in diffusivities and scattering intensities with protein concentration at several

fixed salt concentrations employing two different salts. Furthermore, we tested the applicability of

a colloidal interaction model to lysozyme. We modeled the dependence of the scattering intensity

and diffusivity on ionic strength employing a DLVO potential for colloidal interactions. Values for

the net protein charge Ze and Hamaker constant A// were obtained for different approximations to

the electrostatic repulsion term.

In the following, we first introduce the theoretical framework for the presentation of our

light scattering data in Sect. DL The sample preparation and experimental techniques are described

in Sect. in. Sect. IV contains the results. The data are discussed in terms of a colloidal interaction

model in Sect. V. A summarizing discussion of our findings is given in Sect. VI.



II. THEORETICAL CONSIDERATIONS

Macromolecules in solutions scatter light due to the thermally induced fluctuations in local

concentration. To relate the scattering caused by the protein to its properties, the excess scattering

intensity per unit volume and solid angle is normalized by the incident intensity. This Rayleigh

ratio RQ can be expressed as [14]

Re = KMcpP(q)S(q} . (1)

Here, K is the system-specific constant
2

dn

with no the solvent's refractive index, NA Avogadro's number, A the wavelength, (dn/dcp) the

refractive index increment of the protein,' where cp is the protein's mass density. M is the

molecular weight of the protein (solute). P(q) and S(q) are the form- and static structure-factor,

which account for intraparticle and interparticle interference effects, respectively. The length scale

over which light scattering probes the solution is set by the scattering wave number

4nn .

where 9 is the scattering angle. With its radius a ~ 20 A [15], and thus, a « q'1 , lysozyme is a

Rayleigh scatterer, for which P(q) = 1. The mean experimental protein spacing d = np~
i/3, where

np is the protein number concentration, equals 7.2 nm at the lowest concentration. Since this is

considerably shorter than our range for the inverse wave number, 36 nm< q ~ l < 120 nm, our

solution conditions fall within the long wavelength limit d « q'1 . In this limit the static structure

factor S(q=0) can be described by a virial expansion in the solute concentration . To first order in

cp , Eq. (1) becomes [16]

M

82 is the second virial coefficient, which is positive for net repulsion, negative for net attraction

and vanishes for ideal, "noninteracting" particles. Thus, for fixed solute concentration, Eq. (4)



indicates that net attractive/repulsive interactions enhance/reduce the light scattering intensity

above/below the value KMcp characteristic of an ideal system. Given that P(q) = 1, a comparison

of Eqs. (1) and (4) identifies the static structure factor S(q=0) as the ratio of the measured

scattering intensity to its ideal solution value.

Dynamic light scattering (DLS) measurements utilize the temporal correlations of the

scattering intensity fluctuations, which are related to the Brownian motion of the solute. For the

general theory and typical applications of DLS see Refs. [2, 17-21]. In the following, we limit

ourselves to the hydrodynamic regime [22] which pertains to the long wavelength limit defined

above, and to measurement times long compared to the time scale T/ for direct (non-hydrodynamic)

interactions. As suggested in Ref. [23] we identify T/ with the mean time between protein

collisions. According to Eq. (7.8.5) in Ref. [24] T/ = (SnDoa n^)'1, where the diffusivity DO is

as defined below. At the lowest concentration cp = 2.5 mg/ml, with the protein radius a ~ 20A

and DO = 1 1 x 10'7 cm2/s [15], we obtain T/ = 1.8xl(H> s. For the measurement time we took

the decay rate of the correlation function at the largest scattering angle, which is TD ~ 2x10'^ s.

This is an order of magnitude larger than the collision time, and, thus, the above temporal

constraint is fulfilled.

In this hydrodynamic regime, diffusivities derived from DLS represent the collective

diffusion constant Dc [23, 25]. Including hydrodynamic interactions H(q) in the Oseen

approximation, one can relate Dc to the solute properties in the form [22, 25, 26]

Here DO is the single particle diffusion constant obtained in the limit cp-+ 0, i.e., for vanishing

protein-protein interactions. DO is related to the hydrodynamic particle radius a/, via the Stokes-

Einstein relation

(6)



where T\Q is the solvent viscosity. From Eqs. (1) and (5), one sees that both scattering intensity

and diffusivity depend on direct interactions via the static structure factor, while hydrodynamic or

indirect interactions affect the diffusivity only.

The static structure factor S(q-O) and the hydrodynamic interaction term H(q=0) can be

related to a microscopic interaction potential W(r) through the radial distribution function g(r)

[23]. In the dilute gas approximation, i.e. for sufficiently weak interactions [27]

(7)

In this approximation, linear expansions in terms of the solute volume fraction 0 yield [14]

S(q=0,<t>) ~ l - k s < t > , H(q=0,<t>) = - kH <t> (8)

where the slope of the intensity data

oo
f i ,

(9)

and the slope of the hydrodynamic interactions

(10)

establish the connection with the interaction potential W(x). The above F(x) ~ 1 + x [14, 28] and

the coordinate x = r/2a - 1 is the rescaled surface separation of two solute particles. Expressing

Eq. (4) in terms of the volume fraction, using Eq. (8), one gets

(ID

The corresponding linearizes form of Eq. (5) is then

(12)



II. EXPERIMENTS, DATA PRESENTATION AND EVALUATION

Hen egg white lysozyme is a globular protein of approximately ellipsoidal shape with two

minor axis of 3.3 nm and a major axis of 5.5 nm diameter [15]. It is widely used as model

system for protein crystal growth studies [29-31]. Prior to the light scattering experiments, we

have analyzed lysozyme obtained from several commercial sources (Sigma, Boehringer-Mannheim

and Seikagaku). SDS polyacrylamide gels, overloaded and silverstained, revealed various high

molecular weight protein contaminants in all samples [32]. Six-times recrystallized and lyophilized

Seikagaku had the least protein contaminants. It was used without further purification.

The protein was dissolved in two different solvents: 50 mM sodium acetate (NaAc) buffer

at pH = 4.7 with sodium chloride added, or NaAc buffer alone ranging from 50 mM to 2.5 M in

concentration. Most of the NaAc concentrations were chosen such that their respective ionic

strength corresponds to one of the NaCl solutions used. The total ionic strength / is defined as

2, (13)

where the c; are the concentrations of free ions of valence zi.. Thus, for the NaCl solutions, the

ionic strength equals the molar NaCl concentration plus a small contribution from the 50mM NaAc

buffer. For the NaAc solutions, we calculated I from the concentration of free ions in the pure

NaAc buffer via the Henderson-Hasselbalch equation [33]. At pH = 4.7, the result is [Na+] =

[Ac~] ~ 0.47x[NaAc]. Due to the relatively low molar concentrations of the protein, its

contribution to 7 and corresponding shifts in buffer ion concentration can be neglected, except,

possibly, for cp > 50 mg/ml in the 50mM NaAc solution.

Note that the above high NaAc concentrations cause a significant change in the solution

viscosity. These must be corrected for in the data evaluation, as discussed below. Hence, we

have measured kinematic viscosities and densities of the NaAc solutions with a Cannon-Ubbelohde

capillary viscometer (size 50) and a standard pycnometer, respectively. The results are given in

Table I. For the NaCl solutions we used the viscosity of the 50 mM NaAc buffer.



All chemicals used were reagent grade. Deionized water was used as solvent. For a given

series of measurements, the precipitant concentration cs was fixed and the protein concentration cp
t

was varied between 2.5 to 70 mg/ml. All solutions were filtered through Millipore Millex-Gv 0.22

|im syringe filters. To remove residual dust, and air bubbles introduced by filtration, the samples

were centrifuged (Savant HSC10K at 9000 rpm) for 20 minutes. The pH of the final solutions

was checked and remained at the pure buffer value within ±0.05. Only the 50 mM sodium acetate

solutions showed a slight (< 0.15) but systematic pH increase at protein concentrations above

50 mg/ml, indicating that the solutions were somewhat under-buffered. Actual lysozyme

concentrations were determined by UV-absorption measurements using (X280 = 2.64 ml/mg cm

[34]. Protein concentrations were converted into volume fractions <|> = v cp, using v = 0.703

ml/g for the specific volume of lysozyme [34].

The scattering cells consisted of borosilicate vials (10 mm ID) with stoppers. The cells

were thoroughly cleaned with a cell washer (NSG Precision Cell) using a 1.5% tergazyme cleaning

solution. After repeated rinses with deionized and filtered water the cells were vacuum dried and

capped.

The light scattering set-up was as in Ref. [13] except for the use of an argon-ion laser

(X = 514.5 nm, light control mode, output power 80 mW). The sample temperature was

maintained at T = 2010.1 °C. All measurements were performed in vv-polarization at 10 different

scattering angles 6 between 30°-120°, with a typical measurement duration of 2 min/angle. The

observed scattering volume of the goniometer varies with l/sin(6). Applying that correction

resulted in angle-independent scattering intensities except for small glare contributions (<2%) at the

two most forward angles. For given protein concentrations, we measured the scattering intensity

and diffusivity at all angles. Before each measurement with a different protein concentration,

absolute intensities were obtained through calibration with HPLC grade toluene. The toluene

standard was filtered (0.1 |im) and sealed with a Teflon stopper under a nitrogen atmosphere. The

Rayleigh ratio of toluene was taken as RVV = 23.S x lO^cnr1 (Table 2.1.1 in Ref. [19]).

Rayleigh ratios of the protein solutions were determined for each scattering angle after subtracting



the background signal of the buffer/salt solution. Based on no = 1.33 of water and an interpolated

value for (dn/dcp) of 0.227 ml/g, our instrument constant is K = 8.53 x 10'3 mol cm2/g. For the

(dn/dcp) interpolation we used bracketing values given at 590 [35] and 488 nm [36].

IV. RESULTS AND DISCUSSION

Neither scattering intensities nor diffusivities revealed any angular dependence, confirming

the above estimate that both, the form factor P(q) and the static structure factor S(q) assume the

q = 0 limit in our systems. Hence, the measured Rayleigh ratios and diffusivities were averaged

over all scattering angles, and the standard deviations were taken as measurement error. In

addition, prior to nucleation, the data were time-independent. Nucleation lead to time- and angle-

dependent increases first in scattering intensity, then in diffusivity.

The scattering intensity data for the various salt concentrations are presented in Figs, la and

Ib as Debye plots of the scattering ratio Kcp/Rg vs. protein concentration cp and corresponding

volume fraction 0. One sees that in both precipitant systems Kcp/Rg follows the linear behavior

expected from Eqs. (4) and (11). The straight lines in Figs, la and Ib represent least square fits to

the data, with the intercepts at cp = 0 yielding a molecular weight of approx. 13,600. This is

below the published value of 14,600 [37]. The difference can be accounted for by uncertainties in

both /?vv of toluene and (dn/dcp), as well as small differences in observed scattering volume of the

aqueous protein sample and the toluene standard.

From the slopes of the fitted lines in Figs, la and Ib, using Eq. (11), we obtained the

values for k$ and corresponding 82 listed in Table II. For the NaCl solutions, the virial

coefficients agree well with data by Wilson [38]. The linearity of the Debye plots persists

throughout the whole range of protein concentrations investigated, including supersaturated

solutions (see full symbols in Fig. la). This validates George and Wilson's implicit assumption

that B2-values measured in undersaturated, low concentration solutions also characterize protein

interactions in supersaturated solutions. Their correlation of slightly negative 82 values to

crystallization conditions is also confirmed for our supersaturated solutions.



The diffusivities obtained from single-exponential fits to the correlation data at the various

salt concentrations are plotted in Figs. 2a and 2b vs. cp. A second-order cumulant analysis [39]

yielded Dc values which were only a few percent higher than the single exponential fits. The

corresponding polydispersities were less than 0.03. Hence, the error in Dc introduced by the

single-exponential fit is negligible. Note that, at the lowest salt concentrations in NaAc, the Dc

curves show pronounced nonlinearities. At the highest salt concentrations, the nonlinearities are

only weak. For intermediate ionic strengths the linear behavior expected from Eq.(12) persists out

to the highest protein concentrations. The nonlinear behavior of the diffusivities indicates that

protein transport is more sensitive to multi-body interactions than the scattering intensity. Linear

interaction theory accounts for two-body interactions only. From fits to the linear range of the data

according to Eq. (12), we obtained the values for kp listed in Table II.

Note that in the NaAc solutions the DO values are shifted to lower values with increasing

c5. On correction for the increasing viscosity % (see Table I) in Eq. (6), however, all values fell

within 3% of each other. The resulting DO = 1 l.lxlO~7 cm2/s is identical to that obtained in the

NaCl-solutions, and slightly larger than the often referred to DO = 10.6xlO'7 cm2/s [15]. This

higher value likely reflects the higher purity of our starting material. Using the above DO and

7]s = 1.014 cp, the hydrodynamic radius obtained from Eq. (6) is ah = 1-9 nm.

Several of the 2.5 M NaAc solutions nucleated during the measurements (see full symbols

in Fig. 2b). Under these conditions, the measured diffusivities represent average values for the

nuclei and the unaggregated solute [40]. The corresponding intensities fluctuated widely and were

not included in Fig.la. These fluctuations were due to the opposing effects of absorption and

enhanced scattering by the nuclei.

Two of the supersaturated solutions did not nucleate during the measurements. Their

diffusivities follow the linear concentration dependence of the undersaturated solutions (see the

dashed line in Fig. 2b). This indicates that nucleation in lysozyme solutions follows the classical

mechanism [41]: there are no intrinsic changes in the solution properties on transition from the

undersaturated to the supersaturated state, until random clustering results in a critical nucleus that
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can grow. Random clustering occurs at all protein concentrations independent of supersaturation.

Its frequency (probability for collisions), however, increases with protein concentration and

decreasing repulsion [42].

The slopes of the static and dynamic data, £5 and kp (see also Table n), show two trends.

Both change from large positive to negative values with increasing ionic strength of the solution.

As expected k$ > ko for any given salt concentration, since, according to Eq. (12), kp is

decreased by the hydrodynamic interaction term £// . Furthermore, at the same ionic strength, the

values of k$ and kp for the NaAc and NaCl solutions differ. This indicates that the changes are

not a function of the ionic strength alone, but are salt specific.

The contributions of the hydrodynamic and direct interactions, H(q=0) and S(q=0), to the

diffusivity can be separated. Rewriting of Eq. (5) with Eq. (1) yields

l . (14)

The r.h.s. of Eq. (14) can be evaluated by combining static and dynamic data. The resulting plots

of (1 + H(q=0)) vs. cp for the two types of solutions are shown in Figs. 3a and 3b. Despite the

scatter in the data (from combined errors of two data sets), one sees an increase in hydrodynamic

interactions with increasing cp as well as a pronounced decrease with increasing salt content. The

increase with protein concentration is expected since the momentum transfer between the solute

particles is enhanced upon reduction of the mean separation. However, the decrease with

increasing cs, to our knowledge, has not been observed before. Nevertheless, this dependence can

be understood within the framework of the linear interaction model. We will expand on this point

in the next section.

So far we have not considered possible solute aggregation as cause of the salt-induced

changes in light scattering. However, several features in our data clearly indicate that these

changes originate from those in protein interaction and not from aggregation. Specifically, the

positive slopes in both Kcp/Rg and Dc vs. cp, the linear dependence of Kcp/Rg on protein

concentration [43], and the small and constant polydispersities [39] under all solution conditions
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provide such evidence. It should be noted that our interpretation in terms of changing interactions

is contrary to various recent aggregation models of protein crystallization [12, 30, 44, 45]. We

will expand on this issue in a forthcoming publication [39].

V. COLLOIDAL INTERACTION MODEL

In order to provide some microscopic underpinning to our macroscopic observations, we

have, similar to earlier work [3, 46-48], modeled the ionic strength dependence of ks and kp in

terms of DLVO pair potentials for colloidal interactions [24]. In this model, the like charges Ze on

the polyions provide the electrostatic repulsion. This repulsion is screened by a diffuse layer of

thermally agitated counterions, that is treated within the framework of the Poisson-Boltzmann

equation. The resulting exponential decrease in counterion concentration with distance from the

polyion surface is characterized by the Debye-Huckel screening length XDH- Its inverse, the

screening wave number K= 1/A0#, is related to the ionic strength of the solution via [24]

2000AV2 r ,i«I - d — / (15)

For our experimental conditions (see Table II), the screening layers are fairly compact

(KO. > 1). Then the solution of the Poisson-Boltzmann equation for two charged spheres can be

approximated by [47]
Wel(x) _ WQ exp(-2?cq;c)

-~r~^ - -kBT kBT

The constant Wo is obtained from the protein charge using equations (4.2-4.6) in Ref. [47].

The attractive term in the DLVO potential accounts for van der Waals contributions. These

dispersion- or induced-dipole/induced-dipole forces in a dielectric medium are given by [47]

A H 1 . 1 ^ J x 2 + 2 x ^ (1?)

kBT \2kBT
T r x, 111 ~-

x 2+2x \(x + ir

where AH is the Hamaker constant. Fig. 4 presents curves for Wei, Wvw and the resulting DLVO

potential W(x) = Wei + Wvw, calculated for the various KT-values of our NaCl solutions, using Z
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and AH values as obtained below. Note the singularity in W(x) as the surface separation

approaches zero.

Inserting the above interaction potential into Eqs. (9) and (10), with Z and AH as fitting

parameters, we have performed least square fits to the experimental values of k$( K) and kj)(K).

Similar to Ref. [28], the singularity at W(x=0) was circumvented by an arbitrary lower cut-off

xcut, envisioned as the thickness of the Stern layer that prevents an unrealistically close approach of

the polyions. We assumed the size of a salt ion in solution, 0.18 nm [49], for the thickness of this

layer. This yields xcut = 0.05. The integrals were evaluated with a Romberg algorithm [50]

between xcut and x ~ 20. On increase of the upper integration limit to x ~ 2,000 the numerical

results remained unchanged. The choice of the lower limit, however, had considerable impact on

the result of the integration, in contrast to earlier observations [28]. Given that xcut W
es in the

potential's steep fall-off region (see Fig. 4), the sensitivity to the choice of xcut is not surprising.

The integrations and least square fits were performed on a Macintosh 6100 PowerPC using the

Igor data analysis software from WaveMetrics with custom macros.

The k$(K) curves resulting from the above fits are shown in Fig. 5a, together with the

experimental values listed in Table II. Despite small systematic deviations of the model curve for

the NaAc solutions, the overall trend in the k$(K) data is well reproduced. Fig. 5b displays the

corresponding ko(K) results. One set of curves represents direct fits to kp(K), the other set was

calculated with the fitting parameters for k$(K). Again, the theoretical curves capture the general
\

dependence of ko on K , despite the noticeable differences in fitting parameters for static and

dynamic data. The quantitative agreement for separate fits of either the static or dynamic data is

quite encouraging, as well. In fact, the protein charge of about Z = 11, obtained from the static

data in both salt solutions, closely matches experimental titration results [51]. Also the values for

the Hamaker constant of order ksT are reasonable. In addition, the interaction model provides a

natural explanation for the observed dependence of the hydrodynamic interaction term

\+H(q=0) « 1-fc// 0 on salt concentration revealed by Figs. 3a-b. Plots of kff as a function of K

for the two different salts, as calculated from Eq. (10), are given in Fig. 6. Note that fc# decreases
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with increasing salt screening, and, for NaCl, even changes sign. We envision this decrease to be

the result of more correlated, collinear motions of the solute particles on decrease of net repulsion.

This, in turn, reduces their hydrodynamic friction [52]. In view of their large scatter, we made no

attempt to quantiatively fit the experimental data of Figs. 3a and 3b to the above salt dependence of

l+H(q=0).

Recently, other authors have modeled interaction effects of lysozyme in NaCl solutions of

ionic strength and pH close to our experimental condition by dynamic light scattering [3]. Our data

show qualitatively similar trends. Yet, their diffusion measurements displayed considerably

smaller slopes ko at comparable ionic strength. This difference might be related to the amount and

type of impurities in various samples, particularly since the DO values in our study are consistently

higher than in Ref. [3]. The clear nonlinearities in our diffusion data appear absent from their data,

even though the measurements extended out to almost twice the protein concentrations used in our

study. Their fitting result for Z = 6.4 and AH = 7.7 kfiT are quite different from ours. Direct

comparison, however, is not meaningful due to the difference in measured kj) values and the use

of another approximation to the Poisson-Boltzmann equation.

In lieu of Eq. (16), we also employed the forms of the electrostatic repulsion Wei valid for

Ka » 1, that were used in Refs. [3] and [28]. Fits based on these expressions lead to

consistently poorer results, that is larger residual errors of the least squares fits. In addition, as

shown in Table III, these approximations result in similar inconsistencies in protein charge and

Hamaker constant obtained from static and dynamic data. Most recently a new approximation

scheme was proposed with very good agreement to numerical solutions of the Poisson-Boltzmann

equation [53], which might result in more realistic values for the fitting parameters.

As we have seen in Figs. 5a and 5b, the screening wave number, at which either kj) or £5

change sign, depends on the salt. This cannot be derived from a colloidal interaction model. Salt-

specific effects could result from alteration in the propagation of the van der Waals interactions

through the solvent medium, or from specific absorption of salt ions into the immobile Stern layer

of the protein. Although such effects are not accounted for in the current DLVO model, it does not
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devalue the model calculations per se. Alterations to the dielectric environment can be easily

incorporated and, with realistic expressions for the interaction potential, the actual protein charge

could be derived from the model fits as above.

Another problem in our analysis scheme is the use of the dilute gas approximation to the

radial distribution function (see Eq. (7)), which requires W(r) « kgT. Even though our cut-

off eliminates the singularity of W(x), particularly the curves at low salt concentration exhibit

maxima in the integration range of several kgT. This might explain some of the problems in

obtaining simultaneous, quantitative fits to both static and dynamic data. Several authors have

circumvented this shortcoming by applying the hypernetted chain approximation to obtain the radial

distribution function [46,54]. But even then, they found that the static data followed the calculated

values very well, while deviations in the diffusivities persisted. Some of these residual deviations

might have been caused by coupled salt-protein diffusion [49, 54] which becomes important at the

low salt levels used in these works. This, however, does not apply to our systems.

In concluding this section, let us address some general concerns about the applicability of

colloidal interaction potential to protein solutions. Irrespective of the quest for the most accurate

analytical expression in the K: a « 1 regime, the electrostatic repulsion term in the DLVO potential

provides an accurate description of many aspects of the solution behavior. This has been

demonstrated under low salt conditions, where electrostatic repulsion is the dominating force and

appropriate analytical expressions are well established. Excellent agreement between theoretical

calculations, based on the hydrated protein and adsorpted salt ions as the charged unit, and

intensity measurements were obtained for bovine serum albumin [46] and micellar CTACL

solutions [54]. In view of the nonuniform shape of and charge distribution on the protein surface

[55], the adequacy of the above spherical symmetric potentials might be surprising. However, the

rapid rotational motion of lysozyme in solution [15] justifies this approximation.

The attractive term, on the other hand, is more problematic. First of all, proteins are

zwitterions with substantial permanent dipole moments not included in the above van der Waals

potential. Other attractive, even though short-ranged, interactions are relevant as well, including
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charge fluctuations [56], hydrophobic interactions and hydrogen bonding [57]. It is not obvious

which ones are dominant in our system and how to include them properly. The pronounced

differences of lysozyme behavior in NaCl or NaAc solutions of comparable ionic strength serve as

reminder that interactions specific to the solvent phase need to be accounted for.

Finally, the shape of the colloidal interaction potential for dominating attraction is

inconsistent with the finite solubility of lysozyme in the 427 mM NaCl solution. At low salt

concentrations, the electrostatic repulsion present a kinetic energy barrier against aggregation.

However, the DLVO potential for K= 2.20 nnr1 (see Fig. 4), which corresponds to the above

NaCl concentration, lacks such a barrier. Since K is practically independent of the protein

concentration, the absence of a barrier implies that the solutions should precipitate for all cp values,

which is not found experimentally.

VI. SUMMARY AND CONCLUSIONS

We found that both scattering intensities and diffusivities respond to changes in protein

interactions with salt content and depend on the salt type. Salts modify the protein interactions in

two ways. First, the repulsive interaction decreases with increasing salt concentration through

diffusive screening of the protein charge. Numerous earlier static and dynamic light scattering

studies of protein solutions have demonstrated this dependence [7, 46, 48, 58-65]. In the

framework of the DLVO model, salt screening is a unique function of the ionic strength of the

solution, irrespective of salt type. However, our measurements reveal an additional, salt-specific

effect. This could result from specific adsorption of ions onto the protein surface, or modification

of the dielectric constant of the solvent medium. Similarly, sensitivity to the specific ions in

solutions has been observed for protein solubilities with a large variety of salts [66]. The virial

coefficients for these salt ions reflect the same trend [38]. Overall, these observations emphasize

the close connection between the light scattering behavior of protein interactions and protein

crystallization conditions.

The microscopic DLVO model presented here allows for a quantitative comparison with the

phenomenologically introduced intensity and diffusivity slopes k$ and £0. From this comparison
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we can draw several conclusion. First of all, the microscopic model, in spite of various unrealistic

approximations, reproduces the light scattering data and their dependence on protein and salt

concentrations surprisingly well. Obviously, this interaction model contains some essential

physical ingredients: long range electrostatic repulsion, moderated by salt screening, combined

with a short range attractive term. The fitted protein charge and Hamaker constant are of a

reasonable magnitude. However, the significant dependence of these fitting parameters on the

specific approximations to the electrostatic repulsion indicates that the absolute values need to be

viewed with proper caution. Similar discrepancies between separate fits to static and dynamic data

have been noticed and discussed by previous investigators [46,54].

In conclusion, our measurements highlight the wealth of information available from

combined static and dynamic light scattering in protein solutions. Quantitative comparison of the

macroscopic results with microscopic interaction models provides insight into the underlying

mechanisms. The study of solute interaction with light scattering is currently the most revealing

method for determining crystallization conditions in protein solutions.
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FIGURE CAPTIONS

Fig. 1. Scattering ratio Kcp/RQ vs. protein concentration cp in (a) 50mM sodium acetate (NaAc)

buffer with added NaCL and (b) NaAc buffer at various concentrations. Identical

symbols in (a) and (b) indicate comparable ionic strength of the solutions. Full

symbols indicate supersaturation (see Ref. [67]). Typical error bars are comparable to

or smaller than the symbol sizes. The straight lines are least squares fit to Eqn. (11).

The fitting results for k$ are listed in Table II.

Fig. 2. Diffusivities Dc vs. lysozyme concentration cp in (a) 50 mM sodium acetate (NaAc)

buffer with added NaCl and (b) NaAc buffer at various concentration. Full symbols

indicate nucleation events (instead of supersaturation as in Fig. 1). The straight lines are

fits to Eq. (12), with the corresponding result for kj) listed in Table II.

Fig. 3. Hydrodynamic interaction l+H(q=0) vs. lysozyme concentration cp in (a) 50 mM

sodium acetate (NaAc) buffer with added NaCl and (b) NaAc buffer of various

concentration. Connecting lines are added as visual guides only.

Fig. 4. DLVO pair interaction potential W(x) as function of surface separation x. Dashed

curve: attractive van der Waals term Wvw(x) of Eq. (17). Thin solid curves:

electrostatic repulsion Wei(x) from Eq. (16) at the screening wave numbers K:

corresponding to the NaCl solutions in Table II. Thick solid curves: total interaction

potential W(x) . Values for the protein radius a = 1.9 nm, protein charge Z = 10.7

and Hamaker constant AH = 7.7 kg? were obtained from fits with NaCl solutions The

shaded region indicates the cut-off below x = 0.05 used in the numerical integrations.

Fig. 5. Experimental values of (a) intensity slope k$ and (b) diffusivity slope kj)vs. screening

wavenumber ?cfor NaCl and NaAc solutions. Thick curves: direct least squares fits to

the experimental data for (a) k$(K) and (b) ko(x) • Thin curves: theoretical k^(K)

obtained with the protein charge Z and Hamaker constant AH resulting from fits to the

ks(K) data.

Fig. 6. Theoretical krfK) curves obtained with the protein charge Z and Hamaker constant AH

from fits to the k$(K) data.



TABLE I. Density and kinematic viscosity of aqueous NaAc solutions measured at T = 20° C, and

resulting dynamic viscosity values

cs

[mM]

0

50

100

250

375

920

1470

2500

Ap/po

x!Q3

0

1.6

2.7

6.3

9.3

22.4

34.9

59.2

V

[cSt]

1.004

1.014

1.028

1.057

1.085

1.199

1.331

1.654

T\

[cp]

1.002

1.014

1.029

1.061

1.093

1.224

1.375

1.749



TABLE n. Virial coefficient 82, intensity slope k$ and diffusivity slope ko of lysozyme at various

ionic strengths / of NaCl and NaAc solutions.

CS

[mM]

NaCl 0

92

171

427

NaAc 50

100

250

375

920

1470

/ K

[mM] [nnr1]

23(a> 0.50

115(a> 1.11

194(a) 1.45

450(a> 2.20

23 0.50

47 0.71

116 1.11

174 1.37

428 2.15

684 2.71

B2

[10-4molml/g2]

16.8

2.8

0.7

-2.1

16.8

10.5

5.1

3.8

1.1

0.0

*s

69.8

11.7

2.7

-8.7

69.8

43.9

21.3

15.9

4.6

-0.17

k°

33.1

0.8

-3.8

-12.1

33.1

16.4

1.2

-0.4

-6.0

-7.4

(a) Ionic strength of 50 mM NaAc buffer solution added



TABLE HI. Protein charge Z and Hamaker constant AH obtained from fits to the intensity slope

ks(x) or diffusivity slope kp(K) for different approximations to the electrostatic interaction

potential Wei(x).

Wd(x) Z

Eq. (16) AH

We[(x) from Z

Ref. [3] AH

Wei(x) from Z

Ref. [46] AH

NaCl

10.7

8.1

6.5

6.3

3.9

5.2

ks(K)

NaAc

10.9

4.3

6.5

2.7

3.9

1.5

NaCl

8.5

8.5

5.4

7.2

3.1

6.4

kD(K)

NaAc

8.6

7.2

5.4

6.0

3.2

5.1
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