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1. INTRODUCTION

1.1 SCOPE OF MATERIALS SELECTION GUIDE

l.l.l Objectives

The main objective of this "Space Environmental Effects on Spacecraft: LEO Materials

Selection Guide" is to provide a decision tool to spacecrai_ designers for their use in the design of

low Earth orbit spacecraft and structures. This guide provides critical performance properties on

the major spacecraft materials and spacecraft subsystems that have been exposed to the space

environment. Spacecraft materials include metals, polymers, advanced composites, white and

black paints, thermal control blankets, adhesives, and lubricants. Spacecraft subsystems include

optical components, solar cells, batteries, and electronics.

The information found within this guide is a compilation of LEO space flight experiment

results as well as ground simulation LEO space experiments results. Data have been compiled

from short-term space flight experiments (e.g., 40 hours) that include Space Shuttle flights (e.g.,

STS-5, STS-8, STS-46) and from retrieved satellites of longer mission durations (e.g., Long

Duration Exposure Facility, Solar Maximum Mission). Major space environment effects include

atomic oxygen, ultraviolet radiation, micrometeoroids and debris, and contamination.

Understanding of the environmental parameters has been expanded to include synergistic effects

that were not widely known outside the research laboratories. For example, atomic oxygen flux

and ultraviolet radiation interact in the degradation of silvec/Teflon materials.

Hence, this guide identifies the critical space environmental effect parameters that will affect

the performance of materials and components in the LEO space environment, e.g., dimensional

changes resulting from composites' moisture outgassing, surface optical performance property

changes due to AO/UV exposures, mechanical property degradation of composites due to AO-

induced surface erosion. This knowledge is needed by designers for materials selection decisions

and spacecraft components design considering the particular orbital mission.

Finally, this guide compares the space environmental effects on materials between the short-

term and long-term flight experiments. Where applicable, predictions are provided that a

spacecraft designer can use to determine the effects of the space environment on material

properties for longer mission durations.

1-1
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1.1.2 Design Data

The aim of this guide is to assist the spacecrai_ design engineer by providing materials

performance properties relevant to spacecraft design. Performance properties are provided for

the major spacecrai_ material classes. For example, a basic material property for polymers and

advanced composites is the (AO) reaction efficiency, which is defined as the volume loss per

oxygen atom (cm3/AO). The reaction efficiency characterizes the rate of material recession in the

presence of the AO flux. The total mass loss is generally in linear proportion to the total AO

fluence. For some materials, such as FEP Teflon film, the relationship is nonlinear due to

anticipated AO/UV synergistic interactions. Other performance properties for spacecraft desigr,

include thermo-optical properties (e.g., solar absorptance, thermal emittance) and dimensional

changes due to outgassing and thermal cycling effects. Where appropriate, rules of thumbs

governing the relationships between the low Earth orbit space environment and the attendant

material/system effects (e.g., linear reactivity of polymers with atomic oxygen fluence, 1% change

in absorptance coefficient per 100 ,/[ molecular film deposition) are identified.

The information within the guide can be classified in terms of its relevance in the design

process. In terms of decreasing design utility the following three categories are identified:

Engineering design values typically used in the design of LEO spacecraft structures.

These data are based on at least a statistical number of samples with error of margins.

Examples ofthi type of design information include the surface recession of silver

Teflon as a function of atomic oxygen fluence and mission duration, the end-of-life

absorptance values of thermal control paints, and dimensional changes in spacecraft

structures due to moisture desorption.

Comparative information for material selection and conducting material tradeoff

analysis. Examples of this type of information, which can be found throughout the

design guide, include selection of thermal control materials for radiators and blankets

and protective coatings for structural components and solar arrays.

Finally, information that establish the flight heritage of materials (e.g., accept/reject

criteria for risk-adverse program managers) are available. Examples of this type of

information include the use of lubncants, rubber seals, and adhesives.

In addition to providing a design tool that identifies materials suitable for use in the natural

space environment, this guide can also be used to avoid materials that are likely to be vulnerable

to one or more ofthc natural space environment components. Itence, this guide also identifies
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gapsinpresentdayknowledgeof spaceenvironmenteffectson promisingmaterials (e.g.,

photochemical deposition of contamination) so that these gaps can be filled in a timely manner.

1.1.3 Organization of Materials Selection Guide

The organization of the materials selection guide is based on major material groups with

cross references to the relevant space environment degradation factors (i.e., atomic oxygen,

radiation, micrometeoroid and debris) and where appropriate to the relevant spacecraft

subsystems." Hence, this guide presents the data and experience learned from the materials flight

experiments in one volume.

The guide is divided into the following fourteen chapters:

Chapter One presents a brief overview of the space environment from near Earth to

geosynchronous-altitude, and its potential e_ .cts on materials. Most of the information on the

space e_lvironment in this chapter are from the references, "Introduction to the Space

Environment, "t NASA TM 4527, 2 and a TRW internal document) Emphasis is placed on

understanding the potential effects of the different space environment components on the

spacecraR. This information is important in understanding the observations in the space flight and

ground simulation experiments and in extrapolating the results to spacecra_ designs for other

orbits. This chapter also presents a summary of the major LEO space flight experiments,

including their objectives and space en,Aronment exposure conditions.

Chapter Two provides a more detailed discussion of the LEO space environment effects on

materials as well as design guidelines for evaluating and selecting materials. The chapter is

categorized by the major environment components and effects, such as atomic oxygen, ultraviolet

radiation, micrometeoroid and debris impact, thermal cycling, vacuum-induced outgassing,

contamination, and enviro_ aental synergistic effects.

Chapter Three provides a detailed discussion of space effects on advanced composites

materials.

Chapter Four provides a detailed discussion of space effects on polymer materials.

s Based oft m questionnaire _nt to experts in the spsce mvi;onme_tsl effects on materials community, it was

spp,rmt that the design guide should be categorized along major materials groups snd ¢rols-referencod to the

space mvitmma_t degradation fectors. The survey tim identified the types of infortmtion that would be most

uJeful from • designer's perspective. In order of importance these •re: flight heritage; Igroutul limulatiott

egpefila_ts; followed by cost sad mtnufscturtbility.
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Chapter Five provides a detailed discussion of space effects on adhesives.

Chapter Six provides a detailed discussion of space effects on metals.

Chapter Seven provides a detailed discussion of space effects on ceramics.

Chapter Eight provides a limited discussion of space effects on protective coatings materials

for polymers.

Chapter Nine provides a detailed discussion of space effects on lubricants, greases, and seals.

Chapter Ten provides a detailed discussion of space effects on thermal control materials,

including white and black paints, thermal control blankets, aluminum surface coatings, and optical

solar reflectors.

Chapter Eleven provides a detailed discussion of space effects on power systems.

Chapter Twelve provides a detailed discussion of space effects on optical components.

Chapter Thirteen pro_des a discussic _f past flight experiments results on the space

environment effects on electronic systems.

Chapter Fourteen provides examples of applying the information contained within this design

guide for designin8 components and conducting materials tradeoff studies for future spacecrai_

missions (e.g., International Space Station Alpha, TRMM, CERES).
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1.1.4 Space Environmental Effects Data Bases

This guide identifies design considerations for materials and critical space environmental

effects parameters that affect the performance of materials exposed to the space environment.

Hence, this guide expands the various data base systems that are already available to the

spacecraft materials and design engineers, while extracting information from these same data

bases. These data base systems augment this guide with space environmental effects information

(e.g., outgassing characteristics) as well as materials and processes information. A short

description for some of the data base systems are provided belog.

MAPTIS. The Materials and Processes Technical Information System (MAPTIS) is a

NASA-sponsored, automated storage, retrieval and display data base system. It provides

comprehensive materials and processes information+ It also contains _ comprehensive data base

coverip, 'he materials results from LDEF. MAPTIS uses an Oracle Corporation's gelational

Data Base Management System and can be accessed via a modem and a 1-800 phone number or

via Telnet A user and operations guide for the MAPTIS Js available. +

M/VISION ®. The M/VISION ® version of the LDEF Materials Data Base requires the user

to have more sophisticated hardware and software, allow',ng the user to manipulate and analyze

the data. Once the M/VISION ° version of the data base is transferred to the user's local machine,

the data base requires only local access by the user and is available to any local networked X

device. The user can incorporate in-house data or data from other sources into the data base. The

M/VISION e version of the LDEF Materials Data Base are available at no charge.

Boeing Mini-Data Bases. The Boeing Defense and Space Group, under contract to the

SSIG and MSIG, has developed a series of data bases containing results from LDEF These data

bases were developed to provide the user community with early access to LDEF data The data

bases were developed for use with PC and Mac versions of the Clan._ CorpGratio_l's Filemaker Pro

software Filemaker Pro is a flat file data base which allows the user to retrieve multiple data

types such as tabular data, test, graphs, diagrams, and/or pictur, _, files The data bases' simple

interface allows for easy use by novice users

The mini-data bases cover optical materials, silverized Teflon thermal blankets, treated

aluminum hardware and thermal control paints that flown on or as pan of LDEF, arid the LDEF

environments. The Optical Materials Data Base is a compilation of the results on the optical

materials flown on LDEF and was originally developed by the SSIG The Silverized Teflon

Thermal Blankets Data Base covers the results from the silverized Teflon thermal blankets utilized
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on LDEF. The Treated Aluminum Hardware Data Base is a compilation of data fro a the various

types of aluminum hardware flown on LDEF !ncluding different alloys, surface conditions, etc.

The Thermal Control Paints Data Base contains information on the wide variety of paints flown

on LDEF. The LDEF Environments Data Base contains information on the environment that

LDEF was exposed to, including thermal profiles, solar UV _rrad_ation, and AO exposure levels.

LDEF Archive System. The Long Duration Exposure Facility (LDEF) Archive Systerci is

designed to provide spacecraft designers and space environment researchers single point ar,cess _o

all available resources from LDEF. These include data, micrographs, photographs, technical

reports, papers, hardware and test specimens, as we!! as technical expertise.

The LDEF Archive System is comprised of two pans. The first part is the physical contents

of the archive, including space flight and groaad contro' hardware, documentation, data,

photographs and publications. The second pan is the electronic on-!ine system. It is available to

users via the lnternet. It contains data files, both numerical and graphical image files, micrograph

and photograph image files, technical report abstracts and full text files. The elements of both

components of the LDEF Archive System, physical and electronic, are categorized as follows:

project/mission documentation; experiment documentation; hardware; data/analysis; photographs;

and publication. Data are categorized according to environments and effects: ioniz/ng radiation;

meteoroids and debris; contamination; thermal and solar; materials and processes; and systems.

The LDEF Archive is a distributed system, and both physical and electronic segments are

maintained at a host of locations. The LDEF On-line Archive System has been established on a

UNIX workstation at NASA LagC, and it is accessible via Intemet. The LDEF Archive System's

capability to reach out to other data systems is achieved through the use of an Internet

information service referred to as the World Wide Web (WWW), which uses hypertext, text that

may be expanded to provide links to other text. The LDEF Archive utilizes Mosaic from the

National Center for Supercomputing A plications (NCSA) as the WWW client, although ozher

WWW browsers are available.

Other Data Bases. Two special investigation group:, data bascs are accessible directly 2ore

the LDEF Archive System by using the capabilities of' the Mosaic browser and the Wide World

Web (WWW) server. These are the Meteoroids and Debris Special Investigation Group Data

Base at NASA .ISC, and the LDEF Materials Data Base at NASA MSFC. The Technical

University of Munich has developed hypermedia data bases using NCSA Mosaic. They include

data, micrographs, photographs, publications and other items relative to LDEF experiments

AO187- 1, AO187-2, AO20I and S1003. These data bases are accessible through the LDEF
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ArchiveSystem. Also as part of Materials and Systems SIG activities, Aerospace Corporation's

M0003 Deintegration Data Base is available for use with Fourth Dimension and Paradox

software.

1.1.5 Publication Resources

The information reported in the guide is a compilation of both the space flight experimental

results and the ground-simulation space environmental effects experiments published by major

government and industry organizations as well as by individual experimenters. Important data

resources for this guide are listed below, as well as being referenced in the text.

Space Flight Experiments

J. Visentine, ed., "Atomic Oxygen Effects Measurements for Shuttle Missions STS-8 and 4 l-G,"

vols. 1-III, NASA Technical Memorandum 100459, September 1988.

Satellite Servicing Project Goddard Space Flight Center, "Proceedings of the SMRM Degradati'_n

Study Workshop," NASA-TM-89274, May 1985.

L.A. Teichman and BA Stein, compilers, "NASA/SDIO Space Environmental Effects

Workshop, NASA CP 3035, 1988.

.I.W. Haffner et al, "Natural Env/ronmental Effects on SDI Spacecra_ Surface Materials,"

Rockwell International, Report No. AFGL-TR-89-0084, Air Force Geophysical Laboratory, May

20, 1989.

A,C. Tribble, g. Lukins, and E. Watts, "Low Earth Orbit Thermal Control Coatings Exposure

Flight Tests: A Comparison of U.S. and Russian Results," NASA Contract NAS1-19243, Task

16, Rockwell International Space Systems Division, August 1994.

S.Y. Chung et al., "Fiight- and Ground-Test Correlation Study ofBMDO SDS Materials: Phase I

Report," JPL Publication 93-31, 1993.

LDEF Flight Experiments

• A.S. Levine, ed., "LDEF First Post-Retrieval Symposium," NASA CP-3134, 1991.

A.S. Levine, ed., "LDEF Second Post-Retrieval Symposium," NASA CP-3194, 1993.

AS. Levine, ed., "LDEF Third Post-Retrieval Symposium," in pre,,s.

B.A. Stein and PR. Young, eds., "LDEF Materials Workshop '91. NASA CP-3162, 1992.

AF. Whitaker, ed, "LDEF Materials Results for Spacecraft Applications," NASA CP-3257,

1994.
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H. Durseh, ed., "Analysis of Systems Hardware Flown on LDEF-Results of the Systems Special

Investigation Group," NASA Contractor Report 189628, Contract NAS- 19247, April, 1992.

HW. Durseh, B.K Keough, and HG. Pippin, "Evaluation of Seals and Lubricants Used on the

Long Duration Exposure Facility," NASA CR 4604, June 1994.

HA. Smith, K.M Nelson, D. Eash, and HG Pippin, "Analysis of Selected Materials Flown on

Interior Locations of the Long Duration Exposure Facility, NASA CR 4586, April 1994.

W.L. Plagemann, "Space Environmental Effects on the Integrity of Chromic Acid Anodized

Coatings, NASA CR 191468, May 1993.

J.U Golden, "Results of Examination of LDEF Polyurethane Thermal Control Coatings," NASA

CR 4617, July 1994.

D. R. Wilkes and L.L Hummer, "Thermal Control Surfaces Experiment Initial Flight Data

Analysis_ '° Final Report, AZ Technolog_y Report No. 90- l- 100-2, June 199 I.

P. George, H.W. Dursch, and H.G. Pippin, "Composite Materials Flown on the Long Duration

Exposure Facility, NASA CR-4657, April 1995.

H.G. Pippin and R.J. Bourassa, "Performance of Metals Flown on the Long Duration Exposure

Facility, NASA CR-4662, April 1995.

H.G. Pippin, "Analysis of Silverized Teflon Thermal Control Material Flown on the Long

Duration Exposure Facility, NASA CR-4663, April 1995.

HW. Dursch, B.K. Keough, and H.G. Pippin, "Evaluation of Adhesive Materials Used on the

Long Duration Exposure Facility," NASA CR-4646, March 1995.

H.G. Pippin and J.R. Gillis, "Analysis of Materials Flown on the Long Duration Exposure Facility:

Summary of Results of the Materials Special Investigation Group," NASA CR-4664, April 1995.

Space Environment

T.F. Tascione, "Introduction to the Space Environment," Orbit Book Company, Malabar, Florida,
1988.

B. J. Anderson, Ed., RE. Sraith, Compiler, "Natural Orbital Environment Guidelines for Use in

Aerospace Vehicle Development," NASA TM 4527, June 1994.
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LDEF Data Bases

JG. Funk, J.W. Strickland, and J.M. Davis, "Materials and Processes Technical Information

System 0MAPTIS)," LDEF Second Post-Retrieval Symposium, NASA CP-3194, 1993, pp. 1201-
1222.

G. Bohnhoff-Hlavacek, "Data Bases for LDEF Results," LDEF Second Post-Retrieval

Symposium, NASA CP-3194, 1993, pp. 1223-1234.

Micrometeoroid and Debris Effects

T. See et al., "Meteoroid and Debris Impact Features Documented on the Long Duration

Exposure Facility," NASA JSC Publication #84, JSC #24608, August 1990.

M.J. Meshishnek et al., "Long Duration Exposure Facility Experiment M0003 Meteoroid and

Debris Survey," LDEF Second Post-Retrieval Symposium, NASA CP 3194, 1993, pp. 357-415.

M. Allbrooks and D. Atkinson, "The Magnitude of Impact Damage on LDEF Materials," NASA

Contractor Report CR 188258, July 1992.

Atomic Oxygen Effects

J. Visentine, ed., "Atomic Oxygen Effects Measurements for Shuttle Missions STS-8 and 41-G,"

NASA Technical Memorandum 100459, vols. I-III, September 1988.
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1.1.6 Future Research

As environment effects are obviously very much material and application dependent (e.g.,

mission orbit, duration) knowledge of the operating space environments is important in drawing

conclusions on the environmental effects on materials and in predicting spacecraft subsystem

performance. Hence, it would be useful to the designers to integrate the expanding data base of

environment effects on spacecraft material properties with environment computation models into

a user-friendly sottware package that asks a few questions at the beginning (e.g., mission specific

parameters) and gives a report on the predicted material design properties at the end of the

mission lifetime for a specific mission orbit.

In the past five years Maxwell Laboratories, Inc., funded by NASA Lewis, developed and

compiled models of environments and of environment interactions on spacecratt components that

can be used to extend the laboratory and flight data to new orbits and missions. Over 100

environment models (e.g., orbit generation, neutral enviromnent, debris flux, solar radiation

spectrum, nozzle effluents outgassing densities) have been incorporated into an integrated

assessment tool called the Environment WorkBench (EWB), representing one quantitative design

tool useful to spacecraft designers. Hence, EWB is an intelligent, knowledge-based, deslaop,

integrated analysis tool that is programmed to integrate environment, system definition, and

effects models together to display to the designer the mission lifetime effects of selected

environment parameters on spacecraR design features. Although EWB provides the architecture

for modeling the complex environmental interactions of a material on a spacecraft, in many cases,

the models have not been validated with high quality material data.

A FY95-96 research effort will extend and leverage the results of the current LEO Materials

Selection Guide by enhancing the EWB with a material property effects module containing

recently developed material properties and space environment and material effects design rules.

Data base integration of the relationships between the low-Earth orbit space environment and the

attendant material/system effects (i.e., the materials effects module) with existing orbital and

environmental models will provide a highly effective tool in the design of specific spacecraft

operating in LEO.
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1.2 SPACE ENVIRONMENTS

1.2.1 Orbital Definit,

The relative impact of any of the space environment effects on materials depends on the type

of mission the spacecraft has to perform (e.g., communication, defense, Earth observing) and

more important, the orbit in which the spacecraft is placed. Figure 1-1 shows the variations in the

space environment as a function of orbit 'altitude. Low Earth orbit (LEO) extends up to 1000 km.

Mid Earth orbit (MEO) is above 1000 kan and extends up to 35,000 km. Geosynchronous orbit

(GEO) is -3 5,000 km and higher.

LEO

Atomic Oxygen
Meteoroids, Debris
Ultraviolet

Thermal Cycling

GEO

Solar Flare Protons
Spacecraft Charging
Ultraviolet
Thermal Cycling

(>35,000 kin)

1,000 km 35,000 km

Figure 1- 1. Variation of Space Environments with Altitude

OIM 94 013.217

The relative impact oS the space environment effects on the ability of a spacecraft to perform

its mission is ranked and listed in Table 1-1. _ This ranking ranges from an impact of 0 (the effects

can be ignored) to an impact of 10 (the effects will negate the mission. The effects considered are

negating, shortening, or reducing the effectiveness of the mission, as well as permanent (design

changes) or transient (upsets) spacecraft changes. Each effect is further subdivided into "will" and

"may" categories.
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Table 1-2 Lists the relative impact of each space environment effect on materials for the

different altitudes. The entries range from 9 (the effects of neutral gases, i.e., atomic oxygen

exposure on low Earth orbit spacecrat_) to 0 (the effects of gravity fields, magnetic fields, the

ionosphere, and neutral gases on GEO spacecraft). Also included are the ratings for several

spacecrat_s at the different altitudes in which they operate (e.g., International Space 3tation

Alpha, EOS, TRMM GPS, DSCS).

Table 1-1. Relative Ranking of the Space Environment Impact on Mission

hnpact

10

Significance

Effects pr_." UCed will negate the nussion

Effects pr_. uced may negate the mission

Effects prcst_u.ced will shorten the mission

Effects pr_. ueed may shorten the mission

Effects produced gsIl reduce massion effectiveness

Effects produced may reduce mtssion effectiveness

Effects produced will require design changes

Effects produced may require design changes

Effects prod..ueed will cause up_ts

Effects profl, u.ced may cauc, e upsets

Effects produced can be ignored

Table 1-2. Relative Impact of the Space Environment Effects on Materials for

Different Orbits and Satellites

Spacecraft LEO °_ LEO MEO '_; GEO °_
Environment

Low High
Ind. Ind.

Direct Sunlight 4(4) 4 4.. 4

Gravity Field 3 3 3 0

Mat, netic Field 3 3 3 0

Van Allen Belts 0-5 2-5 8-5 1

Solar flare Particles 0 4 3 5

Galactic Cosmic Ra_,s 0 4 3 5

Debris Objects 7 7 3_ _ 3

Micrometeoroids 3 3 3 3

Ionosphere 3 3 l. 0
1

Hot Plasma 0 3 ] 0 .... 5

Neutral Gases 9-.7 9-7 I 3-0 0

Low Earth orbit (LEO) extends up to 1000 kin.

lnt'l Space

Station EOS TRMM GPS DSCS

500 km 500 km 600 km 20,000kin GEO
51.6" incl 28.5. incl 28.5" incl 55" ind Classified

4 4 4 4 4

3 3 3 0 0

3 3 3 0 0

2-5 2-5 2-5 5 I

4 0 0 3 5

4 0 0 3 5

7 7 7 0 3
J

3 3 3 3 3

3 3 3 0 0

0 0 0 3 5

9-7 9-7 9-7

(1)

(2) Mid Eats orbit (MEO) is above 1000 Iml and extends up to 35,000 kin.

(3) Geosynchtunous orbit (GEO) is "35,000 kan tad higher.

(4) This ranking, from an imact of 0 (the effects can be ignored) to an impact of 10 (the effects will nellat¢ the mission)
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1.2.2 Terrestrial Space

This region of space emends from the ba_e of the ionosphere (see below) at about 60 km

above the surface of the Earth to the boundary of the magnetosphere beyond which interplanetary

space is unaffected by the Earth. This distance is about 95,000 km above the _urface of the Earth

(16 radii of the Earth (RE)) in the sunward direction and several times this in the anti-sunward

direction. This region is loosely referred to as the magnetosphere, although more strictly

speaking, this term means the major part ofterrestr/al space into which the Ear_.h's magnetic field

extends. The morphology is roughly axisymmetfic within 4 _ of the Earth's <,enter, but at greater

distances it becomes very unsymmetric, _th a long tail extending in the anti-sunward direction.

The principal regions and their interacting phenomena are described below.

1.2.2.1 Gravity Field

The Earth's gravity field may require spacecraft design changes if the gradien, torques impose

appreciable requirements on the lllechanisms that control the spacecraft attitude (small rocket

thrusters, momentum wheels, control n_oment gyros, magnetic torque rods, etc.). Since these

gradient torques decrease inversely with the cube of the distance from the center of the Earth,

such design changes are more significant for low and medium-altitude _¢acecrafi.

1.2.2.2 Magnetic Field

The gravitational field results from the mass of the solid Earth arid reflects the distribution of

that mass. It traps the neutral atmosphere, constrains i_s motion, and influences the motions of

meteoroids and debris. However, it has little effect on the rest of terrestrial space because

electrical forces ar_ so much stropger. TEe magnetic field has two sources: (_) currents inside the

Earth that produce about 99 percent of the field at the surface and (2) currents in the

magnetosphere. The latter becomes relatively more important beyond a few Earth radii because

the internal field decreases as the inverse distance cubed from the Earth's center.

For many purposes, the Eaxth's field may be regarded as a dipole tilted 1 I. 7° from the

rota,ion axi_ and offset fi'om the geametnc center of the Earth by 430 kml in the d_rection of

southedzt Asia. Many phenomena are related to magnetic latitude which, as a result of the tilt, is

11.7 ° greater than geographic latitude in the longitude of eastern North America and 11.7 ° less on

the opposite side of the world. Th_ offset i_uts the s,_rface of the Earth, or a circular orbit, at a

higher altitt,de with respect to the geomagnetic field in the. region of the South Atlantic of the

coast of Brazil than it is elsewhere. This region is caded the South Atlantic Anoraaly. Since both
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thetilt andtheoffsetare changing slowly, the South Atlantic Anomaly is drifting slowly to the

west.

The Earth's magnetic field provides the mechanism that traps charged particles within

specific regions, called the Van Allen belts, about the equator. The trapping regions (both

electrons and protons) extend from the geomagnetic equator to about _+50° geomagnetic, but the

trapping altitude structure is not discrete. Instead, the trapped particles extend over a range of

altitudes with areas of slightly higher average concentration defining the traditional radiation belts.

The..diation belts are approximately azimuthally symmetric, except near the South Atlantic

anomaly. The magnetic field strength is lower than normal over the South Atlantic due to the

offset of the dipole field geometry (see above), and therefore, the radiation belts reach their

lowest altitudes in this ar_. The impact of such particles on space missions is discussed below.

The Earth's magnetic field will produce toi ques on current loops and ferromagnetic materials.

As with the gravity field, these effects may require design changes in the altitude control systems

of LEO and MEO spacecraft.
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1.2.3 Neutral Atmosphere

The Earth's neutral atmosphere is vertically differentiated by composition, density, and

temperature. Figure 1-2 (re£ 1) shows the temperature gradients b of the various atmospheric

levels and Figure 1-36 shows the major atmospheric constituents at varying altitude levels. For

space vehicle operations, the neutral atmosphere is significant because (1) even at its low density,

it produces torques and drags on the vehicle: (2) the density height profile of the atmosphere

above 100 km altitude modulates the flux of trapped radiation encountered and the orbital debris;

and (3) the atomic oxygen both erodes and chemically changes those surfaces which are exposed

to it.

1.2.3.1 Atmospheric Temperatures

The region of the Earth's atmosphere lying between about 90 and 500 km is known as the

thermosphere, while that region lying above 500 km is known as the exosphere. The temperature

in the lower thermosphere increases rapidly with increasing altitude from a minimum at 90 km

towards a value dependent on the level of solar activity (see Figure 1-2). Eventually it becomes

altitude independent at upper thermospheric altitudes. The heterosphere is primarily heated by the

thermospheric gases (i.e., atomic oxygen), which absorbs solar extreme ultraviolet (EUV) with

wavelength of 1000 to 2000 A. At the lowest thermospheric altitudes, the absorption of

uttraviolet (UV') radiation is also important. An additional heat source for the thermosphere is the

interaction of the Earth's magnetic field at very great distances (several Earth radii), in the region

known as the magnetopause, with the solar wind. The solar wind is a stream ofhigh speed

plasma emanating from the Sun. This interaction causes energetic particles to penetrate down

into the lower thermosphere at high geographic latitudes and directly heat the thermospheric gas.

These energetic particles are also responsible for the aurora seen at these high latitudes.

b This is kinetic temperature, not sensible temperature.

1-15



ALTITUDE
(km)

3O0

250

200

150

100

50

F_gure I- 2.

500 1000 1500 2000

KINETIC TEMPERATURE(°K)
OIM N.013.23

Temperature Gradients of the Atmosphere

1.2.3.2 Atmospheric Constituents

The homosphere, which makes up the lower 50 km of the atmosphere, is composed of~78%

molecular nitrogen, ~21% molecular oxygen, and ~ 1% argon, with variable concentrations of

such gases as carbon dioxide and water vapor. Within this region the atmosphere is well mixed by

turbulence, so that the composition of the atmosphere does not vary with altitude. The

heterosphere, which extends upward to 500 kin, is composed of molecular nitrogen, molecular

_xygen, atomic oxygen, argon, helium, and atomic hydrogen. Within this region, diffusion

_ecomes so rapid that the altitude variation of the various species becomes dependent on

nolecular mass, with the result that composition varies with altitude. Thus, the number densities

_fthe heavier thermospheric species (Nz and O_) decrease with increasing altitude much faster

han those of the lighter species (H and He). This means that the heavier molecular species

_redominate in the lower heterosphere, while the lighter atomic species predominate in the upper

leterospher¢. '_ typical altitude profile for the individual constituents is shown in Figure 1-3.
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1.2.3.3 Atmospheric Variations

The atmospheric density at high altitudes changes in response to many factors including local

time, latitude, altitude, and level of solar acli--',ty and geometric activity. The short wavelength

solar electromagnetic radiation (E JV and IY,/) changes substantially with the overall level of solar

activity (i.e., sunspot number), and this variability translate into a variation of energy available to

the thermosphere? The result is that the thermospheric density, especially at orbital altitudes, is

strongly dependent on the level of solar activity. The amount of solar radiation depends on the 27

day rotation period of the Sun and the 22 year solar cycle. Of the total solar energy absorbed in

the atmosphere, about one-third is used to heat the ambient neutral particle, nearly half is radiated

away as atmospheric ultraviolet airglow, and the remainder is available for atomic oxygen

chemistry (above 80 km solar ultraviolet radiation is efficient in the photodissociation of

molecular oxygen into atomic oxygen).

Atmospheric density variations are also related with geomagnetic activity. When a

geomagnetic storm occurs, large numbers of charged particles are dumped from the

magnetosphere into the high latitude atmosphere. These particles ionize and heat the high latitude

atmosphere by collisions, with the heating first observed several hours (1 to 10) aider the

geomagnetic disturbance begins. The effects of geomaonetic heating extend from at least 300 km

to over 1000 km and may persist for 8 to 12 hours following the end of the magnetic disturbance.

1.2.3.4 Solar and Geomagnetic Indices

Various surrogate indices are used to quantitatively assess the levels of solar activity. One of

these is the 10.7 cm (2800 Mhz) solar radio noise flux, designated F_0.7. Although it is the EUV

radiation that heats the thermosphere, it cannot be measured at the ground. The Ft0._ can be

measured from the ground, and it also correlates quite well with the EUV radiation

An index that is used as a measure of episodic type solar activity is the planetary geomagnetic

activity index ap. It is based on magnetic field fluctuation data reported every 3 h at 12 stations

between geomagnetic latitudes 48 ° and 63 ° and selected for good longitudinal coverage.

Although it is the high latitude ionospheric current fluctuations that drive the magnetic field

fluctuations as observed at these stations, it is not the magnetic field fluctuations which are driving

the thermosphere. Therefore, the correlations between observed density changes and the a_ index

c Little EUV radia':"n reaches the ground, and direct EUV flux observations have been made only rarely.

However, one can refer the value of the variable EUV flux based on the 2800 MHz solar radio flux (bettor known

as the 10.7 c,4mtimeter flux) because EUV and 2800 MHz fluxes show a fairly good correlation.
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arenotalwaysgood. The daily planetary get magnetic index, ,%, is the average of the eight 3-

hourly a_ values tbr that particular day.

Figures 1-4 and 1-5 (ref. 2) show the maximum, mean, and minimum values for Fso.v and `%

throughout a mean 22-year solar cycle. 7 The F_0._ data are derived from sunspot records for the

period 1749 to 1947 with direct Fro0.7measurements thereafter. The standard deviation about the

mean length is 1.23 years in the historical record. Max and rain are the historical extremes for

each point in the cycle and have been determined after the data have been 13-month smoothed

and constrained to the mean duration cycle. The exact level of solar activity cannot be predicted

very accurately, although the phase within the 22-year period can be established. The ,% values

are derived in a similar fashion based on a data record that goes back Ie 1932.
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1.2.3.5 Spacecraft-Neutral Atmosphere Interactions

Neutral gases, especially atomic oxygen will primarily affect LEO spacecraft. The erosion

effects of atomic oxygen may shorten the duration of a LEO spacecraft mission, so careful choices

of surface ram-facing materials is definitely required. Until more is known about the glow

phenomenon, which can blind an optical sensor, LEO spacecraft may not be able to perform its

mission. Hence, the effects of neutral gases (above and beyond _he known drag and torques

produced) on the long-term erosion rates in materials must be considered as potentially mission-

threatening for LEO space-.raft.
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1.2.4 Electromagnetic Radiation

1.2.4.1 S_lar Electromagnetic Radiation

The wavelength range of solar ultraviolet (UV) radiation present in LEO is between

approximately 0.1 and 0.4 tun which is a small portion of the solar irradiance curve shown in

Figure 1-6. s The total energy provided by radiation in this wavelength range is approximately 8%

of the solar constant, where the solar constant is defined as the total energy provided by the sun

over all wavelengths up 1000 ttm and is equal to 136.7 mW/cm 2
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1.2.4.2 Spacecraft-UV Radiation Interactions

The LW portion (0.1 I_m < _L< 0.4 I_m) of the electromagnetic spectrum is of particular

importance in determining the effects of solar radiation on material properties. This ultraviolet

radiation is energetic enough to cause the breaking of organic bonds as shown in Figure 1-7 (ref.

8). Although the solar radiation below 0.2 I_m represents less than 0.001% of the solar constant,

its pres ;rice may promote breakage of important organic structural bonds, such as C-C and C-O,

and functio,'mlgroups.

Solar ultraviolet irradiation can lead to crosslinking of polymer surfaces which may lead to

embrittlement and possibly to surface cracking. UV radiation has also been shown to degrade

mechanical properties of polymeric materials as is shown in the degradation in the tensile strength

of Mylar. Because atomic oxygen is present in LEO, it is expected that the reaction intermediates
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from the photon absorption will react with reaction intermediates from the oxidation process.

This photo-oxidation can lead to discoloration and reduced transparency of some polymers.

Chemical changes in the molecule as a result of these reactions may also lead to the formation of

polar groups which may affect electrical properties9

A high value of solar transmittance (¢x_0.09; see page 10-115) in the wavelength range

between 0.3 and 0.6 pm is necessary for polymer use as second surface reflectors (e.g., metallic-

coated Teflon (FEP) tapes) in thermal control applications. Ultraviolet radiation degradation of

this transmittance may result in decreased efficiency of the thermal control surface. As shown by

the LDEF results, the effects of sunlight (including UV) on all spacecraft will require careful

selection of exposed materials to avoid those materials that change their as/¢ ratios, optical

transparencies or reflectivities, and other properties that affect the thermal behavior of the

spacecraft. The abilities of optical transmitters or receivers (sensors) to function can be affectS.

These material selections are considered to be design changes required by the environment

(sunlight in this case).
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1.2.5 Penetrating Charged Particles

Penetrating charged particles, often referred to as charged-particle radiation, presents a

significant challenge to the design and operation of a spacecraft. This is because many of the

particles have sufficient energy to penetrate metal and to produce significant levels of ionization

inside the spacecraft. It will also affect electronics by causing bit flips in digital microelectronic

circuits (referred to as single event upsets (SEUs). In addition, ionifing radiation will affect the

propagation of light through optical materials by altering their optical properties.

It is convenient to divide the natural radiation in near Earth space (up to geosynchronous

orbit) into two primary components: cosmic radiation and radiation produced by trapped particles

(e.g., Van Allen belts). Both of these components are influenced by solar activity and the Earth's

magnetic field. Trapped radiation particles are accelerated from thermal, low-energy plasma by

processes inside the magnetosphere and occur only within terrestrial space Cosmic rays exist in

interplanetary space and, therefore, enter terrestrial space from outside. Within terrestrial space,

the motion of both kinds of charged particles is controlled by the geomagnetic field. Their

relative contributions to radiation hazards are most easily understood when considered separately.

1.2.5.2 Trapped Radiation

Trapped radiation or van Allen radiation consists of both electrons and protons The range

of energies is rather large and is centered in the tens of keV for electrons and MeV for protons.,

The Earth's magnetic field provides the mechanism which traps charged panicles within specific

regions, called the van Allen belts, about the equator. The trapping regions (both electrons and

prtons) extend from the geomagnetic equator to about +50 ° geomagentic. The approximate

radiation belt distributions for protons and electrons in a meridional plane are shown in Figures 1-

8 and 1-9, respectively (re£ 1). The verty steep inner gradient is controlled by the exact altitude

dependence of the neutral atmospheric density which varies with solar activity. The atmosphere is

more extended (higher density at a given altitude) when the Sun is active. Thus, at 500 kin, the

trapped proton flux is greater when the Sun is quiet.

The general shape of the van Allen belts follows the shaoe of the geomagnetic field, except

near the South Atlantic anomaly where the magnetic field strength is lower than normal over the

South Atlantic because of the dipole field geometry. Hence, the radiation belts reach their lowest

altitudes in this area. This means that the most intense radiation is encountered in the South

Atlantic Anomaly.
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Energetic protons trapped in the inner Van Allen belt are the major source of radiation for

Earth orbiting spacecraft above 500 kin, particularly in the South Atlantic anomaly region. The

amount of radiation varies with latitude and longitude (the inner belt extends to about 45 °

latitude). The inner belt proton population is also susceptible to solar-induced variations.

Population density varies out of phase with the 22 year solar cycle, so that the inner belt is most

inflated during solar mimmum. This variation in particle population produces a factor of two

variation in radiation dose rate during the solar cycle for low orbiting spacecraft.

The outer Van Allen belt contains both electrons and protons. However, the electrons have

much higher number densities and are responsible for most of the radiation dose within this

region. The outer belt is asymmetric_ with the nightside being elongated and the dayside flattened.

Generally, particle energy and outer boundary location vary with the 22 year cycle. During solar

maximum, the outer boundary of the electron belt is closer to the Earth and contains higher

energy particles. At solar minimum, the outer boundary moves outward and contains fewer

energetic electrons. Outer belt electron densities undergo order of magnitude changes over time

scales of weeks. These short-term variations can produce significant radiation dose variations and

are related to the level of geophysical activity. During, or shortly after, very active periods, the

outer belt is inflated with high energy electrons which increase the radiation substantially. Diurnal

variations in radiation dose inside a spacecral_ (in high-altitude circular orbits) can occur when the

trajectory crosses the asymmetric outer electron belt.
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1.2.5.2 Cosmic Rays

Cosmic rays applies to electrons, protons, and the nuclei of all elements. The source of

cosmic rays is either galactic or solar. Galactic cosmic rays (GCRs) originate outside the solar

system and permeate our galaxy. Solar particle events, in contrast, originate in the Sun and are

produced in solar flarez. They are lower in energy than GCRs (1 MeV to 1 GeV/nucleon) and are

mostly protons and alpha particles.

1.2.[.2.1 Galactic Cosmic Rays

GCP, s consist of the nuclei of the elements plus about 2 percen t which are electrons. Their

energies cover the range from below 10 MeV per particle to above 1 _6 MeV per particle.

Emitted by distant stars and even more distant galaxies, they diffuse through space and arrive at

Earth from all directions. Hence, GCRs consist of the nuclei of the elements from hydrogen

through iron in zoughly the s_me proportions as are found in the solar system, but with the heavier

nuclei more abundant in the cosmic rays. Figure 1-10 gives the relative abundances and energy

spectra of GCRs of interest (ref 2). In spite of their small number, the heavy el'_ments are very

important due to their densely ionizing tracks. They are responsible for many effects in detectors

and microelectroncis. From F_gure 1-10, it can be seen that the flux of each nuclear specie

decreases rapidly with increasing energy. The lowest energies are observed outside the

magnetosphere, where the flux is limited by magnetic fields carried by the solar wind. The

energies observed and the flux at these energies vary ivnersely with the solar cycle (see below).

Spatial variations in GCR flux (and therefore GCR related radiation) are produced by

variations in source location, the Earth's magnetic field, atmospheric shielding and with increasing

altitude. Panicle flux is also larger o,:er the polar regions where "open" geomagnetic field lines

allow easier access. The Earth's magnetic field deflects incoming c >.ic rays (solar and galactic)

to a degree, which depends on the energy of the panicles, preventing those with lower energies

from penetrating deep into the magnetosphere. The most important temporal variation influx is

associated with the 22 year solar cycle. During solar maximum, when the interplanetary magnetic

field strength is greatest, cosmic ray particles are scattered away from the Earth. This produces a

GCR flux minimum. Conversely, GCK flux is largest during solar minimum. The 22 year solar

cycle produces a factor of three or more variations in the cosmic ray dose at a geosynchronous

orbit. Low-altitude, low-inclination orbits would experience smaller dose variations due to the

strong shielding produced by the combined effects of the atmosphere and geomagnetic field.
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1.2.5.2.2 Solar Particle Events

Solar panicle events, also referred to as solarcosmic rays(SCRs) or solarpanicle events,

representthe most variablecomponent of naturalspace radiation.Solarcosmic raysaremostly

composed of protonsand otherheavy nuclei(e.g.,alphaparticles)acceleratedto energies

between I0 MeV and I000 MeV duringvery large,solarflares(occurringseveraltimes ina solar

cycle) These particlescan be responsiblefora large(e.g.,thousand fold)increaseinthe

1-29

- a_qr'_a _ " ' _ .at

In IlI n |1



radiation dose over short periods of time. Similar to the other energetic particles, SCRs produce

ionizing radiation when they interact with atoms (shielding).

Solar particle events show a correlation with the 22 year solar cycle. Figure i 11 shows a

history of solar proton events over two solar cycles (re£ 2). The largest events normally occur in

the months following sunspot maximum. Usually, a few very large flares dominate the total

particle fluence for the entire solar cycle. Solar polar events are less likely to occur during solar

cycle minima. Within the Earth's magnetosphere, the protons reach LEO most fi'eely in the polar

regions at magnetic latitudes above 63 ° because the magnetic energetic cutoffgoes to near zero at

higher latitudes.
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Figure 1- 11. Event-Integrated Proton Fluxes Above 30 MeV for the M_or Solar Events

of the 19th and 20th Solar Cycles
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1.2.5.3 Spacecraft-Charged Particles Interactions

1.2.5.3.1 Trapped Radiation

The Earth's Van Allen belts have their greatest intensity at MEO altitudes, so their effects will

be greatest on MEO spacecraR. Specifically, the mission duration will be shortened for a

spacecrat_ in MEO because it is not practical to shield its semiconductor electronics sufficiently to

prevent it.

For LEO and GEO spacecraft the mission effectiveness may be reduced due to the necessity

of selecting only radiation-hard electronic components, providing a considerable mass of radiation

shielding for those electronics, and selecting only surface materials which retain their thermal and

optical properties after large (>108 rads) charged particles doses. The LEO spacecraR will ha,,'e

to cope with electronics upsets caused by ,,,_arged particles while the GEO spacecraft may have to

select radiation-hard surface materials (the penetrating, high energy Van Allen particles only

extend to an altitude of<_ 5,000 kin, while the low energy Van Allen belt panicles are significant

up to and beyond geosynchronous altitude). Figure 1-12 presents the average integrated electron

fluxes for the geosynchronous, sun-synchronous, and Molniya missions orbits (ref'. 3). The

average integrated proton fluxes for the synchronous and Molniya mission orbits are give in

Figure 1-13 (ref. 3). Some trapped protons exist in the outer Van Allen belt but have an

insignificant effect on satellites in geosynchronous orbits.

In calculating total dose in LEO, it will be iound that trapped protons contribute nearly the

entire amount with three exceptions:

At the lowest altitudes (below about 300 kin), the contribution from trapped

particles becomes so small that galactic cosmic rays (GCRs) make the largest

contribution;

For very thin shields (<0.3 g/cm2), trapped electrons are more important than

trapped protons; and

At high inclination orbits, GCKs (e.g., solar flare event particles) dominate over

trapped radiations (see below).
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1.2.5.3.2 Galactic Cosmic Radiation

Due to its extremely high energy, GCRs is very penetrating, and spacecrai! shielding is not

very effective in reducing the radiatioli dose. Although the contribution from GCRs to the total

dose in rads inside a spacecraft is typically less than 15 percent for most geocentric orbits, these

nuclei are responsible for such effects as "SEUs" and "latch-up" in microcircuits (large-scale

integrated (LSI) and very large-scale integrated devices (VLSIDS)) Along with the trapped

radiation-belt protons, the nuclei are also responsible for the induced radioactivity in most

materials in orbit. Noise induced directly by ionization in sensiti,,e devices such as charge-

coupled devices (CCDs) and via Cherenkov and fluorescence rad;.ation in photomultiplier tubes

are other effects of GCRs that must frequently be considered. The designer should also consider

the possible effects of GCRs on materials as well as the pt'cbability of production of secondary

particles and their effects.

1.2.5.3.3 Solar Particle Events

For a fixed altitude, spacecraft can experience different levels of radiation depending on orbit

trajectory. Equatorial orbiting spacecraft will experience lower proton fluence (and therefore a

lower radiation dose) than apolar orbiting satellite at similar altitudes. In general, solar particle

radiation is a significant hazard for orbits passing above 50 ° latitude flora LEO altitudes to above

a few Earth radii (1 Earth radius = 6378 km = 3960 miles). Within the Earth's magnetosphere,

the protons reach LEO most freely in the polar regions at magnetic latitudes above about 63 °

because the magnetic energetic cutoff goes to near zero at higher latitudes: Hence, equatorial

orbiting spacecraft will experience lower particle fluence (and therefore a lower radiation dose)

than a polar orbiting satellite at similar altitudes. However, in some cases severe magnetic storms

allow for large penetration below 50 ° latitude. Solar cosec rays emitted during a large solar

flare present the greatest uncertainty and the greatest threat *o manned spacecral_ in regions

beyond the protection of the Earth's atmosphere.

d The Earth's magnetic field deflects incoming colmic rays (solar as,d galactic) to a degree which dep_ds ms the
energy of the ptrticlm, prevmtinlg thoee with lower energies from penet.-ating deep into the n_plt4ollphlwe.
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Hence, solar flare charged particles are a high-altitude and/or high latitude environment that

will primarily affect only spacecraft at geosynchronous altitude or spacecral_ at LEO altitude at

polar inclination, except in rare cases where they extend to low latitudes. Figure 1-14 presents

the integrated solar flare proton fluence for one anomalously larege (AL) event for the

geosynchronous, sun-synchronous and Molniya orbits (ref. 3). These particles are sufficiently

penetrating making it impractical to shield all of them out, and those that do reach the spacecraR

electronic components and circuits can cause upsets and total-dose degradation (the galactic

cosmic rays will be the major cause of upsets for these high-altitude/high-latitude spacecraR).

These upsets and total dose effects may be sufficiently numerous and severe to reduce the mission

effectiveness of spacecraR at geosynchronous or high latitude missions.
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1.2.6 Plasma Environment

A plasma is a quasi-neutral gas of charged and neutral particles that exhibits collective

behavior. The particles' movements are controlled to a great extent by the Earth's magnetic field

and the solar wind, but their collective behavior and movement generate electric _d magnetic

fields that, in turn, affect the particle's motion and the motion of other charged particles far away. c

At roughly 80 km altitude, there is a division between the lower turbulent neutral gas mixture

region where all the meteorological processes occur and the upper region where solar irradiation

produces a partially ionized plasma composed of O, N2, 02, He, H, O', If, He +, NO', O2 ÷, N2÷,

and electrons. This upper region is electrically neutral, with the most abundant neutral being O

and the most abundant ion being O + up to about 1000 km altitude where tf and He _ become

dominant.

The plasma environment may be conceptually divided into three regions: the ionosphere,

which is contained within the magnetosphere; the magnetosphere; and the solar wind, as shown in

Figure I-15 (ref. I). The ionosphere is characterized by its low temperature and high density

relative to the other regions, as well as its predominantly O _ composition. Frequently, this region

is considered to extend to about 1000 km, the altitude where the ion density begins to exceed the

neutral density. Alternately, an arbitrary density criterion of 109 m "3places the ionopause at a few

thousand kilometers altitude in the polar regions and at a few tens of thousands ofldlometers in

the equatorial regions. At low altitudes, the temperatures of these plasmas are typically 300 K to

3500 K (0.05 to 0.3 eV) except in the polar auroral regions. In the auroral regions, an intense,

energetic electron flux oRen precipitates from the plasma sheet. The high altitude plasma is much

more energetic; typically l0 s K (10 eV) for ions and 1 to 5xl0 s K (10 to 50 eV) for electrons in

the solar wind, ~3x10 _ K (3 kiloelectron volts (keV)) for electrons and ~lxl0 s K (10 keV) for

ions in the magnetospheric plasma sheet. However, the dynamics of the intervening region are

such that temperatures can sometimes be 1 to 2 orders of magnitude higher. Contact of this

energetic plasma with the atmosphere produces the aurora.

e A plasma is usually defined as an electrically neutral, ionized gas. A gas can be both ionized and electrically

neutral at the same time, provided there are as many free electrons in the gas as there are net positive chargm on

the positive gas ions.
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Theboundariesbetweenthe other regions are termed the "geopause," where the terrestrial

plasma is replaced by the solar wind plasma leaking into the magnetosphere, and the

"magnetopause" where the geomagnetic field is replaced by the interplanetary or solar wind

magnetic field. The magnetopause ranges from 6 to 10 Earth radii in the sunward directions to

hundreds of Earth radii in the antisunward direction.
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1.2.6.1 Ionospheric Phsma

The ionospheric plasma is generated principally by photoionization of the Earth's ambient

neutral atmosphere and by magnetospheric particles interacting with the thermosphere in the 100

to 200 km altitude region. The transport of the plasma is controlled by the geomagnetic field.

Within the ionosphere, the recombination of the ions and electrons proceeds slowly (due to low

gas densities) so that fairly high concentrations of free electrons persist even throughout the night.

In practice, the ionosphere has a lower limit of 50 to 70 km and no distinct upper limit, although

2000 km is somewhat arbitrarily set as the upper limit for most application purposes.

The vertical structure of the ionosphere is changing continuously. It varies from day to night,

with the seasons of the year, and with latitude. Furthermore, it is sensitive to enhanced periods of

short-wavelength solar radiation accompanying solar activity. In spite of all this, the essential

features of the ionosphere are usually identifiable, except during periods of unusually intense

geomagnetic disturbances. The different ionospheric vertical layers are shown in Figure 1-16 (ref.

1). In order of increasing altitude and increasing electron _,oncentration, these |aye_ s are called D,

E, F1, and F2. Figure 1-16 also shows how typical daytime and nighttime vertical electron

density profiles change over the course of the sunspot cycle (profiles apply for midlatitudes only).

Above the maximum electron density of the F2-region, the electron density decrease

monotonically out to several Earth radii. Not only does the overall electron density decrease at

night (no production, ordy electron losses), but the F 1- and D-layers disappear soon after sunset.

The Earth's ionosphere may cause design changes if exposed electrical conductors at

potentials > 100 volts are present. Since the density of the ionosphere is greatest at low altitudes,

these effect will be significant only for the LEO spacecraft. The MEO spacecraft may experience

upsets if exposed high-voltage conductors cause discharges due to the preser_ce of the ionosphere.
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1.2.6.2 Auroral Oval Plasma

As mentioned previously, the aurora is primarily produced by high-energy charged particles

precipitating into the atmosphere along magnetic field lines. One result of these fluxes is the

increase of local plasma density by factors of up to 100 over regions of tens of kilometers in

latitudinal dimension and hundred or thousands of kilometers in longitudinal dimension in the

auroral regions (60 ° to 79 ° magnetic latitude).

1.2.6.3 Geosynchronous Altitude Plasma

The geosynchronous altitude plasma environment is very complex and dynamic The fluxes

in GEO can be quite energetic and are highly variable with magnetic activity especially during

geomagnetic substorms. The values given in Table 1-3 are an estimate ofthe 90th percentile

worst charging case environment assuming a Maxwellian representation of the envirord'e.ent.

Table 1-3. Worst-Case Plasma Environment in Geosynchronous Earth Orbit.

Cha_tct¢i'isticJ Value

Electron number density, n. m_ i. 12 x 106
. • ,L , •

Electron temperature; T. eV 1.2 10 x 10(
• , ,..

Ion number density, nl m"3 2.36 x 10s
, .., .

Ion temperature, T, eV 2.95 g 10(
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1.2.6.3 Spacecraft-Plasma Interactions

1.2.6.3.1 Spacecraft Charging

Spacecraft charging is defined as those phenomena associated with the buildup of charge on

exposed external surfaces of spacecraft. A body immersed in a plasma (i.e., an electrically neutral,

ionizeO gas) will become negatively charged due to the fact that the electrons, which have a much

smaller mass than the positive ions, have a much greater velocity than the ions and impact the

boOy at a higher rate than the ions. As a result, spacecraft surfaces tend to accumulate negative

charge. Consequently, a spacecraft accumulates electric charge from the plasma in order to

establish electrical equilibrium with the plasma, which is the spacecraft charging process.

Equilibrium requires that no net current be collected by the vehicle. Both the plasma properties

and the spacecraft design and operating characteristics influence the process.

Plasma interactions can be quite complicated, and there are significant differences between a

space vehicle's interactions with the relatively cold, dense plasma of the ionosphere or thc

plasmaphere (10 2 to 10 _ particles per cm3), the hot tenuous (below 1 panicle per cm 3) plasm_ _t

very high orbits, and interactions in the auroral regions where the higher energy plasma

characteristic of higher altitudes penetrates to LEO.

Spacecraft charging is vehicle as well as orbit dependent. A spherical satellite with a

homogenous, conducting surface would probably not experience sigr._i_cant charging-related

problems because the vehicle's potential would be uniformly high. The utility of such a design is,

of course, extremely limited. None*,h,:.:_ss, vehicle design is an important consideration.

Two different mechanisms are thought to combine with vehicle design to generate spacecraft

surface charging. Photoele, :.f _ effect and plasma bombardment are common terms for these

effects.

Illumination of the vehicle skin by photons knocks loose electrons. As these electrons are

freed from the spacecraft (photoemission), the skin develops a relative positive charge. The

electrons may form a negative plasma cloud or sheath near the vehicle skin. If the entire surface

of the spacecraft were a homogeneous conductor, this charge buil.dup would generate a current

flow to spread the charge evenly over the vehicle. Since most spacecraft exteriors have solar

panels, probes, lenses, etc., there is a marked difference in conductivity across the surface. The

result is differential charging of the sunlit surface with respect to the unlighted portions of the

vehicle. Even in the best designed _pacecraft, depressions or holes in the vehicle may be
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constar.tly shaded. This means that even spin-stabilized satellites are subject to photoelectric

charging.

The success of plasma bombardment, which is associated with geomagnetic disturbances and

substorms, in charging a spacecraft is structure dependent. A vehicle immersed in a hot

(energetic) plasma is constantly colliding with charged particles. The extent and severity of

surface charging depends, to a l_ge extent, on spacecraft structure and design. Electrons with

energies above a few KeV are capable of penetrating 1 micron or more into a dielectric.

Consequently, _'hey stick to the spacecraft skin, causing a negative charge buildup. Hoes or

cavities in the front end of a vehicle (relative to its direction of flight) may actually scoop up

energetic particles and accelerate this charging process.

1.2.6.3.2 LEO Altitude Spacecraft Charging

At low latitudes in LEO, the plasma is relatively dense and of low energy, so equilibrium is

established within a few volts negative of the reference plasma potent;al. At these altitudes

(within _ region called the "plasmasphere" which extends up to about 5 Earth r_dii), the plasma

has a dense "cold" component which can supply sufficient ions or electrons to maintain the

potential on a body close to the potential of the plasma. Thus, charging of passive surfaces is

usually not a problem i:_ this regime. However, for active surfaces, e.g., scar arrays and structure

tied ele_rically to them, arcing and related significant effects can occur, depending upon the

grounding scheme and the magnitude of the spacecraft-imposed voltages.

1.2.6.3.3 Geo'_ynchronous Altitude Spacecraft Charging

The geosynchronous altitude plasma envirorment is very complex ar,_l d_amic. Hence,

geostauonary vehicles are thought to be most susceptible to charging for two reasons. First, they

_e close to the niagnetopause where the fluxes in GEC' can be quite energetic and are highly

variable with magnetic activity especially during geomagnetic substorms These events occur

several times a day, even on quiet days, and may produce a ten-fold enhancement of ion density

and ._thousand-fold jump in electron density at geosynchronous orbit. Second, the ambient

plasma d,,_nsity at 6.6 RE is low (below 1 particle pc, cm3). This means that, unlike low orbit

vehicles, the ambient atmosphere is incapable of "bleeding off" or neutralizing small charges

before a discharge can occur

la GEO, thermal current densities can be three orders of magnitude les_ than in LEO, .so t.hat

photoelectron emission fi'om surfaces can play a significant role in balancing currents to a
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spacecraft. Photoemission can charge a body to tens of volts positive with respect to the plasma.

However, geomagnetic substonns heat plasma in the tail of the magnetosphere (and perhaps in the

auroral regions) and inject the hot plasma into the region near geosynchronous altitudes. The hot

plasma, with very high velocity electrons at substantial densities, can charge the body to high

negative potentials in the absence of sunlight. Hence, sun/shade effects become important to the

point that potentials as large as several kilovolts can develop between sunlit and shaded surfaces

(depending on geometry and materials properties).

Since electrostatic discharges caused by hot plasma have damaged spacecraft (Intelsat III &

IV, DSCS-II, and DSP), design changes have been required with reduced mission effectiveness

being a possible consequence.

1.2.6.3.4 Low Earth Polar Spacecraft Charging

In polar LEO the in_!_o,,'tant transient and energetic fluxes occur in the auroral zone. These

particles are not very penetrating but may be significant for charging at altitudes above 250 km.

Spacecraft passing through the auroral zone can be charged to large negative potentials by

energetic electrons precipitating from the magnetosphere. This is because large surface potentials

are required to retard this flux and allow equilibrium (no net current) to be achieved. Also, in this

region, conditions occur in the wake of'large structures, or they may occur naturally so that the

entire vehicle is involved, _vhere the. low energy plasma density is depleted. This makes it

ineffecttve in balancing the current from the high energy electron flux, and the charging process is

enhanced. This is similar to the situation in GEO where the plasma is very energeuc but tenuous.
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1.2.7 Micrometeoroid and Orbital Debris

The microparticle environment encountered by a spacecraft in low and medium Earth orbit is

defined by two sources: man-made debris from space activity since October 1957, and naturally

occurring micrometeoroids.

1.2.7.1 Micrometeoroids

Meteoroids are solid particles moving in interplanetary space and originate from both

cometary and asteroidal sources. The cometary meteoroids are made primarily of a

conglomeration of ice particles with small amounts of higher density minerals mixed with the ice.

This gives them a relative density of--0.5 g/cm 3. The asteroidal particles are primarily of higher

density minerals wi_h densities that can go as high as -8 g/cm 3. Meteoroids have been detected

with sizes as small as 0.4 microns and as large as several meters in diameter. Because of their

velocity, density, and mass, meteoroids can cause damage to vehicles operating in space.

However, the primary threat of meteoroids in the near-Earth space environment is from particles

ranging from 50 _tm to 1 mm in diameter. The very small meteoritic particles (less than 1 gm in

diameter) are primarily from beta meteoroids. These are meteoroids which are accelerated by

radiation pressure outward from the sun. Collision velocities can vary widely and depend upon the

constant orbital velocity of the Earth, the spacecraft orbital velocity, the impactor velocity, and

the direction of impact. The collision velocities for meteoroids range from about 3 to 72 krrds

with an average velocity of 19 km/s. Zook and Erickson have provid,:d data that give the

distribution of meteoroid velocities seen by spacecraft. _0,__,m2,_3

1.2.7.2 Orbital Debris

Orbital debris re*'ers to man-made particles orbiting the Earth, which is a continuous changing

environment. Within about 2000 km above the Earth's surface there is an estimated 3,000,000 kg

of man-made orbiting objects. These objects are in mostly high inclination orbits and sweep past

one another at an average speed of 10 km/sec. These particles are a result of standard launch and

spacecraft operations as well as rocket and satellite breakups. Launch and spacecraft operations

place both large particles (i.e., greater than 1 cm diameter such as satellite shrouds, lens covers,

an,,1 dropped tools) and small particles (i.e., -10 _tm diameter solid rocket exhaust) in orbit.

Exp,'_sure of satellites and spent rocket bodies to the space environments (i.e., UV, AO, thermal

cycling, radiation, and impact) also creates small particles, less than I mm di_m-,ter, due to

materials' degradation and erosion. After shutdown, spent spacecraft and rocket bodies are

allowed to remain in orbit as very large (;e., great than 1 m diameter) pieces of orbital debris. In
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addition, both operational and spent spacecrat_ and rocket bodies are susceptible to intentional

and accidental breakups, either due to explosions or hypervelocity impacts. These breakups

create orbital debris of all sizes.

Collision velocities can vary widely and depend upon the constant orbital velocity of the

Earth, the spacecraR orbital velocity, the impactor velocity, and the direction of impact. The

collision velocities for space debris particles range from about 3 to 15 km/s, with average values

of 10 to 13 km/s. The distribution of velocities has been given by Kessler. 14 With regard to the

mean density of the debris, the present recommendation is that for particles smaller than 0.5 cm

the mean density is 4.0 g/cm 3. This is based on the fact that most of such small particles consists

of either small alumina particles (e.g., from propellants) or the debris from paint and pigments,

which are usually comprised of such materials as titania and zinc oxide. For larger particles

greater than 0.5 cm the density is initially about 2.8 g/cm 3 (representing aluminum) but becomes a

decreasing factor of the size of the partic',e (i.e., p = 2.8/d°_). The basic explanation for this is

that the particles are not solid bodies but rather portions of structures which, therefore, act as if

partially hollow and pseudo-porous.

The distribution of mass and relative velocity is sufficient to cause the orbital debris

environment to be more hazardous than the meteoroid environment to most spacecraft operating

in Earth orbit below 2000 km. Mathematical modeling of this distribution of orbital debris

predicts that collisional fragmentation will cause the amount of mass in the 1 cm and smaller size

range to grow at twice the rate as the accumulation of total mass in Earth orbit. Over the past 10

years, this accumulation has increased a_ an average rate of 5 percent per year, indicating that the

small sizes should be expected to increase at 10 percent per year.

1.2.7.3 Microparticle Fluence Models

The microparticle environment is described in terms of two separate models, one for the

man-made debris, and the second one for the naturally occurring micrometeoroids. The

phenomenology numerically computed _nodels are provided by B.G. Ccur-Palais for

micrometeoroids and by D. Kess)-r and R.C. Reynolds for space debris. The models m'e outlined

in NASA SP-8013, and NASA-TM- 100471 with recent, 1990, data, provided in a recent Phillips

Laboratory briefing by Kessler, respectively. Cour-Palais et al.tS provides a good general model

of the near-Earth meteoroid environment. Eberhard Grun's 1985 model t6 provides a good update

to the Cour-Palais model by including the beta meteoroid environment. The Kessler debris

model _7 was developed in 1987 and has been widely adopted and used by the U.S. Department of

Defense, NASA, and the European Space Agency (ESA).

1-44



TheexistingKesslerdebrismodelassumesthat theparticlesareall in circularorbitsand,

therefore,havea commonspeedwith thatof any spacecraft which is also in a circular orbit at the

same altitude. This logic immediately implies that hits can only be in the plane which is parallel to

the Earth's surface. Therefore, only the ram and sides can be hit and there will be no hits on either

the SPACE end, the EARTH end, or the TRAIL end. The debris model predicts that the number

of hits per area, per time are functions of altitude, the 22 year solar cycle, orbit inclination,

particle size, and time. A growth model has been assumed which has two components - one

component due to continued launches and a second component due to fragmentation resulting

fi'om explosions and collisions between the various pieces within orbit. An important point to

note is that for debris altitudes greater than 700 km there is only a simple growth factor, since the

influence of the atmosphere is negligible. However, as altitude decreased below 700 km the effect

of the atmosphere becomes increasingly important and there is a cyclic component to the history

which is due to the solar cycle behavior and the consequential atmospheric heating effect.

For micrometeoroids, it should be noted that the Earth passes through many "tubes" of

micrometeoroid orbits during its annual orbit. For short mission times of less than 1 year, it

would be necessary to correctly track exactly which of the micrometeoroid orbits have been

intercepted by the Earth. However, for a multiyear mission, where collisions occur with a large

number of micrometeoroid orbits, the assumption is that the mcirometeoroids are coming in

towards the Earth from all possible directions and, therefore, the system appears to be geocentric

on average.

Figure 1-17 shows the predicted meteoroid and man-made debris impact fluxes with varying

particle size (ref. 14).
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Varying Particle Size

In general, the LEO debris environment flux surpasses the LEO meteoroid environment flux

for particles larger tha_ -1 mm in diameter. In this size regime the debris is composed primarily

of particles _om orbiting spacecraft wl.ich have broken apart. These particles are irregular in

shape. They may also be of much higher densities (e.g., stainless steel and tantalum) but the

average density is that of aluminum. The LEO debris environment also contains more particles in

the size regime less than -50 _tm in diameter than does the meteoroid environment. In this

population regime, the p,,,rticles which are ~10 _tm in diameter are primarily aluminum oxide _om

solid rocket motors, whereas the other particles in this range are primarily paint pigments, both

averaging --4 g/cm 3 density. For a circular orbit at 500 km altitude and 28.5 ° inclination (the

inclination and altitude of the proposed Space Station), the average relative impact velocity of

orbital debris is about 10 km/s. He- ,ever, this relative velocity can range from almost 0 to -19

km/s for particles in highly elliptical orbits. Since the majority of impacts occur at oblique angles,

the relative normal incidence impact velocity averages -8 to 10 km/s. t,

The meteoroid environment impinging on a spacecraft in orbit around the Earth shows a

tendency to impact about twice as much on the satellite's leading edge (which is moving in the

velocity, or ram direction) as on the trailing, or wake, edge. Orbital debris, on the other hand, is

much more focused towards the leading sides of the spacecraft, with the exception that particles
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in elliptical orbits have higher fluences at --45 ° either side of the ram direction.19 With orbital

debris, approximately 1/10th to 1/20th of the number of particles hit the trailing edge compared to

the leading edge surfaces.

Generally, the meteoroid environment is modeled as unchanging over both time and

spacecraft inclination whereas the orbital debris environment is modeled as highly changing both

over time and with spacecraR inclination. The higher inclinations possess a much higher

population of debris particles. The debris environment is considered to be increasing with time,

with the small particle population increasing faster (at a compound rate of ~2% per year) than the

population of the much larc_r trackable particle (which increase at a linear rate of-5% per

year). :° Both the meteoroid and debris environments increase with altitude, although the current

models of the debris environment show the flux decreasing at altitudes above -1000 ion. This

may change as the elliptical orbits of the debris are included in future models.

The debris object flux is an important and growing problem at low altitudes, and is not

negligible at geosynchronous altitudes. A single debris object impact can destroy a spacecraft, so

a large spacecraft at low altitudes can only expect to operate for a calculable time before its

probability of being hit exceeds a specified limit. Thus, the LEO spacecral_ should be designed to

survive small object hits. The MEO spacecraft should also be designed so it can withstand hits by

small objects or not contribute additional debris objects (i.e., avoid surface materials that shatter

upon impact). The same effects may be observed at geosynchronous orbit so similar design

changes should be considered.

The flux and size distribution of micrometeoroids is almost independent of altitude, so design

changes to limit the effects of abrasion (by <10 .6 g micrometeoroids) and punctures (by >10 -6 g

micrometeorc, ids) may be necessary for all spacecraft.
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1.2.7.4 Spacecraft-Micrometeoroid/Debris Interactions

Impact damage can degrade the performance of exposed spacecraft materials and, "n some

cases, destroy a satellite's ability to perform or complete its mission. For both micrometeoroids

and debris, the particles can range in size from sub-microns to many centimeters. Both

components display a power law of number versus size, with the smaller particles being far more

numerous than the larger ones.

The different phenomena observed with h_ervelocity impacts in mate_als depend on several

factors: the impact velocity, the relative sizes of the impactor and target; and the material

properties of the target. The physical response of any target to a micrometeoroid and debris

impact depends on the material, induced stress level, material temperature, number of projectiles

and the system configuration. These phenomena may be enhanced by subsequent exposure of

underlying layers to the UV, atomic oxygen, charged particles, and thermal cycling. This

subsequent exposure can modify a material and thus enhance cracking and delamination regions.

Also, material embrittlement, erosion and other property degradation can occur to either the

surface or exposed underlying material. For example, AO can creep under locally delaminated

regions causing greater damage, or previously protected materials may become exposed to UV

through small cracks or fissures. In short, the synergistic environment can lead to accelerated

damage rates and a significant increase in the damage zone.

A more detail discussion on the effects of micrometeoroid and debris impact on materials and

optical components is presented in Chapter 2, Sections 2.3.6. and 2.3.7.

1-48



1.2.8 Thermal Environment

1.2.8.1 GeneralDiscussion

A vehiclein LEO will receiveradiantthermalenergyfrom three primary sources: the

incoming solar radiation (described by the solar constant), reflected solar energy (Earth albedo

energy), and outgoing longwave radiation emitted by the Earth and atmosphere. Portions of this

energy will be reflected by .'.he vehicle, and the vehicle radiates energy into the cold sink of space

at 3 K. Spacecraft surfaces will tend toward a temperature which balances these energy fluxes

with any energy produced internally within the vehicle. A similar thermal balance process applies

to the Earth itsel£ In contrast, a vehicle in GEO will not be affected by the albedo and emitted

radiation.

LEO and GEO experience different eclipse periods. A spacecrai_ in LEO moves in and out

of eclipse once every orbit, as often as every 90 minutes. A spacecraft in GEO remains in

continuous sunlight during most ofthe year. Twice per year, during the spring and autumn, it is

in eclipse once a day for about 45 days. These differences in orbital characteristics impose

different requirements on the design of the thermal control system.

1.2.8.2 Spacecraft-Thermal Interactions

The energy absorbed by a spacecrat_ depends on the thermal characteristics and area of its

outer surface, i',s orientation to the source of thermal radiation, and the characteristics of that

source. Geometric considerations determine in part how much energy is absorbed on the outer

surface due to area size and spacecraR orientation. However, radiation source characteristics and

thermal surface properties are interrelated and require some amplification.

External radiation sources of importance are the sun, albedo (planetary reflection), and Earth

emission. The intensity of solar radiation - parallel sun rays are assumed at these distances -

va:ies with the distance from the sun according to the inverse square law. The intensity also

varies spectrally, i.e., according to the wavelength spectrum, with approximate distribution of

energy as follows:

• Ultraviolet (wavelength less than 0.38 micrometers): 7%

• visible (wavelength between 0.38 and 0.76 micrometers): 45.5%

• Infrared (wavelength greater than 0.76 micrometers): 47.5%

The Earth's albedo is almost diffuse, which means that from any fixed point on Earth, the

intensity of reflected radiation is almost uniformly distributed out from that point and is not
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oependent upon the angle of incident radiation. The Earth's albedo is not a fixed value but varies

considerably with local conditions such as cloud cover. The spectral distribution is approximately

the same as the source (the sun).

The Earth emission, on the other hand, is based on an app_ent "black body" temperature of

the Earth and its atmosphere (A black body emits the maximum amount or radiant energy at a

given temperature and wavelength.) A temperature ofqS0°R is commonly assumed, with the

emission considered to be diffuse.

The spectral distribution of the energy source is particularly important in spacecraR thermal

design since spacecraft coating sand surfaces are spectrally responsive to the radiation source. A

black coating absorbs almost all of the impinging solar energy and has a flat spectral response, i.e.,

the same response to all wavelengths. A second surface, mirror, on the other hand, reflects most

of the solar radiation and shows a marked change over the spectrum, except for a flat response in

the solar band. Other coatings, in general, have surface characteristics that vary between those of

black bodies and second surface. (A more detailed discussion on thermal control systems can be

found in Chapter 10).

The solar absorptance of spacecraft materials will, in general, increase over the lifetime of a

mission - the longer the mission, the larger the increase. The magnitude of this increase cannot be

precisely determined, but must nevertheless be considered in all spacecraft thermal design.

Absorptance changes can be induced by the ultraviolet spectrum of solar radiation, by energetic

particles, by contamination from materials outgassing during the various mission phases, and by

other factors such as high temperatures and the vacuum of space.
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1.3 SPACECRAFT SUBSYSTEMS

In selecting surface materials for spacecraft applications, the functions of the exposed

components which are fabricated from these materials must be considered. While many

components can do their jobs in the interior of the spacecraft, other components (by the nature of

their functions) must be exposed. These necessarily exposed components include radio frequency

(RF) antennas, optical sensor windows and/or mirrors, thermal control radiators, propulsion and

attitude control rocket nozzles and solar cells. These exposed components are the eyes, ears, and

arms (or legs) of the spacecraft.

Table 1-4 lists the spacecraR subsystems, the exposed spacecraft components, their

functions, the critical material properties necessary to perform these functions, and some of the

materials often used. For example, electrical conductivity is the critical property for RF antennas,

therefore aluminum, copper, or silver (often as plating) are used. Materials transparent to infrared

wavelengths are used for navigation Earth sensors and infrared (Ig) laser communication

transmitters and receivers. Selenium, germanium, and cesium iodide are oRen used in these

applications. In addition, mirrors to collect infrared or visible optical radiations are used for

communication, navigation, or s_.weillance purposes. Polished aluminum, nickel, silver, and

osmium make good mirror surface_

Table 1-4. Spacecraft Subs, ,stems, Exposed Components, and Materials

Subsystem Component Critical Property Candidate Materials

Communication RF Antenna Electrical Conductivity Al, Cu, Ag

Se'ns°rs Optical Window Optical Transparency (IR) Se, Ge, CsI

Optical Mirrors Optical Reflectivity AI, Ni, Ag

Tl_ermal Control Radiators ¢z1¢Ratio White Paints ....
Thermal Blankets Black Paints

Heat Pipe_

Attitude Control Rocket l_lozz/e High Temperature Mo, Ta, W,C

Strength

Power Solar Cells Efficiency at Temperature Si, GaAs, InP
Batteries

Optical Windows Optical Transparency (Visible) LiF, SiO2

Avionics Electronic Devices
I

Structure.a Bu_ Structure Strength' 'Polymeric compoaites

Deployable Booms Metals, Ceramics
Gimbals Stiffness
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Thermal control involves keeping the interior of the spacecraft within acceptable temperature

limits (typically 0°C to 50°C for electronics, but since hydrazine freezes at -3°C temperature

limits of 10°C to 50°C are often specified). Since radiation is the only passive heat transfer

mechanism to and from the spacecra_, white and black paints are often used. White paints have a

low solar absorption as (typically < 0.2) coupled with a high emissivity e (typically 0.8), while

black paints have high values (0.9) for both solar absorption and thermal emissivity. Bare metals

usually have an C_s/S ratio of-1.

Propulsion (almost always) and altitude control (often) is accomplished by mass-expeUing

rockets. The nozzles of these rockets, which must be exposed, are made of high-temperature

metals. These refractory metals are typically alloys of molybdenum, columbium (niobium),

tantalum, and tungsten. The interior of rocket nozzles are oPten lined with a form of carbon that

can withstand the extreme pressures and temperatures involved.

Solar cells are the usual source of spacecraft electrical power, with solar cells being relatively

exposed. Solar cells are typically silicon, gallium arsenide (new) or indium phosphide

(experimental). Silicon dioxide (SiO2) is used to protect solar cells from low-energy proton

damage, often being in turn. protected by a quarter-wavelength-thick LiF anti reflection coating.

Thus, the LiF is the only material in the solar cell stack really exposed to the ambient

environment, with the SiO2 cover slide and the Si solar cell being behind it. Even if solar

concentrators (mirrors or lenses) are used, the solar cells will be protected this way.
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1.4 FLIGHT EXPERIblENTS

More than 1000 materials have been evaluated during several space shuttle flight experiments

and recovered satellites (e.g., LDEF, Solar Maximum Mission, MIR). A summary of the

comparative altitude, exposure time and the atomic oxygen fluence level is provided in Table 1-5.

Table 1-5. Flight Experiments and Recovered Satellites Mission Summary

Flight

STS - 5

STS - 8

STS-41G

STS..46 EOIM-3

STS-46 LCDE

Solar Max

COMES/MIR

LDEF

EURECA

Altitude Onclin.)

222 km (28.5°)

222 km (28.5 °)
,,, ,,

225 km (57.0 °)

230 km (28.5 °)

425 (`) - 230 km (28.5 °)

574 - 491 km (28.50)

425 - 350 km (51.6°)

479 - 324 kin (28.5°)

515kin

Exposure Time

44 hours

41.75 hours

38 hours

42.25 hours

41 -58.55hours C')

50 months

13 months 2 days

69 months

10 months

Atomic Oxygen Fluence
atoms/era z

(Attitude)

t x w2o (VAR)

3.5 x 102o (tara)

3 x 102o (ram)

2.0 - 2.5 x 102o (ram)

2.0- 2.7 x 102o (ram)

2 x 1021 (VAR)

1 2x10 is - 5.8x102o

tO3 - 9.0xlO 21 (wake to ram)

TBD

(a) 16.55hours at 425 km during EURECA deployment
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1.4.1 Long Duration Exposure Facility (LDEF)

1.4.1.1 Mission Information

The Space Shuttle STS 41-C deployed the Long Duration Exposure Facility (LDEF) carrying

57 different experiments on April 6, 1984 for a planned 10 month to 1 year mission. The LDEF

spacecrat_ flew in a 28.5 degree inclination circular orbit with an altitude in the range from 324 to

479 km (!75 to 258.5 nautical miles). It was gravity-gradient stabilized and oriemed so that one

side always pointed along the velocity vector. The LDEF was a 12-sided, 4.3-m (14-fl) diameter,

9.1-m (30-t_) long aluminum open frame. The structure was configured with 72 equal-size

rectangular openings on the sides (six on each side) and 14 openings on the ends (six on the

Earth-facing end, and eight on the space-facing end) for mounting experiment trays. The LDEF

total weight with experiments was approximately 9,720 kg (21,400 lbs). LDEF exposed a total

surface area of about 130 m2 for 69 months. 2_

The orientation of the spacecra_ with respect to the Earth during its 5.8 years flight is shown

in Figure 1-18. The location of a specific experiment is described by referencing a row (1-12) and

a column (A-F) as shown in Figure 1-18. Values of key parameters of the low Earth orbit

environment which LDEF encountered are listed in Table 1-6. The remarkable flight attitude

stability of LDEF (within less than 1° of movement in yaw, pitch, or roll) enables specific analyses

of various individual and combined effects of LEO environmental parameters on identical

materials and systems on the same space vehicle.

The LDEF experiments ranged from the study of the LEO environment to determining the

effect of long-term space exposure on tomato seeds. Most of the experiments were passive with

the majority of the data resulting from post-flight analysis. Because of schedule changes and the

loss of the Space Shuttle Challenger, LDEF was not retrieved until January 12, 1990 aRer

spending 69 months in orbit. During these 69 months, LDEF completed 32,422 orbits of Earth

_d trzve!ed almost 750,000,000 nautical miles. Post-flight analysis of the LDEF generated a

wealth of data on the interaction of materials and system with the LEO environment. These data

have been presented at three post-retrieval symposiums 22'23 .24 and two mat_':ials workshops, 2s_

and integrated into several data bases. 27a8
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Figure 1- 18. LDEF Orientation

Table 1-6. LDEF Exposure Conditions

Environment Conditions

High Vacuum 10"6to ]0"vtort

UV Radiation 100-400 nm

4,500 to 14,500 equivtlent sun hours

Electron and Proton Radiation "2.5 x I0 s fads surface fluence

Atomic Oxygen "10 3 to 9.02 K 10 21 atoms/cm 2

(wake- to ram-facing)

Meteoroid and Debris lmpncts > 36000 particles from "0.1 mm to "2.5 mm
High fluence on rare-facing _lrfaces

Cosmic Radiation "6 rads "20 tracks Thorium and Uranium

Thermal Cycling -34,000 cycles

-29"C (-20°F) to 71°C (160°F), ±II°C (:t.20°F)
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Figures 1-1929 .'-,ld 1-2030 summarize the results of calculations of atomic oxygen (AO)

fluence and equivalent sun hours of UV radiation, respectively, at the end of the mission on each

LDEF tray location. Examination of these figures reveals the many combinations of AO/UV

exposure conditions available on LDEF, attributable to the remarkable attitude stability during the

5.8-year flight. Figure 1-19 shows that the highest AO fluence was 9.02 x 10 21 atoms/cm 2 on

the LDEF leading edge, about 8 1° from row 9 (towards row 10). Experiment trays on the side

rows experienced different AO fluences because of the 8 ° ram vector angle. The Earth and space

end AO fluences were more than one order of magnitude lower than the ram fluence. The lowest

AO fluence on LDEF was 2.66 x 103 atoms/cm 2 between rows 3 and 4. During the LDEF flight,

the total fluence for rows 2 through 4 was in the same order of magnitude as the lowest fluence

listed in Figure 1-19. However, during the retrieval mission, after LDEF was safely clamped in

the shuttle payload bay, LDEF rows I through 3 (which faced out of the bay) were inadvertently

subjected to atomic oxygen at the retrieval altitude for approximately 15 minutes. This

inadvertent exposure raised the AO fluence from the 103 to the 1017 atoms/cm 2 order-of-

magnitude for the experiment trays on those rows.

Figure 1-20 shows the cumulative equivalem sun hours exposure of total direct solar and

earth reflected radiation as a function of LDEF row position. The high vacuum ultraviolet (VUV)

fluences were 14,500 equivalent sun hours (esh) on LDEF space-end experiment trays, with

intermediate values of 11,100 to 11,200 esh on leading and trailing edge trays and 6,400 to 6,800

esh on side trays. The lowest VI.N' fluence was 4,500 esh, received by the Earth-end trays.

TI, e results from LDEF show that past atomic oxygen fluence models do not account for

atomic oxygen impingement rates at grazing angles to the spacecratt (see Figure 1-21), and

Therefore do not include the thermal molecular velocity contribution. Because of the Maxwellian

distribution of the atomic oxygen molecular velocity, the atomic oxygen flux on a surface is not

simply the atomic oxygen density times the magnitude of the flow velocity times the cosine of the

angle between the flow velocity and the surface normal, tience, LDEF surfaces parallel to the

ram direction and also surfaces with incident angles slightly greater than 90 degrees received some

atomic oxygen U:in$ a modified AO fluence model to account for the thermal velocity

distribution of the atomic oxygen atoms in LEO, Figure 1-22 shows the higher AO fluences at AO

incidence angles to LDEF from 95 ° to 110 ° in comparison with that predicated with the MSIS-86

model that excludes the thermal molecular velocity.31
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Figure 1- 19. Atomic Oxygen Fluence for Each LDEF Tray Location
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Figure 1- 21. Incidence Angles for LDEF Tray and Longeron Location.
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Figure 1- 22. Effect of Thermal Molecular Velocity on Atomic Oxygen Fiuence.
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1.4.1.2 Thermal Environment

The thermal control of the LDEF was totally passive by design, thus relying on internal

radiation heat transfer, heat conduction paths, and the external surface coatings (o./_) for facility

temperature control. Over 90% of the interior structure and tray surfaces were coated with

Chemglaze Z306 high emissivity black paint (c=.90) to minimize any circumferential thermal

gradients and to maximize the radiation heat transfer across the facility. To minimize conduction

heat transfer from the structure, the experiment trays were attached to the LDEF structure by

eight 2-in x 5-in aluminum clamps along the tray perimeter. The tray mounting scheme minimizes

the contact conduction area through which heat can be transferred between the facility and the

experiment trays. The passive thermal control of the LDEF results in a variation in the

experiment's structure boundary temperature due to the orbiting nature of the spacecraR.

A thermal analysis of LDEF's flight experiments was conducted by Berrios et al.32a3 Three

heat sources were considered for the thermal analysis of the LDEF experiments: the solar

irradiation; the Earth reflected solar irradiation (albedo); and the Earth emitted energy (planetary

infrared). LDEF lacked any internally generated heat resulting from electronics or heaters.

Figure 1-23 defines the LDEF principal sources of heat. The angle 13is defined as the angle

between the spacecrafFs orbit plane and the Sun's illumination rays and its minimum and

maximum amplitudes are calculated by adding the declination of the Earth's equator 0:23.5 °) with

the inclination of the spacecraft's orbit plane (:f..28.5°). The Thermal Radiation Analyzer System

(TRASYS) computer code 3_ was employed to calculate the a'bedo, solar, and planetary incident

heat fluxes. A TRASYS model ofthe LDEF spacecraf_ was constructed which represented a 12

side polygon closed on both ends. Program inputs consisted of the LDEF spacecrat_ orientation,

orbit 13angle, and altitude. Transient orbital heat fluxes were calculated for 10" beta angle

increments within the range from -52" to +52". The mission incident surface fluxes were

calculated by time averaging the orbital heat flux over one complete orbit and tabulating the

average flux versus orbit _ angle, as summarized in Table 1-7. The results show that for the row

6 location, the peak heat flux occurred at a 13angle of-52" and the minimum heat flux is at a 13of

+52"
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EARTH'S
DECLINATION
4,23.5 °

PLANETARY
INFRARED
ENERGY

EQUATORIAL
PLANE

±28.5 °

INCLINATION

Beta Angle:

13= Angle between the plane of the orbit and the sun illumination vector

Range = -52 < 13> +52 °, calculated by adding the declination of the Earth (±23.5 °) to
*,heinclination of the orbit plane (+28.5 °)

Principal Heating Sources in Space:

Solar Incident Flux -- Heat due to the direct illumination from the sun 0Natts/M 2)

Albedo = Heat due to the, portion of the solar incident energy reflected from the planet
on to the LDEF (23%-32% from this type of orbit, Watts/M 2)

Planetary = Heat emitted from the planet 0Natts/M 2)

Figure 1- 23. LDEF Principal Heating Sources
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Table 1-7.

-52 -4o
6.03 7.99

6,38 IQ54

53,69 69.99

116.22 115.85

191,95 149.94

245.39 190.93

234.92 183.04

163.42 139.81

96.72 103.04

33.65 51.93

6.08 7,97

5.93 7.89

84.82 105.56

39.8'2 42.10

LDEF Average Incident Heat Flux
BTU/Hr-Ft 2 b

-30 -20 -10

9.37 10.47 23.86

35.49 51.88 67.19

81.70 91.34 98.79

114.58 111.62 106.70

127.50 108.49 90.03

147.40 103.11 57.70

141.58 99.36 68.72

126.43 113.22 99.21

106.87 108.55 107.89

67.30 80.10 91.26

20.46 36.77 54.25

9.27 10.37 11.17

119.34t 129.49 135.71

44.28 46,14 47.34

(Solar + Albedo)

Beta An le

0 -!0 20 30 40 $2

43.76 68.27 98.82 141.04 182.52 234.22

83.99 99.09 112,30 125.46 138.73 162.39

103.88 106.94 107.54 105.96 102.14 95.95

99.38 90.54 79.48 66.76 52.48 33.48

71.67 53.83 36.49 20.34 7.96 6.06

27.90 11.17 10.37 9.27 7.8q 5.90

44.11 20.91 10.47 9.37 7.99 6.01

84.47 68.62 52.37 35.81 19.79 6.47

104.84 99.59 92.07 82.29 70.61 53.92

100.32 107.55 112.51 115.39 116.79 116.70

72.32 90.71 109.28 128.30 150.81 192.24,

28.08 58.02 103.40 147.61 191.19 245.15

137.80 135.71 129.49 119.34 105.56 84.82

47.79 47.34 46.14 44.28 42.10 39.82
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Actual internal flight temperatures were recorded at intervals of approximately 112 minutes

for the first 390 days of LDEF's mission. Temperatures were taken using five copper-constantant

thermocouples, one suspended radiometer, and two thermistors were used for reference

measurements. The actual recorded temperature range for all seven locations was from a low of

39°F to the maximum of 134°F. Table 1-8 compares the measured flight temperatures with the

post-flight calculated temperatures. 3s 36 Also included are the design temperataures which were

maintained throughout the mission. The calculated temperatures and thermal gradients derived

from the thermal model calculations were found to be accurate with the flight temperature data

from LDEF.

Table 1-8. Comparison of LDEF Temperature Ranges

LDEF LocatioE Measured Post-Flight Calculated Design Limits

°C (°1_ °C (oF) "C ('t3

Internal Average Temperature 11 - 32 14 - 32 -12 - 50

(52 - 89) (58 - 89) (lO - 120)

Structure 2 - 57 4 - 58 -23 - 65

North/South (Rows 6/12) (35 - 134) (39 - 136) (-10 - 150)

Structure 12 - 38 -23 - 65

East/West (Rows 3/9) N/A (53 - 100) (-10 - 150)

Earth End Structure 14 - 39 14 - 40 -12 - 57

(56- 103) (57 - 104) (10- 135)

Space End Structure 16 - 32 18 - 36 -12 - 57

(60 - 9o) (64 - 96) (10 - 135)
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1.4.1.3 Ionizing Radiation

LDEF was well-instrumented with ionizing radiation dosimeters, including

thermoluminescent dosimeters (TLD's), plastic nuclear track detectors (PNTD's), and a variety of

metal foil samples for measuring nuclear activation products. In addition, the induced

radioactivity produced in various spacecraft components provided information on the radiation

exposure. The estimated radiation fluence exposure in the LDEF orbit provided input into

transport calculations codes (e.g., High Energy Transport Code) to develop scaling relations for

predicting _he radiation environment for other missions (e.g., Space Station, Space Observatories)

and to assess the accuracy of current models.

Because the LDEF orbit altitude was well below the Earth's Van Allen radiation belts, except

at the small region of the belt that is generally referred to as the South Atlantic Anomaly, the

LDEF and the onboard experiments were exposed to only modest levels of ionizing radiation.

The penetrating ionizing radiation that the LDEF did received resulted primarily from protons

trapped in the South Atlantic Anomaly Region of the Van Allen belts, and to a much lesser

degree, galactic protons and albedo neutrons and protons emanating from the Earth's atmosphere

due to galactic cosmic rays bombardment. 'Fable 1-9 summarized :he energy range, for the

different sources. Figure 1-24 shows the cumulative ionizing radiation of these penetrating

particles striking LDEF. The predicted trapped proton integral fluence for the LDEF is presehted

in Figure 1-25.

Figure 1-26 shows the depth dependence of proton and neutron flaences over all energies

produced by trapped proton, galactic proton, albedo proton, and albedo neutron environments

during the LDEF mission time. 3_ The spatial dependence ofthe results are in terms of the areal

density depth in aluminum from 0 to !00g/cm z. To roughly relate these thicknesses to LDEF, the

spacecraft diameter is 32 g/cm 2, and the length is 68 g/cm 2. (This is based on an average density

obtained from the overall dimensions of 14 ft. diameter x 30 ft. long, a spacecrat_ structure weight

of 8,000 lb., and a weight of 13,400 lb. for the experiments.)

Table 1-9. LDEF Sources of Ionizing Radiation 38

,Minimum Incidence Maximum Incidence Fluen_ Ranse of Angular
Source Energy Energy an 4 Distribution

Trapped Protons 15 MeV 600 MeV 4.3x10 ¢ 4x

GalacticProtons 3.2 GeV 100 GeV 2.8x10 _ 2x

Mbedo Protons 15 M_V 3.5 GeV 2.3x10 _ 4x

Albedo Neutrou 1 keV 3.0 GeV 7.4x10 _ 1.3a
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The geomagnetically trapped electrons are of low energy and produced effects only very near

the spacecraft surface. The predicted integral fluence of trapped electrons striking the LDEF

surface varied from lxl0 _ to lxl0 t2 electrons/cm 2 at energies between 0.1 and 3.7 MeV. The

trapped electrons are of such low energy that they contribute significantly to the dose only at

small penetration depths (< 0.5 g/cm 2) and do not contribute at all to radionuclide production.

The integral fluence of the trapped electrons on the LDEF is presented in Figure 1-27.
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Figure 1- 27. Predicted Integral Fluence of Trapped Electrons Striking LDEF Surfaces
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1.4.1.4 Micrometeoroid and Debris

LDEF provided a huge collection of impact data that cover a wide size range of impact

craters from below 0.01 mm (10 pro) to 5.25 rnm. The LDEF Meteoroid and Debris Special

Investigation Group (M&D SIG) has catalogued all meteoroid and space debris impacts on

LDEF. All exposed surfaces including the experimental trays and all of the exterior surfaces have

been optically scanned for impact features. Target materials range from the aluminum 6061-T6

frame components to glasses and ceramics, composites, polymers, electronic materials, and paints.

Large area surfaces that were studied included the experiment power and data system (EPD$)

sunshields, the environment exposure control canister (EECC) sunshields, and the M0003 signal

conditioning unit (SCU) covers. The EPDS sunshields are aluminum panels painted with A-276

white thermal control paint, the EECC sunshields are chromic acid-anodized aluminum, and the

SCU covers are aluminum painted with S 13G/LO white thermal control paint. The data have

been reduced to the form of impact fluences (hits per unit area, or the integral of the crater

production rates) versus crater diameter for various surface orientations. Detailed results of this

investigation can be found in several refereaces by See et al., 39'4° M.E. Zolensky et al.,4_ M.J.

Meshishnek el al.,42 M. Alibrooks and D. Atkinson, 43 C. Coombs et al., 44 A. Watts el al., ° and

J.M. Zwiener and M.M. Finckenor. 46

Overall, 34,336 impacts were found on the LDEF surfaces, of which ~4000 of these impact

images have been stored on laser disc. f The largest impact crater was 5.25 mm in diameter.

Distribution of impact according to surface types are summarized in Table 1-10. 4'

Table 1-10. Distribution of Impact Features on LDEF

Size Bolts, Shims Tray Experimental LDEF Thermal

(ram) Clamps Flanges Surfaces Frame BIankets Totals

<0.3 NA NA 158 NA ?.8311 3069

>0.3 NA NA 172 NA 6252 797
- q --

<0.5 1318 1923 14171 5171 NA 2"7385

>0.5 161 419 2106 432 NA 3118

Totals 1479 2342 16687 5603 3456 34336
..

I. Count is incomplete; the <0.3 mm diameter features from F02, C05, C06 and !)07 not mcleded.

2. Count is incomplete; the > and =0.3 nun diameter features from F02 are not included..

fThe total number of impact features has increased with the discovery of numerous smaller impacts and the

continued analysis of the approximately one-fourth of the experiment trays designed for meteoroid/debris

investigation. However, these smaller impacts have no significant damage to material surfacea which could affect

the design of spacecraft and selection of s1_tcecraft materials.
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Impact data were evaluated for impact craters having diameters from 0.1 mm to less than 3

mm in order to determine the flux as a function of crater diameters versus the angle from the

velocity vector. A summary of the crater impact data of diarneter > 0.1 mm reported in each row

by surface type is provided in Table 1-11 48 The count column lists the total number of craters,

the area column fists the area (square meters) used to calculate flux values. The flux column

provides the reduced counts of impact craters per square meter per year, for each type of surface.

The angle "Beta" is the angle from the velocity vector (or ram) to the normal to each row. Note

that Beta increases with increasing row number in a positive value up to 180 degrees. Negative

values mean the direction is decreasing with row number up to a -180 degrees. As _r, example,

row 9 is -8 degrees. 49

Table 1-11.

Row No.

Co_t

1 622
2 126

3 399

4 311

5 g46

6 915

7 ,, 2108

8 , 3289
9 3077

10 3118

11 2435

12 ,162o
Space'- End 112

_ah End I. 1o95

Crater Impact of Diameter > 0.1 mm

Area Viux
m 2

6.58 16.43

6.58 3.33

6.58 10.54

6.58 8.22

6.58 22.36

.._58 24..15
6.58 55.71

6.58 86.92

6.58 gt .40

6.58 82.40

6.58 64.35

6.58 42.81

5.966 3.26

5.966 31.92

LDEF Structure

Count [ _,r_l Flux
• , Inn l

)12 1.22,, 15.95
,68. 1.22 9.68
74 1.22 10.54

96 1.22 13.67

. 184 1.22 26.20
442 i .22 62.94

572 1.22 81.46

939 i .22 133.72

924 1.22 131.59

652 1.22 92.85

493 1.22 70.21

.3.21 1.22 45.71

649 --

Thermal Panels

Count Area

m 2

46 0.316

36 0.316

I0 0.316

15 0.316

29 0.316

12 0.316

170 0.315

175 0.316

246 0.316

204 0.316

168 0,:316
132 0.316

165 4.65

1200 4.,55

Beta

25.33 + 122"

19.83 + 142"

5.49 _- 172 °

8.26 _- 158"

15.97 + 128"

6.60 -98"

93.62 "-68"

95.37 -38*

I17.53 4*

112.5-4 +22 °

92.52 +52*
72.56 + 82*

616 -9o"
44:82, "90"

Approximately 10 times more impact craters occurred on the leading edge (ram) of LDEF

compared to the trailing edge (e.g., compare Rows 9 and 3). Apparent flux variations occurred

within the same row for different materials, Flux values derived from impacts on experiment

surfaces are normally lower than those from the structure or thermal panels. Each experiment

was composed of a variety of different materials. Impacts on some surfaces exhibited excellent

contrast making identification for counting fairly easy, while other materials, such as composites,

exhibited very poor contrast making it much more difficult to identify impacts. The LDEF

structure and thermal panels had smaller exposed areas than the experiment surfaces, but each

consisted of the same type material and coating resulting in a more reliable and consistent count.

During the 5.75 year mission LDEF experienced a maximum of approximately 140 significant

impact craters/m2/yr.
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Someof the most salient findings concerning the separate meteoroid and debris impact

populations, and their directionalities, that have been derived from LDEF investigations are

summarized below.

Micrometeoroid versus Debris Impacts. Both orbital debris and meteoroids impacted

LDEF Separation of the two populations is determine_ by the composition of the residue, if any,

in the impact craters. Most spacecraft debris particles consist of aluminum fragments of

spacecraft structures, of aluminum oxide from the burning of solid rocket fuel, or of paint

particles (shown by the elements zinc, titanium, and aluminum, whose oxides commonly provide

the white pigments in thermal paints). Below 50 microns in diameter, orbital debris appeared to

dominate the crater populations on leading-edge LDEF surfaces. For impact craters smaller than

about 100 microns in diameter, orbital debris impacts started to become more numerous than

meteoroid impacts on aluminum surface,_ at about 50 degrees from the leading edge. s°

Teml,oral Variations oflmpacts. The Interplanetary Dust Experiment (]DE) on LDEF

discovered the temporal nonuniformity in the impact rates. 5_ This active meteoroid experiment

elect6cally recorded when each impact occurred that penetrated one of many MOS detectors

placed around LDEF. This experiment recorded over 15,000 impacts that penetrated either 0.4

mm or 1.0 mm thick dielectric layers of MOS capacitors. The IDE dat_ has shown that LDEF

encountered significant amounts of orbital debris in the form of small particles concentrated in

clouds or rings, where the impact rate would greatly increase for a few minutes on every orbit

IDE also detected, "beta meteoroids", which are dust g_ains that are lee-ing the solar system on

hyperbolic orbits to become interstella grains, and their apparent flux should be at a maximum

when a sensor faces toward the Sun. The beta's were best, and most clearly, detected by

rearward-facing IDE sensors when they faced the Sun.

Spatial Density Dependency of Impacts. The spatial density of impact craters is much

greater on surfaces close to the leading edge of LDEF than it is on surfaces near, or at, the trailing

edge. Directional dependence of meteoroid/debris impacts as a function of the angle from the

velocity vector can be seen from the count and flux data listed in Table 1-11, which is plotted

graphically in Figure 1-28 1). lqumes has shown the significant dependence of meteoroid/orbital

debri_ flax vs. angle from velocity vector as derived :,tim model calculations and from the LDEF

experinaent S0001 data _2 Note that the flux data for the structure surfaces is skewed from

velocity vector zero degree reference This skewing res,,.Ited from assuming the longerons

pointed in the same direction as the rows, and combiuing their count data with that fc_r the

intercostais (which do f,,ce in the same direction as each row). The offset in angle is 15 degrees

would restore part of the symmetry Leading edge-to-traili,_,g edge ratios of spatial densities of
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craters depended on crater size and ranged from about 10 for craters smaller than about 50

microns in diameter s3 to about 20 for impact craters largcr than about 500 micron in

diameter. 54,ss
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Figure 1- 28. Directional Dependence of Meteoroid/Space Debris Impact Craters.

A stmple function, defined as the "baseline," encompasses all of these curves as a worst case

value A simple relationship for the total number of impacts is approximated by the following

equation which is also plotted in Figure 1-28

Flux f(Beta) = a + b cos2(Beta/2)

where: a = 15

b = 125

Beta = degrees from velocity vector or ram direction.

Size Dependency of Impact Craters. A relationship between total number of impacts per

crater diameter was determined by summing all of the impacts on LDEF for each crater diameter.



Table1-12lists impactssummedon each row for diameters between O. 1 nun up to 2.5 mm. This

count includes impacts on experiments, trays, clamps, structures, and thermal panels. The total

count for each diameter was summed for all rows and plotted in Figure 1-29. This size

distribution can be approximated by the following relationship given by the following equation

which is plotted in Figure 1-29.

Ln (d) = C 1 + (C2"N)

where: N

Ln

d

C1

C2

= number of impacts craters

= natural logarithm
= diameter of crater in ram.

= +8.693612

= -3.532209

This approximation permits an estimation of the actual number of impacts below 0 5 mm

where incomplete counting occurred. A summation was made using this relation for all diameters

between 0.1 nun and 3.0 ram. The total sum was used to normalize the size distribution data into

a fractional distribution.
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Figure 1- 29. SLze Dependence of Impact Craters.
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1.4.1.5 Contamination Effects

Most of the particulate contaminants present in orbit were deposited on the surface of LDEF

during ground exposure or during the launch.S6 The particles were characteristic of fabrication,

assembly, and integration activities, with some of the distributions suggesting launch redistribution

or cross contamination. Particulate contaminants effect systems both mechanically and optically.

Particles optically obscure, scatter, refract, diffract, and reflect light. They may also become

infrared emitters when heated by solar radiation. Scatter, refraction, diffraction, and reflection all

change the path of a ray of light. The effect is to introduce unwanted energy causing a decrease

in the signal-to-noise ratio in an optical system, thereby decreasing the device's sensitivity. The

cleanliness level of LDEF when it entered orbit was approximately a MIL-STD 1246B Level 1000

for particles smaller than 250 micrometers or a Level 2000 for particles smaller than 750

micrometers.

The amount of molecular contaminants in the form of nonvolatile residues averaged over the

surface of LDEF at launch has been estimated at about 2.5 t,tgrn/cm 2. This corresponds to a

MIL-STD 1246B Level C. This may have been sufficient to degrade some systems, but its effects

were largely hidden by the far greater amount of outgassing materials deposited on the surface of

LDEF during orbit.

In orbit, additional particulate contaminants accumulated as a result of impacts with

meteoroids and space debris. These contaminants tended to be deposited very close to the

impact, with concentration dropping off with the square of the distance from the impact, as would

_e expected. Impacts with surfaces projecting radial from the surface of LDEF, such as tray

,_dges or bolt heads, resulted in the greatest amount of material being deposited on the surface of

LDEF. The concentration of such debris tould be very detrimental to optical systems within a

"ew inches of the impact.

The most detrimental contamination event in orbit was the outgassing and _edeposition of

nolecular contaminants on the surface of LDEF. The brown discoloration caused by a

:ontaminating molecular film on the surface of LDEF was evident through the windows of the

• ace Shuttle Columbia as it approached LDEF. This brown film was widely dispersed over the

railing rows of LDEF and at the space and Earth ends. Closer examination in Spacecraft

Lssembly and Encapsulation Facility (SAEF-2) following recovery permitted a much more

tetailed analysis of the film and its distribution. Large areas of the exterior surface were covered

,vith a film a few hundred nanometers thick. In some areas it was as much as a few hundred

_crometers thick and completely opaque. Analysis of the film indicated it was a polymer
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consisting of a combination of silicones and hydrocarbons. The ram facing trays appeared clean

but surface elemental analysis of ram surfaces indicated a silica residue remaining fi'om atomic

oxygen attack of the brown film. An infrared analysis of the film and possible sources indicated

that two systems had sufficient mass to be major contributors to the film; the thermal control

paints and the silicone adhesives used with both fasteners (to enable fastener assemblies to survive

vibration testing without a decrease in installation torques) and the bonding ofvelcro to LDEF

and/or experimenter hardware.

The localthermal loading caused by the molecular film created a variety of detrimental

effects. The film was a relatively effective absorber and resulted in significant heating of some

surfaces. The delamination of thin films in optics and metal-plated composite surfaces has been

attributed to the combination of poor coefficient of thermal expansion matching between the

delaminating surfaces and the thermal cycling extremes due to the presence of this contaminating

film. The film increased the thermal loading over many areas of the satellite b it seemed to have

relatively little effect on the anodized aluminum surfaces of the tray clamps. The ratio of

absorptance to emissivity for the tray clamps was about 2.27 for both leading and trailing edge

clamps A276 white thermal control paint buttons on many of the clamps did, however,

experience a change. Paint buttons on the leading rows had an odg ratio of approximately 0.32

while those on the trailing edge were about 0.63. The brown discoloration on trailing edge

buttons was largely due to the modification of the top organic layer of the paint as a result of

ultraviolet exposure.

A decrease in the transmission through sot,_e optics was noted and has been attributed to the

molecular film. A change in some of the wavelength characteristics of coated optics was noted

and has been attributed to the effect of an added cr, ntaminant thin film. Elemental analysis of the

surface of some of these optics on the ram side of LDEF indicated a silica residue was present

from the atomic-oxygen-degraded molecular film. Other optical effects included selective

reflection due to submicron droplet size, decreased signal-to-noise ratio broadband, and increased

background in the infrared.

The recovery operation redistributed LDEF contaminants that were presumably stable in

orbit. These contaminants included thin metal foils the remained after the organic film on which

they had been vapor deposited had been removed by the atomic oxygen exposure. Fragments of

partially eroded polymers were also widely distributed. Paint pigments, ash from a variety of

composites, fragments of thick molecular film deposits, and both glass fibers and graphite fibers

freed from atomic oxygen eroded composite materials completed the compliment of redistributed

LDEF materials. Materials from the Space Shuttle were also transported to the surface of LDEF
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The materials from the Space Shuttle included liquid droplets containing hydrocarbons as well as

solid particles, and glass from tile material and from the bay liner. This redistribution of

contaminants existed through the final removal of LDEF from the Shuttle Bay.

The exposure to contaminants continued during the deintegration in SAEF-2. Automatic

airborne particle count data indicated a controlled class 100,000 clean room environment in

SAEF-2, but pollens, natural minerals, clothing fiber, paper fiber, etc., accumulated on the surface

of LDEF during its exposure.

In summary, the systems most susceptible to contamination were thermal control surfaces as

shown in Figure 1-30. s7 The systems most likely to be a source of contamination were thermal

control paints, silicone adhesives, polymeric films, and carbon-based sheet materials.
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Figure 1- 30. Contaminated Thermal Surfaces on LDEF
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1.4.1.6 Vacuum Exposure

Neglecting the contribution from LDEF-generated contamination, the molecular density

adjacent to individual LDEF surfaces at any given time was dependent on the LDEF orbital

altitude, the solar activity, and the orientation of the surface with respect to the LDEF velocity

vector. The density increased as the altitude decreased and as the solar activi_, increased. The

density also built up adjacent to leading surfaces as a result of ram effects, and it diminished

adjacent to trailing surfaces as a result of wake shielding effects, ss

The ambient molecular density along the LDEF orbit was lowest early in the mission while

the LDEF orbital altitude was above 250 nautical miles and the solar activity was near minimum.

The predominant molecular species were atomic oxygen (approximately 1.86 x 10 _ molecules per

cubic centimeter) and nitrogen (second in abundance with a density several orders of magnitude

lower than the atomic oxygen).

The ambient molecular density along the LDEF orbit was highest (approximately 6.58 x 10s

molecules per cubic centimeter) late in the mission when the orbital altitude had decayed to

approximately 179 nautical miles and the solar activity had increased to near-record highs. The

predominant molecular species at that time was still atomic oxygen (5.42 x l0 s molecules per

cubic centimeter) and nitrogen was still second in abundance (1.06 x l0 s molecules per cubic

centimeter).

The ram effects made the molecular density adjacent to surfaces on the leading side of the

LDEF approximately an order of magnitude higher than the ambient density. The wake shielding

effects reduced the molecular density adjace;_ o surfaces on the trailing side of LDEF more than

an order of magnitude. The molecular densities presented above were calculated using the model

described in the Smithsonian Astrophysical Observatory Special Report 375.

1.4.1.7 Gravity/Accelerations

The LDEF experiments were exposed to very low accelerations during the mission since the

facility was passively stabilized and there were no systems on board to generate vibrations or

sho,;ks. The acceleration level at the center of the LDEF remained less than IE-7 g's throughout

the mission, s9
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1.4.2 The COMES Experiment on Mir

The experiment COMES was installed outside of the MIR space station during an

extravehicular activity. On January 11, 1990, the COMES experiment unit was refolded during

an extravehicular activity of cosmonauts aecer having spent 392 days (13 months and 2 days) in

space outside of the MIR; then it was stored aboard the station until February 19, 1990, at which

da:e it was returned to Earth. 6° During the flight, the MIR station followed an orbit located

between 350 and 425 km in altitude, inclined at 51.6 °

The COMES experiment consisted of four panels which were deployed by a cosmonaut in

space outside of MIR with the possibility of exposing samples on both sides, conventionally

identified as "V" and "R", to vacuum, O-atoms and UV radiation for 1.1 year. Table 1-13

3ummarizes the exposure conditions for the COMES experiment. Differentiation of the effects of

UV-radiation and oxygen atoms was possible due to the differences in exposure conditions and

the use of transparent filters protecting some on the samples.

Table 1-13. Space Environment Exposure Conditions for the COMES Experiment

COMES-MIR

FACE V FACE R

Oxygen atoms cm "2 1.2xt018 to 7.5x1019 (1) 3.5x1020 to 5.gxlO 20 (2) "

Solar UV (esh) 2850 (2) 1900(2)

Temp. Coid case (°C) -60 to -70 -60 to -70

Temp. Hot case (°C) + 10 to +30 *50 to +60

(1) Estimated from data of experiment calorimeter
erosion of K_pton (3.0 x 10-24 cm3atom'l)and(2) Estimated from AO reactivity

Terphane (PET) (3.0 x 10-24 cm3atom "1) samples

A description of the V and g modules are provided below.

V Side. A total of 113 samples (20 x 20 mm squares or circles of 25 mm in diameter)

had their central areas exposed to the space environment, without mechanical stress

(20 mm in diameter). Among them, 8 groups consisting of 4 identical samples of the

same material were used to distinguish the effects of different space environment

constituents.

1-76



• Exposure to all of the parameters CUV, atomic oxygen, vacuum, temperature).

Exposure behind a 1 mm thick silica filter transmitting solar radiation with a

wavelength greater than 190 nm (thus including most of the solar ultraviolet

radiation).

Exposure behind a 1 mm thick optical filter only transmitting wavelengths greater

than 360 rim.

Exposure behind a metal disk, painted white and protecting the sample against the

effects of atomic oxygen and UV radiation.

In addition, six samples of polymeric films were exposed to the space environment while

maintained under traction by a spring and six samples of composite materials with an organic

matrix underwent bending stress.

R Side. Thirty-two samples were exposed without mechanical stress.

As the Russian team of the expel'/.ment had not provided much information on the altitude cf

the station during exposure of the COMES experiment, it is difficult to ascertain exactly the

amount of sunlight received by each side of the experimental unit. However, after analysis of the

data from the "Microcalorimeter" experiment, also mounted on the COMES panels, it may be

estimated that the V side received a solar UV dose of 2850 esh and the R side 1900 esh. For the

same reasons, it was not possible to calculate, by means of the MSIS-86 environment model, the

fluence of oxygen atoms accumulated by each of the two sides of COMES during the mission.

Nor was it possible to determine whether the oxygen atoms had been received more for a

particular inclination to the surfaces. On the basis of the erosion measured on samples of Kapton

polyimide and Terphane polyethylene terephtalate arranged over the surface, it may be estimated

that the fluences received were probably between 3.6 x 1020 and 5.9 x 1020 atoms/cm 2 on the R

side, and between 3.7 x 1018 and 7.3 x 1019 atoms/cm 2 on the V side. It should however be

pointed out that; (a) whereas the fluences appear to be rather uniform on 1L this is probably not

the case on V, (b) these values have probably been underestimated, since a strong contamination,

in particular by silicones, was detected on the samples on both sides; this must have protected the

surfaces, at least partially, against atomic oxygen. The temperature estimates of the sample-

holders on COMES, determined using thermal modeling, indicated that, in the case of the hottest

exposure, the average temperature of the sample holders on the V side is probably of the order of

+10 to -30°C and that ofthe g side rthe order of+50 to +60°C; in the case of the coldest

exposure (experiment unit in the sha_ of the station), the temperature was determined for both

sides to be between -60 and -70°C.

1-77



1.4.3 The Removable Cassette Container Experiment (RCC-I) on Mir

The Removable Cassette Container experiment, (RCC-1), which was flown on the Mir

Orbital Station from 11 January 1990 to 26 April 199 l, evaluated several thermal control coating

materials. During the flight the Mir was in LEO with an apogee in the range 380 - 430 km,

perigee in the range 360 - 390 kin, and an inclination of 51.6 degrees. The results confirmed that

zinc oxide and zinc oxide orthotitanate white thermal control paints in metasilicate binders are the

most stable upon exposure to the space environment. 6_

The RCC-1 experiment took place during the solar maximum. In contrast, the LDEF was

launched just before solar minimum and remained in orbit until just before solar maximum. The

RCC- 1 solar exposure is estimated at no more than 20 - 25 equivalent solar days, 480 - 600

hours, at least one full order of magnitude less than the LDEF. The sun exposure is a significant

measure of a materials stability in that photons having energy in the range _ . 10 eV, the solar

UV, are capable of severing molecular bonds and altering materials propert" _s.

The integrated fluence of AO to the RCC-1 was estimated at 5.36 x 1022 cm "2, which is based

on a total exposure time of 188 days, a mean value of cos ct of 0.051, and a F_0.7 value of 2675.

This AO fluence exceeds the exposure of any LDEF surfaces by at least a factor of five.

However, using the AO density values predicted by the MSIS model at F_0.7 = 200 would reduce

the AO fluence by more than a factor of 5, whcih would bring the RCC- 1 fluence into general

agreemem with the exposure seen by rows 9 and 10 on LDEF.

Because of its low altitude, the RCC-1 was below most of the trapped radiation belts save for

the region referred to as the South Atlantic Anaomaly. As with LDEF, this phenomena provided

most of the ionizing radiation that the RCC-1 was exposed to as the Earth's magnetic field

effectively screened the majority of the solar protons and galactic cosmic rays. Figure 1-3 l

compares the proton and electron belt fluence predictions for the LDEF and RCC-I experiments.

Note that even though the RCC-1 mission was significantly shorter than that of the LDEF its

fluence is greater because of its higher orbital inclination. The LDEF radiation dose values are on

the order of 3 x l0 _ fads whereas the radiation dose absorbed by the RCC-l samples was

estimated at 8 x l0 s rads, which includes 2.7 x l0 s rad of trapped protons and 5.3 x l0 s rad of

trapped electrons.
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Figure 1- 31. Proton and Electron Belt Fluence Predictions for the LDEF and RCC-I

Experiments

Table 1-14 compares the LDEF and RCC-1 orbital exposure conditions. As shown, the

RCC-I AO fluence is approximately equal to that seen by rows 9 - l0 of LDEF when determined

using US. models. The RCC-l UV exposure is only about 1/20th of rows 9 and l0 of LDEF and

the P,CC-I radiation dose is a factor of 25 higher. As a result, the RCC-1 experiment would not

be expected to witness UV degradation in materials if the time scale associated with the

degradation process were longer than ~500 hours Conversely, the P,CC-I materials would be

more susceptible to radiation damage However, since these levels of radiation are not close to

the usable limits for most materials, the main difference will be the UV exposure value.

Table 1-14. Comparison of the RCC-1 and the LDEF Environmental Exposure

Conditions

Space Environment LDEF RCC-I

Row 9 Row 10 Russian Models U.S. Models

UV esh 11,200 10,700 ~600

AO Fluence 8.99 8.43 53.6 ~10

102t atoms cm 2

Do_, krad 30 30 800
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1.4.4 Solar Maximum Mission

The Solar Maximum Mission (SMM) spacecraft, built at the Goddard Space Flight Center,

was launched in February 1980 with solar flare research its primary, objective. 62 Launched near

the peak of the 22-year solar cycle, the SMM was put in a 310 nautical miles, nearly circular orbit

with 28.5* inclination. The spacecraft's longitudinal axis was pointing at the Sun in a 3-axis

stabilized mode, so that the seven instruments aboard the spacecraft could monitor the activities

of the Sun. Some of the instruments required very fine pointing accuracy and stability to obtain

high-resolution data. During the initial period, the pointing accuracy of the SMM was better than

2 arc-see with stability less than 1 arc-sec.

The Solar Max spacecraft was the first spacecraft designed to be serviced _rid repaired in

space by the Space Shuttle crew. The Solar Maximum Repair Mission (SMRM) was performed

during STS flight 41-C in April 1984, which also was the LDEF deployment mission. By this

time the SMM orbit altitude had decayed to 265 nautical miles. After replacement of faulty

equipment, the SMM was checked out and deployed to provide more data near the Sun's least

active solar flare period. The Orbiter landed two days later on April 14, 1984.

Laboratory analyses were performed on materials retrieved from the Solar Max thermal

control system, as well as on various impact particles that were embedded in the thermal control

materials. The materials analyzed were aluminized Kapton and Mylar, and Dacron netting from

the multilayer insulation (MLI) blankets, and silver Teflon used on a thermal radiator and as trim

on louver assemblies. MLI is used to thermally insulate various spacecrat_ components. The

portions of the ML! returned to Earth were primarily from the blankets used to insulate the

Modular Attitude Control System (MACS) module and the Main Electronics Box of the

Coronagraph/Polarimeter. Materials from the blankets included aluminized Kapton used as the

top layer of the MLI as well as the other layers of the MLI, such as aluminized Kapton or

aluminized Mylar separated by Dacron netting. Silver Teflon, used on spacecraft components to

increase the thermal radiation performance of exposed surfaces, was removed from the thermal

louver assembly of the MACS.

Kapton films (0.005-in) exhibited up to a 40% loss of thickness as a result of exposure to

approximately 2xl 02_ atoms/cm 2 during 50 months on-orbit. Silver/Teflon material exhibited

obvious degradation, especially in regions exposed both to AO and solar radiation. A summary of

these analyses can be found within the appropriate sections of this guide.
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1.4.4 the Effects of Oxygen Interaction with Materials (EOIM) Experiments

1.4.4.1 STS-5 EOIM Experiments

The STS-5 EOIM experiment, flown in November 1982, exposed a rather Emited set of

materials to an estimated AO fluence of nearly 1020 atoms/cm 2. Results from this early

experiment have been summarized by Leger, et al. in AIAA Paper 83-2361 (1983), s3 and will be

discussed in later sections.
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1.4.4.2 STS-,_ EOIM Experiments

A flight experiment was performed on STS-8 (August 1983) mission to measure reaction of

surfaces wLth atomic oxygen in the low Earth orbital environment. The objectives of the STS-8

mission were (1) to obtain a larger quantitative reaction rate data base in comparison to the STS-

5 mission, (2) te confirm reaction rate temperature dependence, (3) to determine whether mass

transfer from surface to surface occurs as a result of the interaction, (4) to evaluate solar radiation

effects on reaction rate, and (5) to determine the importance of atmospheric electrically charged

species on reaction rate.

The basic experin|er, tal approach consisted of exposing samples to the LEO environment and

then returning them for ground-based laboratory analysis. More than 360 samples were supplied

and analyzed by the pax _icipating organizations. Most of these samples were exposed in sc tbrm

(2.54 cm diameter); however, film strit.o, woven cables, and fabrics were also used.

The STS-8 exposure provided the largest atomic oxyge,._ fluence of any experiment to date.

The high fluence was achieved by lowering the vehicle altitude to 225 km and maintaining the

payload bay pointing into the velocity vector, nose to the Earth, for a total of 41.75 hour.during

three exposure periods of apt,:oximately 14 hr each. This attitude provided 86 percent of all the

mission atomic oxygen fiuence; therefore, esserJtial!y all of the impingement was normal to the

exposure surfaces for the first time. It can be assumed that the remaining fluence (14 percent)

was provided under conditions which resulted in an ator_ : c)xygen beam sweeping relative to the

sample surface. Using atmospheric density as derived from the mass spectrometer and incoherent

scatter (MSIS) model for the specit3c mission flight period, total atomic -:xposure fiucnce was

3.5x 1020 atoms/cm z.

A detailed review of several key investigations for these experiments was compiled by James

Visentine (NASA/JSC) in the three-v,?,ume NASA Technical Memorandum 100459. 64 A more

complete description of AO related research (flight experiments, chemical mect',anisms, ground

simulations, etc.) may be found in the "Proceedi"gs of the NASA workshop on Atomic Oxygen

Effects" (JPL Publication 87-14), edited by D.E. Brinza _
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1.4.4.3 STS-41-G EOIM Experiments

Experimental packages flown on Space Shuttle mission STS-41G was designed to investigate

the effect of atomic oxygen in low Earth orbit on metallizations, silicone coatings, FEP Teflon,

and polymeric-based spacecraft materials. 66"67 Materials were configured into 2.54 cm diameter

(1-in diameter) disc-type specimens or into thin foils. These materials specimens were attached

directly to the lower arm boom of the Space Shuttle remote manipulator system and positioned

normal to and in the direction of flight for a total of approximately 38 hours of equivalent normal

exposure at 225-km altitude to obtain a total atomic oxygen fluence (mass spectrometer and

incoherent scatter model calculations for a ram surface at 120 nm) of 2.45x 1050 atoms/cm 2.
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1.4.4.4 STS-46 EOIM-3 Experiments

The STS-46 shuttle mission was launched on July 31, 1992 and landed on August 8 at

Kennedy Space Center, Fla. The STS-46 contained three payloads with material exposures to the

space environment. These included th_ Evaluation of Oxygen Interaction with Materials III

(EOIM), the Long Duration Candidate Exposure (LDCE) experiments (see _ection 1.5.5), and the

Consortium for Material Development in Space Complex Autonomous payload (Concap)

experiments that studied materials processing in addition to investigating samples for exposure to

atomic oxygen. Another primary payload on STS-46 was the European Space Agency (ESA)

EUgECA-1 (see Section 1.5.6!

The NASA Evaluation of Oxygen Interactions with Materials (EOIM) experiments are an

evolutionary series of investigauons based on limited duration exposure of materials to substantial

fluences of atomic oxygen in tb- low Earth orbital envi_:3nment These low al: ude shuttle-borne

experiments are able to subject test materials to AO fluence_ equivalent to several months or even

years of exposure at higher orbital altitudes For exam ,'! ,, EOIM-III bombarded materials with

approximately 2 5x 102o oxygen atoms per cm 2 during a 42-hour period This is nearly tile same

fluence encountered by :he Long Duratio. Exposure Facility (LDEI") after its first year on orbit

Key observations in prior flight experiments were that material recession was essentially

proportional to AO fluence, which allows the establishment of material-specific "reaction

efficiency" parameters, the development of textured surfaces similar to the erosion morphologies

witnessed in directed-be_q_ sputtering targets, and changes in the chemical composition of

exposed surfaces due to o:,:_dation Reaction efficiency parameters allow an estimation of the

recession in a given mission to be made for a material by mui'iplication _th the anticipated

mission AO fluence Table 1- i 5 provides a few representative reaction efficiencies determiaed in

prior EOIM experiments
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Tabiq 1-15. Atomic OxygenReactionEfficienciesfor SeveralMaterials

Material Reaction Efficiency

(xl04. cm3/atom) ,

Kapton 3.0

Tedlar 3.2

Mylar 3.4

Polyethylene 3.7

Carbon/Epoxies:
T300/5208 2.6

1034C 2.1

0.5-1.3

i <0.05
0.25

Carbon (various forms)

FEP Teflon _OIM)

FEP Teflon (LDE D

Silicones:

RTV-560

DC6-1104

* Units of mg/cm 2, loss assumed to occur in early part of exposure on
STS-8 mission

The discrepancy in reaction efficiencies of the flucrocarbon FEP in LDEF and EOIM

exposures is attributed to the synergistic interaction of the solar vacuum ultraviolet radiation and

AO on LDEF which dramatically increases the susceptibility of fluorocarbons to AO attack.

Silicones are known to form a self-protective SiOx glass-like film which resists AO attack. For

this reason, the EOIM experiments are quite sensitive to contamination, especially from silicone

or fluorocarbon oils, greases, and release agents. Special attention is required to prevent

contamination effects from invalidating test results.
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1.4.5 LCDE (Limited Duration Space Environment Candidate Materials Exposure)

Experiments

The Long Duration Candidate Exposure (LDCE) experiments on STS-46 consisted of three

separate payload elements identified as LDCE-1, LDCE-2 and LDCE-3. The three assemblies

held an aggregate total of 356 specimens. The LDCE-1 and -2 sample holder trays were each

mounted inside the top of a Complex Autonomous Payload (CAP) canister that was equipped

with a Motorized Door A3sembly (MDA). The MDA was only open during those specific

periods of the mission when the payload bay was pointed toward the direction of travel in orbit

(the velocity vector). In other times and when water dumps, thruster firings and Orbiter

operations that may cause contamination occurred, the MDA was closed. This restricted the

exposure of the samples to ram atomic oxygen (samples facing the velocity vector) and limited

contamination. LDCE-1 and -2 were mounted on the port side of the Orbiter cargo bay.

The LDCE-3 sample tray was mounted on top ofConcap II. This was one of the two CAP

payloads mounted on the starboard side of Bay 13. The LDCE-3 sample tray and its specimens

were continuously exposed throughout the mission. This provided comparative data for limited

ram _ received by samples on LDCE-I and -2 vs. extensive exposure to all phases and activities

during STS-46 flight as represented by LDCE-3.

In order to expose the material specimens to atomic oxygen at the planned 124 nautical miles

altitude, the Space Shuttle Orbiter was oriented with the payload bay towards the velocity vector.

The MDA doors were opened on LDCE-1 and -2 A total of 43 hours of direct exposure was

obtained. Upon completion of the exposure the doors were closed. Other than opening and

closing of the MDA's, the LDCE payload operations were completely passive. The effect of low

Earth orbit environment on LDCE materials was based on post-flight analysis of the specimens.

Table 1-16 summarizes the exposure conditions.

Table 1-16. Space Exl

Mmude

Duration: LDCE- 1, -2

Duration: LDCE-3

Total Fluenc¢

_osure Conditions for LDCE Experiments

2311124 nautical miles (circular orbit)

41 hours at 124 nm (230 kin)

42 hours of ram at 124 hm (230 km)

16.55 hours of ram at 231 nm (425 km) during EURECA
operations

LDCE-I,-2:2x1020 atoms/era2
LDCE-3: 2.7x 1020atoms/era2
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1.4.6 LockheedSpaceFlight Experiment

ThisLockheed Space Flight Experiment investigated the material stability of foL,_ polymer

materials in a relatively high fluence atomic oxygen environment of approximately 2.0 x 10_

atoms/cm 2, accumulated over at least 100 days. _8 The materials investigated included: (1) 0.032

mm aluminized Kapton, (2) aluminized Kapton with a 0.0076 mm coating of siloxane (IITPd RTV

602/LO dimethyl silicone; (3) 0.0254 mm aluminized FEP Teflon; and (4) 0.127 mm carbon-fiUed

PTFE impregnated fiberglass. The flight data results confirmed that there are two mechanisms of

degradation in process in the LEO environment: (1) a fast surface oxidation; and (2) a slower,

diffusion limited bulk oxidation. The results support a non-linear fluence dependence for the

degradation effects on certain materials (i.e., Teflon). Both laboratory and flight experimental

data verified the stability of a siioxane coating in order to achieve protecti. ,f reactive substrates

in the LEO oxygen environment.
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1.4.7 EuropeanRetrievableCarrier (EURECA)

The European Space Agency (ESA) EURECA-1 was a primary payload on STS-46 which

was launched on July 31, 1992 and returned on August 8. After deployment EURECA ascended

to its operational orbit of 515 km using its own propulsion system. EUgECA is a retrievable,

reusable satellite built by the ESA and designed to be maintained during its long-term mission by

ground controllers at ESA's Space Operations Center in Darmstadt, Germany. After 9 month

EURECA was moved to a lower orbit for retrieval by another Shuttle in late April 1993. Aboard

EUR£CA-1 were 15 experiments devoted to researching the fields of material science, life

sciences and radiobiology, all of which required a controlled microgravity environment.

1-88



REFERENCES

I0

II

12

13

T.F. Tascione, "Introduction to the Space Environment " Orbit Book Company, Malabar,
Florida, 1988.

B. J. Anderson, Ed., R.E. Smith, Compiler, "Natural Orbital Environment Guidelines for

Use in Aerospace Vehicle Development," NASA TM 4527, June 1994.

TRW internal report.

User a_ld Operations Guide for the Marshall Space Flight Center Materials and Processes

Technical Information System 0VIAPTIS), available from NASA-MSFC, Mail Code

EH02, Huntsville, AL 35812, January 1992.

J.W. Haffner et al, "Natural Environmental Effects on SDI Spacecraft Surface Materials,"

Rockwell International, Report No. AFGL-TR-89-G984, Air Force Geophysical

Laboratory, May 20, 1989.

J.T. Visentine and A. Whitaker, "Material Selection Guidelines to Limit Atomic Oxyget_

Effects on Spacecraft Surfaces," NASA TM 100351, February 1989.

G.D. Badhwar and P.M. O'Neill, "Time Lag of Twenty Two Z Modulation,"

Proceedings of the 23rd International Cosmic-Ray Conference, SH 6, 21, Calgary, 1993.

W.S. Slemp, "Ultraviolet Radiation Effects," NASA/SDIO Space Environmental Effects

Workshop, NASA CP 3035, Part 2, 1989, pp.425-446.

A.C. Somersall and J.E. GuiUet, "Modeling of Photodegradation in Solar Cell Modules

of Substrate and Superstrate Design Made with Ethylene-Vinyl Acetate as Pottant

Material," NASA Contract NAS7-100, 1983.

H.A. Zook, "Deriving the Velocity Distribution of Meteoroids From the Measured

Meteoroid Impact Directionality on the Various LDEF Surfaces," LDEF First Post-

Retrieval Symposium, NASA CP 3134, 1992, pp. 569-579.

H.A. Zook, "Flux Versus Direction of Impacts on LDEF by Meteoroids and Orbital

Debris," Lunar and Planetary Science XXI, 1990.

H.A. Zook, "The Velocity Distribution and Angular Directionality of Meteoroids that

Impact on an Earth-Orbiting Satellite," Lunar and Planetary Science Conference XVII

Abstracts, 1987, pp. 1138-1139.

J.E. Erickson, "Velocity Distribution of Sporadic Photographic Meteors," Journal of

Geophyscial Research, vol. 7, no. 12, 1968, pp. 3721-3726.

1-89



14 D.J. Kessler, R.C. Reynolds, ar.d P.D. Anz-Meador, "Orbital Debris Environment for

Spacecraft Designed to Operate in Low Earth Orbit," NASA-TM 100471, September,

1988.

_s B.G. Cour-Palais et al., "Meteoroid Environment Model - 1969 ( Near Earth to Lunar

Surface)," NASA SP-8013, March 1969.

_6 E. Grun et al., "Collision Balance of the Meteoritic Complex." Icarus, Vol. 62, 1985.

t7 D.J. Kessler et al., "Orbital Debris Environment for Spacecraft Designed to Operate in

Low-Earth Orbit," NASA TM 100471, September 1988.

t8 A. Watts et al, "LDEF Penetration Assessment Final Report," Final Report, Contract

F3361-90-C-5903, Task 0008, June 1992.

_9 D.J. Ke _ler, "Origin of Orbital Debris Impacts on LDEF Trailing Surfaces," LDEF

Second Post-Retrieval Symposium," NASA CP-3194, 1993, pp. 585-594.

20 D.J. Kessler et al., "Orbital Debris Environment for Spacecraft Designed to Operate in

Low-Earth Orbit," NASA TM-100471, September 1988.

2t L.G. Clark, W.H. Kinard, D.J. Carter,Jr., and J.L. Jones, Jr. (Editors), "The Long

Duration Exposure Facility (LDEF)," NASA SP-473, 1984.

22 A.S. Levine, editor, "LDEF First Post-Retrieval Symposium," NASA CP-3134, 1991.

23 A.S. Levine, editor, "LDEF Second Post-Retrieval Symposium," NASA CP-3194, 1993.

v, A.S. Levine, editor, "LDEF Third Post-Retrieval Symposium," in press.

25 B.A. Stein and P.R. Young, editors, "LDEF Materials Workshop '91," NASA CP-3162,

1992.

26 A.F. Whitaker, editor, "LDEF Materials Results for Spacecraft Applications," NASA

CP-3257, 1994.

27 J.G. Funk, J.W. Strickland, and J.M. Davis, "Materials and Processes Technical

Information System (MAPTIS)," LDEF Second Post-Retrieval Symposium, NASA CP-

3194, 1993, pp. 1201-1222.

2_ G. Bohnb.off-Hlavacek, "Data Bases for LDEF Results," NASA CP-3194, pp. 1223-1234.

29 R.J. Bourassa and J.R. Gillis, "Atomic Oxygen Exposure of LDEF Experiment Trays,"

Long Duration Exposure Facility Materials Special Investigation Group--LDEF

1-90



30

31

32

33

34

35

36

37

38

39

4O

41

Supporting Data, NASA Contract NAS1-19247, Boeing Defense and Space Group,
March 1992.

R.J. Bourassa, J.R. Gillis, and K.W. Rousslang, "Atomic Oxygen and Ultraviolet

Radiation Mission Total Exposures for LDEF Experiments," LDEF First Fost-Retrieval

Symposium, NASA CP-3134, 1991, pp. 643-661.

R.J. Bourassa and J.R. Gillis, "Atomic Oxygen Flux and Fluence Calculation for Long

Duration Exposure Facility," NASA Contract NAS1-18224, Task 12, Boeing Defense and

Space Group, January 1991.

W.M. Berries and T.R. Sampair, "Long Duration Exposure Facility Post-Flight Thermal

Analysis," NASA TM-104208 Parts I and 2, January 1992.

W.M. Berries, "Use of the Long Duration Exposure Facility's Thermal Measurement

System for the Verification of Thermal Models," LDEF First Post-Retrieval Symposium,

1991, NASA CP-3134, pp. 69-83.

Thermal Radiation Analysis System (TRASYS), User's Manual, NAS9-15832, lune 1983.

W.M. Berries, "Long Duration Exposure Facility Post Flight Thermal Analysis -

Orbital/Thermal Environment D,,ta Package, NASA Langley Research Center, Hampton,
VA, October 3, 1990.

W.M. Berries, "Use of LDEF's Thermal Measurement System for the Verification of

Thermal Models," LDEF First Post-Retrieval Conference, NASA CP-3134, 1992, pp. 69-
83.

E.V. Benton and W. Heinrich, "Ionizing Radiation Exposure of LDEF', Department of

Physics, University of San Francisco, USF-TR-77, August 1990.

T.W. Armstrong and B.L. Colborn, "Scoping Estimates of the LDEF Satellite Induced

Radioactivity", Contract No. NAS8-38427 for NASA Marshall Space Flight Center,

Science Applications International Corporation, September, 1990.

T.H. See et al., "Meteoroid and Debris Impact Features Documented on the Long

Duration Exposure Facility - A Preliminary Report," NASA JSC #24608, August 1990.

T.H. See et al., "Continued Investigation of LDEF's Structural Frame and Thermal

Blankets by the Meteoroid & Debris special Investigation Group," LDEF Second Post-

Rerieval Symposium, NASA CP 3194, 1993, pp. 313-324.

M.E. Zolensky et al., "Interim Report of the Meteoroid and Debris Special Investigation

Group," LDEF Second Post-Retrieval Symposium, NASA CP 3194, 1993, pp. 277-302.

1-91



42

,t3

44

45

46

47

48

49

50

51

52

52

54

M.J. Meshishnek et al., "Long Duration Exposure Facility (LDEF) Experiment M0003

Meteoroid and Debris Survey," LDEF Second Post-Retrieval Symposium, NASA CP

3194, 1993, pp.357415.

M. Allbrooks and D. Atldnson, "The Magnitude of Impact Damage on LDEF Materials,"

NASA Contractor Report NCR 188258, July 1992.

C. Coombs et al., "LDEF Data: Comparisons with Existing Models," NASA Contractor

Report NAS9-17900, luly 1992.

A. Watts et al., "Dimensional Scaling for Impact Cratering and Perforation," POD

Associates, Inc., subcontract report to Lockheed Egnineering an J Sciences Company,
March 1993.

J.M. Zwiener and M.M. Finckenor, "Micrometeoroid/Space Debris Effects on

Materials," LDEF Materials Results for Spacecraft Applications Conference, NASA CP-

3257, 1994, pp. 258-280.

T.H. See et al., "Meteoroid and Debris hnpact Features Documented on the Long

Duration Exposure Facility - A Preliminary Report," NASA JSC #24608, August. 1990.

J.M. Zwiener and M.M. Finckenor, "Micrometeoroid/Space Debris Effects on

Materials," LDEF Materials Results for Spacecraft Applications Conference, NASA CP-

3257, 1994, pp. 258-280.

A. Banks and L. Begauer, "LDEF Yaw and Pitch Angle Estimates," LDEF Materials

Workshop '91, NASA CP-3162, 1992, pp. 71-93.

F. Horz et al., "Preliminary Analysis of LDEF Instrument AO187-1' Chemistry of

Micrometeoroids Experiment," LDEF First Post-Retrieval Symposium, NASA CP-3134,

pp. 487-501.

S.F. Singer et al., "First Spatio-Temporal Results fr.,m the LDEF Interplanetary Dust

Experiment," Adv. Space Res., vol. 11, No. 12, pp. 115-122.

D.H. Humes, "Large Craters on the Meteoroid and Space Debris Impact Experiment,"

LDEF First Post-Retrieval Symposium, NASA CP-3134, 1991, p. 399-418.

J.A.M. McDonnell and T.J. Stevenson, "Hypervelocity Impact Microfoil Perforations in

the LEO Space Environment (LDEF MAP A0023 Experiment)," LDEF First Post-

Retrieval Symposium, NASA CP-3134, 1991, pp. 443-457.

D.H. Hume.s, "Large Craters on the Meteoroid and Space Debris Impact Experiment,"

LDEF First Post-Retrieval Symposium, NASA CP-3134, 1991, p. 399-418.

1-92



55

56

57

58

59

60

61

62

63

64

65

66

T.H. See et al., "Meteoroid and Debris Special Investigation Group Preliminary Results:

Size-Frequency Distribution and Spatial Density of Large Impact Features on LDEF,"

LDEF First Post-Retrieval Symposium, NASA CP-3134, 1991, pp. 477-.486.

H. Dursch, editor, "Analysis of Systems Hardware Flown on LDEF--Results of the

Systems Special Investigation Group," NASA Contractor Report 189628, Contract NAS-

19247, April, 1992.

F. Levadou, M. Froggatt, M. Rott, and E. Schneider, "Preliminary Investigations into

UHCRE Thermal Control Materials," LDEF First Post-Retrieval Symposium, NASA CP

3134, 1991, pp .899-918.

W.H. Kinard and G.D. Martin, "Long Duration Exposure Facility (LDEF) Space

Environments (Iv .rview," LDEF First Post Retrieval Symposium, NASA CP 3134, 1991,

pp. 49-60.

W.H. Kinard and G.D. Martin, "Long Duration Exposure Facility (LDEF) Space

Environments Overview," LDEF First Post Retrieval Symposium, NASA CP 3134, 1991,

pp. 49-60.

J.C. Guillaumon and A. Paillous, "Spacecraft Materials: Comparison Between Flight

Results Obtained on LDEF and MIR," LDEF Materials Results for Spacecraft

Applications, NASA CP-3257, 1994, pp. 485-498.

A.C. Tribble, R. Lukins, and E. Watts, "Low Earth Orbit Thermal Control Coatings

Exposure Flight Tests: A Comparison of U.S. and Russian Results," NASA Contract

NAS1-19243, Task 16, Rockwell International Space Systems Division, August 1994.

Satellite Servicing Project Goddard Space Flight Center, "Proceedings of the SMRM

Degradation Study Workshop," NASA-TM-89274, pp. 1-32.

L.J. Leger, I.K. Spiker, J.F. Kuminecz, T.J. Ballentine, and J.T. Visentine, "STS-5 LEO

Effects Experiment - Background Description and Thin Film Results," AIAA Paper 83-

263 I-CP, AIAA Shuttle Environment and Operations Meeting, Washington, D.C.,

October - November, 1983.

J. Visentine, ed., "Atomic Oxygen Effects Measurements for Shuttle Missions STS-8 and

41-G," vols. I-III, NASA Technical Memorandum 100459, September 1988.

D.E. Brinza, ed., Proceedings of the NASA Workshop on Atomic Oxygen Effects," JPL
Publication 87-14.

A.F. Whitaker, J.A. Burka, J.E. Coston, I. Dalins, S.A. Little, and R.F. DeHaye,

"Protective Coatings for Atomic Oxygen Susceptible Spacecraft Materials - STS-41G

1-93



67

68

Results," AIAA Paper 85-7017, Presented at the Shuttle Environment and Operations II
Conference, November 1985.

D.G. Zimcik and C.R. Maag, "Results of Apparent Atomic Oxygen Reactions with

Spacecraft Materials During Shuttle Flight STS-41G," AIAA Paper 85-7020, presented at

the AIAA Shuttle Environment and Operations II C_ "._rence, 1985.

P.W. Knopf, R.J. Martin, R.E. Damman, and M. McCargo, "Correlation of Laboratory

and Flight Data for the Effects of Atomic Oxygen on Polymeric Materials," AIAA 20th

Therrnophysics Conference, Williamsburg, VA, .!':he 19-21, 1985.

1-94



2. SPACECRAFT DESIGN CONSIDERATIONS FOR THE SPACE ENVIRONMENT 2-1

2.1 ATOMIC OXYGEN EFFECTS
2.1.1 Introduction

2.1.2 Atomic Oxygen Effects on Surface Recession

2.1.2.1 Material Atomic Oxygen Reaction Efficiency Data
2.1.2.2 Surface Recession Pre.alictions

2.1.2.3 Example

2.1.2.4 Screemr, g Techniques

2.1.3 Atomic Oxygen Effects on Optical Properties

2.2 ULTRAVIOLET (UV) RADIATION/SOLAR EXPOSURE EFFECTS
2.2.1 Introductaon

2.2.2 Optical Pro_rties Changes

2.2.3 Mechanical Properties Degradation

2.3 MICROMETEOROID AND DEBRIS IMPACT
2.3.1 Introduction

2.2.2 Impact Fluence Models

2.2.3 Comparison of Fluence Models to LDEF Results

2.3.4 LDEF-Derived Model for Predicting Micrometeoroid/Debris Impacts
2.2.5 Micrometeoroid and Debris Impacts on the Solar Max Mission Satellite

2.2.6 Deficiencies of the Microparticle Models

2.3.7 Micrometeoroid and Debris Impact Damage Behavior
2.3.7 1 Penetration and Crater Formation

2.2.7.2 Spallation

2.2.7.3 Penetration Analysis
2.3.8 Micromcteoroid and Debris Effects on Materials

2.3.8.1 Metals

2.3.8.2 Composites

2.3.8.3 Thermal Control Systems
2.3.8.3.1 Thermal Control Blankets

2.3.8.3.2 Thermal Control Paints

2.3.8.3.3 Effect of Hyperveiocity Impacts on Thermal Radiative Prop ties
2.3.9 Micrometeoroid and Debris Effects on Optical Components

2.3.9.1 Damage Morphology

2.3.9.2 ReflectivityFl'ransmission Effects

2.3.9.3 Optical BRDF Scatter Effects

2.3.9.4 Summary of Micrometeoroid aPd Debris Effects on Optics

2.3.10 Micrometeoroid and Debris Effects on Solar Power System Components

2.4 THERMAL CYCLING-INDUCED MICROCRACKING EFFECTS

2.4.1 IntroducUon

2.4.2 Effect of Fiber/Resin Properties

2.4.3 Effect of the Space En_aromr, ent

2.4.4 Design Considerations for Reducing Microcracking

2.5 CONTAMINATION

2.5.1 Introduction

2.5.2 Spacecraft Sources of Contamination

2.5.3 Contamination Effects on Thermo-Optical Properties
2.5.3.1 Molecular Contamination

2.5.3.2 Part2culate Contamination

2.5.4 Contamination Effects on Solar Array Power Output

2.5.5 Contamination Effects on Optics Performance

2-1

2-I

2-2

2-2

2-9

2-13

2-15
2-15

2-18
2-18

2-19

2-25

2-27

2-27

2-27

2-27

2-30

2-36
2-38

2-40

2-40

2-41

2-42

2- t8

2-49
2-31

2-51

2-52

2-54

2-58

2-58

2-59

2-59

2-68

2-69

2-70

2-70

2-70

2-73

2-76

2-78
2-78

2-78

2-79

2-79

2.85

2.87

2-89

2-i



2.5.6 Atomic Oxygen Erosion and Secondary Ejecta Impact-Induced Surface Contamination

2.5.7 Design Methods for Minimizing Contamination

2.5.7.1 End-of-Life SpacecraI1 Subsystem Performance Predictions

2.5.7._, Passive Contamination Control Techniques

2.5.7.2.1 Selection of Low-Outgassing Materials

2.5.7.2.2 Atomic Oyygen Cleaning

25.7.2.3 Spacecraft Configuration

2.5.7.2.4 Spacecraft Tempcralure
2+5.7.3 Contamination Cont:ol Plan

2.6 VACUUM-INDUCEI) OUTGASSLNG EFFECTS
2.t_, I Introduction

2.6.2 Spacecral_ Performance Effects

2.6.3 Spacecrat_ Material Outgassing Databases

2.6.4 Spacecraft Materi_ Outgassing for CryogcnJc Applications

2.7 SPACECRAFT CHARGLNG EFFECTS

2.7.1 Introduction

2.7.2 Spacecraft Charging Concerns

2.7.2.1 Smface Charging

2.7.2.2 Bulk Charging

2.7.2.3 Discharging
2 7.2.4 Contamination

2.7.3 D_ign Guidelines for Controlling Spacecraft Charging Effects

2.7.3. i Grounding
2.7.3.2 Exterior Surface Materials

2.'_.3.3 Thermal Control Materials

2.7.3.4 Shielding

2.8 PENETRATING CHARGED PARTICLES EFFECTS

2.8.1 Single Event Upsets

2.8.2 I_.sign Guidelines

2.9 ENVIRONMENTAL SYNERGISTIC EFFECTS

2.9.1 Introduction

2.9.2 Combined Atomic Oxygen a,_d Ultraviolet Radiation Effects on Polymers

2.9.3 Atomic Oxygen Undercutting of Impact Damage

2.9.4 Impact-lnduced Contamination
2.9.5 UV Photochcmical-lnduced Contamination

RELATIONSHIPS OF SPACE ENVIRONMENT - MATERIAL INTERACTIONS

REFERENCES

2-90

2-92

2-92

2 -94

2-94

2-94

2-95

2-95

2-96

2-98

2-98

2 -98
2-99

2-101

2-103
2-103

2-103

2-103

2-104

2-104

2-105

2-106

2 i06

2-107

2-108

2-111

2-112
2-112

2-114

2-i16

2-116

2-116

2-119

2-120

2-121

2-124

2,.125

2-ii



Figure2-1. AOFluence Nomograph for Predicting Surface Recession

Figure 2- 2. Long Range Estimate of 10.7 cm Solar Flux Cycles 22 and 23.

Figure 2 3. Surface Orientations Relative to Atomic Oxygen Density Variations at Solar Noo,_.

Figure 2- 4. Seasonal and Inclinational Effects on Fluence (three orbits).

Figure 2- 5. Nomogram for Atomic Oxygen-Induced Surface Erosion for Solar Inertial Facing Surfaces

Figure 2- 6. Solar Spgctrum At Air Mass Zero

Figure 2- 7. Wavelength Requirement to Break Various Polymeric Material Bonds.

Figure 2- 8. Comparison of Flight and Laboratory Data on Z-93 Coating

Figu,'e 2- 9. Structural Reflectance of Zinc Oxide-Silicone
Figure 2- I0. In Air Recovery of the White Paints PSB and SGI 1 FD A__er Combined Irradiation with

UV and Particles in Vacuum.

Figure 2- l 1. Effect of Ground Simulated UV on the Tensile Strength of Mylar

Figure 2- 12. UV Effects on the Tensile Strength of Teflon Specimens from Rows 1-6.

Figure 2- 13. Comparison of Crater Diameters to Number of Craters per Square Meter: Comparison of
LDEF Data to Model Predictions for 172 ° From Ram.

Figure 2- 14 Comparison o, Crater Diameters to Number of Craters per Square Meter: Comparison of
LDEF Data to Model Predictions for 8° From Ram.

Figure 2- 15. Circumferential Distribution of Micrometeoroids'Debris Impacts on LDEF

Figure 2- 16. LDEF Micromcteoroid/Debris Nomogram
Figure 2- 17. Nomogram for Estimating Total Number of biicrometeoroici/Debns Impacts for Arbitrary

Exposed Surface Areas as a Function of Angle OffRam, and Time in Orbit.

Figure 2- 18. Size Distribution of Craters and Hoies on the Solar Max Mission Aluminum Louver

Fig :_re 2- 19. Single Sheet Thicknesses of Al _nd SS Necessary to Stop Meteoroids

Figure 2- 20. Al ,_ninum Thickness to Limit Meteoroid Punctures

Figure 2- 21. Single Sheet Thicknesses to Stop Debris Objects

Figure 2- 22. Schematic of Impact Damage into Metals.

Figure 2- 23. Schematic Diagram of Damage Morphology and Diameter Measurements For Impacts of

Composites
Figux¢ 2- 24. Schematic Diagram of Damage Morphology and Diameter Measurements to,' Impacts into

Thermal Control Blankets and Lamina,,cd Materials

Figure 2- 25. Schematic Diagram of Damage Morphology and Diameter Measurements for Impact into
Thermal Control Paints.

Figure 2- 26. Size Dependence of Impact Craters

Figure 2- 27. Definition of Spall Diameter and Crater Diameter
Figure 2- 28. Schematic Diagram of Damage Morphology and Diameter Measurements for Impacts into

Optics and Power System Components

Figure 2- 29. Variation in BRDF with Angle from Ram on LDEF

Figure 2- 30. Variation in BRDF with Angle from Ram at 400 kin: (a) 0 ° - Inclination. Co) 30 ° -
Inclination: (c) 60 ° - Inclination.

Figure 2- 31 Variation ta BRDF with Angle from Ram at 800 larc (a) 0 ° - Inclination: Co) 30 ° -
Inclination: (c) 60 ° - Inclination.

Figure 2- 32. Variation in BRDF with Angle from Ram at 1000 kin: (a) 0 ° - Inclination; Co) 30 ° -

Inclination; (c) 60 ° . ::lclination

Figure 2- 33. Variation in BRDF with Angle from Ram at 1600 k_,l: (a) 0 ° - Inclination; Co) 30 ° -

Inclination: (c) 60 ° - Inclination.

Figure 2- 34. Variation in BRDF with Angle from Ram at 1600 km and 60 ° Inclination: (a) 30 °

Telescope Exclusion Angle, Co) 60 ° Telescope Exclusion Angle; (c) 80 ° Telescope

Excbtsion Angle.

Fig,_re 2- 35. Effects of Thermal Cycling on Composite Tubes

Figure 2- 36 Comparative Microcracking Behavior for Thermoset Composites

Figur_ 2- 37. Onset Temptrature for Microcracking w_th Pl Angle

Figure 2- 38. Spacecraft Solar Absorptance Increases vs. Missi _,, Time.

2-iii

2-10

2-10

2-12

2-12
2-14

2-1g

2-19

2 -20

2-21

2-22

2-25

2 -26

2-28

2-28

2-32

2-33

2-34

2-37

2-43

2-44

2-45

2-48

2-49

2-51

2-53

2-55

2-57

2-58

2-6O

2-62

2-63

2-64

2-65

?-66

2-71

2-72

2-76

2-79

,4



Figure 2- 39.

Figure 2- 40.

Figure 2- 41.

Figure 2- 42.

Figure 2- 43.

Figure 2- 44.

Figure 2- 45.

Figure 2- 46.

Figure 2- 47.

Figure2- 48.

Figure 2- 49.

Figure 2- 50.
Figure 2- 51.

Figure 2- 52.

Figure 2- 53.

Figure 2- 54.

Figure 2- 55.

Figure 2- 56.

Figure 2- 57.

Figure 2- 58.

Solar Absorptance Increases on SSM Observed from DSP Calorimeters

Change of Solar Absorptance by RrV560 Gutgas Products
Contamination on LDEF Satellite.

Reflectance of a Gold Mirror (mid IR) as a Function of Water Ice Thickness

Change of Solar Absorptance by Carbon Particle Deposit

Contamination Film Effect on Solar Panel Output.
Effects of Contamination on the BRDF of an Aluminum Mirror

Paint Pigment ContamtiLation Flux on the SSM

Comparative Outgassing of Polymer Matrix Composites

Outgassing Rates as a Function of Bakeout Time and Absorption Temperature

Electrostatic Discharge Characteristics

Charging Characteristics of KaFton Thermal Blankets in a 1% Substonn Environment
Interior Potential and Electric Field in Thermal Blankets with only Top and Bottom

Layers Grounded

,_ccaamulatod Radiation Dosage Over a Five Year Mission due to Van Allen Belt Particles

Cosmic Ray Flux as a Function of Shielding

Thickness Loss versat_ AO Fluence for Kapton and FEP Teflon

Atomic Oxygen Undercutting of Coated Polymeric Materials on LDEF

Atomic Oxygen Undercut Widths in Cracked Multilayer Insulations

Signal SUength at 121.6 nm Wavelength During Observations of the Sun by ,Solar Max

Spectral Absorption Coefficient of Photodeposited Films of Various Contaminants by
Various Workers.

2-80
2-81

2-83

2-84

2-85

2-88

2-89

2-90

2-100

2-102

2-105

2-108

2-109

2-113

2-114

2-117

2-119

2-120

2-121

2-123

2-iv



Table2-
Table 2- 2.

Table 2- 3.

Table 2- 4.

Table 2- 5.

Table 2- 6.

Table 2- 7.

Table 2- 8.

Table 2- g.

Table 2- 9.

Table 2-

Table 2-
Table 2-

Table 2-

Table 2-

Table 2-

Table 2-

Table 2-

Table 2-

Table 2-

Table 2-

Table 2-

Table 2-
Table 2-

Table 2-

1. Classification of AO Reaction Efficiencies (10 .24 cm3/atom) Data

AO Reaction Etliciencies of Polymeric Materials in Low Earth Orbit
AO Reaction Efficiencies of Thermal Control Materials in Low Earth Orbit

AO Reaction Efticiencies of Composites in Low Earth Orbit
AO Reaction Efficiencies of Lubricants and Coatings in Low Earth Orbit

AO Reaction Etticiencies of Selected Metals in LOw Earth Orbit

Atomic Oxygen Effects on Materials
Effect of LEO Atomic Oxygen on Optical Properties of Materials

Effect of LEO Atomic Oxygen on Optical Properties of Materials (Continued)

Flight Experience with Metdized Teflon
10. Mechanical Properties Changes of Teflon with Exposure on LDEF

11. Comparison of Predicted and Observed Number of Holes on LDEF Thermal Blankets.

12. Crater Impact Data

13. Spall Diameter to Crater Diameter Ratio

14. Impact Crater Size Distribution

15. Fraction of Damaged Surface per Year fra).
16. Predicted Mission Environmental Parameters

17. Durability of Candidate Materials in Simulated CLEO and HEO Environments
18. Predicted Matrix Cracking on First Cooldown of Carbon Composites

19. Performance Degradation Predictions Due to Contamination
20. Relationships Between Design Activities and Contamination Control Plan

21. Outgassing Properties of Laminated Composites
22. Outgassing Rates for Structural Materials

23. Number of Ground Straps Required for Thermal Blankets

24. Hight Measurements of FEP Teflon Reaction Efficiency

2-4

2-5

2-6

2-6

2-7

2-8

2-15

2-16

2-17

2-23

2 -26
2-29

2-31

2-41

2-55

2-57

2-73

2-74

2-77

2-92

2-96

2-I0_

2-I01

2-II0

2-11g

2-V



2. SPACECRAFT DESIGN CONSIDERATIONS FOR THE SPACE ENVIRONMENT

Each of the natural space environments acts on materials in a distinct way, with some materials

being more vulnerable than others. This section presents an overview of these effects and the types

of materials which are especially sensitive to each environment.

2.1 ATOMIC OXYGEN EFFECTS

2.1.1 Introduction

The major gas in LEO is atomic oxygen, which erodes organic materials and some oxides of

other materials on the ram side of the spacecraft. Materials being considered for spacecraft and

commer,:al satellites need to be reviewed for susceptibility to atomic oxygen interactions which

produce surface erosion or degradation in c,mical and thermal properties that may result in failure,

of spacecraft systems to achieve mission goals. As the degree of surface degradation is directly

proportional to atomic oxygen fluence (total integrated flux), and fluence, in turn, is determined by

such parameters as spacecraft altitude, attitude, orbital inclination, mission duration and solar

activity conditions, materials deemed acceptable for one application may not be acceptable for

other applications. Consequently, rather than listing materials acceptable for spacecraft systems

under varied sets of operational circumstances, this section will:

1. Establish guidelines to aid spacecraft designers in materials selection

2. Provide a nomograph for estimating atomic oxygen fluence and, consequently, the

degree of surface erosion the spacecraft material will experience over its lifetime.
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2.1.2 Atomic Oxygen Effects on Surface Recession

2.1.2.1 Material Atomic Oxygen Reaction Efficiency Data

Most of the data related to the behavior of materials in the atomic oxygen environment were

obtained from Space Shuttle flight experiments. These flights provided limited exposure of

materials typically used in spacecraft construction to both sweeping impingement and atmospheric

ram conditions. _.2.3 ,, ,s .6._ ,s .9._0 .H The altitudes selected for these experiments (220 and 300 km)

and the duration of exposure time (40 hours) produced high levels offluence (1.0 x 1020 to 3.5 x

1020 atoms/era 2) which are typical for future spacecraft operating at higher altitudes (500 to 600

kin) during nominal solar activity conditions for periods of one year or more.

LDEF clearly demonstrated in long-term flight that LEO atomic oxygen will erode all

polymeric materials that are flown, which includes all those commonly used on spacecral_ for

thermal and electrical insulation, as paint vehicles, and as composite matrices. Rates of erosion

vary in different materials and appear to change with length of exposure for some polymers. Thus,

results of short-term LEO-exposure test _2 may not provide data which can readily be extrapolated

to predict long-term erosion rates. Fortu, ately, this erosion was found to be completely

preventable with even extremely thin coatmgs of metals such as aluminum and oxides such as silica;

many such coatings also adhered well to the polymer or composite substrate specimen surfaces in

spite of thermal cycling during each orbit.

Material samples exposed under the conditions described above (e.g., Space Shuttle and LDEF

flights) were studied post-flight for property changes. Since the exposures resulted in significant

loss of material (organic specimens experienced thickness losses as much as 12 .am or -4). 5 rail),

mass change measurements of the flight samples provided an excellent assessment of material

reactivity in the environment. Most of the data obtained are reported in terms of a reactivity

parameter that quantifies the susceptibility of a material to erosion by atomic oxygen, known as the

"erosion yield" or the "reaction efficiency" (1_). This parameter is defined as

l_ = Vol_m¢ ofMaterial Lost (cm3/atom)

Total No, of Incident O Atoms
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R_can be calculated using the relation:

R,-- tun/o
_t A

where Am = mass loss (g)

p = material density (g/cm 3)

qb = incident AO Flux (atoms/cm2-s)

t = exposure time (s)

A = exposed surface area (cm z)

Note that Ot = F, where F is the total fluence of oxygen atoms, which is obtained fiom

atmospheric models, spacecraft velocity, and exposure history. Consequently, the reaction

efficiencies derived from previous Space Shuttle flights (see below) can used in computing surface

recession for materials subject to the orbital environment by the following equation:

AX=FTxR e

where FT is accumulated fluence, 1_ is reaction efficiency, and Ax is surface recession.

Hence, the property reaction efficiency can also be defined as thickness of material lost

normalized to total oxygen fluence.

Table 2-1 presents a classification of the reaction efficiency data._3 A general assessment of

the deleterious effects on spacecraft surfaces are as follows:

1. Unfilled organic materials containing only C, H, O, N, and S react with approximately

the same reaction efficiency (2 to 4 x 10 -24 cm3/atom).

2. Prefluorinated carbon-based polymers and silicones have lower reaction efficiencies by

a factor of ten or more than organics.

3. Filled or composite materials have reaction efficiencies that are strongly dependent

upon the characteristics of the fillers.

. Metals, except for silver and osmium, do not show macroscopic changes. Microscopic

changes have, however, been observed and should be investigated for systems very

sensitive to surface properties. Silver and osmium react rapidly and are generally

considered unacceptable for use in uncoated applications.

5. Magnesium fluoride and oxiaes in various forms show good stability.

6. Copper forms a protective oxide which adversely affects optical and thermal

properties.
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Table 2- 1. Classification of AO Reaction Efficiencies (10 -24 cm3/atom Data

O.Ol-O.1

AI203 ( _ 0.025)

Al/Kapton (0.1)

Diamond (0.021)

ITO/alummized

Kapton (0.01)
SiOx/aluminized

Kapton (0.01)

/0203, 700A on

Kapton H (<0.02)
Silicones

Fluorpolymers

Teflon FEP

MgF 2 on Glass

Mo (0.006)

S Glass/Epoxy

tO. 14)

.I-.9

Polysiloxane/

Kapton C0.3)
Siloxane

/Polyimide 40.3)
Polysiline/

Polyimide (0.3)
401-C10

(fiat black)
Z-306

(fiat black)

Apiezon Grease

Tedlar (white)

Osmium (bulk)

1.0-1.9

Variousformsof

Carbon (0.5-1.3)

Epoxies(1.7)

Polystyrene

Polybenzimidazole

2-4

Kapton H Polyimide

(3.0)

Polycarbonate Ream

Polyester

Polysuiphone

MylarKevlar/Epoxy

Polyethylene [LDEF Carbon/Epoxy

('I.0)

T-,_llar, clear

(-_.2)

Z-302(glossy black)

STS Carl_oa/Epoxy

(2.1-2.6)

>4

Silver

The major limitation of the current reaction rate data base is that a;.omic o_'gcn fluence to

which the recession rates are normalized are not precisely known. Atomic oxygen number densities

used to compute fluence for previous space flight missions were obtained usiv.g thermospheric

models to predict atmospheric constituent concentrations as fdnctions of altitude, time of year,

Earth latitude and longitude, local solar time, and solar activity conditions Typically, erroi's of as

much as 25 percent or more can be e_, ected for the density estimations, and since they are used to

compute fluence, these errors also appear in the surface recession rates for satellite materials. To

improve the database, ambient density measuremenls need to be lade simultaneously with

recession measurements during future flight experiments.

A summary of data obtained from space flight experiments conducted to date are shown

quantitatively in Tables 2-2 to 2-6
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Table 2- 2. AO Reaction Efficiencies of Polymeric Materials in Low Earth Orbit

Mate_ Reaction F_b_acy,
xl0 -24 cm3/atom

Fluoropolynwt_:

-- FEP Kapton

* Kspton F

e Teflon, FEP

• Teflon t FEP

• Teflon_ TFE

• Teflon_ FEP and TFE

..o Teflon I FEP and TFE

c Teflon

• Teflon

• Teflon

• Teflon

Mylar

Mylar

Mylar

Mylar

Mylar A

I Mylar AMylar A

Mylar D

Mylar D

0.03

< 0.05

0.037

< 0.05

<0.05

0.0 and G.2

Flight

Experimeet

STS-5

Rdere_e

14

15

16

17

15r17

18 r19

Mylar with AJ16ox

Polybenzimkttzole

Pol_carbonate
-=,

Polycarbow'tc resin

0.I

[ 0.109
0.5

0.03

<0.03

3.4

2.3

3.9

1.5 to 3.9

3.7

3.4

3.6

3.0

2.9

STS-5 18

14

STS-5 18

STS -5 18

2O

STS-5 ! 7

STS-5

STS-5
18_19

18:19r20
18

14

15r21
15

15

21

22Heavily attacked
1.5

Pol_'emer-7% Polysilane/93% Polyimide

_Polyester

6.0

2.9

Polyester wi_Anfio_dant

Polyethylene

Polyethylene

Polyimidea

• Kapton _.black)

• Kapton (T'V blanket)

• Kapton _v" blanket}

• l_pton (OSS -1 blanPet.)

• Kapton _OSS -I blanket)

• Kapton H

* Kapton

. Kapton

- Kapton

• Kapton

• Kapton

0.6

Heavily attacked

Heavily attacked
3.7

3.3

1.4 to 2.2

2.0

2.04

2.55

2.5

3.0

H 2.4

H 2.7

H 1.5 to 2.8

H 2.0

H 3.1

• Kapton (uncmted_

Pol_'methvlmethac_lat-

2_% Pol,v,iloxsne/45%Pot_,imide

7% Polyailene/93% Polyimide

25% Pol_,tiloxane

Poly *tyrene - polyimid¢

Pol_mlfc_e

Polyvinylldene fluoride

Siloxane polyimide _25 % Sx)

Siloxane p_ ,'yimide (7%)

,I and ._

3.1

0.3

0.6

0.3

1.7

2.4

0.6

0.3

0.6

STS-5

STS-5

STS-5

STS-5

17r23
24

25

17

17,22

17122

17z18r211 26

14115 ,

STS-5

19

STS-5 i 8

STS -5 18

STS-5

STS-5

STS-5

18r27

18

15_17r18_19r20rTd$

1_8,19

14,18

STS-5 18

14

14

STS-8 29

26

STS-5 17

STS-5 17

20

STS-5
17j2flr26

17126
20

23

23
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Table 2- 3. AO Reaction Efficiencics of Thermal Control Materials in Low Earth Orbit

Material Reaction Efficiency,
xl0 -24 cm3/atom

TiO2, (I000 A)

T_ilar (clear)

Tedlar{clear)

Tedlar (white)

Tedlar (white) ._

Tedlar (white)

(a)UnRs of mg/cm: for STS-8 mission.

Flight

Experiment

STS-8

Reference

Black paint Z306 . O.3-0.4 a 30

White paint A27.6.. 0.3-0.4 a STS-8 30

Black paint Z302 2.03 a STS-8 30 __

Teflon,. TFE < 0.05 STS-5 17

Teflon, FEP < 0.05 STS-5 15,17

0.0067 16

1.3 STS-5 18

3.2 STS-8 14,15

.4 and .6 18

0.05 STS-5 18

0.29 LDEF 31

Loss is assumed to occur m early part of ex] _osure; therefore, no

assessment of efficiency can be made.

Table 2- 4. AO Reaction Efficiencies of Composites in Low Earth Orbit

Material

T300 Catbon/1034C Epoxy

T300 Carbon/520g Epoxy

Epoxy

Carbon (variousforms)

Carbon

T300/934 Epoxy.

T300i934 Epoxy

T300/934 Epox),

AS-4/3501-6 Epoxy

C6000/PMR-15 Polyimide

HMS/934 Epoxy

P75S/934 Epoxy

Reaction Efficiency,
xl0 "24 cm3/atom

2.1

2.6

1.7

0.5-1.3

1.2

Flight

Experiment

STS-5

STS-5

STS -5

STS-5

Reference

17

17

17,26

17

0.99 LDEF

1.35 LDEF 34

1.25 LDEF 35

0.8 LDEF

0.9 LDEF

20,23r24,32

33

33

33

1.0 LDEF 36

i .0 LDEF 35

2-6
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Table 2- 5. AO Reaction Efficiencies of Lubricants and Coatings in Low Earth Orbit

Material Reaction Efficiency, Flight Reference

DC 1-2755-¢.oated Kapton

Experimentxl0 -24 cm3/atom

Silicones

• DCl-2577 0.055

• 0.05 STS-5

DC1-2775-coated Kapton <.5 STS -5

• DC6-1104 0.515

• Grease 60 mm Intact, but oxidized

• 0.0

0.062S

21

18

18

37

38

32RTV-615 (black, conductive)

RTV-615 (clear) 16

• RTV-560 0.02 a 34

• DC_.6-1104 0.02 a 34

• T-650 0.02 a 34

• DCI-2577 0.02 a 39

* RTV-670 0.0 31

• RTV-5695 1.48 40

• RTV-3145 0.128 31

16

41

> 0.625

< 0.025

Apiezon grease 2 mm

A1203

SiO2 (650 A) on Kapton H

SiO2 (650 A) with <4 % PTFE

SiO,/Kapton (alumimzed)

[.

(a)Units of mg/cm: for STS-8 mission.

< .0008 28

< .0008 28

0.01 STS-8 29

Loss is assumed to occur in early part of exposure;
therefore, no assessment of efficiency can be made.
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Table 2- 6. AO Reaction Efficiencies of Selected Metals in Low Earth Orbit

Material

(lSOA)
Chromium (123 A),

Coppe_ (bulk)

Copper (1,000 A) on sapphire

comet 0,oo° :9 .
.Gold (butk_

Gold

Reaction

Efficiency,
xl0 -24 ¢m3/atom

Flight

31

42

Experiment

partially eroded

0 25

0.007 26

0.0064 37

25

I' 22

0

appears resistant

Iridium Film 0.0007 25

Lead 0 39:31

Masnesium 0 30, 31

Molybdenum (1,000A,)

Molybdenum (I,000 .A)

Molybdenum

Nichron_s (100A)

Nickel film

0.0056 28

0.006 ,, i, 18,26

Reference

0 30..31

0 31

0 25

Nickel _ . 0 24r30

Niobium film 0 25,31

Osmium 0.026 STS-5 17

Osmium

osmium,@u )
Platinum

heayily attacked
0.314 ]

appears resistantPlatinum

| ....

32

25

30r31

32

Platinum film 0 25

Silver 10.5 STS-5 16

appears resistantTantalum

Tungsten 0

32

24_30
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2.1.2.2 Surface Recession Predictions

As discussed earlier, the amount of surface recession for a material of known reactivity is

directly proportional to at""r'ic oxygen fluence, or the total number of atoms impinging on each

square centimeter surface area during the duration of the intended mission. Fiuence, in turn, is

dependent on such parameters as spacecraft altitude, surface attitude relative to the spacecra_Ct

velocity vector, orbit inclination, duration of exposure, and solar activity conditions during the

lifetime of the spacecrat_ (as atomic oxygen is produced by the photodissociation of molecular

oxygen initiated by the absorption of solar near-ultraviolet radiation, its concentration is known to

change as sun spot activity varies during the I l-year solar cycle)

To aid the sp_cecraf designers in estimating the atomic oxygen fluence effects on specific

surfaces under question, a parametric stud' was performed to evaluate the effects of altitude,

inclination, and solar activity on atomic oxygen fluence, 43 and its attendent changes in surface

recession. Altitudes and inclinations selected for this study ranged from 150 to 900 km and from 0

to 89 ° , respectively. Solar activity parameters used in the computations represented low, medium,

and high activity conditions. In addition, as fluence is also strongly influenced by surface

orientation, seven surfaces were selected for analysis as these parameters were varied. These

surface orientations included three E surfaces (ram and oblique effects), two I surfaces (solar and

antisolar), and two B surfaces (deep-space and Earth-viewing).' The results of this analysis

comprise a generalized descr_,_,tion of the manner in which changes in surface orientation, altitude,

inclination, and solar activity affect total accumulated fluence.

Fluence as a function of altitude for various solar activities and surface orientations is shown in

Figure 2-1 (ref 43) Atomic oxygen number densities used to compute fluence were obtained from

the MSIS-83 thermospheric model. _ which predicts atmospheric co',stituent concentrations as

fi.mctions of input parameters such as altitude, time of year, latitude, longitude, local solar time, and

solar activity conditions. The solar flux index (F,0 ? number) for each year the spacecraft is exposed

to the LEO environment was obtained by using Figure 2-2, which shows solar activity predictions

for solar cycle 22, the current cycle which began in 1988. '_ To provide conservative estimates of

accumulated fluence, 2c variations over the long-range statistical averages of the solar activity

indicators were used as inputs to the MSIS-83 model '_

' An E surface represe.nts a body coordinate system fixed to the spacecraft that flies in a local vertical-kw.al

horizontal (LVLH) flight n_de; an I surface is a solar inertial coordinate system that rotates in two degrees of

freedom to nnauntam Sun-pointing attitudes; and a B surface is a space-viewing coordinate system that rotates m a

stngle degree of freedom to provide radiator attitudes for deep-space heat rejection.

2-9
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Figure 2-1 serves as a nomograph ior calculating the amount of surface erosion in microns

(p,m, 10 .4 ram) for a material with P-_ = 3.0 x l0 "24 cm3/atom (e.g., Kapton) or for a less reactive

material with P-_= 1.0 x 10 "24 cm3/atom (e.g., carbon/epoxy composite) for the given solar activity

conditions (the 10.7 cm solar flux index, F_oT, and the geomagnetic index, ,%). During nominal

activity fft0-r=150; AI,=I 5), the fluence on ram-oriented surfaces increased from 3. lxlO 18 to

4.4x1023 atoms/era 2 per 7ear as the altitude is redt:c, ed from 900 to 150 km. As expected, the

fluence increases with increasir,_, solar activity. For example, at a nominal altitude of 500 km

(Space Station), the yearly fluence on these suXaces increases from 4.6x1019 to 2.2x1021

atoms/cm 2 as solar activity increases from minimal (Fl0-t=70, A_,=O) to maximum (Fi0:r=230;

A_=35).

Fluence is also strongly influenced by surface orientation as shown in Figure 2-3 (tee 45). For

example, the fluence for surface 1L (ram conditions) situated in a circular orbit of 500 km during

nominal solo- activity is 7.4x102. atoms/era 2 per year. In comparison, B surfaces s_.ojected to

windward conditions at solar noon and I surfaces that are antisolar viewing undergo yearly fluences

ot 3 3xl0 :° and 2.7xl02° atoms/era 2, respectively, or 45% and 36% of ram exposure. On the other

hal:d, solar-viewing I surfaces and leeward B surfaces accumulate less fluence, 1.5xl 020 and

1.4xl02° atoms/era:, respectively. This difference can be explained using ".gure 2-3. Solar heating

effects produce a slight bulge in number density at approximately 40 ° east of solar noon. The

former surfaces fly through this bulge and the latter surfaces are protected from it because, f wake

effects. During the night exposure, the relative orientations of these surfaces are protected from it

because of wake efli_ct._. During the night exposure, the relative orientations of these surfaces are

reversed, but since the nighttime number density is lower (4.2x107 as compared to 1.4xl 08

ate, ms'era2), the reverse sides undergo less flux, or lower fluence.

The results of inclination changes are shown in Figure 2-4 (re£ 45). During spring and fall

equinoxes, the density bulge produced by solar heating lies along the Equator and decreases at high

latitudes. During the summer solstice (June 22), this bulge is 23.5 ° above the equatorial plane and

orbits near this location are characterized by hight.r fluences.
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Surface recession predictions as a function of atomic oxygen tluence can be determined from

the nomograph of Figure 2-1 by using the following procedures (ref. 45):

. Estimate the solar flux index (F10.7 number) for each year the spacecraft is exposed to

the LEO environment by using Figure 2-4, which shows solar activity predictions for

solar cycle 22, the current cycle which began in 1988.

2. Select spacecraft attitude and orbital altitude of the surface in question.

. Using the above information, read from the lower nomograph scale the amount of

fluence per year for each year the spacecraft is in operation. To obtain an estimate of

the amount of surface recession on a per year basis for the material under

consideration, multiply these fluence values by the material reactivity values shown in

Tables 2-2 to Table 2-6. These calculations yield the amount of surface recession (in

centimeters) for each year the spacecraft is expos_ to orbital conditiotJs.

NOTE: If the material is highly reactive, such as Kapton (R_ = 3.0 x 10 -24

cm3/atom), an estimate of surface erosion on a per year basis may be obtained directly

from the upper horizontal scale of the nomograph.

o Sum the values of (1) fluence per year, and (2) surface recession per year calculated in

Step 3 over the lifetime of the spacecraft. These quantities represent a good estimate

for the total fluence and total surface recession that each surface in question will

experience during the lifetime of the mission.

2.1.2.3 Example

Assume a spacecraft is designed to operate at an altitude of 500 km and is launched into an

orbit with an inclination of 28.5 °. Also assume the spacecral_ is gravity-gradient stabilized, is

delivered to orbit during 1990, and has an intended operational lifetime of one year. The amount of

surtace recession on ram-oriented Kapton surface is determined from the nomograph as follows:

1. From Figure 2-4, a launch date of 1990 represents maximum solar activity conditions

(FI0.7 = 230).

o From the homograph of Figure 2-1, curve "1EMAX" represents ram exposure for

these altitude conditions. Reading across the altitude scale of 500 _n, the fluence and

surface recession are 2 x 1021 atoms/cm 2 year and 60 _m/year, respectively. Thus, a

highly reactive material such as Kapton with a thickness of 127 tam (5.0 mil) will !ose

60 tam (Ax = F T x Re: 2x1021 atoms/cm _ x 3.0x10 -24 cm3/atom = 6.0x10 3 cm), or

47 percent, of its thickness during the time the spacecraft is in operation. Using the

data in Tables 2-2 to 2-6, if the material is a fluoropolymer, such as Teflon 0_ <

0.05x10 24 cm3/atom), the thickness loss will be 1.0 larn t0.4 mil), or 1/60th the

amount predicted for Kapton. From LDEF the predicted R_ for Teflon is 3.64x10 zs
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.

cm3/atom (see page 10-129) in which case the thickness loss would be 7.3 gm (Ax =

F T x Re: 2x1021 atoms/cm 2 x 3.64x10 -25 cm3/atom = 7.,_8x10 cm).

If the surface in question is solar inertial, such as solar array panel, curve "IlMAX" on

the homograph represents one side exposure for solar inertial surfaces during the time

this spacecraft is intended to operate. Under these conditions, the fluence and surface

erosion would be 3 x 1020 atoms/cm 2 year and 10 lam/year, respecti_... For two-

sided exposure, this would represent a thickness loss of 20 _tm and if the solar array

substrate is 127 t.tm in thickness, 16 percent of the Kapton material would be eroded

away during the operational period of the spacecraft. Coating the Kapton with SiOx or

I"1"O would :educe this erosion rate by a factor of 300 (see Table 2-1) and would result

in a thickness loss of only "0.06 lam. Thus, materials unsuited for these applications

can be protected from the LEO environment by coating them with materials having low

reactivity rates.

Figure 2-5 shows the surface erosion or thickness loss in mils per year of spacecraft operation

for Kapton as well as for other materials with different reaction efficiency values. _

ALTITUDE (k_)

120 150 j75 200 250 300 350 400 450 500 550 600 650 700 750 g00 840 900 100
102

10

1

.1

10-2

I0-

to_

lO-_

to-6

10-7

10"S olu_o13_a

THCIKNESS NOTE: STD A'IM, ORBITAL VELOCITY = 8km/s

LOSS (mils)

Note: Multiply by 254 to obtain thickness loss tn lain.

Figure 2- 5. Nomegram for _tomic Oxygen-Induced Surface Erosion for Solar Inertial

Facing Surfaces
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2.1.2.4 Screening Techniques

Materials considered for spacecraft construction need to be evaluated by spacecraft designers

for susceptibility to atomic oxygen interactions. The alcove mentioned techniques can be used to

predict the amount of surface erosion that would be experienced by surfaces in question during an

intended mission. If the amount of surface degradation is considered unacceptable, sensitive

materials can be coated with low atomic oxygen reactivity materials, such as siligone oxide,

aluminum oxide, RTV silicone, etc. (See Chapter 8 - Protective Coatings), or they can be

substituted for materials with similar properties, but which are less reactive in an atomic oxygen

environment. Table 2-7 summarizes the atomic oxygen effects on materials.

Table 2- 7. Atomic Oxygen Effects on Materials

Material Atomic Oxygen Effects

Composites Erosion from carbon fiber composites can be predicted from carbon reactivity.

Glass fiber composites become self protecting.

Paints Diffuse paints erode non-linearly.

Polymers Unfilled polymers react linearly _vith atomic oxygen.

Metals Reaction is non-linear and strongly dependent on temperature, stress and
microstructure; accommodation on the order of less than 10 atoms per 104 incident.

Glassy Ceramics Densification accompanied by a decrease of less than a few hundred angstroms
results from space exposure.

2.1.3 Atomic Oxygen Effects on Optical Properties

All materials which form volatile oxides upon atomic oxygen bombardment have been found to

develop a microscopic surface texture composed of left-standing fibrils or cones. This texture

tends to have an influence on the optical properties of materials, causing a significant increase in

diffuse reflectance. Table 2-8 delineates :he changes in solar absorptance and thermal emittance of

materials exposed to low-Earth orbital atomic oxygen.
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Table 2- 8. Effect of LEO Atomic Oxygen on Optical Properties of Materials

Material

Ag'FEP

Al/Al20_
AIMgF2

AI203/A3 (He)

Al:03/Al (Le)
Aluminized FEP Teflon, second

surface mirror (0.025 mm thick)

AI Kapton

Al Kapton

Aluminized Kapton, second surface

mirror, uncoated (0.052 mm thick)
Aluminum (150,_)

Aluminum (chromic acid oxidized)
Black, carbon-filled PTEE

impregnated fiberglass (0.127 mm thick)
Black Cr on Cr on Mo

Black Ir on Mo

Black Rh on Mo (matte)

Black Rh on Mo (specular
Bostic 463-14

Chemglaze A276 (w/modifiers)

Chemglaze A276 (white)

Chemglaze Z004

Chemglaze Z302 (glossy, black)
Chromium (123A,)

FEP Teflon with silver undercoat

GE-PD-224

GSFC (green)
Indium tin oxide coated

Kapton H with aluminized backing

ITO ring

ITO (S) SheldaM, black/Kapton (sputtered)

ITO (VD) Sheldahl, black/Kapton (vacuum

deposited)
Ir foil ou AI

KSAT glass

Kapton with aluminized backing

Kapton H (aluminized)

Mo (polished)
Nickel

Ni/SiO_

Polyurethane A-276

Polyurethane A276 glossy _,hite

Polyurethane A276 with 0.5 nail 01650
overcoat

Rh foil oh. d

Change in Optical Properties Due to

Atomic Oxygen
Solar Fanittance

Absorptance
0.006 0.0

-.006 0.0 ....

....... 0.0

0.0 _ 0.0

-.005 0.0

-.006 0.0 ---

.05 -.19 ....

,048
-.062

-.23

0.0
0.0

-.16

.01

.006 t .016

.005

.01

.011
0.0

.006

0.0

-.002

.006

.0O6

.01

0.0

.048

.041

.005

-. 00_,.

.023

.002

.002

.018

-.007

-.59

0.0
0.0

-.05

0.0

.02

.03

0.0

0.0

0.0
0.0

.004

.0O4

0.0

0.0

.018

0.0

0.0

Reflectance

0.0

0.0

'.20

-.75

-.25

-.50

-.039

-.01

0.0

0.0
b-.051 to .01

-.051

Reference

48

52
41

33

52

52

49

39

39

53

41

33
53

50

54

54

54

55

42

41,33
55
37

33

51,55
40

39

39

55

55

54

54

39

54

0.0

.01

.2

".3

0.0

52

52

52

40

40

40

54

'More reflective as a result of the exposed Mo substrate.

blow absolute refl_Umce (-0.5 to 1 percent).
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Table 2- 8. Effect of LEO Atomic Oxygen on Optical Properties of Materials (Continued)

Materi_l

Sl3 -GLO

Si02(650 A on Kapton H)

Siq,

SilicateMS-74

Silicone(black,

Conductive)
Silicone RTV-602/Z302

Silicone RTV-650 + Ti02
Silicone RTV-670

Silicone S1023

Siloxane coating, RTV 602/on

alum;.rized Kapton
second surface mirror substrate

(0.008 nan thick coating) (0.052mm

thick Kapton)

Ti/"tiodized" alloy
Ti/"tiodized" CP

Urethane (black, conductive)
Urethane inhib A-276

YB-71

Z302 glossy black
Z302 with MN41-1104-0 overcoat

Z302 v h OI 651 overcoat

Z302 with OI 650 overcoat

Z302 with F 1-602

Z302 with F., " 670

Z306

Z306 (flat black)

Z8"3, glossy yellow with
MN41-1104-0 overcoat

Z853, yellow
401 - C10 flat black

Change in Optical Properties Due to

Atomic Oxygen
Solar Emittance

Absorptance
-.005 0.0 m_

0.0 0.0 0.0

.0Z9 -.002

0._1 0.0
0.0 -.005

.OO4

.001

-.004

-.022
0.0

.042

0.0

.004

.043

-.002

0.0

-.001

-.004

%004

.022

.028

.011

-.034
.005

-.01

-.02

0.0

.55

.01
0.0

0.0

N--N

RefleOmme

m

m

.001

¢-.25

d-.40

-4.3

.1

.4

N_

Reference

52

33
39

52,42
42

42

41

53

53

54

54

42

42
52

40

54

58

40

40

40

52

40

58

40

40

CContrast in different spectra between STS-8 and control. Possible aging effects on controls.
dAging effects similar in STS-8 and control. No exposure effect.
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2.2 ULTRAVIOLET (UV) RADIATION/SOLAR EXPOSURE EFFECTS

2.2,1 Introduction

The Sun's extreme ultraviolet (EUV) and UV output vanes in a pattern similar to sunspot

number (SSN0, and this variability translates into a variation of energy available to the

thermosphere. The resulting variation of exospheric temperature, in turn, produces a solar cycle

variation of atmospheric density. Since little EUV radiation reaches the ground, direct EUV flux

observations have been made only rarely. However, one can infer the value based on solar radio

flux measurements at 2800 MHz because EUV and 2800-MHz fluxes have shown a fairly good

correlation. The 2800-MHz flux is better known as the 10.7-cm flux (or Fl0.v). Although the

correlation is not exact (and varies from one sunspot cycle to the next), the patterns are similar

enough to be useful.

The wavelength range of solar ultraviolet radiation present in LEO is between approximately

0.1 and 0.4 p.m, which is a small portion of the solar irradiance curve shown in Figure 2-6. _s The

total energy provided by radiation in qfis wavelength range is approximately 8*/, of the solar

constant, where the solar constam is def.ned as the total energy provided by the Sun over all

wavelengths up 1000 I.tm and is equal to 136.7 mW/cm 2.

0.25 "r-'--r
! !

---I .4UV t.4-

0.20 -4-
!

!

l

l

!
WATTS/ 0,15 "1"
cm 2 x gm t

t

I

0.05

o
,I I I
0.5 1.0 1.5 2,0 2.5

Figure 2- 6.

3.0

WAVELENGTH, larn
OIM _l.0l 3,123

Solar Spectrum At Air Mass Zero

The UV spectrum is divided into three parts - the vacuum or extreme UV below 200 nm (0.2

tam), the far UV from 200 nm to 300 nm, and the near UV from 300 am t¢ 400 nm. This UV

radiation is energetic enough to cause the breaking of organic bonds as shown in Figure 2-7 (ref

55). Although the solar radiation below 0.2 tam represents less than O001% of the sohu constant,
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its presence may promote breakage of important organic structural bonds, such as C=C and C=O

and functional groups

10

8 ! Si-O-
C=O

,C=C

BOND 6 rl ,.F -N

ENERGY, I C - H
eV 4 - Si - CH3

0
0.10 0.18 0.26 0.34 0.42 0.50

WAVELENGTH, om

O|M 94.013.124

Figure 2- 7. Wavelength Requirement to Break Various Polymeric Material Bonds.

Because atomic oxygen is present in LEO, it is expected that the reaction intermediates from

the photon absorption will react with reaction intermediates from the oxidation process. This

photo-oxidation can lead to discoloration and reduced transparency of some polymers. Chemical

changes in the molecule as a result of these reactions may also lead to the formation of polar groups

which may affect electrical properties.S6

2.2.2 Optical Properties Changes

Most of the major research emphasis has been on changes in optical properties of polymer

films LDEF revealed a larger increase in the o., of SI3G/LO white compared to Teflon film. This

is attributed to the radiation vulnerability of the silicone binder of the SI3G/LO white paint. The

silicone is a hydrocarbon organic, and its chemical bonds are known to have lower binding energies

than those of the fluorocarbon bonds of Teflon (see Figure 2-7) Thus, it is probably reasonable to

ascribe the difference between the A_ of the S I3G/LO white paint and that of Teflon to radiation

damage Laboratory experiments have been performed to determine the effects of UV radiation on

the optical properties of various types of polyimides 57 In terms of ultraviolet radiation degradation

mechanism, the most stable polyimide materials were those which .ontained both oxygen and -

C(CF3)2 bonds, and the poorest performers were those which contained sulfur atoms within the

polymer molecular structure

Comparative flight and laboratory data on solar absorptance, Aoh, changes as a function of

equivalent solar hours for a zinc oxide-potassium silicate coating Z-93 are shown in Figure 2-8 (ref

55).
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Figure 2- 8. Comparison of Fright and Laboratory Data on 7_,-93 Coating

The combined UV and sol2r wind plasma experienced on Lunar Orbiter V was under-simulated in

the laboratory. The UV degradation experience by OSO-III and Pegasus was over-simulated in the

laboratory test. Laboratory A_ was generated using a short arc xenon UV source and a 3 keV

solar wind proton source with thermal electrons for charge neutralization, b

bComparison of the spectral irradiance of a xenon short-arc lamp with a quartz envelope to the solar itradiance at air nm

zero clearly shows that xenon has a good UV solar match from approximately 0.2 to 0.7 micrometers, but is much mo

intense in the infrared region. This IR radiation leads to over heating of test specimen.g when accelerated exposure

attempted. Acceleration factors of only 3X are possible without substantially overheating the test specimens.

RELATIVE
SPECTRAL

IRRaM)IANCE

0.25

0.20

0,15

0.10

0.05

0.0o I __ _ _{
0.0 0.5 1.0 1.5 2.0

WAVELENGTH (MICROMETERS) otu )(or) _

2-20



Figure 2-9 illustrates the change in spectral reflectance due to UV exposure in vacuum for a

zinc-oxide, pigmented silicone paint S-13 (ref. 55). The figure also illustrates that upon

introduction of air (oxygen) into the vacuum system, bleaching occurs which eliminates the UV

degradation to this coating. More or less complete recovery of degradations caused by irradiation

in a vacuum were noted when several white paints were returned to the air.
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Figure 2- 9, Structural Reflectance of Zinc Oxide-SiUcoae
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Figure 2-10 shows the in-air recovery of the white paints PSB and SG1 IFD atter combined

irradiation with UV and particles in vacuum. _8 This bleaching of white paints has led to the need

for in situ testing of spacecraft coatings.
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after 5 days m air, post-irradiation.

In Air Recovery ,_f the ¢¢hite Paints PSB and SGI 1 FIB Alter Combined

Irradiation with UV and Particles in Vacuum.
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A high value of solar transmittance (ct_<0.09; see page 10-130) in the wavelength range

between 0.3 and _).6 pm is necessary for polymer used as second surface reflectors (e.g., metallic-

coated Teflon tapes). UV radiation degradation of this transmittance may result in decreased

efficiency of the thermal control surface. The thermal control performance of Ag/FEP in the LEO

emhronment has generally been stable unless erosion of the Teflon on the leading edge by AO

erosion occurs, which can obviously result in emissivity changes. As was observed on LDEF, 80 to

90 percent of the 127 l,tm (5-rail) silver Teflon surfaces showed rrfinirnal degradation compared to

typical values of 0.05 to 0.07 for unflown silver Teflon 59 In the remaining area, the cx had

increased to values ranging from 0.28 to 0.4, but in these regions, the silver Teflon either had been

visibly contaminated or had exposure on both sides of the film, resulting in severe degradation of

the Inconei and silver metallization layers.

Comparison of the space environment effects on silver Teflon blankets with other flight

experience of different altitudes and mission duration is summarized in Table 2-9 (ref. 59). The

Solar Max repair nussion, conducted on STS-41-C after the deployment of LDEF in 1984, returned

127 Bm silver Teflon surfaces that had been in orbit from February 1980 until April 1984 at

altitudes that decreased from 574 to 491 km. Post-flight measurements of solar absorptance were

made in many areas with values of 0.06 to 0.11 representing 80 to 90 percent of the area _

Among other spacecraft flown at altitudes less than 1,000 km, specimens on both OSO-I-_ _ and

ML-1016z experiments showed rapid changes of about 0.02-in absorptance during the ft,st month

in orbit, followed by very, slow, small changes over the following months and years. A likely cause

of the early changes was contamination due to rapid outgassing and initial venting of the spacecraft.

The more recent shuttle flights were too short in duration to cause large changes in silver Teflon. 63

Table 2- 9. Flight Experience with Metalized Teflon

Altitude (Indination)

½35,639 x 201,599 km (17 °)

237,056 x 370 - 1600 kin (29 °)

43,:_88 x 27,578 km (7.9 °)

Spacecraft

IMP-H

IMP-1

Thermal Property Changes

Act, >0.07 over 12,000 esh

Large Act, over time

P78-2 (SCATHA) Act, > 0.2 over 10 years ('27,800 esh)

:/78 x 737 kin (98 °) ML-IOI Act, < 0.02 initial; then low Act, over time

574 - 491 km (28.5 °) Solar Max Act, <0.04 typical; some areas 0.28 to 0.4 ('4 years)

560 x 327 km (33 °) OSO-H Rapid Act,/e "0.02, then constant'('SC)00 eah) ....

,_80- 330 km (28.5 °) LDEF Act, <0.01 typical: some areas >0.24 C5.8 y_._)

270 km (28.5 °) Slight changes (< ItS0 esh)STS-41G (EOIM-II)

220 km (28.5*) STS-8 (EOIM-I) Slight changes ( < 1130"eah)
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As shown by the LDEF results, the effects of sanlight (including UV) on all spacecraft will

require careful selection of exposed materials to avoid those materials that change their as/C ratios,

optical transparencies or reflectivitics, and other properties that affect the thermal behavior of the

spacecraft. The abilities of optical transmitters or receivers (sensors) to function can be affected.

These material selections are considered to be design changes required by the environment (sunlight

in this case).
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2.2.3 Mechanical Properties Degradation

UV radiation has also been shown to degrade mechanical properties of polymeric materials as

is shown in the degradation in the tensile strength of Mylar. Figure 2-11 illustrates the effect of

ground-simulated UV radiation on the performance of protected and unprotected Mylar. Solar

ultraviolet irradiation can lead to crosslirddng of poly:_er surthces which may lead to embrittlement

and possibly to surface cracking. _4
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I I .i I /_ I o
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OIM 94.013.1_

Figure 2- 11. Effect of Ground Simulated UV on the Tensile Strength of Mylar

Mechanical property changes that occurred in 127 _m (5-mil) silver/Teflon on LDEF are

indicated by the property data summarized in Table 2-10 and Figure 2-12. _s Teflon on LDEF

trailing edge (ie, rows 1 to 6; where AO fluence was low), was embrittled due to solar exposure,

decr_sing the percem elongation to failure by about 20 percent and the ultimate tensile strength by

about one-third relative to controls (see also Figure 2-12). Teflon from the leading edge (i.e., rows

with high AO fluence), was still flexible with percent-elongation to failure values only slightly

decr=ased relative to controls. The implication is that for one group of blankets erosion of the UV-

affected surface layer by AO resulted in no degradation of the film strength (based on the remaining

cross-sectional area, after erosion), wlfile for the other group (i e., low AO fluence), the changes in

the chemical structure and embrittlement due to the effects of long-term solar ultraviolet radiation
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has occurred in the bulk of the FEP. The leading-edge mechanical properties are not significantly

different, although thinning of the Teflon would ultimately lead to reduced mechanical properties.

Table 2- I0. Mechanical Properties Changes of Teflon with Exposure on LDEF

Teflon from Blankets % Elongation to Failure Ultimate Tensile Strength,
(:1:40%) Nlmm 2 (:1_3Nlmm 2)

Trai!mg Edge, Rows 1 to 6

Exposed 230 14

Masked 300 21

Leading Edge, Rows 7 to 11

Exposed 290 19

Masked 310 20
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STRENGlI-/
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Figure 2- 12.
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UV Effects on the Tensile Strength of Teflon Specimens from Rows 1-6.
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2.3 MICROMETEOROID AND DEBRIS IMPACT

2.3.1 Introduction

Hyperve!ocity impact features are produced by collisions between space debris particles or

dust and small meteoroids with spacecraft surfaces. A significant amount of work has been

performed by the LDEF Meteoroid and Debris Special Investigation Group and other LDEF

experimenters in documenting, analyzing, and modeling the vast number ofhypervelocity impacts

that occurred on LDEF. 66 Impact damage is becoming importance because future satellites are

being designed for ever-longer mission times (e.g., 5 to 10 years), and the debris en'Aronment is

steadily worsening. This section introduce to the system designers and engineers an awareness of

the extent of dar_age which can be caused by impacts onto different types of spacecraft materials.

In addition, program managers should have a better understanding of the need to thoroughly assess

this damage. With increased awareness and improved understanding, spacecraft can be designed

which will have improved reliability, survivability, and performance, even during long missions.

2.2.2 Impact Fluence Models

The microparticle environment is described in terms of two separate models, one for the man-

made debris, and the second one for the naturally occurring micrometeoroids. The phenomenology

numerically computed models are provided by B.G. Cour-Palais 67 for micrometeoroids and by D.

Kessler 6g and R C. Reynolds for space debris. These micrometeoroids and debris models are

outlined in NASA SP-8013 and in NASA-TM- 100471, respectively. Recent 1990

micrometeoroids data are provided in a Phillips Laboratory briefing by Kessler. Cour-Paiais et al.

provides a general model of the near-Earth micrometeoroid environment. Eberhard Grun's 1985

model 69 provides an update to the Cour-Palais model by including the beta meteoroid envirormaent.

The Kessler debris model, developed in 1987, has been widely adopted and used by the U. S.

Department of Defense, NASA, and the European Space Agency (ESA)

2.2.3 Comparison of Fiuence Models to LDEF Results

The environment models continue to be updated with the addition of LDEF data. With these

updates, predictions have been done for the LDEF satellite using the most recent version of the

Kessler debris model. Some selected results are shown in Figures 2-13 and 2-14. '° In general, the

existing models fit the experimental data within a factor of two to three of the actual data from

LDEF. Note that the true LDEF ram surface was accidentally set at 8° to the intended orientation

(toward the North).
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Comparison of LDEF Data to Model Predictions for 172 ° From Ram.
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Comparison of the survey of the meteoroid and space debris impacts on the various LDEF

experiments to curves derived from the Kessler debris model and the Cour-Palais micrometeoroid

model indicates that these models over predict small impacts (< 100 micron) and may under predict

large impacts (> 1000 micron) while having fair to good agreement for the intermediate impacts. '_

The impact LDEF data are based primarily on crater counts, _specially in the aluminum structure of

LDEF (longerons and intercostals). It is observed that for the smaUest particles the crater count

asymptotes, whereas the Kessler debris model predicts a steady increase with decreasing particle

size. This effect may be due to the anodized coating on the aluminum. This alumina coating is

both tougher mad of higher density than the metal. Consequently, the craters will be smaller than in

the metal and may artificially cause the roll-off Other data, available from the Interplanetary Dust

Experiment ODE) on LDEF, also provide information for the smaller particles. These data indicate

a higher flux than the aluminum crater count. It should also be noted that the IDE data are for

mean flux rates, whereas the actual time dependent IDE data show dynamic variations in flux r_tes

ranging from 0 to 1000 times the mean flux rate. The IDE data also indicate that the many orbital

particles are in elliptical orbits (again not predicted in the models) and that these particles are in

clouds, thus cauo:_ng the dynamic flux rate variations.

Using the Kessler model, the predicted number of penetrations, Nh/m2, and the actually

observed number of holes in the thermal blankets covering the Ultra High Cosmic Rays (UHCR)

experiment AO 178 on LDEF were compared to model predictions, and the results are shown, in

Table 2-11 ..72

Table 2- 11. Comparison of Predicted and Observed Number of Holes on LDEF Thermal

Blankets.

Row Predicted, Nh/m 2 Observed, Nh/m2

1 93.4 85

2 33.3

4 18.7

5 48.2

6 125

7 203

8 264

10 280

11 247

32.5

29

31.3

70

195.5

232

350.7

237
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2.3.4 LDEF-Derived Model for Predicting Micrometeoroid/Debris Impacts

The micrometeoroid/debris observed on the LDEF was transformed into a nomogram format

useful for estimating the total number of hits that could be expected on a space structure as a

function of time in orbit, angular location relative to ram and exposed surface area. The nomogram

can then be applied to determine the total cumulative damage that could be expected over a 30-year

lifetime in space for an exposed structure.

From the individual LDEF experiment trays, counts of micrometeoroid/debris crater impacts

were compiled utilizing the data from T. See et al._3 Humes has shown the significant dependence

of meteoroid/orbital debris flux vs. angle from velocity vector as derived from model calculations

and from the LDEF experiment S0001 data. TM A summary of the crater impact data of diameter >

0.1 mm reported for each type of surface in each row is provided in Fable 2-12. 7s The count

column lists the total number of craters. Area column lists the area (square meters) used to

calculate flux values. Flux column provides the reduced counts of impact craters per square meter

per year, for each type of surface. The angle "Beta" is the angle from the velocity vector (or ram)

to the normal to each row. Note that Beta increases with increasing row number in a positive value

up to 180 degrees. Negative values mean the direction is decreasing with row number up to a -189

degrees. As an example, row 9 is a minus 8 degrees. 76

Directional dependence of meteoroid/debris impacts as a function of the angle from the

velocity vector can be seen from the count and flux data. Apparent flux variations occurred within

the same row for different materials. Flux values derived from impacts on experiment surfaces are

normally lower than those from the structure or thermal panels. Each experiment was composed of

a variety of different materials. Impacts on some surfaces exhibited excellent contrast making

identification for counting fairly easy, while other materials, such as composites, exhibited very

poor contrast making it much more difficul ° to identify impacts. The LDEF structure and thermal

panels had smaller exposed areas than tbc experiment st,_aces, but each consisted of the same type

material and coating resulting in a more reliable and consistent count.
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Table 2- 12. Crater Impact Data

Row

No.

1

2

3

4

5

6

7

8

9

10

11

12

Space

End

Earth

Fad

Expe'imunts & Trays

Cmmt Area m _

622 6.58

126 6.58

399 6.58

311 6.58

846 6.58

915 6.58

2108 6,58

3289 6.58

3077 6.58

3118 6.58

2435 6.58

1620 6.58

112 5,966

1095 5.966

_']IAX

16.43

3.33

10.54

g.22

22.36

24.15

55.71

86.92

81.40

82.40

64.35

42.81

3.26

31.92

LDEF Structure

Count Area m 2

112 1.22

68 1.22

74 !.22

96 1.22

184 1.22

442 ! .22

572 1.22

939 1.22

924 1.22

652 1.22

493 1.22

321 1.22

79

649

Flux

15.95

9.68

10,54

13.67

26,20

62.94

81.46

133.72

131.59

92.85

70,21

45.71

Thermal P_

Count Ar_ m: Flax

46 0.316 25.33

36 0.316 19.83

10 0,316 5.49

15 0,316 8.26

29 0.316 15.97

12 0,316 6.60

170 0.316 93.62

175 0.316 96,37

246 0,316 117.53

204 0.316 112.34

168 0.316 92.52

132 0,316 72.$6
165 4.65 6.16

1200 4.65 44.82

All of the flux data listed in Table 2-12, is plotted graphically in Figure 2-15.77
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The data was

summarized for each longitudinal panel to yield an angular (0) distribution of total impacts around

LDEF after 575 years in low Earth orbit. Figure 2-15 presents two distributions based on the

"total" reported hits that were recorded by unaided visual observation, and those hits which were

_>0.5 mm in size. It should be noted that the data shown are strictly valid only at 0 = O °, _+30°,

+60 °, 90 °, -+120 °, -+150 °, 180 °, and the curves cannot be integrated to give a total number of

impacts. This curve has not been corrected for the 8 ° yaw angle of LDEF.

Based on the number distribution presented in Figure 2-15, it is possible to construct a general

purpose nomogram which permits a user to estimate the total number of impacts on a satellite or

component (at the LDEF nominal altitude and inclination) for any value of time in orbit, angular

iocati,m around the satellite or space structure (constrained by 0, = n x 30 ° where n=O, 1,2 ... 12,

corresponding to a 12-sided polygon model of the satellite or component), and exposed area. For

example, Figure 2-16 presents the nomogram for LDEF based on a longitudinal panel area of-10
2

m, assuming a nominal impact fluence of 300 impacts/m z (ref. Tennyson and Manuelpillai, 1993).

The example panel shown in Figure 2-16 corresponds to 0=30 °. "Thus the intersection of 8-30 ° and

the LDEF time in orbit axis (~5.75 years) yields an impact fluence of-300 impacts/m s. Following

up along this constant fluence curve until one intersects the desired panel area (10 m2), one can

then translate horizontally across the graph to the "Number of impacts" ordinate. For this

example, one obtains hl = 3100 which agrees with the number plotted in Figure 2-15.
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Figure 2- 16o LDEF Micrometeoroid/Debris Nomogram

Using the LDEF data from Figure 2-15, knowing panel areas and total time in orbit, one can

construct a general purpose nomogram for varying areas of exposure and impact fluence levels as

shown in Figure 2-17 (ref Tennyson and Manuelpfllai, 1993). Once again it must be stressed that

these curves can only be used to estimate the total number of impacts at discrete angles defined by

0, = n x 30 °, n = 0, 1_2 ..... 12, and are strictly valid for an LDEF average altitude of---463 km and

inclination of 28.5 °. Later ,t will be shown how to correct these numbers for different altitudes and

orbital inclinations.
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for Arbitrary Exposed Surface Areas as a Function of Angle Off Ram, and Time in Orbit.
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,4 an example on how to use the nomogram and the 12-sided polygon model to calculate the

number of impacts on a structure, consider the case of a circular cylinder, 0.5 m in diameter, 10 m

long, a_er .30 years in low Earth orbit. The following results were obtained on the total number of

hits on each panel (Nn) for n = 1, 2, ..., 12 together with the average impact separation distance

(Dn), assuming a uniform distribution.

(i) Panel Area (A)

c = 2R sin

For the 12-sided polygon qb= 15°
therefore, c = 0.13 m and A = 1.3 m 2

(ii) Nn distribution from Figure 2-15 (30 years)

0°n Nn (est.) Dn" (cans)

0 2070 2.5

30 2070 2.5

60 1680 2°8

90 1100 3.4

120 450 5.4

150 325 6.3

180 290 6.7

-30 2260 2.4

-60 1680 2.8

-90 615 4.6

-120 550 4.9

' I ....-150 225 7.6

* = average impact feature separation distance on panel, assuming uniform distribution.

Although the particle flux LDEF was not strictly uniform in time, averaging over long periods

of time (of the order of many months) is a reasonable approximation.
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2.2.5 Micrometeoroid and Debris Impacts on the Solar Max Mission Satellite

Thermal blankets and louvers, exposed to space environment for 50 months in low-Earth orbit,

were retrieved by Shuttle astronauts during Solar Max repair mission STS-41C. These louvers and

blankets have been inspected by means of scanning electron microscopy in order to determine

fluxes and origins of the impacting projectiles. The aluminum louvers were penetrated by 64

impacts, which made holes ranging from 180 micrometers to 820 micrometers in diameter. Most of

these holes were made by micrometeorites as identified by chemical analysis of projectile residue

associated with each hole. Seven holes were made by small particles of orbital debris.

Figure 2-18 _8 shows the overall flux of holes and craters on the aluminum louvers over the

size range from 10 micrometers to 1 millimeter. For the size region dominated by holes, the

micrometeorite curve is clearly higher than the orbital debris curve. The transition region between

holes and craters is clearly shown in the region around 200 micrometers. While not shown on this

figure, chemical data indicate that a lfigh proportion of the smaller craters are formed by debris

projectiles rather than micrometeorites. Therefore, the flux curves must cross over, probably in the

crater region between 50 and 100 micrometers. Hence, small projectiles (approximately those

which make less than 50 micrometers crater diameters on aluminum) are dominated by orbital

debris (mainly paint pigments with lessor aluminum oxide solid rocket exhaust), and the narrow

region between projectiles making holes or craters in aluminum from about 0.1 mm (100 lain) to

possibly 1 cm is dominated by natural meteoroids.
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Orbital debris holes clearly are a minority of the population in the 200 micrometers to 1

millimeter region. However, that is somewhat misleading. Orbital debris particles have a mean

velocity relative to a satellite in low-Earth orbit of about 10 km/sec, but micrometeorites have a

mean velocity of about 20 km/sec relative to the satellite. Therefore, debris particles of equal mass

and density as micrometeorites are likely to make smaller holes or even craters rather than holes.

Consequently, the difference between the abundance of mcirometeorite holes and orbital debris

holes does not accurately reflect the difference in flux between these two populations; the fluxes are

more nearly equal than is indicated by the hole data.
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2.2.6 Deficiencies of the Microparticle Models

Many deficiencies should be applied to the existing models which define the microparticle

space flux environment. The Kessler model (ref. 68) has several major downfalls.

o It does not currently account for particles in elliptical orbits, which may total 20-30

times the amount currently trackable by USSPACECOM, and which pose a substantial

threat to satellites at much higher altitudes than 1_00 km. The present assumption that

all debris orbits are purely circular automatically forbids any collision on either the

Space-end or the Earth-end. In reality, many orbits must be slightly elliptical (due to

random collisions and explosions). LDEF data demonstrates that such omits exist

since several impacts of debris have been unambiguously identified on the Trail surface

(at least 15 percent of the total crater count).

Efforts are underway to update the Kessler model for debris to allow for inclusion of

noncircular debris orbits. The purpose is to allow assessment of the effects of elliptical

debris orbits on any other satellite orbit, since the present Kessler analysis does not

allow such facts to be determined. Results for a satellite in a different orbit, namely an

altitude of 1600 km and inclination of 60 ° reveal larger impact velocities of up to 8.5

km/s compare to impact velocities of 5.0 km/s for LDEF. Thus, high-inclination,

high-altitude orbits are most susceptible to debris. 79

, It cannot account for the highly dynamic nature of the debris environment which was

detected by the IDE (Interplanetary Dust Experiment) on I.DEF. An alternate model

which will handle both the dynamics of the environment as well as the elliptical orbits

is in development at the Jet Propulsion Laboratory by Dr. Neal Divine. s°

With regard to the natural environment of micrometeoroids, the biggest downfall concerns the

assumption that the particles are apparently geocentric. In reality, this will only be approximately

true for long lived missions; particularly those that include a large number of satellite orbits

together with a large number ofprecessions of the spacecrat_ orbital plane. Furthermore, it should

be noted that in attempting to correlate the observations on LDEF versus the model predictions for

the environment, the answers are sensitive to assumptions with regard to crater sizes versus particle

sizes.

Examination of the LDEF data reveals an interesting bias in _!',e impact flux: st the peak flux is

not symmetrically distributed about the ram direction in the plane parallel to the Earth's surface

(i.e., the two sides are not equal as expected). This effect cannot be readily explained for man-

made debris since the interception of a circular spacecral_ orbit will, a circular debris orbit must

necessarily involve two collisions per orbit (except for the rare condition of "kissing" orbits at

apogee or perigee). These two states symmetry about the ram axis, thereby causing the ram

direction to experience the greatest numoer of hits.
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Oneprobable explanation lies with the microme_eoroids. In reai|ty each interception of a

micrometeoroid orbit "tube" with the Earth always results in the flux being "one-sided" with respect

to the Earth's orbit. Either the flux is "inward bound" towards the Sun, or it is "outward bo_,nd"

from the Sun. Further_ the flux appears to be monodirectional at the instant of interception. Thus,

the true "Earth-shielding" is really simple ecliptic geometric shadowing for LEO (i.e._ not the

subtended solid angle of the Earth seen by the spacecraft). Thus, a spat,,_cratt in LEO could be

shielded from the particles for almost a complete half orbit if the plane of its orbit is close to that of

the orbit of the mcirometeoroids. The result can i.,e a bias such that one half of the spacecratt

experiences the impacts while the other half sees none. The half will include st'rfzces ranging from

the ram through space round to the trail, with one side receiving more impacts than the

corresponding other side, and the exact surfaces involved will depend on the local plane of the

spacecra_ orbit relative to that of the mcirometeoroids. Nc _e that ti_e LDEF inclination of 28.5 °

together with the Earth's arJal tilt of 23.5 ° meant that, with orbital precession, the plane of LDEF's

orbit oscillated between 5 ° and 52 ° relative to the ecliptic. There were about 38 complete orbital

preces_ions during LDEF's lifetime (precession rate of about 6.5 ° per day) and about 32,000

complete orbits.

One of the main disagreements within the models, which is still being defined today using the

LDEF data and analysis, is the percentage of the environment which is cometary as compared to

asteroidal. This affects both the velocity distribution and the expected impact phenomena (i.e.,

cratering depth or penetration diameter) for the meteoroids. 8_ Another discrepancy within the

models is their assumption of the meteoroid environment's isotropic distribution. The LDEF

analysis was the first evidence that the total environment is non-isotropic and highly dynamic.
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2.3.7 Micrometeoroid and Debris Impact Damage Behavior

2.3.7.1 Penetration and Crater Formation

When a hypervelocity particle impacts a surface it either creates a crater or perforates the

surface (also referred to as the target). For targets that are thick relative to impactor sizes, craters

will be formed that generally have lips resulting from plastic flow to molten spatter. However, for

very thin targets, such as foils, which are much smaller than the impactor diameter, perforations

occur resulting in a hole only slightly larger than the impactor diameter. Secondary or collateral

damage can occur from the impactor remnants and the punched-out section. For high-velocity

impacts, both the target foil and the impactor are vaporized. However, for lower velocities, the

impactor and foil can remain molten or solid, and collateral damage is possible.

Large particles can penetrate through protective wall surfaces. With a relative impact velocity

of I0 kin/s, a piece of aluminum debris which is --0.7 mm in diameter can penetrate through a

typical 2.5 mm (1000 nail) thick aluminum satellite wall. During its 5.75 year exposure, LDEF saw

1 impact of this size per 7 m: of area exposed in the ram direction. In addition to this, LDEF

experienced -1 impact/m 2, on the ram-exposed surfaces, which could have penetrated a typical 1.5

nun (60 ,'nil) thick aluminum electronics box wall. 83 While these impacts can be extremely

damaging to internal components, electronics, batteries, motors and mechanism, they are relatively

rare.

While p ',a-ticles greater than 1 ram can penetrate typical satellite skins and cause catastrophic

damage, the more common smaller particles mostly cause a gradual degradation of a satellite

surfaces, including thermal control paints, thelmal blankets, coatings to provide protection against

atomic oxygen (AO) or ultraviolet light (UV), solar cells and optics. Many satellite surfaces

employ coatings which range from sub-micron (e.g, optics) to mils (e.g., thermal control, AO and

UV protection, and solar cell covers) At impact speeds of 5 - 20 knds particles can penetrate

materials (either punching holes or causing craters with associated radial (star) cracks fbr brittle

materials), and can cause damage regions which are considerably larger than the incoming particle

Consequently, the thermal paint coatings can be locally disrupted even by particles as small as 1 to

100 p.m, and the _.real number density (hits per square meter) can easily exceed 1000/m 2 for a

multi-year mission. Hence, tens of thousands to even millions of these impacts may occur per

square meter of typical surfaces which are exposed throughout the mission lifetime of the satellite.
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2.2.7.2 Spallation

In addition to crater formation, surrounding areas can experience spallation, undercutting,

cracking or delamination of an attached layer. These damage effects tan lead to reduced structural

strength, thermal and optical property degradation and erosion of underling materials. Brittle

materials, such as glasses or ceramics, often have chonchoidal surface spalls and cracks, and may

have star cracks propagating radially from the crater. Layered targets, such as coated substrates,

often exhibit delamination around or near the crater. Averaging over all impacts, the ratio of crater

size to impactor size is about 5. For local spall regions, the spall radius to impactor radius ratio is

about 20. Star cracks, when formed, can extend outward over 100 times the impactor diameter.

For coatings, the shock waves from the impact can cause coatings t,_ spar The amount of

coating removed during impact is dependent upon the bond strength and t) pe of coating. Impact

crater spall data are very limited, even on LDEF samples after almost 6 years in orbit. Since, most

flight samples were about 1 inch in diameter, a flux rate of 140 impact craters per year results in

only 0.07 impacts per year on a one inch disc. This explains why very few impacts occurred on the

experiment sample coatings. Of course large areas of LDEF such as silver Teflon, provided a large

database for determining spall or effective damage area. To obtain better spall data for the paint

coatings, including Z-93 (white ceramic binder type paint) and S 13 G/LO (white silicone binder type

paint), a series of hyperveiocity impacts were performed by Auburn University. $4

Typical spaU to crater ratios for thermal control coatings derived f, om flight and .ground tests

are summarized in Table 2-13. In general, spall-to-crater diameter ratio was greater for the LDEF

exposed sample material. Ground simulation impact spall for a S 13G/LO coating compared

favorably to an impact on LDEF experiment M0003. In corr, parison, impacts on conversion

coatings such as chromic acid anodize (CAA) did not produce any apparent spall. An example is

the CAA sample from LDEF experiment S0069.

Table 2- 13. Spall Diameter to Crater Diameter Ratio

Coating Material Ratio of Spall to Crater Diameter

LDEF Flight Samples Ground Te,_ Samples

SI3G/LO 3 1.5 to 3.0

YB-71 4 to 8 5 to 8

Z-93 na 5.5 k, 3

Ag/FEP 2 to 6 na

CAA 1 1
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2.2.7,3 Penetration Analysis

To calculate the number of penetrating holes that a satellite surface can expect to experience

during a mission a design or damage equation is used that gives the ballistic limit for given target

thickness and imp._ parameters. The number of holes (punctures) is calculated by using the

following equation which was derived for single metal plates (thin plate formula): s5

t = 0.57m0.352p0.167t) 0.875 fl)

where t = threshold thickness for penetration (cm)

m = mass of projectile (g)

p = density of projectile (g/cm 3)

u = impact velocity of projectile (km/sec)

A puncture occurs whenever the threshold thickness for an impacting particle, with given mass,

density and velocity exceeds the shielding thickness of the surface under consideration.

The ability ofmicrometeoroids to puncture single sheets of hard aluminum or stainless steel is

indicated in Figure 2-19. _ The thicknesses are large (> 1 cm) for meteoroids of mass >_ 10 -2 g.

However, these total thicknesses can be reduced by up to a factor of 5 by using the bumper

concept. A single sheet of thickness _>t/30 located a distance > 5t in front of a sheet of thickness _>

t/6 will stop the same particle that a single sheet of thickness t can. This concept requires that the

incident particle have a velocity of at least 3 km/sec, preferably > 5 km/sec. (Meteoroids have an

average velocity of~20 km/sec near the Earth.)
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Theprobability of sustaining a puncture by a micrometeoroid increases linearly with the

product of area and time. Figure 2-20 shows the probability of a single sheet of hard aluminum

being punctured in 10 years as functions of total project area and aluminum thickness (ref. Haffner

et al., 1989). To a first approximation, these curves are independent of altitude. Of course, the

puncture probabilities remain unchanged if the single sheet of aluminum (thickness t) is replaced by

two sheets oft/30 and t/6 (the bumper concept) provided the separation distance is at least St.
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The situation for debris objects is similar to that for micrometeoroids except for the altitude

dependence. The single-sheet tl_cknesses necessary to stop debris objects are comparable to those

to stop micrometeoroids of the same mass as shown in Figure 2-21 (ref. Haffner et al., 1989).

However, the meteoroid threat is present at all altitudes; the debris object threat is primarily located

at altitudes < 2000 km (with a small secondary threat near GEO).

T, SINGLE SHEET
THICKNESS (cm)
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Figure 2- 21. SingleSheet Thicknesses to Stop Debris Objects
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Use of equation (I) for thermal blankets implies several approximations and uncertainties. This

equation was derived for normal impact directions. Impacts from both meteoroids and space debris

particles, however, will generally not occur under normal direction. In that case the velocity

entering into the equation can either be taken as the total impact velocity, assuming that over a

wide range of angles the penetration capability is independent of the impact angle, or the normal

component of the velocity can be used. The given equation is strictly valid only for aluminum.

Different procedures have been sugg_ -'._d to modify the equation or to derive an equivalent

thickness for materials other than metals and for compounds. 87 The McDonnell equation for

perforation predictions, at least for symmetric AI/AI conditions is:

where

T = 1.023dpt°s6(pp/Pt)°476(CAl/Ot)°t34 t3°e_4

T is the wall thickness (cm)

dp is the particle diameter (cm)

densities (p) refer to panicle or target (g/cm 3)

0 values are the yield strengths of AI or the target (MPa), and

u is the normal impact speed (km/sec)

(II)
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2.3.8 Micrometeoroid and Debris Effects on Materials

Impact damage can degrade the performance of exposed spacecraft materials and, in some

cases, destroy a satellite's ability to perform or complete its mission. Large particles can penetrate

through protective wall surfaces. For example, with a relative impact velocity of 10 kin/s, a piece

of aluminum debris which is --0.7 mm in diameter can penetrate through a typical 2.5 mm (100 rail)

thick aluminum satellite wall. During its 5.75 year exposure, LDEF saw 1 impact of this size per 7

m 2 of area exposed in the ram direction. In addition to this, LDEF experienced -1 impact/m 2 on

the ram-exposed surfaces which could have penetrated a typical 1.5 mm (60 rail) thick aluminum

electronics box wall (ref. 83). While these impacts are relatively rare, the frequency of impacts is

expected to increase due to the continuing growth in the debris populations.

LDEF-flown materials provided examples of typical impact cratering and penetration in the

various structural materials. Since LDEF was designed to withstand multiple launches, along with

multiple retrieval and landing loads, its structure was made from heavy (for satellites) aluminum I-

beams. A few experiment structures (e.g., electronics boxes) which were carried by LDEF had

aluminum wall thicknesses (i.e., 2-2.5 mm (89-100 mils)), while other experiments carried samples

of carbon/epoxy composites. In general, the overall average effects of the micrometeoroid/debris

impacts on most of the spacecraft surfaces were not significant even for extended periods. This is

true only for small, non-penetrating, high probability impacts causing craters in the 0.1 to 3 mm

range. However, even at this minimal average impact, up to 140 impacts/yr/m 2 can be expected

and must be planned for and considered in spacecraft designs requiring long periods of exposure in

the low Earth orbital environment.

For very stable materials where a few percent change in overall properties is critical, then the

impact and spalling can be important. For example, if the overall average ernittance of a radiator

must be stable for 30 years (change < 2%), then the effects of the meteoroid/space debris must be

included in life prediction. Z_ener and Finckenor discusses the potential effects of

micrometeoroid/space debris effects on the radiative properties of thermal control materials (ref.

75).

Localized damage, if it occurs in the wrong place can cause severe degradation. Electrical

properties of solar cells appear to be minimally affected by micrometeoroid/space debris impacts as

reported by Young and Trumble. .8 Cracking of the cover glass and even penetrations only had a

local effect. Although the overall effect of impacts on solar cells is small, impacts that severe

conaections can cause lost of those cells Hence, a high level of damage by impacts would cause

fignificant loss in solar cell array outputs.

2-47



Finally, the type of impacts experienced on the LDEF will normally not cause penetration of

optical surfaces, such as lenses and mirrors, but they can create scatter sites for light as reported by

Kemp et al. (Ref. 79).

Below are examples of the types of damage various surfaces caused by these impacts.

2.3.8.1 Metals

In general, impacts into metals form craters which have diameters averaging about 5 times the

impact diameter. Figure 2-22 provides a schematic diagram of damage morphology and diameter

measurements for multi-cratering impacts into metals, s9 If the crater lips are included, the damage

region across the highest point is -7 times the impact diameter, while the total region out to the

extremes of the crater lips can be -10 times the impact diameter. The exact size of the crater is a

function of impact diameter, impact speed, and relative ratio of impact density to target density.

These craters are of concern because they can prevent impacted mechanisms from operating and

can cause failure in highly stressed materials.

(A) (B)

Figure 2- 22.

OIM _10|3.140

Schematic of Impact Damage into Metals.

Large particles can penetrate through protective wall surfaces. With a relative impact velocity

of 10 kin/s, a piece of aluminum debris which is -0.7 mm in diameter can penetrate through a

typical 2.5 mm (100 mii) thick aluminum satellite wall. During its 5.75 year exposure, LDEF saw 1

impact of this size per 7 m 2 of area exposed in the ram direction. In addition to this, LDEF

experienced -1 impact/m 2, on the ram-exposed surfaces, which could have penetrated a typical 1.5

mm (60 rail) thick aluminum electronics box wall (ref 83). While these impacts can be extremely

damaging to internal components, electronics, batteries, motors and mechanisms, they are relatively

rare.
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2.3.8.2 Composites

While not large in number, LDEF had composite structural material samples on board and was

able to show some of the effects of impacts and penetrations through these materials. 9°'91 A

schematic diagram of the damage morphology and diameter measurements for impacts of

composites is shown in Figure 2-23 (ref. 89). The penetrations typically have jagged edges and

contain broken fibers. For the more brittle composite structural materials, the damage is rarely a

simple crater. Rather, significant in-depth damage can occur and may be anisotropic, following the

structure of fibers. For complete penetrations, the rear surface damage area is fi'equently larger

than the entry hole area. This impact damage is of concern because the breaking of the fibers,

cracking of the matrix, and removal of part of the matrix via the spaUation process could cause

failure in highly stressed components. This could also lead to further breakdown of the composite

material during subsequent exposure to other space environments such as atomic oxygen (surface

erosion) or ultraviolet light (embrittlement).

SPALL

(A)

(c)

Figure 2- 23.

<c) --.1 Dp-
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OIM 94,013.129

Cross-sectional view of feature wiv_h surrounding spall zone

Feature with a larger damage zone, beneath the composite surface, than is

visually seen at the original material surface

Top view of a feature in a composite surface.

Schematic Diagram of Damage Morphology and Diameter Measurements

For Impacts of Composites

: £¢.t.
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Aramid fiber composite failed in a "brush or broom" mode surrounding the impact damage

region (ref. 91).

Several small impacts were also found on fiberglass/epoxy samples covered with aluminized

thermal control tape. No debonding of the tape was observed. Peel tests of the thermal control

tape were not perceptibly affected by the impacts (ref. 75).

In general, no catastrophic failure was observed from impacts, though impact compromise of

composite surfaces can allow AO to erode the substrate, creating delaminations and interply

cracking.
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2.3.8.3 Thermal Control Systems

2.3.8.3.1 Thermal Control Blankets

Figure 2-24 is a schematic of the damage morphology and diameter measuremer, ts for impacts

into thermal control blankets and laminated materials (ref. 89). This represents the Dpical damage

for silver Teflon blankets (Sheldahl G411500) with a back surface coating of Chemghze Z306

black paint (e.g., LDEF A0178 thermal control blanket). Since these materials are thin laminated

layers, the impacts cause delamination of layers to many times the diameter of the crater or

penetration. _

(A)

PENETRATION

"'HOLE

DELAMINATION
ZONE

(B)
STRUCTURE

RIM
HOLE

OIM 9_ 013.127

(A) Cross-sectional view depicting the delamination of the Teflon layer from the

underlying silver/Inconel/paint surface

(B) Top view showing the extent of the delamination zone and the presence of the

"rings" generally found in association with these features.

Figure 2-/.4. Schematic Diagram of Damage Morphology Pnd Diameter Measurements for

Impacts into l_hermal Control Blankets and Laminated Materials

Thermal control materials on LDEF demonstrated the greatest synergisms with other

environments (i.e., AO and UV). These synergisms further expanded the damage arers caused by

impacts. For example, impacts on the blankets !ead to many penetration through the Teflon,

allowing access of AO to the silver layer. Instead of being reflective (as on pre-flight) the entire

blanket is very milky in color due to exposures to atomic oxygen. This is caused by the high

_nount of light scattering from the newly textured AO eroded surface of the Teflon. The ring

structure growing around the smaller impact penetration is due to AO degradation (i.e.,

discoloration) of the silver, forming a silver oxide area.
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Examination of the damage in multi-layer insulation (MLI) thermal control blankets show the

extent of damage caused by the synergism of the space environment. The top surface of the

metalized Mylar MLI on the leading edge of LDEF was completely eroded, exposing the interior

surfaces to UV fight, AO and thermal cycling. Due to exposure to these environments, the

aluminum layers tended to break up into small pieces creating a shower offme particles which went

into orbit around the Earth in conjunction with LDEF. This created a type of atmosphere of fine

particulates which completely surrounded LDEF and became an extreme contamination source for

the entire satellite.

An even worse situation was created by the degradation of the aluminized Kapton which

covered LDEF Experiment A0054. The aluminized Kapton that flew on the trailing edge at LDEF

Bay B04 was essentially unchanged from pre-flight. Conversely, the Kapton on the leading edge at

LDEF Bay D 10 was completely eroded, leaving behind an approximately 1000 A thick aluminum

layer. This layer continued to generate particles that flaked off even after the retrieval of LDEF and

became the primary source of large particle contanfination for the entire satellite, even throughout

LDEF's deintegration.

2.3.8.3.2 Thermal Control Paints

Impacts into thermal control materials often display a different type of damage, typically with a

greater damage area, than impacts into metals. Figure 2-25 shows a schematic diagram of damage

morphology and diameter measurements for impacts into thermal control paints (ref. 89). LDEF's"

thermal control paints showed several very interesting types of impact-related phenomena and

provided the first examples of the ring phenomena as shown in Figure 2-25. The rings on these

painted surfaces were typically circular and indicated a _aock wave phenomena, which can cause

the coatings to spall. Typical spall to crater ratios for thermal control coatings derived from flight

and ground tests were summarized in Table 2-13 (see page 2--41). I, is now theorized that the rings

are caused by a Rayleigh wave propagation through the surface. If so, the sizes of the rings are

dependent on both the thickness of the paint and the amount of erosion which had occurred in the

paint prior to the time of the impact event.

2-52



Figure 2- 25.

(A) SPALL
ZONES /RINGS

RIM D /

RIM _ ,, SPALL

(B)
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(A) Cross-sectional view

(B) Top view

Schematic Diagram of Damage Morphology and Diameter Measurements for

Impact into Thermal Control Paints.

As in the thermal control blankets, the total damage areas i_ _;:e painted surfaces were always

much greater than the damage areas due to simple cratefing. This is of concern since the affected

areas, which on LDEF approached 3% of the total painted surface areas, may have significant

changes in absorptivity and emissivity, _.hus changing the radiative properties of the paints (see next

section). In addition, the spallation and delam_nation areas reduce the thermal conduction

effectiveness of the materials. Since these types of impact phenomena are expected in any coated

materials, especially those susceptible to AO and UV, understanding these effects is particularly

important for heat pipe and radiator systems.
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2.3.8.3.3 Effect of Hypervelocity Impacts on Thermal Radiative Properties

This section by Zwiener and Finckneor (ref. 75) provides information to the spacecraft

designers for evaluating the overall quantitative effect of meteoroid/space debris impacts on the

thermal radiative properties of materials. The analysis is based on calculating the overall surface

damage effects from impacts to large surface areas from the impact flux (the flux in terms of crater

diameters versus the angle from the velocity vector).

A relationship between total number of impacts per crater diameter is required in order to

determine the total damage area based on the impact flux. This relationship was determined by

sununing all of the impacts on LDEF for each crater diameter. Table 2-14 lists impacts summed on

each row for diameters between 0.1 mm to 2.5 ram. This count includes impacts on experiments,

trays, clamps, structures, and thermal panels. The total count for each diameter was summed for all

rows and plotted in Figure 2-26. This size distribution can be approximated by the following

relationship which is plotted in Figure 2-26.

Ln (d) = C1 + (C2*N)

where: N

Ln.

d

CI

C2

= number of impacts craters

= natural logarithm
= diameter of crater in ram.

= +8.693612

= -3.532209

This approximation permits an estimation of the actual number of impacts below 0.5 mm

where incomplete counting occurred. A summation was made using this relation for all diameters

between 0.1 mm and 3.0 mm. The total sum was used to normalize the size d!stribution data into a

fractional distribution.
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Table 2- 14. Impact Crater Size Distribution

Te4al Ntmber of Impact C_ Pet- Row and Per I)htmeter

Dhtm 0s.l 0.5 0.6 0.7 [ 0.8 0.9 i.0 1.1 !.2 1.3 1.4 1.5 1.6 A7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 _.5
(mm)
Row I

I I0 32 34 25

2 25 25 7 10

3 22 9 13 9

4 29 20 1 ! 5

5 29 2_ 21 13

6 68 45 43 33

7 65 106 72 61

8 85 ! 32 97 75

9 100 125 95 75

10 124 149 107 79

11 66 106 83 109

12 65 51 46 54

Totals 688 829 629 548

25 13 15 5 0 1 2 0 0 0 0 0 0 1 0 I 0 0

12 3 2 ! ! I 0 0 0 1 0 0 0 0 0 0 0

10 4 3 2 2 ! 0 2 i 0 2 I 1 0 0 0 0 1

7 2 2 6 2 0 0 I 0 0 0 0 0 0 0 0 0 0

15 5 4 4 2 0 I 3 I 1 0 0 0 0 0 0 0 0

19 16 15 5 2 4 2 3 2 0 0 0 0 0 0 0 0 0

32 28 15 11 3 8 2 4 2 I 0 2 0 0 2 ! ! 0 1

42 29 22 9 13 13 5 6 1 1 0 I 0 0 0 I 1 0 451 24 22 27 15 9 10 g 6 I $ 0 0 1 0 1 0 7
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F'tguz_ 2- 26. Size Dependence of Impact C:'aters

2-55



Other information required in order to calculate the overall optical effects of multiple impact

craters is the ratio of crater diameter to coating spall diameter. Dependent upon the bond strength

and type of coating different amounts of coating will be removed during impact. The shock waves

from the impact can cause coatings to spall. Typical spall to crater ratios for thermal control

coatings derived from flight and ground tests were summarized in Table 2-13 (see page 2-40).

Since the flux levels as a furction _fBeta angle, crater size distribution, and spall/crater ratio

are known, the change in effecti,_e (average) thermal radiative properties can be calculated with

respect to time using the following equation:

A, (Beta)= A_- [O,,, * F** T_]

where: A, (Beta, time) effective or average value of solar

absorptance or emittance at each Beta

angle

solar absorptance or emittance of original

coating

difference between coating and substrate

absorptance or emittance

F, = fraction of damaged surface area per year

Ty_ = number of years exposed

The fraction of damaged surface area (Fa) is derived by summing for each angle "Beta" the

product of flux, size distribution, and spall area, for crater diameters from 0.1 mm to 3.0 ram. For

convenience a selection of values for "F." are provided in Table 2-15. These values for F, can be

used with the above equation to predict long term optical property changes from impact craters.

The values provided in Table 2-15 are actually the total area in square millimeters of substrate

exposed from the impact per square meter (see Figure 2-27), and subsequently include a

multiplication factor of 10 .6, as indicated in Table 2-15. Values in Table 2,,15 are listed for spall-to-

crater diameter ratios ranging from 1 to 15, and for selected Beta angles in the range from 0

through 180 degrees.

Changes to the thermal radiatiw.' properties of several thermal control paint coatings (e.g.,

Z93, S 13G/LO), chromic acid anodized aluminum, and silver Teflon blankets due to

meteoroid/debris impacts tbr up to 30 years in orbit are prov: _ed i:. Chapter 10. Results indicate

that the surface damage from micrometeoroid/space debris does not significantly effect the overall

surface optical thermal physical properties. Of course, the damage around impact c-aters radically

alter the local optical properties.
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Table 2- 15. Fraction of Damaged Surface per Year (F.).

Da/D _ 0" 10" 30" 60" 90" 120" 150" 180"

1 21.07 20.93 19.81 _ 16.37 ..i1.66 6.96 3.52 2.26

2 84.28 83.71 79.24 65.47 46.65 27.84 14.07 9.03

3 189.63 188.34 178.29 147.30 104.97 62.65 31.66 20.32

4 337.12 334.83 316.96 261.87 186.62 ! 11.37 56.28 36.12

5 526.75 523.18 495.24 409.17 291.59 174.01 117.94 56.44

6 758.52 753.37 713.15 589.21 4_9.89 250.58 126.64 81.27

7 1032.43 1025.43 970.68 801.97 571.52 341.07 172.37 110.62

8 1348.47 1339.33 1267.82 1047.48 746.48 445.48 225.13 144.48

9 1706.66 1695.09 1604.59 1325.71 944.76 563.81 28493 182.86

l0

11

12

13

14

2106:99

2549.46
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Figure 2- 27. l_f'_tion of Spall Diameter and Crater Diameter
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2.3.9 Micrometeoroid and Debris Effects on Optical Components

2.3.9.1 Damage Morphology

Optics components are typically brittle materials. Under impact, brittle materials show a

different type of damage than metals and ductile materials. Figure 2-28 shows a schematic of the

damage morphology of these materials (ref. 89). Brittle materials often show a central crater,

usually filled with finely crushed material, and exhibit little or no crater- lips. These craters are

usually surrounded by conchoidal fracture areas, which act as spallation zones. Finally, there are

typically 2 to 4 (occasionally more) cracks which run outward from the impact site for 10 or more

crater diameters.

Impacts into windows (optical substrates) and reflective metallic mirrors have been studied for

many years. Basically, it has been found that the transmissivity and reflectivity are unaffected by

the impacts. However, scatter dramatically increases. Unfortunately, impact-caused scarer has not

been studied significantly since most imaging optics in the past have looked directly toward the

Eerth and thus had little threat of being h,_pacted. In addition, impacts into reflective optics with

dielectric coatings have not been studied. The reflectivity of these latter optics may be affected

since the coatings which provide the reflectivity are removed in the vicinity of the impacts.

Additionally, the amount of coating material removed by an impact may be much larger than in

ductile materials due to delamination of the coatings from the substrate and from each other.

(A)

FRACTUREEXTENDEDZONE

SPALL

LOCAL
FRACTURE

ONE

(B)

OIM 94013 IM

Figure 2- 28. Schematic Di_'gram of Damage Morphology and Diameter Measurements for

Impacts into Optics and Power System Components
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2.3.9.2 Rellectivity/Transmission Effects

The anticipated effects of impact damage on optics include:

• a reduction in reflectivity (for mirrors);

• a reduction in transmission (for lenses and/or windows); and

• an increase in optical scatter (for both mirrors and lenses/windows).

Experiments by Mirtich, 93 ,94 whereby metallic mirrors were impacted by small particles,

demonstrated that reflectivity gradually decreased as the total surface impact energy density

increased (i.e., ergs/cm 2 of the particle kinetic energy). Since the crater surfaces remain reflective,

the decrease in reflectiviV is probably related to the surface rouo, hening which gradually produces

the equivalent effect of producing a "light-trapping" bame-like surface. However, calculations of

the corresponding energy flux expected for the micrometeoroids and space debris for even 10 year

missions in LEO suggest this effect to be small. Reports by Minich of data from space flown

mirrors with missions up to 20 years (e.g., the SERT and OSO satellites) indicate very small

reductions in reflectivity (less than 1 percent) in agreement with the predictions. (Note that these

mirrors are non-recovered: the aata are via telemetry and consist of emission/absorptior, in-situ

measurements). Thus, changes in reflectivity (or transmission) are expected to be small. The major

problem is increases in optical scatter.

2.3.9.3 Optical BRDF Scatter Effects

Optical scatter produces three effects:

1. A reduction in light throughput;

2. A reduction in resolution; and

3. A reduction in signal to noise due to background "light-up."

This can occur either due to light from bright sources (other than the required target) within

the field of view, or can occur for bright sources nominally outside of the field of view if the light is

redirected into the optical train path. Of these three effects, item 3 is usually the greatest concern.

Several analytical procedures are available for calculating the optical scatter due to impact

damage. The most accurate procedure for calculating optical scatter is to use the Mie scarer

theory (re£ 79). Mie scatter logic has been incorporated recently into the SPENV code to
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automatically integrate over the impactor/crater size distributions. The detailed analysis makes use

of studies done by Lowell D. Lamb at the University of Arizona, whose Ph.D. thesis concerns Ig

scattering for small particles on substrate:,. 95 The Mie calculations incorporate the optical

constants for the ,,_tenai and, thus, can handle both highly reflective and poorly reflective

conditions. The results of the calculations give values of BRDF versus off-specular angle. The

BRDF data can be integrated over the 27t solid angle to give the corresponding total integrated

scatter (TIS).

Variation in BRDF as a function the angle from ram has been computed for the specific case of

LDEF (ref 79). The data, shown in Figure 2-29, are given for the micrometeoroids and debris

independently and are plotted as a function of the angular position from ram (0 °) in tbe plane

parallel to the Earth's surface (i.e., ram, sides, and trail). On the left vertical axis are also plotted

the scatter for the space and Earth facing surfaces. In all cases each surface was assumed to have a

full 2_ view for impacts (i.e., no local telescope tube shielding).
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Figure 2- 29. Variation in BRDF with Angle from Ram on LDEF

For LDEF the predictions show that the micrometeoroids contribute the most to the overall

scatter. The data also clearly indicate the very small degree of optical scatter for the Earth looking

surface. The scarer value for the space looking surface is about 4.2 x 10 .5 (per steradian). The
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datademonstratethat for angles greater than about +__35° fron: ram the scatter is always less than

for the space end, while for angles less than this the scatter is worse for the near-ram surfaces and

peaks on that surface with a value of about 7.8 x 10 "2.

A parametric series of peak BRDF optical scatter predictions have been done for a series of

orbits ranging from 400 km to 2000 km altitude and with inclinations of 0, 30, and 60 ° (ref. 79).

For all these cases the mission time periods are 1996 to 2002, and the assumed operational

wavelength is 5.0 mm (BRDF varies with the inverse square of the wavelength), and the optic is

assumed to have an area of 100 cm 2. Figures 2-30 through 2-33 show the predictions as functions

of altitude and inclination for nonshielded optics. As the altitude increases, the debris scatter

increases rapidly up to the 800 - 1000 L-n range (where debris dominates toward the ram), and then

gradually decreases for higher altitudes. However, there is a local peak in the debris at about 1500

km The debris-induced scatter is always worse for the higher inclinations. The scatter due to

micrometeoroids is independent of orbit inclination and slowly increases with altitude (below 2000

kin). The space surface suffers from a constant degree of scattering independent of both inclination

and altitude. There is a xery large range of predictea peak BRDF values, from a high of 0.56 (800

kin, 60 °, ram) to a low of 0.072 (400 km, 0 °, ram).

Figure 2-34 shows the predictions for some options which include telescope shrouds, for the

cases of 30, 60 and 80 ° of"exclusion angle" for an orbit at 1600 km and 60 ° inclination. The

"exclusion angle" is the angle measured from the surface of the optic wbJch prevents direct impacts

on the optic due to the telescope wall. For a circular optic of 190 cm 2, the diameter is 11.28 cm

(4.44 inch). Thus, for exclusion angles of 30, 60, 80 ° the telescope wall must have a length of

6.51, 19.54, and 64 cm, respectively. Note the odd trend of the data as the exclusion angle

increases. While the micrometeoroid-induced scatter merely decreases monotonically versus this

angle, the debris-induced scatter is observed to drop rapidly from the ram and to display a local

peak at about 20 ° off-ram

As can be seen, the use of telescope shrouding can dramatically reduce the scatter predictions

provided a sufficiently large exclusion angle is involved. For a 30 ° exclusioll angle, the ram BRDF

is only reduced from 0.24 to 0.20: for a 60 ° exclusion angle the reduction is from 0.24 to 0.013;

while for an 80 ° exclusion angle the reduction is from 0.24 to 9x10 "s(at 20 ° off-ram), all for the

same orbit of 600 km altitude and 60 ° inclination. However, the use of a large exclusion angle

implies a reduced field of regard for the optic. Hence, to overcome the latter, it would be nece:;saly

to maneuver the entire telescope tube. Systems which rely on pan-tilt mirrors cannot use large

exclusion angles, else the field of view would include looking "at" the telescope tube itself
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The use of "exclusion angles" in this manner addresses only the case of direct impacts on an

optic However, it is possible to have indirect hits. For example, an impactor could hit the inside

of the telescope tube (including a baffle) and cause secondary ejecta to hit the optic. Like_se, for

a thin-walled tube an impactor could completely perforate the wall and again generate ejecta. If the

"target" material is one which produces copious secondary debris, then it is possible for this debris

to again cause at least a contamination problem on the optic (this debris is mostly of low velocity

and thus unlikely to cause much in the way of actual crater damage). However, most targets do

not produce such debris: rather they merely throw of material in the "nornial" manner of impact

cratenng. In the latter case the resulting blow-off is usually of smaller sizes than the original

impac.tor, although the total mass is larger than the impactor. As scatter increases with the fourth

power of the particle diameter, fc,, a given mass, the scatter will be low provided the ,nean particle

size is much smaller than the original impactor. Hence, for a given mass ofblow-offthe scatter

decreases as the number of individual particles involved increases. "I hus, u,_der most

circumstances_ it is anticipated that secondary ejecta optical scattering is less important than that

due to the (initial) direct impacts.
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2.3.9.4 Summary of Micrometeoroid and Debris Effects on Optics

The following are recommended guidelines from B. Kemp (ref 79) for designers to consider in

reducing the effects of micrometeoroid and debris effects on the degree of scatter for optical

components.

The the major effect of micrometeoroid and debris impacts on optics is to produce an

increase in scatter, but only minor changes in reflectivity and/or transmission. The

scatter increases as the impact crater sizes increase and as the areal density of impacts

increases. The effect is nonlinear with the size of the optic. The larger the optic the

more likely a large crater will occur resulting in more induced scatter for the large

optic. Also the increase in scatter is nonlinear with mission time. As time increases,

the probability of an impact by a larger panicle also increases, which causes the

optical scatter to increase in a supralinear manner. The scatter is dominated by crater

formation rather than by crack generation. Soft targets (e.g., metals and plastics) will

produce the largest craters. Hard targets (glasses and ceramics) produce smaller pure

craters; however, these craters are frequently surrounded by larger surface spalls

giving the effect of larger sha!k ,' craters. Multilayer optics can also suffer from

delamination effects around the impact sites, which produce large local changes in

reflectivity or transmission and scatter.

The degree of scatter depends on the orbit (altitude, inclination and time) and on the

pointing direction, Ram is usually the worst direction to point while Earth is usually

the best (safest) direction

The use of telescope shrouding can significantly reduce the scatter provided the angle

for ent_ of particles is small. This is at the expense ofthe optical field of regard.
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2.3.10 Micrometeoroid and Debris Effects on Solar Power System Components

Similar to optics, solar power system components, such as solar cell cover glass, are typically

brittle materials. Under impact, brittle materials show a different type of damage than metals and

ductile materials. The LDEF flight experiments observed the fracture damage of meteoroid/debris

impact on the solar cell cover glass. As is typical of other glasses, there is a central crater filled with

very finely shattered material, and surrounded by some spall material and a large conchoidal

fracture which extends through the cover glass to the underlying solar cell. In addition, 4 large

cracks radiate out from the feature (ref 89). However, electrical performance degradation was not

discernible in the current/voltage measurement (see Section 11). 9_

A broken silver interconnect of a solar cell was also observed on a solar array panel from the

A0171 experiment, located at LDEF Bay A08. The interconnect was blown apart from its

connection with the solar cell, possibly by an impact or by an electrical discharge. In either case, it

created a large spray pattern which covers approximately one quarter of the underlying solar cell

area.

Clearly, a significant factor for impacts into these very brittle materials is the propensity to

readily propagate cracks, sometimes causing complete penetration and breakup into separate

pieces. Hence, designers should note the cracks, which allow space environments, particularly

electrons and protons, to have access to the underlying solar cells.
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2.4 THERMAL CYCLING-INDUCED MICROCRACKING EFFECTS

2.4.1 Introduction

Microcracking of a composite causes the following dimensional stability problems:

• Hysteresis effect in the structure

• Significant coefficient of thermal expansion (CTE) changes

• Increases in the moisture response rates

Microcracking is occasionally employed to achieve a desired CTE The Hubble Telescope

Metering Structure was subjected to microcracking in order to "tune" the various struts to achieve

a desired CTE. 97

Thermal cycling induced microcracking is attributed to the difference in the CTE of each

individual ply parallel and normal to the fiber direction. The CTE normal to the fibers is about half

that efthe resin's CTE, whereas the CTE parallel to the reinforcement is virtually rero and

sometimes slightly negative. Hence, in any crossplied lay-up this difference in thermal expansion

induces internal stresses. During repeated thermal cycling each ply within a crossplied laminate Will

be subjected to thermal fatigue, which may result in the generation of cracks parallel to the fibers as

well as through the thickness of each lamina.

2.4.2 Effect of Fiber/Resin Properties

The degree of thermal cracking due to induced internal stresses has been reviewed by Tenney

et al. 98 where the effects of thermal cycling between -156°C and 94°C were studied in Pitch and

PAN carbon-fiber reinforced epoxies In each of the samples examined, the microcracks density

did not reach equilibrium after 500 cycles Approximately 10 microcracks/cm were observed with

P75S-reinforced epoxy. However, less than 1 microcrack/cm was developed with the same rnatri.×

material contairing the less stiffT300 fibers, reflecting lower internal stress levels. Hence, the fiber

modulus is very important in determining the degree of microcracking. With a polyacrylonitrile

(PAN) based 62 Msi (430-GPa) modulus carbon fiber, extensive microcracking was obtained, while

with a PAN-based 40 Msi (280-GPa) modulus fiber no cracking was seen under more severe

testing conditions. Composites using the higher modulus fibers such as P75S will microcrack more

readily than composites using AS-4/T300 type carbon fiber.

In addition to the fiber, the resin and its cure temperature will influence the extent of the

microcracking that occurs In a study by NASA Langley 99 differences in the crack density induced
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in three tubes of different materials were observed with increasing number of thelmal cycles

between -156°C and 94°C, as shown in Figure 2-35. The P75S/934 is a high modulus brittle epoxy

system, the P75S/CE339 is a high modulus toughened epoxy system, and the T300/934 is a low

modulus brittle epoxy system. The crack densities for each material asymptotically approach

equilibrium values as the number of cycles increases The effects of the thermal cycling or

microcracking on the torsional stiffness of these tubes are also shown in Figure 2-35. The torsional

sti_less of tubes of each of the three materials was reduced by about 40% and the change in the

stiffness appeared independent of the composite material system. These data illustrate the

sensitivity of matrix dominated properties to microcracking
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Figure 2- 35. Effects of Thernlal Cycling on Composite Tubes

Tough epoxy resins have been developed over the past 10 years, including Hercules 8551-7

and Fiberite 977-2. These resin systems both have excellent residual strength after impact and are

very resistant to microcracking The ERL 1962 toughened epoxy was formulated for space

applications by Amoco to minimize microcracks induced by thermal cycling.

The c_30 epoxy was formulated by Fiberite ICI for space applications to minimize

microdamage by having a low cure temperature to reduce the residual thermal stresses that are

induced during the composite fabrication. The 934 resin is a space qualified standard epoxy that

has been successfully cured at both 250°F and 350°F. Analytical studies have shown that residual

stress is a strong function of the product of the matrix modulus, matrix CTE and the difference

between the stress-free temperature (usually near the cure temperature) and the use temperature. _0o
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Thermoplasticsareinherently tough composite matrix resin systems. The PEEK resin is a

thermoplastic polymer which, when reinforced by low modulus, high strength carbon fiber, shows

good resistance to thermal cycling after radiation. In a comparative study of material performance

between carbon-fiber reinforced PEEK and epoxy composite systems,_°m after 500 thermal cycles

between -156°C and 120°C the PEEK-based composite developed 1 microcrack/cm while the

baseline epoxy developed 8 microcracks/cm However, the PEEK thermoplastic exhibited excellent

microcracking resistant, but only with high strength carbon fibers (e.g., AS4/PEEK). _02

Polycyanate matrix composites reinforced with carbon fibers offer lower moisture absorption

and enhanced microcracking resistant compared to carbon/epoxy composites. Commercially

available 350°F cured polycyanate resins include YLA's RS-3 and Fibefite's 954-3. Amoco's ERL

1939-3 is a relatively new cyanate and epoxy blend designed for space applications. Both the

toughness of the polycyanates and their low shrinkage during cure result in a more stable matrix

during thermal cycling as shown in Figure 2-36. Using similar P75 laminate constructions and

thermal cycling conditions, the data indicated that the number of microcracks/inch con_ crD_d after

1000 cycles, with the RS-3 polycyanate composite displaying the best performance.l°3
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Figure 2- 36. Comparative Microcracking Behavior for Thermoset Composites
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2.4.3 Effect of the Space Environment

Exposure of composite structures to the repeated thermal cycling of space can cause

microcracking in composites. A complicating feature of the Highly Elliptical Orbit (HEO) and

GEO space environment with their higher particle radiation dose is the synergistic effect of

combined electron radiation and thermal fatigue, which may cause dramatic changes in the

performance of composite systems. Data from NASA Langley t°_'_°2"t°4 showed that most

composite systems exposed to sequential electron radiation and thermal fatigue are highly

susceptible to microcracking damage due to embrittlement of the matrix material.

In a stud) of candidate panel facesheet composite materials for a space reflector, microcrack

density data were measured for quasi-isotropic laminates as-fabricated and after exposure to

electron and thermal cycling simulating CLEO and HEO) °s The environmental parameters and the

testing results are summarized in Tables 2-16 and 2-17, respectively.

Table 2- 16. Predicted Mission Environmental Parameters

Space parameters Circular Low Earth Orbit Highly Elliptical Orbit
(CLEO) (HEO)

Estimated life time electron 10 1000

radiation dose, Mrads

Thermal cycle, °F -100 ° _-36° -226 ° :_-36°

Litetime, years > 10 > 10

Orbit, nautical miles 378

28.5 °
540 x 37,800

28.5 °

I

ff
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Table 2- 17. Durability of Candidate Materials in Simulated CLEO and HEO
Environments

Material

System

C6000/

F155

UI-IM/
F584

T50/

ERL 1962

F75/ERL

1939-3

F75/

PEEK

P75/934

2500F

350°F

P75/930

Vf

%

56.7

54.8

67.6

62.5

66.9

63.8

55.9

54.7

51.3
57.2

Lay-up

A

B

B

A

B

A

B

B

B

B

Cracks perinch

As- i1500F CLEO HEO

Fabricated 25 cycles 100 cycles 100 Cycica

0

5O

0

81

8

14

64

52

38

85

0

0

10 1000

Mrads Mrads

E

17

12

0 0

64

58

41 58

8

0

_000

Mrads

C

C

C

C

C

C

C

C

T50/934 60.1 B 0 0 6

250°F

A- lay-up [0,90.45:45]°

B- lay-up [0,45.90.-451.

C- Testing stopped due to excessive damage

D - Testing stopped due to poor quality material

E- Testing stopped due to properties outside requ,rements.

With the exception of P75/ERL 1939-3, P75/PEEK, and the 350°F cured P75/934, the

laminates were free of microdamage in the as-fabricated state. The P75/EKL 1939-3, P75/PEEK,

and P75/934 contained about 5, 50, and 81 cracks per inch, respectively, in the as-fabricated state.

The damage in each of these laminates was attributed to thermal stresses induced during cool down

from the fabrication temperatures. Note that when the P75/934 laminate was cured at 250°F, no

cracks were seen, indicating that the lower cure temperature sufficiently reduced the stresses to

avoid microdamage on cool down during fabrication.

After25 cyclesbetween-150°Fand 150°F,theP75/ERL 1939-3,350°FcuredP75/934,and

P75/PEEK continuedtomicrocrack,withtheP75/ERL 1939-3reachinga crackdensityofabout
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64 cracks per inch. These cycles also induced microcracks in the UHM/F584 (8-14 cracks per

inch) and the 250°F cured P75/934 (38 cracks per inch). The remaining four laminates

(C6000/F155, T50/ERL 1962, P75/930, and T50/934) did not microcrack. Two materials, the

350°F cured P75/934 and C6000/F155, were not carried any farther in the test matrix because of

excessive microdamage, poor quality (excessive voids).

Five of the remaining six materials were subjected to the simulated CLEO thermal cycling

environment with electron radiation doses of both 10 Mrads and 1000 Mrads. (The 250°F cured

T50/934 was subjected only to the more severe HEO simulation.) Of these five materials, only the

T50/ERL 1962 remained damage free. The other four materials continued to microcrack as a result

of continued thermal fatigue and/or matrix embrittlement due to electron radiation.

The only two materials subjected to the simulated HEO environment were the TS0/ERL 1962

and the 250°F cured T50/934. No damage was induced in the T50/ERL 1962 laminate during the

HEO simulation. The T50/934 did exhibit some slight microdamage with a microcrack density of

about 6 cracks per inch. The TS0/ERL 1962 composite did not degrade in either environment.

2-75



2.4.4 Design Considerations for Reducing Microcracking

The influence of ply lay-up on the extent of microcracking was reported by Wol_ °6 for

carbon composite tubes. Predicted values for the onset temperature (Ts) of microcracking on the

first thermal cycle as a function of the laminate ply angle are shown in Figure 2-37. At low ply

angles no microcracking was predicted.

-100

0 GV70"/934

MATRIX STRENGTH -

27.6 MPa (4000 psi) ,- ',0/+0/0)s

.,o I

,J /
- 5o r I

10 20 40 50 60 700 30 80 90

PLY ANGLE, 0 om_,3m4

Onset Temperature for Microcracking with Ply Angle

TN.°C
(ONSET FOR

MATRIX
MICROCRACKING),

Figure 2- 37.

Table 2-18 shows three values of Ts for each of several ply lay-ups. The first corresponds to a

flat laminate without edge effects, the second for a circular tube infinite in length, and the third for

the stress field near the ends of a circular tube. A flat plate with a 90/0/+45 lay-up would warp on

cooldown but a tube is constrained to a circular cross section so that end distortion occurs.
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Table 2- 18. Predicted Matrix Cracking on First Cooldow.,) of Carbon Composites

Material Lay-up Onset Temperature (°C) for Microcracking

Lanlinate Tube Tube Ends

GY70/934 [±30], -94 -94 -94

GY70/934 [±45], -25 -25 -25

GY70/934 [0/±60/0] -28 -24 -24

GY70/934 [0/45/90/135]2. -53 -37 -37

HMS/3501-6 [90/±45/0] -44 -25 -11

HMS/3501-6 [01±45/90] -44 -25 -16
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2.5 CONTAMINATION

2.5.1 Introduction

Spacecraft in low Earth orbits are exposed to an ambient atmosphere that will affect the

contaminant generation, redistribution and deposition. Contaminants that outgas or vent from the

spacecraft can be scattered back to t_'e spacecraft as a result of collisions with the atmosphere.

This adds to the deposition from direct line of sight transport. Solar ultraviolet irradiation can

in_:rease contamination as a result of a photochemical deposition process Atomic oxygen will

remove contaminants, such as hydrocarbons, which produce different _,olatile species during

oxidation removal. In addition, erosion of the surface by atomic oxygen can add other species to

the gas cloud. Contaminants, such as silicones that produce solid oxides wher_ exposed to atomic

oxygen, will remain on the surface. The net contaminant generation, migration, deposition, or

removal will depend upon the rates of each mechanism and on the spacecraft materials. Hence,

orbit contamination can be considered an induced environmental effect composed of many dynamic

processes.

2.5.2 Spacecraft Sources of Contamination

Space-based optical payloads and components are exposed to a wide variety of particulate and

molecular contamination sources. The primary concern is spacecraft system performance

degradation as a result of contamination deposition on surfaces or particulates being in the field of

view of sensors.

Molecular contamination arises from various sources, including thruster plume exhaust and

spacecraft material molecular outgassing from host platform electronics, lubricants, adhesives and

composite structural materials (see Section 2.6). The LDEF Materials Special Investigation Group

found that the molecular contaminant film on the LDEF satellite consisted primarily of silicones,

from sources such as the Z-306 paint used on the interior of the structure, and hydrocarbons. _0_

This contanfinant film varied in thickness between 0.1 lain to 100 lain and averaged approximately 3

lam (30,000 A).

Particulate contamination of optical payloads a,'ises from several sources, including fabrication

(metal shavings, chips, paint flakes), atmospheric fallout during assembly and integration (dust),

aad human sources (hair, lint, skin flakes_. During launch and subsequent on-orbit operations this

particulate matter, along with contaminants from the launch vehicle, may re-distribute due to

vibration, shock, and venting.
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2.5.3 Contamination Effects on Thermo-Optical Properties

2.5.3.1 Molecular Contamination

Molecular contamination has caused significant changes in solar absorptance on many

satellites. Figure 2-38 shows that many satellites have been afflicted by contamination degradation

in the solar absorptance.l°8 Note that the cleaner SCATHA spacecral_ in Figure 2-38 had stringent

cleanliness requirements. On the NOAA-7 spacecraft,_°9 which was launched in 1981 and orbited at

an altitude of 833 km, the deposition of contaminants onto Temperature-Controlled Quartz Crystal

Microbalances (TQCMs) was measured for 2 years. It was found that _ leveled offat_er about

1000 A were deposited on the TQCMs. By then, _ had increased by a factor of 2.5 and 3.3 for

several TQCMs.
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Figure 2- 38.

DSP FLT- 10

SCATHA

5 6 7

OIM 9,1..01'!. I ¢

Spacecraft Solar Absorptance Increases vs. Mission Time.
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Comparison of the LDEF satellite with other spacecraft indicates that I_DEF was one of the

cleaner _pa,:,:craft to have flown in recent years. Although optical properties of several materials

were aJv,red drastically in selected localized areas on LDEF, overall effects on anodized alumin, m,

which covered 60 percent of the surface, were minimal. Total absorptance changes on the chromic

acid anodized aluminum ranged from 0 to about 8 percent, t_°

Molecular contamination can degrade the perforrnance of thermal control surfaces. This can

be particularly important if sensors are cooled passively by second surfaces mirrors that are

illuminated by the Sun. The effects of relatively thin mol.'cular flints on the solar abso_pi.ance of

second surface mirrors is shown in Figure 2-39. _ Typically molecular films must not exceed 1000

A on these sensitive surfaces at the end of the spacecraWs life or the consequences are impaired

performance or early mission termination
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Figure 2- 39.
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Molecular RTV silicone contamination has been observed to degrade both optical and thermal

control systems. Figure 2-40 shows that approximately 500 ,_ of the RTV 560 outgas product

(specific gravity ~ 1.2) can cat_e a 0.03 increase in the solar absorptance of an aluminized second

surface mirror (Note: 10"_ surface density for RTV 560 _= l03 A). ll2

Figure 2- 40.
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Change of Solar Absorptance by RTV560 Outg_ Products

An experiment flown on two C ?S vehicles that was designed to measure the change in

absorptance of four thermal control coatings indicated a rapid increase in oh, for all samples, m The

experiment measured the changes in 04, inferred from temperature measurements, for samples of 5-

rail silvered Teflon, fused silica mirror (OSR), 5-rail silvered Teflon coated with indium tin oxide,

and S I3G/LO white paint. AItkough the initial values of oh for the four coatings were all different,

the slopes of the Aoh curves for the first three materials were similar, suggesting that the

degradation mechanism was acting approximately equally on all three coupons - characteristic of

contamination accretion The last coating, the white paint, indicated a much more rapid change in

oh. However, there is reason to suspect it is the radiation vulnerability of the silicone binder of the

S13G/LO white paint that is responsible for the rapid increase of its ors. H4 The silicone is a

hydrocarbon organic, and their chemical bonds arc known to have lower binding energies than

those of the fluorocarbon bonds of Teflon. Thus, it is probably reasonable to ascribe the difference

between the Aoh of the S 13G/LO white paint and that of the other coupons to radiation damage.
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The data on the other three coupons could be explained on the basis of contamination alone, if the

contamination accumulated at the rate of about 2.5 A/day.

The absorptance of silver Teflon may be substantially changed by surface accumulation of a

molecular contaminant film (generally hydrocarbons and silicones). The contaminant acts as an

absorbing layer, hence the ct of contaminated silver Teflon rises as the contaminant thickness

increases, eventually approaching an asymptotic value equal to the ct of the contaminant. _

Most of the silver Teflon samples on the Solar Maximum Mission satellite Hs had a vtry small

change in ct (delta a _<0.04). However, some samples that were visibly contaminated went from an

initial ct of 0.06 to a final ct of 0.28 after 4 years of flight at an altitude of-500 kin. Unfortunately,

the contaminant layer thickness was not measured.

On LDEF the effect on the thermal control performance of silver Tefi a blanr.ets due to

contamination was at most 2 to 3 percent. There was virtually no change in absorptance and very

slight changes (<5 percent) in emissivity of silver Teflon for the exposed portions of these blankets

(ref 110). A silicone-containing molecular contamination film was observed on selected silver

Teflon second surface mirror specimens on the LDEF UHCRE E,:periment, as shown in Figure 2-

41.1_6 The amber-colored silicon-containing contamination may have resulted from the outgassing

of the adhesive which secured the velcro hook and loop tape onto the thermal blankets which, in

turn, secured the thermal blanket on the experiment tray. These pads, some as large as t-in by 4-in,

were bonded with DC6-1104 RTV silicon adhesive. A visual inspection of two velcro strips on a

section of blanket showed that the adhesive had been liberally applied. Approximately 50 pads were

attached to the blanket material. A matching set of pad_ were bonded to the tray itself Thus, a

significant amount of silicon adhesive was used in this particular application, since at least 16

blankets were held in place using this technique. The silicon from this source, perhaps in the form

of an organic silicone, probably contributed to the general molecular contamination observed at

various locations on LDEF experiments and structure. IR analysis performed on wipes of the

contarrJnation were taken from several positions on the experiment tray comers. The IR spectrum

indicates a silicone contaminant. It was conck_ded that the stains observed are a result of oxidation

of outgassed silicones by atomic oxygen. The potential significance of this particular contaminant is

the possibility of conversion to an inorganic silicate due to reaction with atom/c oxygen

Silica/silicates have been shown to be effec:ive barriers to AO erosion. Thus, surfaces which were

c Note that although the absolute value of ct depends on the initial .bsorptance of the clean Ag/Teflou, the change in ot
depeoda only oa the r.ontamimmt layer thickness and the chemical identity of the contaminant. Therefore

contamination data involving substrates other than Ag/Teflon ca_, still be used to predict mlar abaotpumce
degradation.
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covered with this contaminant may have responded differently to the LDEF environment than

surfaces which were not contaminated.

TRAYS
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Figure 2- 41.

OIM 94.013.237

Contamination on LDEF Satellite.

Contamination stains were also mapped on the Kapton foil of the LDEF Satellite. Foils in

rows 8, 10, and 11 were contaminated on the aluminized side whereas foils in rows 1, 2, 4, 5, 6, 7,

and 11 were contaminated on the Kapton side. The most heavily contaminated surfaces were the

Kapton side of foils 2, 4, 5 and the aluminized foils 8, 10, and 11. Chemical analysis of)he

contaminant layer confirmed the presence of silicone and oxygen. Hence, since the contamination

in the majority of cases is facing the ram direction, one can postulate that outgassed silicone

products have been oxidized by atomic oxygen to form a silicon oxide layer on the foils. Silicon

oxide being resistant to atomic oxygen erosion would not be removed by the cleaning action of

atomic oxygen and thus form a protective iaye- for the Kapton
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In addition to organic films, cryodeposits of water ice have been observed to cause significant

changes in optical properties (re/'. 112). Figure 2-42 shows examples of both theoretical and

empirical data as deposited on a gold mirror.

Figure 2- 42.
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2.5.3.2 Particulate Contamination

Thermal Control Surfaces. In addition to molecular contamination films, particles can cause

changes in the radiative properties of thermal control surfaces. Figure 2-43 shows that carbon

particles from solid rocket motors can have a deleterious effects on spacecraft performance (ref.

C.R.. Maag, 1989).
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Figure 2- 43. Change of Solar Absorptance by Carbon Particle Deposit

Optical Components. Two specific telescope performance requirements that drive

particulate contamination control levels are stray light rejection and optical throughput. The ability

of a space based telescope to reject stray radiation fr_ra sources that are out of the field of view is a

strong function of the particulate contamination level on the optical surfaces. Space sensor stray

light rejection requirements are driven by signal to noise, resolution, and/or radiometric calibration,

depending on the payload mission, For example, detecting a dim object near a bright source such

as the Earth or Sun will be difficult ol impossible if stray light from the bright source is scattered

ffom the particulate matter on the mirror surfaces and reaches the focal plane, raising the photon

background. For an Earth viewing sensor, such a_ those to be located on the EOS platforms, stray

light from the region of the Earth outside ofthe sensor field of view can reach the focal plane if the

radiation is scattered from particles on the optical surfaces, This effectively blurs the resolution of
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the instrument and causes radiometric errors. The effect _s most obvious when a sensor views a

dark area such as an ocean with bright clouds surrounding the field of view. The signal fi'om the

scene in the field of view is effected by the brightness of the scene outside of the field of view.

In some instances, particulate contamination can decrease the optical throughput significantly.

On the AXAF telescope with its grazing incidence optics, particles can obscure a significant portion

of the collecting area of the optics by the shadows their profiles cast. Since X-ray wavelengths are

strongly absorbed by particulates, the contamination can significantly reduce the signal at the focal

plane array.

Particulates that become dislodged from the spacecraft can remain near the platform for a

significant period of time. If these particles with velocities equivalent to the spacecraft are large

enough, they can cause sensors to have flowed or false readings depending on how these particles

float through the field of view and how they scatter illumination.
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2.5.4 Contamination Effects on Solar Array Power Output

Estimates of photochemically deposited molecular contamination on the Global Position

System (GPS) Satellites concluded that a few percent of contamination incident on any solar

illuminated surfaces may remain permanently, resulting in a decrease in the power of the solar

arrays. 1_7 Although the GPS satellites were launched into a 55 ° inclination orbit at 1/2

geosynchronous altitude, i.e, 20,000 km, any investigations on the effects of contamination that

results from outgassing by the spacecraft on the solar array output can easily be applied to LEO

satellites.

A. greater than expected decrease in electrical power output from the solar photovoltaic cells

on the GPS solar arrays with on-orbit time pointed to either unexpected radiation damage or

contamination accumulation from the spacecraft itself. The Van Allen belts are known to produce

solar cell degradation due to their effects on charge carrier lifetime, d However, the GPS

observation required that either the Van Allen environment is more severe than expected, or that

the Van Allen belts produce unexpected effects on some component of the solar cell stack

(including antireflective coating, cover slide, or adhesive). The main reason for suspecting the Van

Allen belts is the fact that, when solar cell degradations for various spacecraft in different orbits

(altitudes) are compared, the observed solar cell degradations are greatest for spacecraft exposed to

the largest total radiation dose, and the GPS spacecraft orbits in the most intense portions of the

outer van Allen belts. _8 .H9 ._:_.m2_

However, initial estimates by Stewart et al. 122 indicated that there might be enough material

outgassed by the GPS vehicles sticking on the solar panels to account for the anomalous

degradation in GPS solar array output. Furthermore, in situ observations by the SCA'I_A

spacecraft also indicated that the presence of UV light greatly increased the amount of

contaminants that can accumulate on spacecraft surfaces, m23 Laboratory investigations have

verified that the presence of ultraviolet light greatly increases the sticking probability of molecules

striking the surface in a vacuum environment. _22._24._2s,_26

An extensive analysis of the outgassing properties of the materials used on the GPS Block I

vehicles, as well as their masses, temperatures, locations, and possible outgassing paths, indicated

that if only a small fraction of the matter impinging upon the solar panels underwent a

' Satellites in MEO orbits are exposed to the radiation belts, which trap and hold high enerlly charged particles. A
satellite psssmll through these belts is subjected to • high flux of electrons and protons, and trapped ptotom are

cabbie of causing single event latchups (i.e., digital microcircuits Ihort their power suppliea to ground) in certain
typ_ of chips.
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photochemical reaction initiated by the solar UV and adhered to the panels, the amount of matter

that would remain on the panels was sufficient to account for the unexplained degradation. The

effect of the contaminant layer on the output of the solar cells was obtained by multiplying the

optical attenuation of the contamination as a function of wavelength by the spectral response of

each cell and the solar flux. The results, illustrated in Figure 2-44, show the contamination film

effects on solar panel output (ref. 117).
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Figure 2- 44. Contamination Film Effect on Solar Panel Output.

The conclusion that contamination is responsible for the anomalous degradation is surprising in

that solar arrays, nominally at a temperature of about 60°C, are normally thought to be relatively

impervious to molecular contamination This may have implications for future spacecraft because

designers must take into consideration the fact that a few percent of the contamination incident on

any solar illuminated surface may remain permanently, resulting in decreased power in the case of

solar arrays, or increased values of_ in the case of thermal control coatings. The effect of this

contamination on the GPS vehicle would have been lessened had the solar arrays been farther from

the vehicle, decreasing the amount of contaminants reaching the arrays, or had the strings of solar

cells been oriented normal to the boom, rather than normal to the spacecraft, thereby decreasing the

number of strings affected by the contamination
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2.5.5 Contamination Effects on Optics Performance

Contamination plays an important part in the performance degradation of optical components,

which can be measured by decreased optical throughput and increased solar absorptivity. Thin

deposits of molecular contaminants that condense on cold optical surfaces and infrared sensors can

seriously reduce optical throughput. Molecular films as thin as a few hundred angstroms can

reduce the se_tsor performance, especially when viewing targets close to bright sources of light such

as the Sun (see Section 2.7.4). Furthermore, molecular contamination from composite materials

can lead to the formation of a "cloud" of outgassed molecular particles, resulting in a significant

increase in light scattering that attenuates the signals that the sensors are receiving. Small particles

can significantly alter the bi-directional reflectance distribution function (BRDF) of optical surfaces

as shown in Figure 2-45 (CR. Maag, 1989). RP. Young has performed both experiments and

computations (using Mie optical scatter theory) to derive increases in BRDF as functions of

contamination levels for small particles on mirror surfaces, t27 Consequently, optical payloads and

components are over designed to overcome the expected debilitating effect of contaminants on the

mission performance. See Section 2.6.2.2 for an additional discussion on particulate contamination

effects on optical surfaces.
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Figure 2- 45. Effects of Contamination on the BRDF of an Aluminum Mirror
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2.5.6 Atomic Oxygen Erosion and Secondary Ejecta Impact-Induced Surface
Contamination

LDEF provided supporting evidence of the contribution of atomic oxygen erosion and

secondary ejecta impact to surface contamination. This type of damage had been known to exist

for over fifty years and had been seen on a small scale in the Solar Maximum Nfission where the

detection of small impact crater and particulate contamination on aluminum louvers were attributed

to high velocity secondary ejecta from primary impact into the backside of the nearby solar

panel.128 Cbemical analysis of the detectable residue from the impact craters indicated

compositions of typical paint pigments used on the solar panels. Figure 2-46 summarized the

contamination flux of particulate contamination on the various regions of the aluminum louvers.

These particles are mostly titanium dioxide flora the paint pigment panicles, and consequently,

came from the solar panel. The particles are clean-appearing and lacked the binder typical of

unflown paints, hence suggesting that the near-surface biader of this paint has been eaten away by

atomic oxygen erosion and the included pigment particles have been released by thermal _cling or

other mechanisms and have drifted to the louvers and have been deposited on their surface. Her, ce,

self-contamination from released paint pigment presents a votential source of particulate

contamination.
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LDEF's large surface area and large number of material samples showed the true extent of this

type of damage. Surface contamination caused by impacts is most threatening to optics, solar cells

and thermal control materials. For optics, this contamination could be caused by impacts into

baffles, telescope shrouds, and optical structures, or by penetrations through telescope shrouds.

Optical surface contamination causes increased scatter and may reduce reflectivity and

transmissivity. For thermal control materials and solar cells, impact-caused contamination

originates primarily from impacts into nearby structures.

Another source of surface contamination comes from impacts by urine. The urine originates

from Space Shuttle and space station holding tank dumps and remains in orbit as ice crystals. Upon

impact these ices melt and form contaminating splashes. This type of contamination was found on

every surface of LDEF. They have been seen on all space-returned materials, particularly since the

advent of the Space 3l_ lttle.
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2.5.7 DesignMethods for Minimizing Contamination

2.5.7.1 End-of-Life Spacecraft Subsystem Performance Predictions

Contamination can be considered an induced environmental effect. Contamination, both

molecular and particulate, has caused degradation in both optical and thermal control systems.

a designer, the essential question is how much contamination .,m all sources can be tolerated

without causing a given spacecraft system to degrade below a critical performance level, or fail

altogether. Table 2-19 provides performance degradation predictions for spacecraft subsystems

effected by contamination.

Table 2- 19. Performance Degradation Predictions Due to Contamination

Subsystem Predictions

Thermal Control Surfaces Solar Absorptance Increase (Ao_) of 0.03 per 100 A of molecular film

Solar Array 1% Decrease in Power Output per 1000 A (Degradation Not Well Understood)

Optics Degradation Dependent on Wavelength (UV Particularly Sensitive to Contamination)

For

The effect of these contaminant layers on the optical properties of materials depends on the

type, location, and amount of contaminants as well as the initial optical properties. Contamination is

expected to increase the absorptance of a surface by an amount dependent on the thickness ofthe

contaminant layer, and the optical properties (transmission, absorption and refractive indices) of _the

layer and the substrate. One study showed that a UV-irradiated RTV silicone contaminant up to

0.02 gm (200 A) thick caused minimal effects on the absorptance of a gold mirror (ot=0.35). t29

However, at 0.1 Bm (1000 A), a significant increase in absorptance of an initially ct=0.06 second

surface mirror was seen.13° For chromic acid anodized coatings, it has been suggested that ram-

direction AO reacted with the silicone contaminant layer, resulting in a clear contaminant layer

which did not significantly affect absorptance. L_I A containinant layer of up to 30,000 A had a

negligible effect on emittance on the chromic acid anodic coatings with low initial emittances.

2-92



The data on silver/Teflon blankets indicate that the change in ot due to contamination is

anywhere from 0.01 to 0.05 per IO0,A of deposited contaminant, c The large variation is most likely

due to the different absorptivities of different species of contaminants.

Previous and recent contamination analyses for EOS predict worst-case depositions alter 5

years of 300 to 500/t_ in the vicinity of the instruments. The exact deposition obviously depends on

instrument location and the facing direction of contamination-sensitive surfaces, as well as on the

amount of outgassing material on the spacecraft

Combining the observed ct degradations with the predicted EOS contar.finat_on levels, the

minimum, nominal, and maximum changes in ct can be calculated:

(delta ct)._ = 300A (o.ol/i0oA) = 0.03

(delta ct).,,= = 400A (o.03/lOOh) = o. 12

(delta ct),_,, = 500A (o.o5/lOOh) = 0.25

Hence, for Ag/Teflon, with an initial ct of 0.10, the end-of-life ct values would then be 0.13

minimum, 0.22 nominal, and 0 35 maximum. Since one generally designs to a plausible worst case

scenario, assuming an end-of-life ct of approximately 0.3 for silver Teflon would not be

unreasonable

"There are very few spacecraft on which both ct changes and contaminant layer thickness were measured.

Furthermore, the change in a depends on the chemical species of contaminant, and there ate no flights for which or,
contaminant thickness, and contaminant species are all measured. Even if there were, the actual deposition on any
spacecraft surface is a complicated combination of all the condensable species outgassed by the spacecraft. The be_;t
that can be done is to give the range of observed delta at vs. thickness values for past spacecraft sad assume that

future spacecraft are going to outgas similar species and therefore exhibit similar solar absorpUmce degradation.
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2.5.7.2 Passive Contamination Control Techniques

To nuaimize i_erformance degradation requires the implementation of passive contamination

cnntrol efforts. For a designer, the choices are either to minimize the quantity of source materials

or to pl',ysically block the materials from the source so it cannot redeposit on a surface which must

remain clean T.hree methods of passive contamination control are:

• Selection of low outgassing materials;

• Atomic oxygen cleaning;

• Spacecraft configuration (i.e., contaminant migration and transport paths); and

s Spacecraft temperature.

2.5.7.2.1 Selection of Low-Outgassing Materials

Materials which ou*.gas, such as paints, composites, thin polymeric films, or adhesives wifieh

are organic based, will likely outgas over a long period of time. Some materials may outgas at a

significant rate for an extremely long time. For these materials, short-term (24 h) outgassing test

may not be appropriate for characterizing their performance. For example, sixteen specimens of

DC 6-1104 RTV silicone adhesive used to attach the Velcro strips on the I,DEF AO178

experiment showed an average total mass loss (TM_L) of 0.34 w_%, as dete._ned by ASTM

E595,t32 compared with original ground control measurements of 0.14 wt%. Specimens taken

from the exposed bond line and from under the center portion of the Velcro showed no essential

difference in the TML measurements (ref. 110). The conclusion is that, left indefinitely, this

material will continue to outgas very slowly until it is gone. Under these conditions, the total

amount of material becomes a significant consideration because the material never appears to "bake

out." In addition, bearing in mind the effects ofoxidation caused to many substances by atomic

oxygen (i.e., volatile byproducts), standardized VCM criteria are obviously no longer enough to be

representative of the outgassing of materials in LEO and to allow their selection for use m a space

environment.

2.5.7.2.2 Atomic Oxygen Cleaning

In LEO, ram and near-ram surfaces will "clean" by exposure to AO. For example, cleaning a

hydrocarbon from an optical sensor surface could be achieved by turlfing the surface to the ram

direction. However, other materials which also react with AO could be present. If siloxane-based

films are present, these materials can be converted to nonvolatile silica type (SiO,) species,

2-94



potentially trapping other contaminant species and allowing the opportunity for darkening of

surfaces by radiation and the subsequent permanent spacecraft performance degradation. In

addition, such exposure can damage the substrate, so this "clearuag" is limited in practice.

2.5.7.2.3 Spacecraft Configuration

Physically blocking sensitive locations from the line-of-sight of any potentially significant

outgassing source is the most direct method of minimizing contamination. Heavy deposits around

selected vent paths from the interior ofLDEF demor, strate the need for careful consideration of the

location and orientation of vents relative to spacecraft surfaces (reE 110). Venting should 0e

directed normal to spacecraft surfaces. In addition, vent paths normal to the direction of motion

should also minimize return flux This solution is best considered in the design phase.

2.5.7.2.4 Spacecraft Temperature

The higher the surface temperatures of the spacecraft can be maintained early in the mission,

and without damaging essential coraponents, the less opportunity for material redeposition.

However, orientation of surfaces toward the Sun to increase volatility by temperature increases

would also run the risk of permanent photo-induced deposition
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2.5.7.3 Contamination Control Plan

The process of achieving the required cleanliness levels requires a contamination control

program that starts during the preliminary design phase and continues through to the end of mission

life. Table 2-20 summta'-izes the required design activity and the subsequent impact on the

contamination control program.

Table 2- 20. Relationships Between Design Activities and Contamination Control Plan

!
Design Activity I

Determination of Performance

Requirements

Definition of Configuration

Selection of Materials, Components,
Subsystems

Planning of Operationsfor Factory,
Launch Site, and Flight

Perform Contamination Analyses

Prepare a Contamination Control
Plan

Perform Development Tests

Impact on Contamination Control

Defines system sensitivities

Defines _clationship between sensitive elements and sources
of contamination

Affects outgassing, panicle, generation, and other functions

Affects the ability to meet requirements and minimize cost

Determines if the coxtfiguration, materials, components, and
subs3stems that are used are likely to result in the
cleanliness levels needed to meet system performance
requirements

Summarizes the requirements, goals, and procedures
Used to prov;de guidance to all activities including
monitoring that impact contamination control

Tests should be performed early enough to affect designs
without increasing costs

The determination of system performance requirements leads to a definition of the sensitivity

of the system to contaminants and the generation of a contamination budget. This budget is based

on the stray light rejection requirements and optical throughput requirements at end of life. If

particulates are deemed to be a critical driver in the design, a particulate budget is allocated to the

various steps required to fabricate, assemble, and integrate the payload. In order to allocate

contamination levels to the various surfaces of the structure, an assumption is made regarding re-

distribution of the particulate matter from the structure to the optics during the launch process
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The configuration of the system defines the relationship between the elements that are sensitive

to contamination and the sources of contamination. This configuration can be changed to eliminate

or, at least, minimize the contamination. The sources of contaminants include materials and

components on the surface of the spacecrat_ as well as materials and components inside the

spacecraR that get out through intentional and unintentional vents. The locations of these vents are

frequently a critical factor in the contamination of sensitive components. The configuration also

has a bearing on how easy or difficult it is to clean sensitive elements during the various phases of

ground operations.

The selection of the materials, components, and subsystems so as to minimize outgassing and

generation of particles involves tradeoffs with the need to meet the other functional requirements.

These other functional requirements include temperature and radiation stability, mechanical and

electrical properties, and resistance to atomic oxygen.

As the design develops it is possible to consider preliminary planning for ground and flight

operations including those procedures that will monitor and minimize contamination. In this way

design changes can be implemented early.

The contamination analyses are used to determine if the materials, components, and

subsystems can be expected to meet the performance requirements for the system. When the

analyses are performed early in the design process it is possible to make necessary changes with a

minimum impact an schedule and cost. As the design develops, the analyses can be fine tuned for

critical items.

The contamination control plan is a summary of the requirements and the procedures to be

used to meet these requirements. The contamination control plan should start early in the design

phase of a project. There may be many unresolved issues and blanks in the plan, but these indicate

work that must be accomplished and to allow schedules to be set for implementation. One

important purpose of the contamination control plan is to assure that the requirements and

procedures are implemented in the working documents. It also allows all parties to review it and

reach a consensus on the approaches to be followed staging early in the design activity.

Development tests should be used to get data that are needed in the design of the new space

system. Typical development tests include outgassing tests on materials and components where

there is a lack of data in the literature or special test conditions are required. Monitoring of the

manufacturing and assembly processes ensures that the requirements set forth in the contamination

control plan are met.
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2.6 VACUUM-INDUCED OUTGASSING EFFECTS

2.6.1 Introduction

When exposed to thermal-vacuum conditions, polymer matrix composites are known to outgas

due to moisture desorption or material volatilization or decomposition. Once the outgassed species

leave the surfaces, they will be at such a low pressure that they travel in a line-of-sight trajectory

until they either hit thespacecrafl surface (where they will bounce or adhere) or leave the vicinity of

the spacecraft at a relative velocity of several kilometersJsecond. Approximately 1 in 10,000 to 1 in

100,000 molecules will collide with another molecule (ambient or contaminant) and return to the

spacecraft where they might hit a sensitive surface. A portion of the contaminants that contact

spacecraft surfaces will stick forming a molecular layer that can darken or be eroded with

subsequent exl_osure to the space environment (e.g., UV, atomic oxygen)

2.6.2 Spacecraft Performance Effect,

Molecular contamination can degrade the performance of thermal control surfaces and solar

ceils. This can be particularly important if sensors are cooled passively by second surfaces mirrors

that are illuminated by the Sun. The effects of relatively thin molecular films on the solar

absorptance of second surface mirrors has been shown in Figure 2-39. Typically molecular films

must not exceed 1000 fit on these sensitive surfaces at the end of the spacecraft's life. In addition,

thin deposits of molecular contaminants that condense on the cold optical surfaces and infrared

sensors can seriously reduce optical throughput. Furthermore, molecular conta,-rfination from

composite materials can lead to the formation of a "cloud" of outgassed molecular particles,

resulting in a significant increase in light scattering that attenuates the signzls :hat the sensors are

receiving. Molecular films as thin as a few hundred angstroms can seriously reduce the sensor

performance, especially when viewing targets close to bright sources of light such as the Sun.
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2,6.3 Spacecraft Material Outgassing Databases

The outgassing/volatiles characterization of composites is determined by the procedures of the

ASTM Test for Total Mass Loss and Collected Velafile Condensable Matcrials from Outgassing in

a Vacuum Environment (E 595). This industry standard material contamination screening

procedure is based on measuring the total mass loss (TML), collected volatile condensable material

(CVCM), and water vapor regained (WVR). TML is important from a molecular "cloud" effect

which can degrade instrument performance, while CVCM is a measure of the potential for

outgassed products to deposit on critical optical surfaces. WVR is the mass of the water vapor

regained by the specimen aider an optional reconditioning stel_ WVR is calculated from the

differences in the specimen mass determined after the test for TML and CVCM and again at_er

exposure to a 50% RH atmosphere at 23°C for 24 hours. Values below 1.0% TML and 0. !%

CVCM have been acceptable for current spacecraft performance needs, but the requirements are

expected to become more stringent t'or future surveillance spacecraft systems (see below).

Outgassing data for spacecraft materials can be obtained from the following source documents:

• JSC Report 08962, "Compilation of VCM Data of Nonmetallic Materials,"

• ESTEC, "Outgassing and Thermo-Optical Data For Spacecraft Materials," April 1992

• Goddard Space Flight Center, "Outgassing Data for Selecting Spacecraft Materials,

NASA Reference Publication 1 i24, 1984.

• MSFC Handbook 1674

Figure 2-47 compares typical ASTM E595 outgassing test results for a variety of carbon

reinforced polymer matrix composite system. _33 Table 2-21 presents outgassing test results for a

variety of spacecraft composite materials. A comparison of the outgassing results points to

significantly lower outgassing "lq_-fl_.vo.lues for carbon polycyanates and carbon thermoplastics

_,omposites compared to the conventional carbon epoxy composites

2-99



IM7/
PEEK

T650-42/
Radel

IM7/855 I-7

Epoxy

PI00/RS-3

Polycyanat¢

P100/1962

Epoxy

PIO0/
PEEK

1_.342

0.0 0.1 0.2 0.3 0 4 0.5

Percentage of Total Weight

Figure 2- 47.

C_,CM

ITML

0.6

OI M 93.041

Comparative Outgassing of Polymer Matrix Composites

Table 2- 21. Outgassing Properties of Laminated Corn _osites

Material

T300/934

PAN50/954-3

T50/934

HMS/934

GY70/954-3

Matrix Type

Epoxy

Epoxy

Epoxy,

Epoxy

EPOxy
k .....

TML %

0.58

0.135

0.4

1.09

G. 104

VCM %

,00

0.00549

0.09

0.00

0.00792 ]

WVR%

.00

0.195

.00

0.5!

0.0736

P75/930 Epoxy 0.384 0.007

XN50/RS.3 Polycyanate 0.0851 0.00379 0.028'7 TRW

IM7/PEEK Thermoplastic 0 053 0.004 TRW
.A ,-

Ref.

NASA JSC I_

TRW 13_

NASA JSC

'NASA JSC

TRW

t'iV,W
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2.6.4 Spacecraft Material Outgassing for Cryogenic Applications

Although typical carbon/epoxy structures meet the current NASA outgassing acceptance levels

of 1.0% TML and 0.1% CVCM, certain spacecraft systems and sensors that operate at extremely

cold temperatures are sensitive to much lower outgassing acceptance levels. The development of

spacecraft systems (e.g., FEWS, Brilliant Pebbles, Brilliant Eyes, CERES, AXAF) with sensors,

astronomical telescopes, and spectrographz operating at extremely cold temperatures (i.e.,<100 K)

have hnposed lower contamination levels requirements for spacecraR structures and hence, the

need for spacecr',d_ materials with reduced outgassing at these lower temperatures. In addition, the

current industry outgassing measurement te_t, ASTM E 595, is conducted at test conditions that do

not simulate the stringent space environment and hence, does not adequately chzracterize the

contamination potential of composite materials

Over the past 3 years ASTM Committee E21 has been in the process of approving a new test

method that utilizes quartz crystal microbalances to determine the outgassing kinetics of spacecrat_

materials at 3 different deposition temperatures and 3 different source temperatures. The purpose

of this new test method is to provide the data necessary fbr spacecraft contamination models to

accurately predict how much will collect on spacecraft surfaces. Preliminary data on outgassing

products collected on QCMs at 150 K were obtained on a prototype test apparatus developed by

the Lockheed Missile and Space Company. t3_

The TRW Contaminatton Effects Facility_ w.hJch derives a molecular outgassing rate from the

mass accumulation on a temperature controlled quartz crystal microbalance below 150 K, have

demonstrated marked improvements in reduced outgassing from polycyanates and thermoplastics.

Table 2-22 reveals lower outgassing rates for both the IM7/PEEK and the XNS0/RS-3 polycyanate

composites by an order of magnitude in comparison with the outgassing rate measured for the

P75/ERL-1962 epoxy composite.t_6 Water represented most of the condensable material from

both the carbon PEEK and the polycyanate composites as verified by mass spectrometry analysis

(watel has a condensation temperature t_, 150 K uuder vacuum).

Table 2- 22. Outgassing Rates for Structur _! Materials

Material Outgassing Rate, 100 K

iw75Carbon/ERL-1962Epoxy

XN50 Catbon/RS-3Polyc_,mutte

IM7 Cat.n/PEEK Thermoplastic

1.60n[/cm2-s

0.24nll/cm2-s

0.17n[/cra2-s
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A series ofin-situ bakeouts were conducted to determine the change in the outgassing rat_.s

with time and to determine the total time to eliminate outgassing from the polymer matrix

composites. Figure 2-48 shows the linear decay in the outgassing rates for both the PEEK and the

polycyanate composites with increasing bakeout times at 323 K (50°C) (ref 136). The mass

accumulation on the TQCM were measured both at 175 K and 100 K with the composite

specimens at 298 K (25°C). The outgassing rate at 100 K was higher than that measured at 175 K,

which is attributed to the significant desorption of water from both the PEEK and polycyanate

composites. Both the PEEK and the polycyanate composites exhibited similar behavior in the

changes in the outgassing rates with time. The 175 K outgassing rate decceased to zero (i.e., lxl0-

15 g/cm2-sec) by approximate 300 hours The 100 K outgassing rate decreased to lxlg-12 g/cm 2-

sec by 400 hours. Ex-trapolation to a zero outgassing rate indicated that more than 1000 hours

(-42 days) of extended bakeout at 323 K (50°C) would be required for the composites to

completely desorb their absorbed water. This predicted outgassing time is similar to that observed

from the I.DEF UTIAS Experiment No. A0180 where it took about 40 days for the T-300

ca_bord934 epoxy and the T-300 carbon/SP-288 epoxy to outgas and 80 days for the %300

carbon/5208 epoxy to outgas (see page 3-31).
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Figure 2- 48. Outgassing Rates as a Function of Bakeout Time and Absorption

Temperature
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2.7 SPACECRAFT CHARGING EFFECTS

2.7.1 Introduction

Technically, spacecraft charging is a variation in the electrostatic potential of a spacecraft

surface with respect to the surrounding plasma. Two types of spacecraft charging are typically

encountered. The first, called absolute charging, occurs when the entire spacecraft potential

relative to the ambient space plasma is changed uniformly by the encounter with the charging

environment. The second type, called differential charging, occurs when parts of the spacecraet are

charged to different negative potentials relative to each other. In this type of charging, strong local

electric fields may exist.

2.7.2 Spacecraft Charging Concerns

2.7.2.1 Surface Charging

Surface charging of spacecraft materials is caused primarily by electrons with energies in the

few keV (kiloelectron volt) to tens of keV range. The potential reached during charging events

depend on many additional factors, the most important being secondary-electron emission due to

solar ultraviolet radiation and due to primary e!ectrons and ions, and the density of the cold plasma

which may supply a neutralizing current to a charged body. Differential potentials between

different locations on a spacecraft are controlled by geometric considerations, material properties,

and charging tivm-constants. For example, spacecraft surfaces are not uniform in their material

properties, surfaces will be either shaded or sunlit, and the ambient fluxes may be anisotropic.

Materials with different properties and adjacent to each other, can charge to different voltages and

produce electrostatic discharges if the electric field gradient becomes too large. Insulators

shadowed by the vehicle may charge differentially with respect to nearby vehicle frame which is

"clamped" to the space plasma potential by secondary emission from an illuminated portion of the

vehicle frame. These and other charging effects can produce potential differences between

spacecraft surfaces or between spacecraft surfaces and spacecraf_ ground.
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2.7.2.2 Bulk Charging

Bulk charging of spacecraft materials is caused primarily be electrons with energies of a few

hundred keV to 1.5 MeV (megaelectron volts). These energetic electrons can penetrate thin

shielding (spacecraft skin, cable shielding, etc.) and deposit charge in cables, circuit boards, and

conductors. Depending on the fluence of the primary electrons and the conductivity of the

dielectric, the material may experience a discharge (see below), which may couple into sensitive

electronic circuits. In typical dielectrics, the breakdown may occur with fluences on the order of

10 H to 1012 e/cm 2. Electron fluxes with energies above a few hundred keV maximize at altitudes

several Earth radii below geosynchronous orbit following large magnetic storms. However, even at

geosynchronous altitude, energetic electrons can alter electrical properties of dielectrics and

influence differential charging effects_ Certain design approaches can reduce discharges due to bulk

charging. Shielding and grounding of cables and circuit are among these methods (see below).

2.7.2.3 Discharging

When the electric field between two objects exceeds a critical value (about 10 6 volts/meter), a

discharge can occur. The buildup of large potentials on spacecratt relative to the ambient plasma

can present a serious electrostatic discharge (ESD) design concern because structural damage is a

real possibility. Even weak discharges have been related to a variety of problems which include:

* Upsets of electronics ranging from logic switching to complete system failure. (such

as turning of a recorder or activating a radio)

• Breakdown of vehicle thermal coatings

• Amplifier and solar cell degradation

• Degradationofoptical sensors

Electrostatic discharges resulting from satellite orbital charging are characterized in Figure 2-
49. m
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Figure 2- 49, Electrostatic Discharge Characteristics

2.7.2.4 Contamination

Spacecraft charging enhances surface contamination, which degrades thermal properties.

Molecules emitted by the spacecraft can be ionized by solar radiation while still within the

spacecraft plasma sheath and be reattracted to negatively charged surfaces. The more negative the

potential on the surface, the higher the probability of contamination. Trying to control the potential

of a spacecraft ground may increase the differential potential to adjacent dielectric surfaces and

might even increase contamination buildup on some surfaces. Analysis of data from the P78-2

satellite (part of the joint USAF-NASA Spacecraft Charging at High Altitudes SCATHA program)

indicates that contamination rates are increased during periods of spacecraft charging.

The P78-2 satellite experiment included a Temperature Controlled Quartz Crystal

Microbalance which was designed to measure the rate of deposition of contaminants on satellite

surfaces, :3a The TQCM included a grid upon which a voltage could be imposed to repel ions.

Long-term average mass accumulation rates over the four periods studied ranged from 0 to 31%

mass accumulation rates over the four periods studied ranged from 0 to 31% greater when 0 to 500

eV ions were allowed to reach the mass detector than when they were reflected.139
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2.7.3 Design Gu;_lelines for Controlling Spacecraft Charging Effects

On orbit charging can and has resulted in spacecraft anomalies. The design approach for the

control of orbital sp,,+,; charging is to minimize the development of differential potentials sufficient

to initiate arc discharges wherever possible. Current spacecraft design utilizes large areas of

dielectrics for thermal management (thermal blankets, optical solar reflectors, solar cell cover glass)

and antenna covers. These requirements eliminate the possibility of avoiding arc discharges. As a

result, the design philosophy is to minimize the differential potentials from developing wherever

practically possible. Where discharges are possible, an evaluation is performed to assess the effect

of a discharge, and where unacceptable results will occur, a design change is implemented.

The reason for this philosophy is that a thermal fa;lure can be demonstrated as a system failure,

whereas an arc discharge may influence system operations. In assessing the impact of orbital

charging mitigation on thermal design, thermal design will always take precedence, where the two

are not compatible. In these cases of conflict, the alternate is to ensure that any discharges do not

cause unacceptable responses by the spacecrnfl electronics.

2.7.3.1 Grounding

The spacecraft design needs to provide electrostatic grounding connections between all

metallic and composite (carbon fiber reinforced composite) elements of the spacecraft and the

structural ground reference plane. All structural and mechanical parts, electronics boxes,

enclosures, etc., of the spacecraft are to be electrically bonded to each other. According to the

NASA charging guidelines, _4° all principal structural elements shall be bonded by methods that

assure a direct-current (de) resistance of less than 2.5 mf_ at each joint. The collection of

electrically bonded structural elements is referred to as "st,-ucture' or structure ground. The

objective is tc provide a low-impedance path for any ESD-caused currents that may occur and to

provide an excellent ground for all other parts of the spacecraft needing grounding. If st, ucture

ground must be carried across an articulating joint or hinge, a ground strap, as short as possible,

should carry the ground across the joint.
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2.7.3.2 Exterior Surface Materials

For differential charging control, all spacecraft exterior surfaces should be at least partially

conductive. The best way to avoid differential charging of spacecraft surfaces is to make all

surfaces conductive and grounded to the spacecraft structure. However, typical spacecraft surface

materials often include insulating films such as Mylar, Kapton, "I effort, Fiberglas, glass, quartz, or

other dielectric materials. Conductive surface coatings are used to minimized the differential

charging of spacecraft surfaces. These include conductive conversion coatings on metals,

conductive paints, and transparent partially metallic vacuum-deposited films, such as indium tin

oxide. The following materials have been used to provide conducting surfaces on the spacecraR:

Vacuum-metalized dielectric materials in the form of sheets, strips, or tiles. The metal-

on-substrate combinations include aluminum, gold, silver, and Inconei on Kapton,

Teflon, Mylar, and fused silica.

• Thin, conductive front-surface coatir,gs, especially indium tin oxide on fused silica,

Kapton, Teflon, or dielectric stacks

• Conductive paints, carbon-filled Teflon, or carbon-filled polyester on Kapton (e.g.,

Sheldahl black Kapton)

• Conductive adhesives

• Exposed conductive facesheet materials )carborv'epox-y or metal)

• Etched metal grids or bonded (or heat embedded) metal meshes on nonc_nductive

substrates

• Aluminum foil or metalized plastic film tapes

It should be recognized in the design phase that there may be areas tbr which use of

conductive surfaces is particularly crucial, such as areas adjacent to receivers/antennas operating at

less than 1 GHz, sensitive detectors (Sun and Earth detectors) or areas where material

contamination or thermal control is critical. For these applications use of indium tin oxide (ITO)

coatings is recommended.
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_2.7.3.3 Thermal Control Materials

All layers in multilayer insulation (MLI) blankets should be electrically grounded to the

structure because ungrounded blankets will charge to high negative potentials. This requirement is

applicable to multi-layer thermal blankets and other thermal control surfaces employing metallized

films which offer more than 25 cm 2 of exposed surface. Figure 2-50 illustrates the charging

characteristics for a Kapton thermal blanket in a 1% substorm environment t4_ (a 1% substorm

environment represents the ch_.ged panicle flux that will be experienced in a GEO orbit 1% of the

time). All la)ers of the thermal blanket must be grounded because high energy electrons will

penetrate into the inner layers and charge those layers. Ungrounded inner layers will result in large

internal electric fields which could lead to discharges. Figure 2-51 shows the potential and electric

field that can oe built up in a thermal blanket as a ihnction of blanket depth (ref Stillwell et al.,

1992). Figure 2-51 is for a 500 second exposure in a 1% substorm, with only the top a_:l bottom

VDA layers grounded. The requirement to ground all layers is consistent with the recommended

practices of the NASA chalging document (ref 146).
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Ground straps are typically used to meet a less than 25 f2 dc grounding requirement 142

(measured during manufacturing), r The NASA charging guidelines recommend a less than It) G dc

resistance between blanket and structure. The number of ground straps required is based on

blanket area and is given m Table 2-23. For blankets with thick outer layers (>3 mils) or Teflon

(Teflon is a highly dielectric material), signal lines and cabling placed within 3 inches of the blanket

periphery should be minimized.

Table 2- 23. Number of Ground Straps Required for Thermal Blankets

Number of Straps

i
Ag25 0

25 < A < 100 2 - If signal cable passes within 3

inches of periphery

0 - elsewhere

100 < A _ 900 2

900 < A < 8000 3

8000 < A _ 16000 4

Each Additional 8000 1 Additional Strap

Surface Area (A) of Blanket
¢1112

ktultiple ground straps are required for large area blankets to minimize the surface potential in

case of the VDA (vacuum deposited aluminum) breaking up. While grounding the VDA layers will

not eliminate the charge buildup on the dielectric surface, it will eliminate metal-to-metal

discharges. Metal-to-metal discharges deliver much larger peak currents than dielectric-to-metal

discharges, and therefore, pose a greater EMI (electromagnetic interference) hazard.

r The thermal blanket reeistance requirement is 1000 fl dc. However, t requirement of 25 _ de is impo*ed at the

manufacturing level because handling and insuittion is expected to increase the resistance. The 25 _1 de

requirement is to insure that the blanket starts with t good electrical connection.
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2.7.3.4 Shielding

The primary spacecraft structure, electronic component enclosures, and electrical cable shields

shall provide a physically and electrically continuous shielded surface around all electronics and

wiring (Faraday cage)

The primary spacecraft structure should be designed as an electromagnetic-interference-tight

shielding enclosure (Faraday cage). The purposes of the shielding are (1) to prevent entry of space

plasma into the spacecraft interior and (2) to shield the interior electronics from the radiated noise

of an electrical discharge on the exterior of the spacecraft. All shielding should provide at least 40-

dB attenuation of radiated electromagnetic fields associated with surface discharges. An

approximately 1-mm thickness of aluminum or magnesium will generally provide the desired

attenuation. This enclosure should be as free from hoies and penetrations as possible. Many

penetrations can be made relatively electromagnetic interference tight by use of well-grounded

metallic meshes and plates. All openings, apertures, and slits shall be eliminated to maintain the

integrity of the Faraday cage.

The metalization on multilayer insulation is insufficient to provide adequate shielding. Layers

of aluminum foil mounted to the interior surface and properly grounded can be used to increase the

shielding effectiveness of blankets or films. Aluminum honeycomb structures and aluminum

facesheets can also provide significant attenuation. Electronic enclosures and electrical cables

exterior to the main Faraday cage region should also be shielded to extend the coverage of the

shielded region to 100 percent of the electronics.
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2.8 PENETRATING CHARGED PARTICLES EFFECTS

2.8.1 Single Event Upsets

Single event upsets (SEUs) are bit flips in digital microelectronic circuits SEUs can cause:

• Damage to stored data

• Damage to software

• The central processing unit (CPU) to halt

• The CPU to write over critical data tables

• Various unplanned events including loss of mission

Single event latchups (SELs) are when digital microcircuits short their power supplies to

ground. These events can cause:

• Inoperability

• Permanent failure of the affected components

• Computer failure

SEUs in spacebome electronics are caused by the direct ionization of silicon material by a high

energy ion passing thre.ugh it. The near Earth particle environment includes galactic cosmic

radiation (GCR), energetic particles from the Sun, and trapped protons. The normal factor in SEU

production is the heavy ion cosmic ray, although large solar flares can produce a substantial

increase in SEUs fortunately, such large dares occur only once every few years (see Chapter 1).

For satellites in near Earth orbits (less than four Earth radii), an additional factor is the radiation

belts, which trap and hold high energy charged particles A sate',lite passing through these belts is

subjected to a high flux of electrons and protons, and trapped protons are capable of causing, SEUs

in certain types of chips (!;ee Chapter 1).
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Hence, high energy particles degrade electronics performance by the accumulation of material

microstructural damage. Different devices have varying degrees of total dose _lnerability which

can range from very soft (700 rads) to very hard (106 rads). Figure 2-52 shows the accumulated

radiation dosage for a five year mission due to Van Allen particles for a variety of orbits, to Also

plotted are the typical shielding thi knesses available from the satellite skin and electronic boxes.
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2.8.2 Design Guidelines

Four methods or techniques are available to protect satellite electronics from the effects of

radiauon. Satellite designers must evaluate these methods in order to trade offthe penalties and

develop a protection scheme while still meeting the system performance requirements.

Shielding is an obvious solution. Figure 2-53 depicts the cosmic ray flux as a function of

energy deposition in silicon. _ The deposition curve is plotted for several thicknesses of shielding.

Note that shielding of 20g/cm _ reduces the flux by less than a factor of 10 compared to the standard

satellite shielding of 2 g/cm 2 provided by a typical skin plus electronics box. Clearly, fi'om Figure

2-53, a factor of 10 decrease in occurrence is not a great victory since an upset every 15 days is not

much better than one every 1.5 clays in the life of a 10-year system. Also, the weight and volume of

20 g/cm 2 shielding, 2.0 inches of aluminum, is not a very reasonable solution.

10 6

2 _2

'o3 _ /ss/,:m"

10.3 _ '_ "_'_" g/cm 2

10.9 , J_,,ud , t,*,,,d i ll_..I tli..,! ! iI,.,d i,..."

101 10 2 10 3 10 4 10 5 10 6

ENERGY DEPOSITED MeV PER _¢m 2

OI M _,0114"!6

Figure 2- 53, Cosmic Ray Flux as a Function of Shielding

Avoiding the problem through pa:'ts selectiot_ is the most. obvious solution. In fa,':t, many older

technologies such as plated wire, or core :,, so!id state memory with large feature size element (>10

microns) can be used to achieve a small, or zero, upset rate. The problem here is usually oFerafing

speed and power consumption. The parts may not meet design or system performance goals.

Various investigators have designed and built upset-resistant parts w.hile maintaining circuit

pcrformAllce.
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Triplememory redundancy can beat the speed problem as well as provide a high degree of

fault tolerance from other causes, such as parts failure. Negative factors include the additional

weight mid power required for the additional memory.

_-rror detection and correction (EDAC) offers the advantage of a single memory, but with

additional bits stored to support the EDAC. Also, the processor and software must perform EDAC

on some sort of regular basis to ensure a correct memory. As upset rates increase, the point could

quickly be reached where most of the time is spent doing EDAC rather th_n any productive work.

The final method of dealing with SEUs is to regularly reset the onboard computers. A

variation ofth/s is to use a regular sequence when commanding the satellite; any change in the

sequence would be easy to detect and correct. Computer systems which can be reprogrammed

from the ground might allow other alternatives. This method is u_'lally unsatisfactory, unless an

occasional reset is acceptable within the system performance requirements.
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2.9 ENVIRONMENTAL SYNERGISTIC EFFECTS

2.9.1 Introduction

In order to determine or predict the performance capability of space systems during their

operational lifetimes, assessments must be made of the combined, synergistic space environment

effects.

2.9.2 Combined Atomic Oxygen and Ultraviolet Radiation Effects on Polymers

In the e_.rly shuttle flights, which had a very short flight duration of approximate 40 hours,

fluorocarbon FEP Teflon appeared to be stable. Hence, suggesting a potential use for long-term

use in LEO. In fact, due to the short mission of these Effects of Oxygen Interaction with Materials

(EOLM) experiments, which limited oxygen atom licence and also the UV exposure, the erosion of

the Teflon was too low on EOIM I and II to make an accurate measurement. A limit for the erosion

rate was determined to be < 0.05x10 "24cm3/atom. 145 The Teflon surfaces returned from the Solar

Max Repair Mission did show evidence of the characteristic texture of an oxygen atom-eroded

surface, but measurements of material loss were not reported. 1_6

Recent experiments, however, appear to indicate that the FEP Teflon exhibits an induction

period, after which ¢iegradation takes place. A study performed by Koontz, et al. t47 determined

that the reaction rate for FEP Teflon with AO in a flowing aRerglcw source was significantly

increased by the presence of vacuum ultraviolet (VUV) radiation provided by a Krypton resonance

lamp. They found the reactivity of Kapton with atomic oxygen in the presence of Vl.rV increased,

but not as significantly as that of Teflon. Hence, synergistic effects of atomic oxygen and

ultraviolet radiation must be evaluated when determining the overall durability of a material.

FEP Teflon exposed to atomic oxygen for the first 2 months on the Lockheed flight

experinlent also showed little recession._41 However, there seemed to be a non-l;near degradation

response in the thermal surface properties (i.e., or'c) with increasing AO fluence. For the first 30

days the surface properties were constant, indicating that there was an induction period before

Teflon underwent oxidation in LEO. After about 60 days a, J an atomic oxygen fluence of about

1.0xl0 n atoms/cm 2, thermal analysis predicted the start of an average samnle emittance decrease.

(Estimates of polymer thicknesses at progressive times/oxygen fluences were made by using

previously determined thickness versus infrared emittance data for FEP Teflon.) In fact, after 2

months and ~100 esh UV, the optical properties of the silver Teflon on the Lockheed flight began

to change in a manner suggesting material recession. 7his indicated either thickness loss or some

bulk property change in the FEP Teflon film. After 105 days and a fluence of 1.85x10" atoms/cm 2,
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the sample emittance, _:, had decreased from 0.56 to 0.37. The thickness loss inferred, from this

reduction in _; was at least 50% of the original 0.025 mm sample. For the last few days of exposure

on the Lockheed experiment, the calculated recession rate was only about 0.13x10 "z4 cmS/atom,

barely one-third of the average LDEF rate, but significantly higher than the previously reported

recession rate of <0.05x10 24 em3/atom.

The thickness loss versus oxygen fluence relationship for FEP Teflon is shown in Figure 2-54

(ref Knopfet .al., 1985). Also shown is the relationship for Kapton. For the Kapton sample, the

average oxidation rate, concluded from the 0.052 mm removal of material and a known atomic

oxygen fluence of 0.121 x 1022 atoms/era 2, was 4.3 x 10 .:4 cm3/ator,,.. When uncertainties were

included, this 40*/, higher Kapton recession rate was in general agreement with the value of 3.0 x

10"z4 cm3iatom reported by Leger, et a1149
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F'_rure 2- 54. Thickness Loss versus AO Fluence for Kapton and FEP Teflon

The well-documented erosion observed for silver Teflon on the leading edge of LDEF

results tse in a higher reaction efficiency for FEP Teflon than observed previously. Table 2-24

summarizes the various flight measurements of Teflon AO reaction efficiency, m The LDEF

mission had a high UV exposure followed by an increasing atomic oxygen fluenc¢ during the flight,

which resulted in nearly an order of magnitude higher reaction efficiency than observed on earlier
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flights. The UV degradation, clearly indicated in the studies of the trailing-edge Teflon surface

from LDEF, is undoubtedly responsible for the higher erosion observed on LDEF. ts2 These data

confirmed that atomic oxygen-induced recession of FEP in LEO is also a function of UV exposure

level. This indicates that a synergistic effect exists with the atomic oxygen and UV. In contrast,

linear relationships were observed for polymers such as Kapton, and there is good agreement on

reaction efficiency between these same missions.

Table 2- 24. Flight Measurements of FEP Teflon Reaction Efficiency

Flight AO Fiuenoe UV (esh) Reaction Efficiency
atoms/cm 2 cm3/O atom

STS-8 (EOIM-I) 8.58x1019 <50 Not measured

STS-41G (EOIM-II) 3.5x1020 < 50 < 0.05x10 "_

Solar Max "7x1020 Unknown Not measured

Lockheed Experiment 1.85x10 _- 300 0.075 to 0.13x10 "_

LDEF 3.3 to 9.0x102_ 6,000 to l 1,000 0.34x10 "_

Studies of this nature can provide insight as to mechanisms of polymer degradation due to

LEO synergistic environmental effects as well as providing guidance as to requirements for proper

ground based simulation facilities. Compariso,a of laboratory and flight data has indicated that there

are two degradation mechanisms taking place in the LEO environment: (1) a fast surface oxidation;

and (2) a slower, diffusion limited bulk oxidation (ref. 148). For most polymers, the oxidation rate

controlling step is identified by numerous investigators as hydrogen abstraction and hydroperoxide

formation. _s3 Therefore, oxidation is dependent on the types of carbon-hydrogen bonds present in

the polymer. When elements other than carbon and hydrogen are present in the polymer chain,

dissociation energy of the additive bonds becomes a contributing factor in the stability of the

polymer in an oxidative environment. For example, Teflon, a fluorocarbon which has all the

hydrogens replaced by fluorines, is significantly more resistant to oxidation than its hydrocarbon

counterpart. In contrast, the degradation of Kapton films within the LEO environment is attributed

to a chain reaction involving hydroperoxide formation and free-radical initiation. This results in

rapid surface oxidation accompanied by loss of mass arid changes in surface morphology, while the

bulk properties remain unchanged. However, silicone or siloxane coated Kapton and FEP Teflon

films, as a result of their physical structures, are resistant to surface oxidation. Diffusion-limited

oxidation then becomes the predominant reaction and leads to bulk property changes. Since

diffi_sion limits the rate of oxygen buildup and, therefore, the rate of oxidation, these classes of

materials will exhibit an induction period prior to degradation. Due to bulk property changes,

surface cracking and crazing can take place.
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2.9.3 Atomic Oxygen Undercutting of Impact Damage

Of particular importance for evaluating system performance are the interactions and

synergisms of the various space environments (e.g., UV and AO) with the impact environments.

Space environment exposure alters material properties, thereby changing the defects created by

impacts. This is exemplified by the impact effects on LDEF's thermal control paints and

composites. The impacts themselves can alter material states and expose underlying materials,

allowing the space environments (e.g., AO) to further increase the damage area and to begin

damaging previously unexposed areas. This is epitomized by the impact effects on LDEF's thermal

control blankets. AO "undercutting" of polymer substrates under protective coatings is a

phenomenon that can be a particular concern for space applications ofmultilayer insulation as

demonstrated by DeGroh and Banks. ts+ The phenomenon is illustrated in Figure 2-55. The low

reaction probability with a polymer such as Kaptor, at the initial impact of monatomic oxygen

causes the atom to scatter with a cosine distribution, so that even for coating defects (i.e., holes or

cracks) facing the atomic oxygen ram direction, the underlying Kapton _ubstrate will be undercut.
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Figure 2- 55. Ato_c Oxygen Undercutting of Coated Pol_eric Materials on LDEF
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Atomicoxygen undercutting of impact damage was measured on LDEF multilayer insulations

of aluminized Kapton, and the results are shown in Figure 2-56 (ref. DeGroh and Banks, 1991).

Undercut widths range from appro_mately eight times the defect crack width for small cracks

(-0. lmm wide) to approximately three times for larger cracks (-0.6mm wide). Thus the LDEF

data gives a good engineering perspective on this phenomenon.
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Figure 2- 56. Atomic Oxygen Undercut Widths in Cracked Multilayer Insulations

2.9.4 Impact-lnduced Contamination

The space environments (i.e., AO and UV) combine with impact ejecta to cause extensive

contamination. This is illustrated by the impact-caused contamination on LDEF's optics, sofar cells

and thermal control materials.
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2.9.5 UVPhotochemical-Induced Contamination

Molecular species ou, ;ed from spacecraft materials adhere tenaciously to and darken

spacecraft surfaces when exposed to solar ultraviolet (UV) radiation. Such deposits severely

degrade the performance of optical systems operating at UV and visible wavelengths. It has been

cemmonly observed _ss'_6 ,_s7 that spacecraft surfaces exposed to solar irradiation for extended

periods become endarkened in the presence of molecules outgassed from the spacecraft itself, and

that ground-based contamination control measures are generally insufficient to prevent the problem.

Contaminant observations on LDEF were consistent with the i,,," "ence of UV radiation in

enhancing molecular contaminant deposition (ref. 110).

Surface darkening has been quantified in terms of increased solar spectrum absorptance (Ao.,)

for a number of spacecraft, as shown in Figure 2-38 In the special ca_e of solar observation

missions, the useful lifetime of optical systems which view the Sun directly may be measured in

da3 r_, as illustrated in Figure 2-57 (ref. 108)4
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Solar observing optical systerns, especially in the UV, are particularly w dnerable to

photodeposits because

, the absorptance of the deposits is typically markedly higher in the UV,

• allowable margin for degradation is quite small, typically a few percent,

• all optical surfaces in the system are affected, and

since the rate of deposition is a t_anction of UV intensity, optical magnification

aggravates the problen_.

When outgassed molecular spedes are exposed to solar UV radiation and absorb photons in

the wavelength range of <200 nm, the chemical properties of those molecules are altered and

molecule-to- surface bonding can occur. The details of this photo-deposition process (surface

bonding) are not known, but the result is well known to be a tenacious dark brown film covering

the irradiated surface. Laboratory results _7'm have ve,'ified that vacuum Ln/irradiation (<200

nm) causes the permanent adhesion of a wide variety of molecular species which strike the

irradiated surface. As showz_ m Figure 2-58 (ref Frir_. et al., 1992), the spectral absorptance of the

resulting film is substantial, and is surprisingly independent of the composition of the deposited

species.

A review of the relatively scant available data indicates that the allowable photodeposited

contaminant film thickness for an observatory such as the Orbiting Solar Laboratory (OSL) is about

10 run (1 pg/cm _) fer operation at 380 nm wavelength, and about 4 nm (400 ng/cm 2) for operation

at 200 nm wavelength, cumulative over three years of operation. Contamination control to such

levels may not be possible in the absence of an ability to clean the mirrors on tobit.
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RELATIONSHIPS OF SPACE ENVIRONMENT - MATERIAL INTERACTIONS

Page No.

Atomic Oxygen Effects

Surface Recession Predictions:

Ax (surface recession) = F T (atomic oxygen fluence) x Re (reac,qon efficiency) 2-3

Micrometeor0id and Debris Effects

Threshold thickness for penetration for a given target thickness and impact parameters

t = 0.57m0-35200-167o0"875 2--42

Variation in BRDF for the LDEF mcirometeoroid and debris environment 2-60

Contamination

Themaal Control Surfaces

Solar Absorptance Increase (A0h) of 0.03 per 100 A of molecular film 2-92

Solar Array

1% Decrease in Power Output per 1000 A 2-92

Optics

Degradation Dependent on Wavelength 2-92
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3.1 INTRODUCTION
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3.0 ADVANCED COMPOSITES

3.1 INTRODUCTION

Advancaxl composite materials are being considered for stiffness-critiead space structures,

such as bus structures and solar array structures, and for dimensionally stable space structures, such

as optical benches and antenna systems. Thus, properties of major interest to the space designers

include modulus, coefficient of thermal expansion (CTE), coefficient of moisture expansion (CME),

outgassins, spedfic heat, and thermal conductivity, as well as fiber volume, void content, and

density. Figure 3-1 compares the specific strength and stiffness of polymer matrix composites with

common metals and metal matrix composites.
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Polymer-matrix composites _MCs), primarily carbon- and glass-fiber reinforced epoxies

and carbon-reinforced polysulfone and polyimide, with and without thermal-control or protective

coatings, metal-matrix composites (MMCs), primarily carbon-fiber reinforced aluminum and

magnesium, and carbon-carbon composites have flown on the LDEF and several Space Shuttle

flights. Table 3-1 summarizes the space flight experiments and composite materials exposed to the

LEO environment. The primary objectives of these experiments were to evaluate the cumulative

and synergistic effects of the orbital space environment (e.g., atomic oxygen, UV radiation,

micrometeoroid and debris, thermal cycling, vacuum) on the composites' physical and mechanical

properties, and to extrapolate these results to longer exposures for timely materials R&D and/or

systems-design modifications.

Table 3-I.

LDEF M0(O-10

Row 1)4 (rE')

Row D8 (LE)

LDEF/UTIAS

(AO 1 g0)

Crow DI2, 90 ° _o LIE)

LDEF/M0003._

- LE row 9

- TE row 3

LDEF/

M0003-8(Row D_, LIE')

M0003-10(Row D3,TE)

LD EF/A0134'

Compoaites for LSS

(Row 9B,LE) 1
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LDEF,'A0171

$TS-8/EOD._

STS-461EOIM 3

STS-4,6/LDCE
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! ,2 ,
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5,_
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11
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!

• PilOrg [ Environment
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I?

lg
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Residual stress

Chemical Analysis
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AO E_ion
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3.2 POLYMER MATRIX COMPOSITES

3.2.1 Carbon/Thermosets

Table 3-2 summarizes the flight experiments that evaluated the effects of the space

environment on several classes of carbon fiber reinforced polymer-matrix thermoset composite

materials, such as epoxy, pol_dmide, and bismaJeinfide matrix coml_osites. The AO fluence, and

ultraviolet radiation fluence are tabulated for each exposure location.

Table 3-2.

Experiment

(reference)

L_EF

- M0003-9 (7)

- M0003-8 (8)

- A0134 (11)

Aagt=
off

RAM

S(L_

LDEF 38

- M00QJ-10 (1,3,4)

- A0171 (14)

Polymer Composites Exposed to the LEO Environment

8.99xl021

7.15x102t

LDEF

Row

LDEF- A0175 (13) 68 7 3.39x102t

LDEF 82 12 1.33xi021

-A0180 (5,6.)

LDEF- A0175 (13) 112 1 2.92x10 I_
=

LDEF 158 4 2.31x10 s

-M0003-10 (1)

LDEF 17"2 3 1.32x10 :r

- M0003-8 (8) (TE')
p,, , ,

STS-46/EOIM-3 0 O. 193xi02t

(16,17,18)

STS-46/LDCE (;9) i 0 0.! _3x1021
I

I STS-8 (151 0 0.35x102t

UV

ESH

11,200

9,4b_q

7,100

6,800

7,400

10,500

ll,l(_

8.3

8.3

TE" trailit!g rxlgc; LE: leading edge

Epoxy (Rd.)

T300/934

P75/934, GYT0/CE339

T50/F263

T50/934,/X904B

Ceiion 6000,'E788

HMF 176/934

TS0/ET88

HMS/3501-SA

GYT0/X904n

F75/F593

T300/5208

T300/934

A.S4/3501-6

P75S/CF_.339,934

HMS/934

GYT0/CE339,934

T300/5208

rety_mu_,

C6000,'_IR- 15

C6000/PMR- l 5

Cedma/LARC-16

T300/

V378A

C60O0/PMR- 15 T300/FI78A

T300/934, T30_/5208"

"_OO/SP28S Epoxy

Kevlar/SP328 Epoxy

Bom_S_ ,Epoxy

T3001934 C6000/LARC-160

F75/934

GYT0/CID39

"1"300/5208

T300/934 C6000/PMR

F75.e/93,_ AS4/PMR-15

AS4/3501-6

,,], Carb°e-rEp°xY
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• 3.2.1.1 Mass Loss

The mass loss of several carbon/epoxy composite samples located on LDEF leading edge

(Experiment M0003-9) and exposed to an atomic oxygen fluence of 8.99xl 0 _1 atoms/era 2 are

summarized in Table 3-3 (ref. 7). All leading edge uncoated samples exhibited mass loss. This is in

contrast to the '.railing edge samples that exhibited no significant mass loss. Hence, the mass loss is

sample erosion due to AO and any micrometeoroid impact.

Table 5-3. Typical Mass Loss of Carbon/Epoxy Composite Materials

Material _ Fiber/Resin Suppliers W_ht Change
%

GYT0/CE339 Carbon/Epoxy BASF/Ferro -3.67

T50/F263 Carbon/Epoxy Amoco/Hexcel -3.10

T50/934 Carbon/Epoxy Amoco/Fiberite -3.05

T50/X904B Carbon/Epoxy Pdn(r.o/Fiberite -5.35

T50/E788 Carbon/Epoxy Amoco/Hexcel -4.61

C.elion 6000/E788 Carbon/Epoxy C.elanese/Hexcel -3.21

GY70/xgo4B Carbon/Epoxy BASF/Fiberite -3.92

(a) sample dimensions of 3.50-in. x 0.754-in. x 0.080-in. in th/ckness.

3.2.1.2 Thickness Erosion from Atomic Oxygen Exposure

Table 3-4 summarizes the average thickness loss due to atomic oxygen exposures and the

atomic oxygen reaction efficiency for the carbon fiber composite systems from LDEF Experiments

A0134, M0003-8, M0003-9, M0003-10, the Solar Array Materials Passive LDEF Experiment

(SAMPLE) A0171, and LDEF Experiment AO180 (UTIAS). Also included for comparison are

the Space Shuttle atomic oxygen flight experimental results (STS-8, STS-46).

3-4
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AO reactivity values generated from short term Space Shuttle exposures yielded two to

three times the LDEF values noted in Table 3-4. A reasonable explanation is that high fluences

accumulated through long exposures readily erode the matrix rich composite surface layer so that

the fiber rich bulk region receives comparatively higher exposure than composites exposed to lower

fluence levels. Reactivity values for high fluence exposed or long term exposed composites are

thus more characteristic of the carbon fiber than the more r_ctive matrix material. Carbon AO

reactivity were 0.5-1.3 x 10"24 cm3/atom from the STS-5 mission. 2°

Consequently, long term surface erosion prediction of carbon fiber composites should be

based on carbon AO reactivity to give a more realistic measure of material loss. Short term

exposures of composites will yield erosion rates higher than predicted for longer-term exposures.

Hence, the erosion depth as a function ofAO fluence, plotted in Figure 3-2, would show a linear

relationship if the short term Space Shuttle results are excluded.
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A summary of the experimental details of the surface erosion for the polymer composites

located on LDEF is provided below.

LDEF Experiment AO134. Surface degradation of an uncoated 4-ply, [_45], T300/5208

composite specimen exposed to an atomic fluence of I;.99xl 021 atoms/cm 2 (tray B9 which was

closest to the leading edge) indicated that virtually one ply of composite material (approximately

0.11 ram; 4.5 rail) was eroded during the 5.8-year exposure (ref. 11). The epoxy matrix eroded

somewhat more rapidly than the carbon fibers. An ash-like residue remained on the ,,-roded surface

after the flight.

LDEF Experiment M0003-8. This experiment revealed dramatic loss of material due to

atomic oxygen erosion for the leading edge (row D9) composite specimens (T300/934 epoxy,

C6000/PMR-15 polyimide) (ref. 8). An AO reactivity of 0.99x10 "24cm3/atom was calculated for

the bare composite T300/934 epoxy panel [O_/+45/O2/+45/90/O]s based on thickness loss (ref. 9).

LDEF Experiment M0003-9. Photographs of several carbon/epoxy composites on the

leading edge (atomic flu ence of 8.99x 102_ atoms/cm z) revealed that the carbon fibers were eroded

by the AO and formed no unreactive protective layers as observed with the glass/epoxy samples.

(ref. 7). The total amount of thickness loss was approximately 0.10 - 0.15 mm (4 - 6 mils) for the

carbon/epoxy samples (thickness loss due to AO and micrometeoroid impact for the carbon/epoxy

samples was measured from cross sectional microphotographs). This compares to 0.08-0.13 nun

(3 - 5 mils) for Kevlar/epoxy samples, and 0.013-O.03 _ (.5 - 1 mil) for glass/epoxy samples. Of

the materials tested, the glass/epoxy was the least affected by the atomic oxygen (see Section

3.2.3.1). The thickness loss for the carbon/epoxy samples was slightly less than the predicted

thickness loss of 0.167 mm (6.6 mil) estimated using the reaction efficiency values from previous

shuttle flight (Ax = FT x I%).
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LDEF ExperimentM0003-10. Erosion"_epths a for several polymer matrix composites on

LDEF's leading edge (Row D8) and exposed to a. atomic _ _ertce of 7.15xl0 2t atoms/era2 were

observed to be inversely proportional to their fibe| conterl _(refs. 1 and 3). The results, shown in

Figure 3-3, are for several carbon/epoxy composites [0/45/90/135],. having several different fiber-

matrix combinations and a _,de ranPr of fber conte_'

EROSION DEP'I_I
mils nun

0.09

0.08 --

3

0.07 -

0£6--

2 -- 0.05 --

0.04

0.03
54

@

O

II GY70/X-30

4_, GY70/934

• P75S/934

P75S/CE-339

• GY70/CE-339

II

I I I I I ..1
56 58 60 62 64 66 68

FIBER CONTENT, voi % olu 94.ol3_

Note 1 The mass measurer ,ents were made after the samples had equilibrated in a constant temperature,

constant humidity laboratory. Thus, moisture variations were eliminated and the only significant mass

changes were those that could be attributed to atomic oxygen erosion on the exposed leading edge.

Note 2 The composites were made by General Dynamics Space Systems Div. and have similar surface

conditions and identical fiber orientations. Carbon fiber _-uppliers are: 8ASF Structural Materials Inc.

(Celion GY70) and Amoco performance Products inc. (Thomel P75S). Epoxy-resin suppliers are

Composites Div., Fiberite Corp (X-30 and 934) and Composites Div., Ferro Corp. (CE-339)

Note 3 All of the composites _ere fabricated follov_Jng similar processing procedures. In particular, the

same bleeder cloth was used so that tire composites had similar smface condiuons. Composites

prepared b) other expenment partlc_pants aaving sigr_ificantly different surface conditions (either more

matrix rich or less mamx rich) did not fall on fl_e erosion depth versus fiber content curve. This

implies that fiber content and surface con_lition are more important variables than fiber or matrix bpe

in deterrmning suscepubility to atonuc-oxygen erosioa.

Figure 3-3. Atomic Oxygen Erosion Depth Versus Fiber Content for LDEF Carbon/Epoxy

Composites

a The extent of the average atomic-oxygen erosion depth for these uncoated polymer matrix composites was

e.alculated using weight-loss data, the known composite density, exposure area, and the measured mass loss. Since
the fibers and matrix have different erosion r_tes and densities, this technique of determining the erosion depth is an

approximation. The actual erosion depths are probably somewhat higher becau._e the samples hat resin-rich

surfaces and the epoxy erodes at a higher rate than the higher density carbon fibers.
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Experiment AO171. This experiment, located on Row 8 posit.ion A, allowed all materials

to be exposed to an atomic oxygen fluence of 7.15xl021 atoms/cm 2 as a result ot being positioned

38 ° offthe ram direction. The erosion depths for the uncoated polymer matrix composites were

significantly less than that for monolithic polymers. For example, tne estimated erosion depth for

most of the epoxy composit.*.s was less than 0.07 nun (2.8 mil), which is much less than the

predicted erosion of 0.12 nun for mono!ithic epoxies zt at the LDEF atomic oxygen fluence of

approximately 7.15x 1021 atoms/cm 2 for gew 8. This is attributed to the lower erosion for the

carbon fibers in comparison to the composite epoxy matrix erosion. Atomic oxygen reactivity

values for the carbon/epoxy composi_,es on averaged lxl0 -24 cm3/atom (see Table 3-4). All

thickness losses measured on the flight specimens were consistent with their measured mass loss.

Experiment AOISO. This experiment was located at D 12 on LDEF, 90 ° to the leading

edge. LDEF was yawed 80 relative to the orbital velocity vector, with a corresponding atomic

oxygen fluence at D12 of about 1.33x1021 atoms/cm 2. 22 All of the LDEF AO180 experiment

composite tube and flat coupon s_nples were mounted on the tray_ with aluminum end fixtules.

Low-incident-angle atomic oxygen eroded the composite-material samples, which were located

approximately 82 ° of the ram direction. Scanning electron microscopy photographs of the exposed

area showed that essentially only :he surface resin layer was eroded. Thickness ioss measurements

for the carbon/epoxy T300/934 flat laminate (4-ply; (_+45)2s) was measured at 15 _tm (-.6 mil).

Neglecting any fiber loss, the erosion yield for this epoxy is estimated at -1.25x10 "24 cm3/atom.

This compared favorably with data from Space Shuttle Flight experiments that quote a value of

1.7x 10 .24 cm 3/atom. 23.z4

Atomic oxygen erosior, of circular tubes was also studied (ref. 5). Because of the

curvature, it is possible to investigate erosion loss mad surface morphology changes as a function of

angular position around the tube. The maximum loss was estimated at -160gm (-.-6.3 mil) during

the 69 months in IGw Earth orbit; about one ply ef material for near ram c_nditions. The erosion

yielfi for this material is estinaated at -1.9x10 -24 cm3/atom, which is agal,i _lightly less than the

range o/" values reported for different carbon/epexy materials of 2.1-2.6x 10"24cm3/atom from the

previous shuttle flights. 25
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3.2.1.3 Impact Dal-nage frcm Micrometeoroid and Debris

Micrometeoroid and debris impact on the polymer composites does not produce the typical

hemispherical craters found on metallic structures. Instead, due to the brittle nature of the resin

matrix, the damage consist of penetration holes with adjacent surface damage (e.g., jagged edges),

and some internal ply delamination and local fiber fractures. A schematic diagram of the damage

morphology and diameter measurements for impacts into composites is show_n in Figure 3-4. 26

SPALL

(A) --_ D 1-4_--j ZONE

(B)

(C)
f"T iI I I I I ii I I I.I I i I | 1 l

OIM 94.013.129

(A)

(B)

(c)

Figure 3-4.

Cross-sectional view ol feature with surrounding spall zone

Feature with a larger damage zone, beneath tke composite surface, than is visually seen at

the original material surface

Top view of a feature in a composite surface.

Schematic of Damage Morphology For Impacts Into Composites

For the more brittle composite structural materials, the damage is rarely a simple crater

Instead, significant in-depth damage can occur and may be anisotropic, following the structure of

fibers For complete penetcations the rear surface damage area is frequently larger than the entry

hole area. This usually occurs with brittle fibers, such as carbon, in wtfich case the impact and exit

holes exhibit brittle fiber fractures as well as rear exit hole surface spallation (T300/5208 epoxy:

[±45]s ) The spallation damage-to-hole size ratio is about 5:1 On the other hand, tough non-

brittle fibers such as aramid fibers fail in a "brush or broom" mode surrounding the impact damage

region (Kevlar/epoxy tube SP-328, [±4514s)

Although no catastrophic failure occurred from the impacts experienced on LDEF, this type

of impact damage can still lead to failure in highly stressed components due to the breaking of the

fibers, cracking of the matrix, and removal of part of the matrix via the spailation process This

couid aim lead to further erosion of the composite material during subsequent exposure to other
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space environments such as atomic oxygen or ultraviolet light, creating additional delaminations

and interply cracking.

Impact damage from micrometeoroid and debris for various carbon fiber-reinforced epoxy

materials occurred on the LDEF UTIAS Experiment AO180. _ The samples were mounted at

D12, about 82 ° from the ram direction. The exposed surface area was --0.6m 2. The UTIAS

experiment suffered 84 randomly distributed impacts by micrometeoroids or space debris; 74 of

them produced craters having diameters less than 0.5 mm (0.02 in.). The predicted number of

impacts for this area after 5.75 years is -80, which is ba_ on the nomogram of Figure 2-9

(assuming 0 = 90°).

From a detailed inspection of the composite samples (both tubes and flat plates), only 10 of

the 84 hits were found on these materials, the balance located on end-fixtures and on the aluminum

base plates. A summary of the 10 impact sites (out of 84) found on the composite samples is give,

in Table 3-5 with estimates of surface damage area, hole size and penetration depth. Also included

are the impact damage on Kevlar fiber-reinforced epoxy samples. Such data are useful for

estimating total damage on composite structures that arises from micrometeoroids/debris.

Table 3-5. Summar )act Features on Carboa Epoxy Compos te Specimens
Sudace Hole Pm'tlde

Damage_ Area Nominal Hole Penctratio-

Material Type Area (mm 2) (ram 2) Diameter (ram) Depth (/of Ptka)

Carbon/Epoxy (T300/5208)

Carbon/Epoxy (T300/SP 288)

Kevlar/Epoxy (SP 328)

Sample #

Type of Plies

Plate 4

Tube 4

Tube 4

Tube 4

Tube 4

Tube 4

Tube 4

0.222 0.222 > 4

1.064 0.083 0.325 > 4

1.162 0.036 0.215 1-2

0.498 0.015 0.139 ~1

0.423 0.018 0.152 ~1

1.253 0.076 0.312 2-3

0.223 1-2

1.4.45 0.033 0.204 2-3

0.370 ~1

0.881 0.020 0.159 2--3

Note: Micromctcoroid/dcbri=impact=can penetr=t¢fo,:r-plylaminate=wi_h mubztantialrear-faceil:Xdlationdamage.
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3.2.1.4 MechanicalProperty Degradationfrom Atomic Oxygen

Theeffectof LEO exposure on the mechanical properties of polymeric composites that flew

on LDEF are discussed below, b Emphasis is on the effects of specimen location on the spacecral_

as well as on how the laminate design of the composite specimens plays a significant role in

determining the residual properties of the composites.

3.2.1.4.1 Tensile

Figures 3-5 and 3-6 show the ultimate tensile strength and tensE,: modulus for T300

carbon/epoxy (934 and 5208) composites' that received over 5 years and 9 months of on LDEF

Experiment A0134 (ref. 11). These composites were fabricated from unidirectional prepregs

oriented into a 4-ply [_+45], lay-up so as to be matrix sensitive during tensile testing, d The tensile

specimens were 0.500-inch and 0.375-inch wide by 8-inches long with laminate thickness varying

from 0.016-inch to 0.024-inch. The location of this experiment (ha Tray B on Row 9) was the

leading edge of LDEF and hence, received an atomic fluence of 8.99x102tatoms/cm2.

These off-axis composite specimens exhibited a significant deterioration in both tensile

strength and modulus. Tensile strengths were between 45 to 65% lower than the baseline

composite specimens (e.g., tensile strength of the T300/5208 composite decreased to 7.3 ksi (50

MPa) from 21.0 ksi (145 MPa)). Tensile modulus were between 20 to 33% lower than the baseline

composite spedmens (e.g., tensile modulus of the T300/5208 composite decreased to 1.,9 ,Ms/(13

GPa) from 2.5 Msi (17 GPa)). However, no major differences were noted ha the baseline values for

the composites tested in 198_a, the ground control composites that remained at Langley, and the

composites that flew protected (the T300/934 epoxy composites were coated with sputter-

deposited metals to evaluate the metal's effectiveness for atomic oxygen protection of composites;

see Section 3.3.2). More than a loss in matrix resin contributed to this phenomena since the

thickness loss is not proportional to the loss in tensile properties by rule &mixtures (thickness

losses varied from 0.003 to 0.0045 inch of the 0.0055-inch thick outer ply).

b A significant number of composite specimens were part of several _b-experimmta of LDEF Experimemt M0(X)3,

"Space Enviromnental Effects on S._tcecraft Materials." M0003-8 was a Boeing Defense and Space Group
experiment, M0003-9 w_ p Lockheed Missiles & Space Company experiment, and M0003-10, the Advanced

Compceites Experiment, was • joint government and industry effe_t. General Dynamics Space Syttema Compaay

(GD$SD), Lockheed Missiles & Space Company (LMSC), Boeing Lm:ense and Space Grottp, McDotmell Douglas

Space Sys_tm Company 0vIDSSC), and United Technologies Research cemter (LrTRC) parti_.ipated ia this

mbexper/atmt. The Aemapece Corporation was the principal investigator for the M0003-16 expe_,,tmt. LDEF

Expesimemt A0134 tim e_taluat.d polymeric composites.
c Fiberite 934 ream; N_ 5208 ream; Union Carbide 1"300 fiber.

d ln-plmm them" ttrength and modulus are obtained from tea,ion tam on [:t:45] _ conducted acoofding to the

AST1M Practice for in-plane Shear Strma-Stram Rmpom,e of Unidirectiomd Remfomed Plutice (13 3518).
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LEO exposure does not appear to significantly reduce the tensile strength of a

unidirectional T300/934 epoxy composite [0h6. These composite specimens, part of LDEF

Experiment M0003-8 (Boeing), were located at the trailing edge position D3 (atomic oxygen

fluence of 1.32x10 _ atoms/cm2), and were held in stress during the flight using preload fixtures

adjusted to maintain a predetermined level of strain (rcf. 8). Table 3-6 summarizes the tensile test

results. In addition tensile moduli values compared favorably with pre-flight values.

Table 3-6. TensileProperties of T300 Carbon/934 Epoxy [0]16

Conditions

Strength,
ksi (MPa)

Preflight

Baseline 152.7 est 18-20

(1052.8) (124-138)

Prestressed trailing e_ge

#

Tested

148.1

(1021.1)

Post-flight

21.0

044.8)

#

Tested

Note:The tensile test results are inconclusive due to the spread of the data and the limited sample

population. Pre and post flight strength values are very similar but all are wel! below anticipated levels

for this material system. Most of the post flight test failures occurred outside of the gauge area or at

locations with rough edges. _e same problems may have existed for pre-flight testing, thus lowering
the stnmgth values.

LEO exposure appeared to have degraded the tensile properties for a C6000 carbon/PMR-

15 polyimide [0/-t-45/0/+45],. These composite specimens, part of LDEF Experiment M0003-8

(Boeing), were locate</at the trailing edge position D3 (atomic oxygen fluer_ce Cf 1 _2x10 _=

atoms/era2), and were held in stress during t e flight using preload fixtures adjusted *,v maintain a

predetermined level of strain (tel 8). Table 3-7 summarizes the tensile test results. This reduction

in mechanical property was unexpected since these were trailing edge exposed composites and

hence, shielded from any atomic oxygen erosion that typically occurs on leading edge exposed

composites.

Table 3-7. Tensile Properties of C6000 Carbon/PMR-l$ Polyimide [0/-4-45/0/+45].

Conditions

Stre_th,
ksi (M_)

Baseline 69.6

(479.9)
w

Prestressedtrailingedge

Pre-flight

ModuJ_s,
Msi (GPa)

Note: Tensile test results are inconclusive due to the s

!

l'Tested

3

Post-flight

Strength,
ksi (MP.)

MOdulus,

Msi (GPa)

45.4 8.0 2

(313.0) 05.2)

#

Tested

)read of the data and the limited sample popuhllioo.
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3.2.1.4.2 Compression

LEO exposure does not appear to significantly reduce the compression strength of a

T300/934 epoxy composite [0°]16 and for a C6000 carbon/PMR-15 polyimide [0/+45/0/+45]s.

These composite specimens, part of LDEF Experiment M0003-8 (Boeing), were located at the

trailing edge position D3 (atomic oxygen fl:tence of 1.32xl 0 _7atoms/era2), and were held in stress

during the flight using preload fixtures adjusted to maintain a predetermined level of strain (ref. 8).

Table 3-8 and 3-9 summarizes the compressive test results Ibr the M0003-8 composites.

Compression moduli data for the cis¢ -:y system is questionable due m the severe end brooming

which occurred during _esting and may have been caused by demage to the specimen ends flora the

preload fixture.

Table 3-8. Compression Properties of T300 Carbon/934 Epoxy [0]t6

Conditions

Prestressed trailing edge

Ire-flight

Moduh_. #

Msi (GPa) Tested

Baseline 118.1 eat 18-20

I

Post-flight

Strength, Modulus,
Im _'a) M_ (GPa)

106.8 8.3

#
Tested

Note:The compression test results are inconclusive due to the spread of the data and the limited

sample population. Pre and post flight strength values are very similar but all are well below

anticipated levels for this material system. Most of the post flight test failures occurred outside of the

gauge area or at locations with rough edges. The same problems may have existed for pre-flight
testing, thus lowering the strength values.

Table 3-9. Compression Properties of C6000 Carbon/PMR-15 Polyimide [0/i-45/0/i-45],

Conditions

Strength,
ksi(IMPa)

Baseline 64.5

(444.'D

Prestressed trailing edge

Pre-flight

Modulus, #

Msi (GPa) Tested

Pust-flight

61.0

(420.6)

Modulus, i #Msi (GPa) Tested

Note:The compression test results me inconclusive due to the spread of the data md the limited

sample population. Pre and post flight strength _alue8 are very similar but all are well below

anticipated levels for this material sygtem. Most of the post flight test f_luree oocurred o_taide of the

gauge area or at locations with rough edges. The same problems may have existed for pre-flight

testing, thus lowering the strength values.
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3.2.1.4.3 Short Beam Shear

Short beam shear strengths of carbon/epoxy cotaposites exposed to the LEO environment

are summarized in Table 3-10. • These composites were part of LDEF Experiment M0003-9

(LMSC) (ref. 7), whid_ were located on Bay D, Row 9 on the leading edge (AO fluence =

8.99x1021 atoms/cm 2) and on Bay D, Row 3 on the trailing edge ofLDEF (AO fluence = 1.32x1017

atoms/cm2). Specirnens were 16 ply unidirectional [0] laminates and [:1:4514. fabric laminates.

The remits show that the strengths of the exposed composite specimens degraded only to

the extent of the mass loss percentage (strength calculations were based upon the final area of the

specimen). Hence, the LDEF exposure had no apparent effect on the short beam shear strength for

any of the epoxy matrix composites. This indicates that except for the physical eroding of the

material there was no mechanically detrimental effects caused by the low Earth orbit environment.

Table 3-1 O,
w

Material

Short Beam Shear $trcngth for Flight Exposed Carbon Epoxies on LDEF

Laminate

Orientation
F_ber/Resin

Supplier

Sample Location Short Beam Shear,
ks; (MI_)

GY70/CE-339 (0),6 3ASF/F, erro Leading Edge 8.6 (59.3)

GY70/CE-339 (0)a6

GY70/CE-339 (0)t e

T50/F263 (0) 16

T50/F263

T50/F263

T50/934

T50/934

(0)t6

(0)t,

(0)16

(0)t6

(0)t6

(0) t6

(0)t6

T50/934

BASF/Ferro Trailing Edge 8.1 (55.8)

BASF/Ferro Control 7.6 (52.4)

Amoco/Hexeel

(:1:45)4.

Arac, co/Hexcel

Amoco/Hexcel

An_c,o/Fiberite

Amoco/Fiberite
_m

Am,x_/F'iberite

Amoco/Fiberite

Amoc.oFFiberite

T50/xgo4B

Lesding Edge

Tndling Edge
__ J_

Control

Aam,_o/Fiberite

Leading Edge

Trmli_g Edge

Control

Leading Edge

Trailing EdgeT50/xgo4B

T50/X904B (0),6 Anxx.o/Fiberite Control

HMF 176/934 (:1:45)4. /_rao_/Fiberite Leading Edge

HMF 176/93 t

HMF 176/934 (±45h.

Note: . The lda*.,ar

Amoco/Fiberite

Trailing Edge

Control

• st was run per ASTM D 2344.

12.7 (87.6)

12.6 (86.8)
.m

12.6 (868)

11.8 (81.3)

12.1 (83.4)

10.0 (68.9)

1o.6 (73. i)

10.8 (74.4)

7.7 (:53.1)

10.9 (75.1)

12.1 (83.4)

1e.7 (73.7)

• The d_ort beam tdaear teat, a resin dominated property, is typically choaen because of the rumple size limitations

and since shear changes wouid be expected to appear more distinctly than other mechanical property changm.
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Effects of the LEO environment on the short beam shear strength ofthermoset composites

on LDEF Experiment M0003-10 (GDSSD) are shown in Figure 3-7 (ref 3). These composites,

located on both the leading (Bay D, Row 8; AO Fluence = 7.51x102_ atoms/cm 2) and on the t_ailing

edges (Bay D, Ro,,- 4; AO fluence = 2.3 lx105 atoms/cm2), consisted ofGY70/X-30, GY70/CE-

339, P75S/CE-339, P75S/934 and GY70/934 carbon/epoxy composites and T300/V378A

carbon/bismaleimide composites with a [0/45/90/13 5],. laminate configuration.

There was no r¢du_ion i_t the short beam shear strength except that due to atomic oxygen

erosion on the leading edge. In order to quantify the property loss on the leading edge, the average

property value for the leading edge samples was divided by the average value for all of the

remaining samples (e.g., laboratory controls, traihng edge samples). The composites located on the

leading edge suffered only 10% reduction in the short beam shear strength (see Figure 3-7) whercas

the composites located on the trailing edge did not suffer any strength degradation. The

composites suffered larger reduction in their flexural properties compared to the short beam shear

strength (see next section). This is not surprising since short beam shear strength is not as sensitive

to surface degradation as is the flexural strength.

NORMALIZED
SHEAR

STRENGTH
RATIO

!.0

0.9-

0.8

0.7--

0.6--

0.5--

0.4--

0,3

0.2

0.1 _"

ii

0.0
GY70/X-30

AO FLUENCE = 7.15x 1022atoms/cmz

LAY-UP = [0/45190113512s

GY70/934 GY70/ F75S/ P75S/934 T300/V378A

CE-339 CE-339 olu_o1300_

Reduction in Short Beam Shear Strength for LDEF Leading Edge Carbon

Composites

Figure 3-7.
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3.2.1.4.4 Fiexural

Flexural properties of carbon/epoxies exposed to the LEO environmem are summarized in

Table 3-11 (ref 7). These composite specimens, part of LDEF Experiment M0003-9 (LMSC),

were located on Bay D, Row 9 on the leading edge and Bay D, Row 3 on the trailing edge of

LDEF. Specimen configuration were either 16 ply (4-_/-452/45)4T or (+45)4, fabric laminates, t"

The results showed that the strength and modulus of the exposed specimens were degraded

only to the extent of the mass loss percentage (see Table 3-3). Hence, except for the physical

eroding of the material the LEO environment did not caused any detrimental effects.

Table 3-11. Flexural Test Data for Carbon Thermosets on LDEF M0003-9

Material Laminate Fiber/Resin Sample Strength Modulus

Orientation Supplier Location ksi (MPa) Msi (GPa)

GY70/CE-339 (45/-452145), T BASI_/Ferro Leading Edge 35.2 (242) 2.14 (14.7)

GY70/CE-339 (45/-452/45), T BASF/Ferro Trailing Edge 37.9 (261) 2.55 (17.6)

GY70/CE-339 (45/-452/45), T BASF/Ferro Control 38.2 (263) 2.48 (17.1)

T50/F263 (45/-452/45), T Amoco/Hexcel Leading Edge 49.4 (340) 3.49 (24.1)

T50/F263 (45/-452/45), T Amoco/Hexcel Trailing Edge 47.0 (324) 3.14 (21.6)

T50/F263 (451-452/45), T Amoco/Hexcei Control 47.7 (328) 3.26 (22.4)

T50/934 (45/-452/45)4 T Amoco/Fiberite Le_mg Edge 48.7 (335) 2.71 (18.7)

T50/934 (45/-452/45), T Amoco/Fibente Trailing Edge 52.1 (359) 3.01 (20.7)

T50/934 (45/-452/45)4 v _/Fibcrite Control 48.3 (333) 2.90 (19.9)

T50/xgo4B (45/-452/45)_ T Amoeo/Fiberite Leading Edge 46.3 (319) 2.29 (15.8)

T50/X904B (451-452/45)4 v Amoco/Fiberite Trailing Edge 40.0 (275) 1.97 (13.6)

TS0/X904B (45/-452/45)¢ r Amoco/Fiberite Control 47.1 (324) 2.31 (15.9)

HMFI76/934 Fabric (+45)4 ' Amoco/Fiberite L_ing Edge 66.8 (460) 3.16 (21.8)

HMF176/934 Fabric (+45)_, Amcr_/Fiberite Trailing Edge 67.6 (466) 3.14 (21.6)

HMFI76/934 Fabric (+45),4 Amoco/Fiberite Control 67.0 (461) 3.23 (22.2)

qotc:

Notc:

For the leading edge samples which experienced a Iota of material from atomic oxygen, strength and modulus
calculaticns were b_ed on the final thickness of the composites in order to show the true loss in load carrying
ability. Thus, results show that the strength and modulu_ o.r ,.he composites were urmtfected by the mass loss.
However, for a real suucture, one would need to detem_me the effect of the mass loss on the load carrying

capability and stiffness.
The flexure t.r._twas nm per ASTM D 790; composite specimens were 3.5-in. long by 0.75-in. wide.

f The flexure test is typically chosen where there are sample size limitations sad to show more distinct mechamcal

property changes since flexure is a fiber dominated property.
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Effects of the LEO environment on the flexural properties for the carbon thermoset

composites of the LDEF Aerospace Experiment M0003-10 (GDSSD) are summarized in Figures 3-

8 and 3-9 (ref. 3). These composites, located on both the leading (Bay D, Row 8) and trailing

edges (Bay D, Row 4), consisted of GYT0/X-30, GYT0/CE-339, P75S/CE-339, P75S/934 and

GY70/934 carbon/epoxy and T300Fv'378A carbonfoismaleimide composites, all with a

[0/45/90/13512, laminate configuration.

The five carbon/epoxy compositf:s all had normalized leading edge strength values that were

at least 70% of the original value, about as expected considering that the outer 0 ° ply was mostly or

completely eroded away. This explains the minimum reduction in flexural propertie _ for the

composites which had a 45 ° ply at the outer surface (Experiment M0003-9_ Table _ 1). In a

flexural test, the loss of _0 ° ply from the surface will have a much more pronounced effect on the

strength than the loss of a 45 ° ply. In assessing the effect of atomic oxygen erosion on the strength

and modulus of composites, the composite lay-up is an important consideration.

In contrast to the epoxy composites, the flexural strength of the exposed T300/V378A

carbon/bisma!eimide composite specimen located on the leading edge was only 40% of the original

strength (see Figure 3-8). The mass loss for this material was somewhat greater than for the other

composites, but not to the extent that one would expect such a large loss of strength

Figure 3-9 show the reduction in the flexural modulus for these LDEF leading edge

composites. The T300/V378A composite _long with the P75S/934 composite showed the largest

modulus reduction, at approximately 70% of the original modulus. But the reduction in the

modulus was not nearly as great as observed for the strength.
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Effects of the LEO environment on the flexural properties of several carbon composites on

the LDEF Boeing "Advanced Composites Experiment M0003-10, are svmmarized in Figures 3-10

to 3-13 (ref. 4). These composites consisted ofT300 carbon/934 epoxy [0]_6, AS-4 carbon/3501-6

epoxy [0],6, C6000 carbon/PMR-15 polyimlde [0,:t:45,0,+45],, and carbon/LARC-160 polyimide

[0],6.

The experiment occupied approximately one-sixth of a 6 in.-deep peripheral tray on both

the leading and trailing edges of LDEF. The trays were located on LDEF Bay D, Row 4 on the

trailing edge and Bay D, Row 8 on the leading edge. The samples were mounted on both sides of

cassettes with one side (Deck A) exposed to the space environment (leading Row 8: AO fluence of

7.15xl 02' atoms/cm 2, 9,400 esh, 32,422 thermal cycles between -47°C (-53°F) and 84°C (183°F);

trailing edge Row 4: AO fiuence of 2.3 lxl0 s atoms/cm e, 10,500 esh, 32,422 thermal cycles

between -3°C (-27°F) and 77°C(170°F). The other side, Deck B, faced inward and hence, the

specimens did not receive any AO or UV exposure. Although the samples on the B decks were not

exposed to the radiation environment, the experiment design was such that they experienced

thermal excursions similar to those of the exposure samples located on Deck A.
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The T300/934 epoxy spezimens [0]_6 did not show any significant loss in flexure properties

between the different positions on LDEF and the ground control. Figure 3-10 show the flexure test

results for the space exposed, shielded and ground comrol specimens. These results are based on

the post flight cross-sectional areas. The loss of material for the leading edge exposed specimens

results in a performance reduction _-)r a given specimen. As these specimens were unidirectional

[0] reinforced, the load that would have been carried by the eroded material on the leading edge

exposed specimens was carried by the remaining 0 ° ply. For these specimens the only mechanical

performance loss was due to material loss on the leading edge exposed specimens. Ply orientation

plays a significant role in flexure properties behavior when AO elosion is involved.
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Complete sets of this material were flown in both direct space exposure positions on the ``A-deck _ as well as in

shielded positions on the "B-deck" at the leading and trailing edges. Also, a complete set of specimens were kept at
controlled f:emperature and humidity conditions at the Aerosp_.ce Corpora:ion. These specimects were shielded from

exposure to ambient light tnd were used as ground eo_:r_qs.

Figure 3-10. LDEF Exposure Effects on Fiexural Properties of I"300/934 Epoxy
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TheAS'-4/350I-6 epoxy flexure test results show very little change in modulus values

among the different exposl,re conditions and the ground control (see Figure 3-11). The strength

value3 show some variation from position to positicn, most likely due to the inherent scatter with

polymer matrix composite strength measurements and the small sample size. The 0 ° orientation of

the reinforcement allows the underlying plies to pick up the load from the eroded surface ply on the

leading edge exposed specimens. As with the T300/934 results, mechanical performance

reductions are due to erosion of material on the leading edge specimens.

I _ LOW _ NDM I---]HIGH .l

250 . " ,
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0-- 0_
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MODULUS

GPa MSI

100 _ 20

16

12

50 - g

L4
0 0

LEADING TRAILING
EDGE EDGE
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TRAILING
EDGE

EXPOSED

LEADING
EDGE

SHIELDED

I
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CONTROL

O1M _, O13 0|l

Complete sets of this mater:,al were _own in both direct space exposure positions on the "A-deck" a_ well as m

shielded positions on the "B-deck" at the leading and trsiling edges. Also, a complete set of specimen> were kept at

ontrolled temt_rature and humidity conditions at the AerospAce Corporation. These specimens were shielded from

exposure to ambient light and were u._d as ground controls.

Figure 3-11. LDEF Exposure Effects on Flexural Properties ofAS-4/3501-6 Epoxy
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TheC6000/PMR.-15polyimidespecimenswerereinforcedwith ar ,ngle ply stacking

sequence of [0,+45,0,+45],. As can be seen from the data in Figure 3-12 the strength and modulus

values drop off significantly for the leading ectge exposed specimens. This is due to the al:n 3st

complete loss of the 0 ° ply on the exposed surface of the specimen dae to AO erosion. Unlike the

unidirectional reinforced specimens, the ply underneath is at +45 ° and has a lower stiffness and

strength in the load direction. This behavior has been seen in other leading edge LDEF specimens

with multidirectional reinforcement (ref. 8). The non-AO exposed specimen data show no

significant change in flexure properties compared with the ground control data.
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LEADING TRAILING LEADING TRAILING
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OIM 94013 009

Complete sets of this material were flown in both direct space exposure positions on the "A-deck" as well as in

shielded positions on the "B-deck" at the leading and traihng edges. Also, t complete set of specimens were kept at

controlled temperature and humidity condittons at the Aerospace Corporation. These specimez_ were shielded from

exposure to ambienl light and were used as ground controls.

Figure 3-12. LDEF Exposure Effects on Flexurai Properties for C6000/PMR-15
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Thecarbon/I.ARC 160 polyimide [0]16 flexure test results show very. little change in

modulus values among the different exposure conditions and the ground control (see Figure 3-13).

The strength values show some variation from position to position, most likely due to the inherent

scatter of strength measurements associated with polymer composites and the small sample size of

this experiment (1 to 4). Once again the 0° orientation of the reinforcement allows the underlying

plies to pick up the load from the eroded surface ply on the leading edge exposed specimens. This

is a similar situation to the other unidirectional reinforced material results where mechanical

performance reductions are due to erosion of material on the leading edge specimens.
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Complete sets of tl_s mate:ial were flown in both direct space exposure positi,,ns on the "A-deck" as well as in

shielded positions on the "B-deck" at the leading and trailing edges. Also, a complete set of specimens were kept at

controlle.t temtx_rathce and humidity conditions at the Aerospac ,_C:)rporation. These specinmas were shielded from

exposure to ambient light and were used a.s gro_md controls.

Figure 3-13. LDEF Exposure Effects on Flexural Properti_'s for Carbon/LARC 160
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LEO exposure did not significantly reduce the flexural strength for [0],_ T300/934 epoxy.

These composites, part of LDEF Experiment M0003-8 (Boeing), were located at positions D9

(leading edge) and D3 (trailing edge) and were held in stress during the flight using preload fixtures

adjusted to maintain a predetermined level of strain (ref. 8). Table 3-12 summarizes the flexural

test results. Strength values varied greatly but the lowest values are associated with leading edge

specimens. The leading edge unstressed specimens suffered a decrease in the flexural modulus.

Table 3-12. Flexural Properties of T300 Carbon/934 Epoxy [0]t6

Conditions I

Baseline - Pre-flight

Leading edge unstressed

Leading edge unstr_,

thermal cycled

Trailing edge tmstre_,_,_'xl

Trailing edge unstressed,

thermal cycled

Strength
ksi (MPa)

220.5

(1520.3)

207.0

(1427.2)

229.O

(1578.9)

238.0

(1640.9)

224.9

(1550.6)

Modulus

Msi (GPa)

16.2

(111.7)

13.6

(93.8)

16.2

(111.7)

17.7

(122.0)

16ol

(111.0)

Trailing edge prestressed 241.8 16.3 5

(1667.1) (112.4)

Trailing edge prestressed, 119.7 est. 18-2 3

350"F I (835.3) (124-138)0

# Tested

LEO exposure appeared to have degraded the flexural properties for a C6000/PMR-15

polyimide [0/_:45/0/+_45],. The flexure specimens showed a decrease in moduli compared to pre-

flight values. The most severe decrease was observed for the leading edge specimens which also

displayed the lowest strength values The AO erosion of material from the leading edge exposed

composites was responsible for t_e mechanical property reductions. It is recommended that

leading edge exposed composites have AO protection for long term LEO exposure applications.

]able 3-13. Fiexural Properties of C600O Carbon/PMR-15 Polyimide [0/x'-45/0/:t_45]s

Condition

Baseline -Pre-flight

Leading edge unstressed

Trailing edge unstressed

"trailing edge prestressed

Trailing edge prestO,
350"F

Strength
ksi (MPa)

118.9

(819.8)

104.6

(721.2)

137.0

(944.6)

Modulus

Msi (GPa)

17.8

(122.7)

6.3

(43.4)

10.5

(72.4)

155.1 11.4

(1069.4) (78.6)

81.1 6.6

(559.2) (45.5)

# Tested
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3.2.1.5 Dimensional Changes

One of the issues relating to the use of polymer matrix composites in space involves the

long term effects of vacuum outgassing and thermal cycling. In addition to contamination of

adjacent satellite surfaces and components resulting from outgassing, changes in structural

dimensions (e.g., coefficient of thermal expansion, _ and the development of lamin_te microcracks

can have serious consequences on the behavior of truss joints, optical systems and communication

platforms.

3.2.1.5.10utgassing

Outgassing produces dimensional changes of polymer matrix composites, which

asymptotically approach a constant value once the outgassing process has essentially ceased. _'za

One of the composite experiments on board LDEF, the UTIAS (University of Toronto Institute for

Aerospace Studies) ExpeAment No. A0180,' demonstrated the effects of outgassing on the

dimensional changes of a variety of carbon fiber reinforced epoxy matrix composites.

Outgassing time, to, and associated dimensional change, Ae, obtained from strain vs.

temperature plots, are summarized in Table 3-14 for the carbon/epoxy laminates of 90 °

construction. It took about 40 days for the T-300 carbon/934 epoxy, and the T-300 carbon/SP-288

epoxy to outgas and 80 days for the %300 carbon/5208 epoxy to outgas. (For comparison, a

Kevlar/SP-288 epoxy 4-ply/90 ° laminate took about 120 days to outgas; see Section 3.2.3.3).

Interestingly, a post-flight measurement of the 90 ° strain at ambient temperature showed a recover3"

in the dimensional change This reflects re-abs,:rption of moisture after retrieval of LDEF. In

general, the outgassing time required to reach an equilibrium state in space depends on such factors

as the initial moist-re concentrations, the volatile content, laminate thickness, ambient temperature

and constituent material diffusion properties.

g 1"he experiment, located at DI2 on LDEF, 90* to the leading edge, was custom-designed and constructed to record

16 thermal/strain gauges every. 16 hours for a period of 371 days. LDEF was yawed -8" relative to the orbital

velocity vector (i.e., -82* relattve to velocity vector), with a corresponding atomic oxygen fluence at station D-12

of about 1.2xlO :t atoms/cm 2. The experiment No. A0180 sample trays contained • stainless-steel calibration tube,

62 composite tubes, and 45 comix_ite coupons. Details on this aspect of the experiment can be ob/ained from R.C.

Tennyson, "Compoaite Materials in Space - Results From the LDEF Satellite," J Canadian Aerommtics and Space

Institute, Voi. 37, no. 3, Sept, 1991.
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Table 3-14. Ou_gassing Time and Dimensional Change for Carbon/Epoxy Composites

Matm-ialu

Carbon/epoxy
T3CO/934, 4-ply/90 °

Carbon/epoxy
T300/SP-288, 4-ply/90 °

Carbon/epoxy
T3OO/5208, 4-ply/90 °

Outgassing

Time

4, days

40

4O

Dimensional change,/is strain, 10-6

Laboratory
Calibration

-1360 at -34°C (-30°F)

8O

-l?¢g) at -26°C (-15°F)

Initial

- I_?,70at -23°C (-10°F)

First

Deployed

-1350

I -1200

-550

I0

520

F'mal Asymptote

Strain As:

-2550 - 1200

-2100 -9OO

-2100 -1550

Thomel T-300 (_ Performaace ?roducts Inc., Greenville, S,C.); 934 (Composites Div., Fibente
Corp., Winona, Wis.); Scotchply SP-378, SP-288, and SP-290 (Structural Products Department, 3M Co.,
St. Paul, Minn.); and 5208 (Naa'mco Materials, B _SF S':uctural Materials Inc., Anaheim, CA).

2 It should be noted that an elapsed time of almost two years occurred after manufacturing the sample, prior

_o their launch. During this time the samples were expomd '.o ambient conditie,_s and thus had achieved au
equilibrium state in terms of moisture absorption. Ho_ever, they were not in a saturated state i,,:.4
probably representative of typical composite space structures. A post-flight measurement of the 90" strata at
ambient temperature showed a recovery in the dimensional change. This reflects re-absorption of moisture

after retrieval of LDEF over a period of _ 184 days in storage at ambient conditions.

A total dimensional strain change of 1550xl 0_ occurred after about 80 days in orbit for the

4-ply [90] T-300 carbon/5208 epoxy laminate. In contrast, in the fiber direction (i.e., a [0]

laminate), very small A_; changes were observed for ibe T-300 carbon/934 epoxy and T-300/SP288

epoxy [0]4 laminates (not reported) In general, it is possible that preconditioning of composites to

remove moisture prior to flight could substantially reduce, if not eliminate, dimensional instability of

polymer matrix composites due to outgassing in orbit..

From a design viewpoint, the dimensional changes for the [0] and [90] laminates can be

used to predict the Ae for an arbitrary laminate configuration. Clearly, the matrix-dominated

properties are most affected by outgassing (i.e., see the [90] results) but it is also evident that the

angle ply laminate of boron/epoxy (see Section 3.2.4.3) underwent a significant Ae change.

Outgassing can lead to dimensional changes in orbit that must be taken into account in the design of

composite structures and joints where dimensional tolerances are critical.
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3.2.1.5.2 Coefficient of Thermal Expansion

No substantial degradation in the thermal response of several polymer matrix composites

was observed, other than that associated with outgassing. Coefficient of thermal expansion (CTE)

values for the UTIAS (University of Toronto Institute for Aerospace Studies) LDEF Experiment

No. A0180 are summarized in Table 3-15 (ref. 6). A comparison of the CTE values measured in

space (after 371 days in orbit) with those measured in simulator tests (after 2114 days in orbit and

184 days at ambient conditions) showed reasonable agreement.

Table 3-15. CTE values for UTIAS/LDEF Thermoset Composites Samples

Gage No. Coeffkieat of Thermal Expamkm, CTE, I04/*C I

(I041"I_

'][_A4_'lmJ_TIICU Um

Mate_l 2 Strain Thermal Ambient -3 Space 4 faci_

Stainless steel cahbration-_ube 1 1 i7.7 (9.84) 18.0 (10.0) 18.0 (10.0)

Graphite/epoxy 2 (0"_ J 2 2.38 (1.32) 6.0 (3.33) 4.5 (2.50)
T-300/934,flat,4-ply/0 ° 3 (90") 26.5 (14.7) 25.0-27,0 29.0 (16.1)

(13.9-15)

Graphite/epoxy 6 (90") 4 26.3 (14.6) 24.5-25.7 27.7 (15.4)

T-300/SP-288, tube, 4-ply/0" 7 (0") (13.6-14.3)

1.75-2.83 -2.05-6.0 6.75 (3.75)

(0.97-1.57) (-1.14-3.33)

Graphite/eImxy 8 (90*) 5 28.1 (15.6) 22.5-27.5 29.0 (16.1)

T-300/5208,tub¢, 4-ply/90 ° (12.5-15.3)

1Multiply by 1.8 g obtain CTE value in 10--6/'C
2"rhomei T-300 (Amoco parfotmance Ptoducta Inc., Ore.enville, 5.C.) 934 (Compo6ites Div., Ftberit, Coop., W'taom, _qa.); !k.ete.hply SP-

328, SP-288, and SP-?90 (Su-acmral Products Department, 3M Co., St. Paul, Minn.); and 520_ (Natmco Materials, BASF Stm_tund
Materiah lr_., Anaheim, CA)

3Meaaurud at atmolpheri¢ premmreprior to hunch

4Measut'ed in *pace environment on LDEF duri_ tim 371 dave in orbit
5Meuured in htboratory thermal-vacuum tea facility after 2 days in orbit and 184 days at ambientconditiom
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Table 3-16 summarized the post-flight coefficient of thermal expansion (CTE) measured on

several carbon composites located on the LDEF satellite. These composites of LDEF Experiment

M0003-9 (LMSC) were located on Bay D, Row 9 on the leading edge and Bay D, Row 3 on the

trailing edge ofLDEF (ref. 7). Specimen were 16 ply unidirectional [0 °] laminates and fabric

laminates. The CTE measurements for most of the samples appears to be unchanged; the CTE of

the flight samples and the control samples are within the measurement error of the dilatometer.

Table 3-16. Coefficient of Thermal Expansion of Carbon Epoxy Composites on LDEF

Material Fiber/Resin Supplier Sample Location CTE (10_/°C)

GY70/CE-339 BASF/Ferro Leading Edge -0.9257

GY70/CE-339 BASF/Ferro Trailing Edge -0.9791

GY70/CE-339 BASF/Ferro Control -0.9332

T50/F263 _/Hexcel Leading Edge -0.2967

T50/F263 Amoco/Hexcel Trailing Edge -0.5122

T50/F263 Aznoc_/Hexcel Control -0.5039

T50/934 Amoc.o/Fiberite Leading Edge -0.5946

T50/934 _/Fiberite Trailing Edge -0.6288

T50/934 Anx_o/Fiberite Control -0.2309

T50/X904B _/Fiberite Leading Edge -0.4714

T50/X904B Amoco/Fiberite Trailing Edge O.1032

T50/X904B Amoco/Fiberite Control -0.2723

Several conclusions can be drawn based on the r ._sults of the analyses of the UTIAS/LDEF

composite-material samples:

• Carbon polymer composites outgassed for 40 to 80 days, depending on the material

system.

• Outgassing caused sigr.ificant permanent dimensional changes, which must be factored

into the design of low-distortion laminates,

Outgassing also produced modest changes in the coefficient of thermal expansion (CTE),

leading to asymptotic values that should be used in the design of"zero-CTE" laminates

for space service.
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3.2.1.5.3 Microcracking

Quantitative microcracking analysis was conducted on the polymer matrix composites of

the LDEF Boeing Experiment M0003-10 (re£ 3), which experienced 32,422 thermal cycles. These

composites, consisting ofT300 carbon/934 epoxy [0]_6, AS-4 carbon/3501-6 epoxy [0]z_, C6000

carbon/PMP,,-15 polyimide [0,+45,0,+45],, and carbon/LARC-160 polyimide [0] were flown in the

direct space exposure positions on the "A-deck" as well as in shielded positions on the "B-deck,"

both at the leading (Bay D, Row 8) and trailing edges (Bay D, Row 4). Also, a complete set of

ground control specimens were kept at controlled temperature and humidity conditions and

shielded from exposure to ambient light at the Aerospace Corporation. Table 3-17 summarize the

LDEF thermal cycling environment and the microcracks/inch values for these composites.

Microcracking was only detected in the C6000 carbon/PMR-15 polyimJde laminates with a

nonunidirectional lay-up (i. e.,[0,+45,0,+45],). Most of the microcracks observed were intraply

(within an individual ply). However some cracks extended through two plies. Greater thermally

induced stresses under thermal cyciing are generally produced in nonunidirectional lay-up. The

exposed (A-deck) PMR-15 specin_ens, located in the leading and trailing edge positions, displayed

the most microcracking. A smaller but significant level of cracking was found for the leading edge

shielded (B-deck) PMR-15 specimens. The leading edge exposed specimens had a significantly

higher emissivity due to the rough texture produced by atomic oxygen erosion (ref. 5), which may

account for the colder cycling extremes (ref 8). The trailing edge shielded (B-deck) PMR-15

displayed little or no microcracking. The shielded specimens may have experienced milder thermal

cycling extremes as their microcrack densities were significantly lower than the exposed specimens.

Table 3-17. Microcracksflnch of Space Exposed Carbon Thermoset Composites

Location LDEF Thermal I T300/934 AS4/3501-6 C604}0/PMRI5 Carbon/

Cycling Environment ] Epoxy [0l Epoxy [0] Polyimide LARC160
..... (0/:b_/0/£-45). Polyimide [0]

Leading Edge Exposed -47°C to 84°C 0 (*) 0 33(45 b) 0

A-Deck (-53"F- 1830F)

Trailing Edge Exposed -33°C to 77°C 0 0 47 0
A-Deck (-2T'F- 170_F)

Leading Edge Shielded Less Than Above 0 0 7 0
B-Deck

Trailing Edge Shielded Less Than Above 0 0 0 0
B-Deck

Ground Control None 0 0 0 0

(s) Microeracking analysis was performe, I using optical n_croscopy on polished cm_ sections perpendicular to the 0°
direction. A total of 0.55 inches o! ,! cross section was examined and the count of crtcks w_ normalized to

cracks per inch.

Co)Most of the _urface ply of the leading e, _,exposed C6000/PMR-15 specimen w_ eroded away. The number of

cracks per inch for the PMR-15 specimen wu extrapolated this estimated value.
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A study of the effects of thermal control coatings on the thermal-cycled induced

microcracking behavior in carbon/epoxy composites indicated adequate coating capability by A276

white polyurethane in effectively reducing thermal cycling extremes and shocks (ref. 9). A

T300/934 epoxy panel in a [02/_+.45/0_/+45/90/0],, 20-ply lay-up was covc:ed with thermal control

coatings in three of its four quadrants (A276 and BMS 10-60 white urethane and Z306 black

urethane) with the fourth quadrant uncoated. The composite panel, which underwent -.-34,000

thermal cycles, experienced different thermal cycling temperature extremes in each quadrant due to

the different optical properties of the coatings and bare composite. The thermal histories of these

areas are shown in Figure 3-14.

WHITE, BLACK, BARE (INITIAL), AND BARE (FINAL) PANELS

(SUBSTRATE TEMPERATURES FROM ADJUSTED TIME SCALE)

3oo[ SARE mTZAL)
250 BARE (FINAL)

20O

150 _ BLACK

TEMPERATURE, 100
oF

50

0

-50

-I00 t

0 2400 4800 7200 9600 12000

TIME, sec otu_0,3_

Figure 3--14. Thermal History for Coated and Uncoated Composites on LDEF

3-32



The panel, located on (he leading edge (Row u9) expe6ment M _0003-8, was exposed to m

atomic oxygen fluence ofS.99x1021 atoms/cm 2. An AO reactivity of 099 x 10"_ cm3/atom was

calculated for the bare composite based on a tldckness loss of 3.4 mils, which compares favorably

with other reported re_ctivities for T300/934 epoxy specimens flown on LDEF (see Table 3-4).

The white urethane thermal control coatings (A276 and BMS 10-60) prevented AO attack of the

composite substrate while the black urethane thermal control coati'-: 3 (Z306) was severely eroded

by atomic oxygen, allowing some AO attack of the composite substrate Microcrack densities,

shown in Figure 3-15, indicated that the white coated composite substrate displayed almost no

microcracking while the black coated and bare composite showed extensive microcracking.

Significant AO erosion was seen in many of the cracks in the bare corwosite White coatings,

which significantly reduced the thermal cycling temperature range, thus prevented significant

microcracking The bare and black coated portions of the panel had significant microcracks in the

3 outer plies on both outer (exposed to LEO environment) and inner surfaces. AO exposure

eroded microcracked areas, even areas under coatings. Other LDEF experimenters 13_ reported

composite microcracking or showed data indicating that it may have been present.

25 F ll A-276 WHITE (-75 TO +60°F)
r--'l BMS 10-60 WHITE (-75 ! : :50°F)

20 I [| _ BARE COMPOSITE (-70 TO +235"°F)

mR Z-306 BLACK (-75 TO +205"F)

PER / I 1_ [I AO FLUENCE: 8.99 x 1021 atoms/crn 1INCtt
l0 = .

0
1 2 3 4 5 6 7 8 9 10 It 12 13 14 15 16 1"7 18 19 20

PLY NUMBER (#1 IS OI.rlLR SURFACE PLY) olu_013_

Figure 3-15. Microcrack Density vs. l_cation for Coated and Uncoated Composites on
LDEF
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3.2.1.5.4 Warpage

It is commonWv observec_ in composites that even [-:_da_ced, symmetric laminates cured on a

fiat surface exhibit so_.e small degree of nonflatness, w,hich is a manifestation of the state of

residual stress within the laminate. Hence, changes in this physical characteristic might be related

to the space environment exposure conditions, such as thermal cycli_g, or to other potential

changes in the laminates due to exposure such as microcracking or one-sided surface attrition.

LDEF Experiment A0175 measured the flatness of several carbon-fiber-reinforced resin-

_,atrix advanced composite panels contained in two trays, A7 and A1, be¢ore and after exposure

(ref. 13). These two trays were located, respectively, on the leading and trailing faces of LDEF,

obliquely oriented to the ram (Row 9) and wake CRow 3) directions witL atomic oxygen fluences

of 8.99 x l02_ atoms/era 2 and 1.32 x l0 _7atoms/era 2, respectively. The advanced composites

included T300/934 epoxy, T300/F178 bismaleimide, C6000/%ARC-160 polyimide, and

C6000/PMR-15 polyimide Laminate orientation was [0J+_45/902/+45/02/_+45/90J_+45/02] for all of

the composite panels. Comparison of the pre-flight and post-flight warpage is summarized in Table

3-18.

Table 3-18. )ositesComparison of Pre-flight and Post-flight Warpage of Polymer Corn

Deflection (inches)*Material

Pre-flight Post-flight

T300/FI78 precured at 85 psi 0.277 0.004

T300/FlT8 cocured at 4_; psi 0.166 0.190

C6000/PMR- 15 0.232 0.107
, , .

C6000/LARC 160 0.370 0.177

C6000/LARC 160 0.615 0.01g

*Values represent average of three value _ taken from corner-midpoint-corner of free

standing edge of laminate _ith opposite c2ge held down against surface table. The panels

were placed on a surface table, weighted down along one edge w_th the exposed surfaces

i up, and the deflection rr_easured along the opposite edge at the m_dpoint and both c,:mers.

In the pre-flight measurements, all of the bismaleimide and polyimide panels were concave

upward; in the post..flight measurements, they were still concave upward, although generally to a

much lesser degree. The carbon/epoxy laminate was both fiat, both before and after e_posure. As

shown in the above table, the remaining laminates exhibited a marked reduction in warpage

following exposure, with the single exception of the cocured bismaleimide laminate, which

exhibited, on average, a slight increase in warpage.
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3.2.2 Carbon/Thermoplastics

Carbon .%er-re,,ffo_ _,ed thermoplastic matrix composite materials, such as

carbon/polyetheretL.rketone (PEEK), hay _. been considered for satellite applications due to their

promis:, for reducing the acquisition and life cycle costs for spacecraft structures over current

carbon/epoxy composites. The cost reduction is obta2ned through innovative and rapid forming

processes, in contrast to the long processing cycles typical of thermoset materials. Also, the

reprocessibility of thermoplastics enables the co-consolidatior, of subassemblies and the

reworkability of fabricated components. The meltabdity of thermoplastic composites allows rapid

joining of thermoplastic components using a variety of techniques such as induction bonding,

ultrasonic welding, focus infrared heating, and amorphous bonding with thermoplastic film resin.

In addition, thermoplastic composites have been shown to offer performance improvements over

tbermoset materials in the areas of lower moisture absorption, greater damage tolerance, reduce

thermally-induced microcracking, and minimum outgassing

Table 3-19 lists the space experiments and thermoplastic composite materials exposed to

the LEO environment

Table 3-19. Carbon/Thermoplastics Exposed to the LEO Environment

Flight

Experiment

LDEF

- A0134

- M0003-q

LDEF
- A017I

- M0003-10

LDEF

M0003-10

LDEF

- M0003-8

STS-46 EOIM-3

STS-46 I..CDE

Angle off
RAM

8 (LE)
Row 9

i AO fluence

at°msicm 2

8.99x1021

UV ESH

11,200

Ref.

8,9

Thermoplastics

C3000/P1700

C6000/P1700

T300(fabric)/P1700

38 7.15x1021 9,400 1, 14 HMF-322/PI700/+45*

Row 8 T300(fabric)/P 1700
T300/PES

158 2.31x105 10,500 4 T300(fabr/c)/P 1700
Row 4 T300:; r_

172 (TIE.) ! .32x1017 11,100 13, 3a T3OO(fabric)/Pl700
Row 3

0 0. 193x1021 8.3 17 AS4/PEEK

0 0.193 x1021 8.3 18,31 IM7/PEEK
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3.2.2.1 ThicLne_s Erosion from Atomic Oxygen Exposures

The average thick_hess loss due to atomic oxygen exposures and the atomic oxygen

reactivity _? several advanced thermoplastic composites are summarized in Table 3-20.

Table 3-20. Atomic Oxygen Erosion Rates for Carbon Thermoplastic Composite Materials

Composite M_ecials

HMF 322/P1700 Polysulfone

[±45]

T300/P 1700 Polysul fone
[0,90h Fabric

T300 _P1700 Polysul fone

[0,90], Fabric

IMT/PEEK

IM7/PEEK

,.,

Flight "

Experiment

LDEF AO 171

i LDEF MOO03-10

LDEF M0003-8

STS-46 LDCF

STS-46 LDCE

AS4/PEEK STS-46 EOIM-3

(l)Matnx ertmion much great:r than fibel

Re/.

14

4

8

32

33

17

Annie
offRam

3s(])

38

o

AO Fluence

atoms/raP

7.15

7.15

8.99

0.193

0.193

Avg. Thickness
Loss

mils O_m)

2.5 to 6.2 roll t(64-157_m)

5.3 mils

(135fl.ra)

mils

(5-7 ttm)

AO

Reactivity

xl0 "u

cm'/at 
0.92 to 2.3

1.I

0 mils 2.69

(5.36 pan)

0 0.193 mils

(6 gin)

Composite matrix erosion was greater than that of the carbon fibers. The erosion of the

polysulfone P l700 system was more pronounced than ft,r the epoxy matrix erosion (see Table 3-4.

Atomic, oxygen reactivity values generally averaged !xl0 "24 cm3/atom with the e_c, eptlon of:he S-

glass epoxy composites which tend to become self protecting.

3.2.2.2 Impact Damage from Micrometeoroid and Debris

None reported
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3.2.2.3 Mechanical Property Degradation from Atomic Oxygen

3.2.2.3.I Tensile

Figures 3-16 and 3-17 show the ultimate tensile strength and tensile moduli for several

carbon reinforced polysulfone (P 1700) matrix resin composites that received over 5 years and 9

months of exposure to the LEO environment on the LDEF Experiment A0134 (ref. 11). The

location of this experiment (in Tray B on Row 9) was the leading edge of LDEF which received an

atomic fluence of8.99xl0natoms/cm 2. These composites were fabricated from unidirectional

prepreg into 4-ply [_+45], lay-up so as to be matrix sensitive during tensile testing. The tensile

specimens were 0.500-inch and 0.375-inch wide by 8-inches long with laminate thickness varying

from 0.016-inch to 0.024-inch.

Both the C3000/P 1700 and the C6000/P l"q0 exposed composite specimens experienced a

deterioration in tensile strength and modulus, h Tensile strengths of the exposed composite

specimens were between 15 to 30% lower than the baseline composite specimens (e.g., tensile

strength of the C6000/P1700 composite decreased to 9.5 ksi (65 MPa) from 11.0 ksi (MPa)),

Tensile moduli of the exposed composite specimens were between 15 to 30% lower than the

baseline composite specimens (e.g., tensile modulus of the C6000/P 1700 composite decreased to

1.1 Ms1 (7,5 GPa) from 1.3 Msi (9 GPa)), However, no major differences are noted between

baseline values obtained when the composites were tested in 1983 and the ground control

composites which remained at Langley. More than a los_ in matrix resin contributed to t_is

phenomena since the thickness loss is not proportional to the loss in tensile properties by rule of

mixtures (thickness losses varied _em 0.003 to 0.0045 inch of the O.O055-inch thick outer ply).

h P1700 re,Binproduced by Union Carbide Corp; C3000 and C6000 fibers produced by Celane,e
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LEO exposure does not appear tO significantly reduce the tensile properties of a

T300/P1700 polysulfone composite reinforced with 8 plies of a 0,90 fabric. This composite

specimen, part of LDEF Experiment M0003-8 (Boeing) (ref 8), was located at the trailing edge

position D3 (AO fluence of 1.32x10 _ atoms/cruZ), and were held in stress during the flight using

preload fixV.lres adjusted to maintain a p_ Aetermined level of strain. Table 3-21 summarizes the

tensile test results. Tensile strength and modulus values compare favorably with pre-flight values.

Table 3-21. Tensile Properties of T300 Carbon/P1700 Polysulfone Fabric [0,90]

Tests

Basehae

Prestressed trailing edge

Strength,
ksi (MPa)

68.1

(469.5)

Pre-flight

Modulus, #
Msi (GPa) Tested

est 7-9 3

(48-62)

Post-flight

Strength, Modulus,

_) Msi (Gh)

66.2 7.9

(456.4) (54.5)

#

Tested

Note:The tensile ,est results are incoacl_ .:ve due to the spread of the data and the limited sample

population. Pre adad post fligh_ strength values are very similar but all ate well below anticipated levels
for this material system. Most of the post flight test failures occurred outside of the gauge area. The

same problems may have existed for pre-flight testing, thus lowering the strength values

3.2.2.3.2 Compression

LEO exposure does not appear to significantly reduce the compression property of a

T300/P1700 po!ysulfone composite reinforced with 8 plies of a 0,90 fabric. This composite

specimen, part of LDEF Experiment M0003-8 (Boeing), (ref. 8) was located at the trailing edge

position D3 (atomic oxygen fluence of 1.32x10 _7 atoms/cm2), and were held in stress during the

flight using preload fixtures adjusted to maintain a predetermined level of strain. Table 3-22

surnmadzes the compression test results. Compression moduli data for the polysulfone system is

questionable due to the severe end brooming which occurred during testing and may have been

caused by damage to the specimen ends from the preload fixture.

Table 3-22. Mechanical Properties of T300 Carbon/PIT00 Polysulfone Fabric 10,90]

Tests Pre-flight

Baseline 54.5 eat 7-9

(375.8) (48-62)

Pr_tresaed trtilmg edge

Modulus, #
Msi (GPa) Tested

3

Post-flight

Strength, Modulus, #
ksi (MPa) Msl (GPa) Teated

50.8

(350.3)

7.2

(49.6)

Note:The compression test results are mconch _due to the spread of the data and the limited smnple

population. Pre and post flight strength values are very similar but all ate well below anticipated

levels for this material syl_tem. Most of the port flight test failures occurred outside of the gauge area.

The same problems may have existed for pre-flight testing, thus lowering the strength value6
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3.2.2.3.3 Flexural

Exposure to the LEO environment did not caused any significant changes in the flexural

properties for a T300/P 1700 polysulfone composite reinforced with 8 plies of a [0,90] woven

fabric. Figure 3-18 shows no significant loss in the flexure properties between the different

positions on LDEF (both space exposed and shielded) and the ground control T300/P 1700

polysulfone specimens of the LDEF Boeing M0003-10 experiment (refs, 3 and 4). These

composites were located on both the leading (Bay D, Row 8; AO = 7.15x10 zt atoms/cm 2, 9,400

ESH, 32,422 thermal cycles between -47°C to 84°C [-53°1: and 183"F]) and the trailing edges (Bay

D, Row 4; AO = 2.31 x 10 _ atoms/cm:, 10,500 ESH, 32,422 thermal cycles between -33°C to

77°C [-27°F and 170°F]). These results are based on the post flight cross-sectional areas.

STRENGTH
MPa KSI

(2) (2) (2) (2) (3)
120 ....

750 -- 80

500 -- 60

40

250 -- 20

MODULUS . AO FLUENCE = 7.15 x 1021 atoms/era 2

GPa MSI LAY-UP = [0, 90] 8 Fabric

.-- 10

l
8

5O 6

4
25

2

0

l LOW "]
b/OM

HIGH

LEADING TRAILING I,EADING TRAILING GROUND
EDGE EDGE EDGE EDGE CONTROL

EXPOSED EXPOSED SHIELDED SHIELDED O1M94013012

Note: Materials were flown in both direct space exposure positions on the "A-dock" as well as in

shielded positions on the "B-deck" at the leading and trailing edges. The environments for the samples

mounted on the leading and trailing A docks were similar except those on the leading edge were also

exposed to relatively high fluxes of atmospheric constituents (primarily atomic oxygean). Although the

samples on the B decks were not exposed to the radiation environment, the experirm-at design was such that

they experienced thermal excursions similar to those of the exposure samples. Also, a complete set of

specimens were kept at controlled temperature and hurmdity conditions at the Aerospace Corporation.

Thes_ specimens were shielded from exposure to ambient light and were used as ground controls.

Figure 3-15. LDEF Flight Exposure Effects on Fiexural Strength and Modulus for

T3000PI700
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Reductions in strength and modulus of 10 to 25% resulted from AO erosion on uncoated,

leading edge T300/P1700 polysulfone composite reinforced with 8 plies of a [0,90] f _" This

composite specimen, part of LDEF Experiment M0003-8 (Boeing) (ref 8), was locatea at the

leading edge position D9 (atomic oxygen fluence of 8.99xl 02_ atoms/cm2), and were held in stress

during the flight using preload fixtures adjusted to maintain a predetermined level of strain. Table

3-23 summarizes the fiexural test results. No significant changes in flexural strength or modulus

were observed for any uncoated composites in this experiment on the trailing edge of LDEF. The

T300/P 1700 polysulfone fabric moduli values decrease in the order: pre-flight, trailing edge,

stressed trailing edge, leading edge. Strength values varied with the leading edge specimens being

the lowest.

Table 3-23.

Tests

Mechanical Properties ofT300 Carbon/Pl700 Polysuif,

Pre-flight

Modulus,

Msi (GPa)

# Tested Strength,
ksi (MPa)

Fabric [0,90]

• _.,t-flight

Strength,
ksi (MPa)

Modulus,

Msi (GPa)

#
Tested

Flexure

Baseline 3

97.3 7.8 4

(670.9) (53.8)

4116.0

(799.8)

118.8

(819. l)

10.4

(71.7)

Leading edge unstressed

Trailing edge unstressed

Trailing edge prestressed 8.0

(55.2)

16.7 4.5 3

(115.1) (31.0)
Trailing edge prestressed,
3500F

106.5

(734.3)

qote: The flexutal test results are inconclusive due to [he spread of the data and the limited sample population.

Pre and post flight strength values are very similar but all are well below anticipated levels fo: this material

system. Most of the post flight test failures occurred outside of the g,auge ar_t or at locations with tough

edges. The same problems may have existed for preflight testing, thus lowering the strength values

As with specimens of unidirectional [0] reinforced, there is continuous rei,fforcement in the

load direction in each ply, i.e, the load that would have been carriet lay the eroded material on the

leading edge exposed specimens was carried by the remaining [0] material. For these specimens the

only mechanical performance loss was due to material loss on the leading edge exposed specimens

Ply orientation plays a significant role in flexure properties behavior when AO erosion is involved
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3.2.2.4 Dimensional Changes

3.2.2.4.10utgassing

No information reported from the flight experiments. However, carbon/thermoplastics have

significantly lower outgassing properties compared to carbon/thermosets as measured from the

laboratory ASTM E595 outgassing. 32 A comparison of the outgassing results points to

significantly lower outgassin8 TML and CVCM values for IM7/PEEK thermoplastic composites

compared to the conventional 1M7/8551.7 epoxy composite, 0.053% and 0.004% vs. 0.232% and

0.009%, respectively.

3.2.2.4.2 Coefficient of Thermal Expansion

No information available from flight experiments.

3.2.2.4.3 Mierocracking

Quantitative microcracking analysis was corAucted for a T300 carbon/P 1700 polysulfone

composite reinforced with 8 plies of [0,90] fabric located on the LD_r Boeing M0002-10

experiment (ref. 3), which experienced 32,422 thermal cycles. This specimen, located on both the

_eading (Bay D, Row 8) and trailing edges (Bay D, Row 4) was flown in both direct space exposure'

positions on the "A-deck" as well as in shielded positions on the 'B-deck" at the leading and

trailing edges. Also, a complete set of control specimens were k ,pt at controlled temperature and

humidity conditions and shielded from exposure to ambient ligh' t the Aerospace Corporation.

Table 3-24 summarize the LDEF thermal cycling environment _ the microcracks/inch values.

Table 3-24. Microcracks/Inch of Carbon/Poi

Location

LeadingEdge Exposed

TrailingEdge Etposed

Le_mg Edge Shielded

LDEF Thexmid Cyding

-47°C to 84°C (-53"F to 183_F)

-330C to 770C (-27". to 170*F)

Legs Than Above

rsulrone Composites

'1"300 Carbon/PIT00

Polysulfone [0.901.

35(.)

35

Trailing F_lt,c Shielded tess Than Above 2

Ground Control None 0

.)Microcmcking tradysis was performed using opti'al tmcromopy on polished cross _ectioras, These
cross scctiotm were taken perpendicular to the 0 degree diroction tad were examined at 100x
magnification with the aid of • dye penetttnt to enhance the contrast of the cracks. A total of 0.55
inches of lineal cross _ection was exa_aned and the count of crack_ ",vu normalized to cracks pet inch.
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The T?00/P1700 polysulfone specimens of a [0,90] lay-up orientation exhibited extensive

microcracking. Most of the microcracks observed were intraply (within an individual ply). Greater

thermally induced stresses under thermal cycling are generally produced in nonunidirectional lay-up.

The exposed (A-deck) laminates specimens displayed the most microcracking. The leading edge

exposed specimens had a significantly higher emissivity due to the rough texture produced by

atomic oxygen erosion (ref 5), which may account for the colder thermal extremes (re£ 8). A

smaller but significant level of cracking was found for the leading edge shielded (B-deck)

specimens. The trailing edge ,_hielded (B-deck) displayed little or no microcracking. The shielded

specimens may have experienced milder thermal cycling extremes as their microcrack densities

were significantly lower than the exposed specimens.
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3.2.3 Glass/Thermosets

3.2.3.1 Mass Loss

The mass loss of a glass composite located on the leading edge of the LDEF satellite is

summarized in Table 3-25 (ref. 7). The mass loss given is for a sample approximately 0.080 inch in

thickness. The trailing edge samples, flight control samples and the ground control samples had no

significant mass loss. Because the leading edge samples were the only samples to exhibit mass loss,

the mass loss is sample erosion due to AO and micrometeoroid impact.

Table 3-25. Typical Mass Loss of Glass Epoxy Composite Materials

Material Fiber/Resin Suppliers Weight Change
%

E Glass/X904B Fabric Owens Coming/Fiberite -1.50

The total amount of thickness loss was 0.013-0.030 nun for glass/epoxy sample. This is

significantly t, ss than the thickness loss of approximately 0.100 - 0.150 mm for carbon/epoxy

samples and 0.080-0.130 mm thickness loss for Kevlar/epoxy samples.

3.2.3.2 Thickness Erosion from Atomic Oxygen Exposures

Table 3-26 summarizes the average thickness loss due to atomic oxygen exposures and the

AO reaction efficient" for glass fiber composite systems c,3ntained within the Solar Array Materials

Passive LDEF Experiznent (SAMPLE) A0171 (ref. 14). Experiment AO171 was located on Row 8

position A, which allowed ",dlexperiment materials to be exposed to an atomic oxygen fluence of

7.15x1021 atoms/cm 2 as a result of being positioned 38 degrees of the RAM direction. Thickness

losses measured on the flighL specimens were consistent with their measured mass loss.

Table 3-26. AO Erosion Rates for Glass/_poxy Composites on LDEF Experiment A0171

Composite Materials (No. of Ansle AO Flueace Avg. Weight AO Reaction
Specimens) off ram 1021 atoms/era 2 Thickness Loss Efficiency,

Loss (mils) mg/cm 2 10"24 cm31atmn

S Glass-Epoxy (3) 38 6.93 0.36 2.40 O. 14

Thermal Control S-Glass Epo;y 38 6.93 Indeterminate 0.59

with/Aluminized Taped ,_3)

Fiber8 tmeroded and become protective a_-r initial matrix mass _oss,

S-glass epoxy much darke_ probably from UV effects. Fibers evident in materials.

Compared with carbon/epoxy, glass/epoxy was the least affected by exposure to atomic

oxygen. Photographs of the glass/epoxy show that the epoxy is eroded by the AO but the fibers

appear to be unaffected. The AO eroded only the outside resin layer _,nd the resin between fibers
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beforea pro_ected glass fiber outer layer was formed, which was inert to AO. The E-glass/epoxy

does not have a linear relationship between the AO fluence and the mass loss,

The non-linear relationship is caused by the difference in reactivity of the fibers and the

matrix in the presence of AO. The epoxy reacts aggressively with the AO, whereas the glass fibers

are relatively inert to AO. As more of the epoxy is eroded from the surface of the laminate, the

higher the concentration of glass fibers or. the surface. This causes the erosion of the laminate to

slow down, and when the surface of the laminate is all glass fibers, the reaction is essentially

stopped.

3.2.3.3 Impact Damage from Micrometeoroid and Debris

None reported.

3.2.3.4 Mechanical Property Degradation from Atomic Oxygen

Short beam shear property testing was conducted on several glass composites located on

the LDEF satellite (ref. 7). The shear test. a resin dominated property, was chosen because of the

sample size limitations and shear changes would be expected to appear more distinctly than other

mechanical property changes. The shear test was run per ASTM D 2344. The laminate ply

orientations for short beam shear were (0_)T.

The results of the mechanical property testing are summarized in Table 3-27. The samples

that were tested for short beam shear were all 16 ply unidirectional laminates. The results show

that the flight samples strength was degraded only to the extent of the mass loss percentage. This

indicates that except for the physical eroding of the material there was no mechanically detrimental

effects caused by the low Earth orbit environment.

Tzble 3-27. Short Beam Shear Strength of Glass Epoxy Composites on LDEF

Material Fiber/Resin Supplier Sample Location Short Beam Shear,
k_ O4Pa)

Glass/CE399 Fabric Owens Cornmg/Ferro LeadingEdge 7.4 (51.0)

Glass/CE339 Fabric Owens Corning/Ferro TrailingEdge 7.4 (51.0)

Gla_s/CE33q Fabric Owet_ Co;'ning/Ferro Cont_l 7.1 (48.9)

3.2.3.5 Dimensional Changes

No information available from the flight experiments.
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3.2.4 Kevlar/Thermosets

3.2.4.1 Mass Loss

The mass loss ofa Kevlar/epoxy composite located on the leading edge of the LDEF

satellite is summarized in Table 3-28 (ref 7). The mass loss 8iven is for samples approximately

0.080 inch in thickness. The trailing edge samples, flight control samples and the ground control

samples had no significant mass loss. Because the leading edge samples were the only samples to

exhibit mass loss, the mass loss is sample erosion due to AO and micrometeoroid impact.

Table 3-28. Typical Mass L_ss of Kevlar Epoxy Composite Materials

Material i Fiber,ResinSuppliers Weight Change

I %
i

Kevlar 49/xg04B Fabric [ DuPcnt/Fiberite -2.91

The Kevlar/epoxy performed similar to the carbon/epoxy samples, both the fibers and

matrix appeared eroded The total a.'nount of thickness loss was approximately 008-0 13ram for

Kevlar/epoxy samples This compares to 0 10 - 0 15 ram for carbon/epoxy samples and 0.013-0,03

mm for glass/epoxy samples.

3.2.4.2 Thickness Erosion from Atomic Oxygen Exposures

None reported.

3.2.4.3 Impact Damage from Micrometeoroid and Debris

Impact damage from micrometeoroid and debris for various Kevlar fiber-reinforced epoxy

materials was observed on the LDEF UTIAS Experiment AO180 (ref. 27). These samples were

mounted at station D-12, about 82 ° from the LDEF velocity vector. The exposed surface area was

--0.6m 2. The UTIAS experiment suffered 84 randomly distribvted impacts by micrometeoroids or

space debris; 74 of them produced craters having diameters less than 0.5 mm (0.02 in.). The

predicted number of impacts for this area after 5.75 years is -80.

From a detailed inspection of the composite samples (both tubes and flat plates), only 10 of

the 84 aits were found on these materials, the balance located on end fixtures and the aluminum

base plates. A summary of the 10 impact sites (out of 84) found on the composite samples is given

in Table 3-29 with estimates of surface damage area, hole size and penetration depth. Also

included are the impact damage on carbon fiber-reinforced epoxy samples. Such data are useful for

estimating total damage on composite structures that arises from micrometeoroids/debris.
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Theimpacts on the polymer matrix composites do not produce the typical hemispherical

craters found on metallic structures. Rather, because of the brittle nature of the resin matrix, one

generally finds penetration holes with adjacent surface damage, some internal ply delamination and

local fiber fractures. For tough non-brittle fibers, such as aramid, these fibers fail in a "brush or

broom" mode surrounding the impact damage region (Kevlar/epoxy tube SP-328, (±45°)4s). On

the other hand, for brittle fibers such as carbon, the impact and exit holes exhibit brittle fiber

fractures as well as rear exit hole surface spallation (T300/5208 epoxy; (+45')s). Note that the

spallation damage-to-hole size ratio is about 5:1.

Table 3-29,

Material Type

Kevlar/_poxy (SP 328)

Summary of Impact Feature on Kevlar Epoxy Composite Specimens (LDEF

Experiment AOI80)

Surface Hole Particle

Damage Area Nominal Hohe Penetration
Area (ram 2) (ram 2) Diameter (ram) Depth (t of Plies)

1.162 C036 0.215 1--2

0.498 0.0!5 0.139 ~1

0.423 o.o 8 o.152
"i. 3 ' 0.0 6 0.312 2-3

0.2_ 1-2

1.445 0.033 0.204 2-3

0.370 -1

0.881 0.020 0.159 2~3

0.222
-.I

1.064

0.222

0.083 0.325

>4

Sample #

Type of Plies

'Tube 4

Vut;e 4

Tub"e 4 "

Tube 4

Tube" 4

O_oo._poxy cr3oo/52os) "p'hte 4

C.arboJEpoxy (T3OO/SP 288) "tube ' 4

No'c: IMicromctcoroid/dcbris impacts can pcnetra_ four-ply laminates with substantial rear-face spaUation damage.
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3.2.4.4 Mechanical Property Degradation from A t_mic Oxygen

Two mechanical property tests, shear and flexure, were conducted on several Kevlar

composites located on the LDEF satellite (ref. 7). The shear test is a resin dominated property

where the flexure test is a fiber dominated property. These tests were chosen because of the

sample size limitations and shear and flexure changes would be expected to appear more distinctly

than other mechanical property changes. The shear test wa_ ,n per ASI'M D 2344, and _xure

test was run per ASTM D 790. The laminate ply orientations for short beam shear and flexure

were (016)T and (+45/-452/+45)4 T, respectively.

The results of the mechanical property testing ark summarized in Tables 3-29 and 3-30.

Table 3-30 shows the short beam shear test results. The samples that were tested for short beam

shear were al: 16 ply unidirectional laminates. Table 3-31 gives the results of the flexure testing.

All of the samples that were tested for flexure were 16 ply [+45/-452/+45]4 T laminates. The results

show that the flight samples strength was degraded only to the extent of the mass loss percentage.

This indicates that except for the physical eroding of the material there was no mecharfically

detrimental effects caused by the low Earth orbit environment.

Table 3-30. Short Beam Shear Strength of Kevlar/X904B Epoxy Fabric(a)

Sample _tion Short Beam Shear,
ksi (MPa)

Leading Edge 3.6 (7_,8)

Trailing Edge 3.8 (26.2)

Control 3.7 (25.5)

(a) Fiber/Resin Supplier: Fiber/Resin Supplier'

Table 3-31,

!

Sample Flexural Strength [
Location ksi _) I

'" [

Leading Edge 1344=.5(195) ]

Trailing Edge 1158.3 O68)

Control 1344.5 085)

(a) Fiber/Resin Supplier: Fi_r/Resin Supp!'_r

Flexural Properties of of Kevlar/Xg04B Epoxy Fabric(a)

Hcxur_ Modulus

Msi (GPa)

I. 1 (7.5)

0.9 (6.4)

1.2 (7.9)
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3.2.4.5 Dimensional Changes

3.2.4.5.10utgassing

Outgassing produces dimensional changes of polymer matrix composites which

asymptotically approach a const_ _t value once the outgassing process has essentially teased. One

of the composite experiments on board LDEF, the UTIAS Experiment No. A0180, showed dearly

the effect of outgassing on the dimensional changes of a Kevlar fiber reinforced epoxy matrix

composites and the corresponding coefficients of thermal expansion. The experiment, located at

station D-12 on LDEF, 90°to the leading edge, was custom-designed and coastrucle" o record 16

thermal/strain gauges every 16 hours for a period of 371 days (ref. 6 and 2_). Details on this

aspect of the expefim_ :_ can be obtained from Tennyson. 33 LDEF was yawed -8 ° relative to the

orbital velocity vector (i.e., -82 ° relative to velocity vector), with a corresponding atonuc oxygen

fluence at station D-12 ofaboat 1.2x102t atoms/cm 2. Experiment No. A0180's sample trays

contained a stainless-steel calibration tube, 62 composite tubes, and 45 composite coupons.

Outgassing time, to, and associated dimensional change, As, obtained frem strain vs

temperature plots, are summarized in Table 3-32 for the Kevlar/epoxy. It took about 120 days for

the Kevlar/SP-288 epoxy 4-ply/90 ° to outgas In comparison, the T-300 carbon/934 epoxy and the

T-300 carbon/SP-288 epoxy took 40 days to outgas and 80 days for the T-300 carbon/5208 e o_:

to outgas.

Table 3-32. Outgassing Time and Dimensional Change for Kevlar Epoxy Composite

Outgassing

Time

t., days
Laboratory
CalibrationMaterial

Aramid/opoxy 120 -2370 at -18°C (0°F)
SP-328, 4-ply/90 °

Dimensional change, AG,strain, _10"6

Initial Final Asymptote

First

Deployed Ag_ Strain Ag

-1200 1170 -4000 -2800
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3.2.4.5.2 Coefficient of Thermal Expansion

CTE values for the LDEF Experiment No. A0180 are summarized in Table 3-33.

Table 3-33. CTE values for UTIAS/LDEF Kevlar Epoxy Composite

G_e No. CAwJl'tcient of Thermal Expgnsion, CTE, 104/*C

(104/°F) 1

!

Space 4

Su,ml_s Vx_l calibrntion-mbe 17.7 (9.84) 18 9 (10.0) 18.0 (10.0)

Ammid/epoxy SP-328, 2

tube, 4-ply/90 °

61.0 (33.9)

0.18 (0.10)

Strain Thermal

1 I

4 (90") 3

5 (o0)

54--99(30-55)

1.28 (0.71)

i Thermal-vacuum

63.5 (35.3)

1.13 (0.63)

IMultiply by 1,8 to obtain CTE value m 10_/'c
2Sco¢_hply SP-328 (Structural Product_ Department, 3M Co., St. Paul, Minn
3Me4mu_ at atmo_eafic premmre prior to launch
4]',,dIcatlure,d in apace environment on L" EF during first 371 days in o.-bit
5Meaumred in laboratory therm_d-vacuum teat facility after 2,1.4 days in orbit and 184 days at mmbient laboratory ¢ondi_

3.2.4.5.3 Microcracking

No information reported from flight experiments.
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3.2.5 Boron/Thermosets

3.2.5.1 Thickness Erosion from Atomic Oxygen Erosion

None reported.

3.2.5.2 Impact Damage from Micrometeoroid and Debris

None reported.

3.2.-g.3 Mechanical Property Degradation from Atomic Oxygen

None reported.

3.2.5.4 Dimensional Changes

3.2.5.4.10utgassing

Outgassing produces dimensioral changes of polymer matrix composites which

asymptotically approach a constant value once the outgassing process has essentially ceased. One

of the composite experiments on board LDEF, the UTIAS Experiment No. A0180, showed clearly

the effect of outgassing on the dimensional changes of a Boron fiber reinforced epoxy matrix

composites and the corresponding coefficients of the,anal expansion. The experiment, located at

station D-12 on LDEF, 90 ° to the leading edge, was custom-designed and constructed to record 16

thermal/strain gauges every 16 hours for a period of 371 days (refs. 6 and 28). Details on this

aspect of the experiment can be obtained from Tennyson (ref. 36). LDEF was yawed ~8 ° relative

to the orbital velocity vector (i.e., -82 ° relative to velocity vector), with a corresponding atomic

oxygen fluence at station D-12 of about 12x102_ atoms/cm 2. Experiment No. A0180's sample

trays contained a stainless-steel calibration tube, 62 composite tubes, and 45 composite coupons.
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Outgassingtime, to, and associated dimensional change, A_., obtained from strain vs.

temperature plots, are summarized in Table 3-34 for the boron/epoxy. It took about 85 days for

the boron/SP-290 epoxy 4-ply/30 ° to outgas. In comparison, the T-300 carbon/934 epoxy and the

T-300 carbon/SP-288 epoxy took 40 days to outgas, and 80 days for the T-300 carbon/5208 epoxy

to outgas.

Table 3-34. Outgassing Time and Dimensional Change for Boron Epoxy

Outgassing

Time

t., days

Dimensional change, _., strain, 10-6

Initial

Laboratory

Calibration

First

Deptoye_

1
Material

Boron/_oxy 85 -800 at -23"C (-10*F) -75 725

SP290, 4-ply/_.30"

Final Asymptote

Strain

75 150

3.2,5,4.2 Coefficient of Thermal Expansion

CTE values for the UTIAS LDEF Experiment No. A0180 are summarized in Table 3-35.

Table 3-35. CTE values for UTIAS/LDEF Boron Epoxy

Material

Stainless steel calibration-tube

Boron/epoxy SP-290, 2

tube,4-ply/+30 °

SU'ain

9 (:t30")

10 (_50")

Gage No.

Thermal

CoetTtcient of Thermal Expansion, CTE, 104/0C

(I04/°F) 1

Amber 3

17.'/(9.g4)

2.83 (1.57)

21.1(11.7)

Space 4

18.0 (10.0)

3.0-4.0

(1.67-2.22)
13.5-20.0

C7.541.1)

Therm_vacuum

18.0 (10.0)

0.79-3.6

(0.44-2.0)
22.9

(12.7)

IMultiply by I ,S to obtain CTE vah_ in !0"6/'C
2SP-290 (._teacmnd Products l_pa_, 3M Co,, St. Paul, Mir,n
3Me.amr_l at atmo_heric p_lmat_ prio¢ to hunch
4Meaw_rnd in qp6ce environment on LDEF ,-urit_ tim 371 d_y. in orbit

5Meuured in htbocttory thermal-vacuum tea facility after 2,114 days in orbit and 1114day. at ambient htbocatocy ccmditiem

3.2.5.4.3 Microcracking

No information reported from flight experiments.
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3.3 PROTECTIVE COATED POLYMER MATRI_ COMPOSITES

Spacecraft designers who selects polymeric-matrix composites for critical low-Earth orbit

applications requiring very low coefficient of thermal expansion, reduced weight and high specific

moduli compared to other candidate isotropic spacecraR materials need to be concerned with the

long-term effects of the space environment on the performance of these materials. Factors involved

in determining whether composites exposed to the space environment will provide the long life

desired for long-term space missions, e.g., International Space Station Alpha, include the selection

of the resin and fiber systems as well as an effective atomic oxygen protective coating.

AO barrier coatings should have the following properties:

The barrier must be resistant to atomic oxygen bombardhlent;

It should be flexible, abrasion-resistant, and allow adhesive bonding;

It should have desirable optical properties;

It should be UV tolerant; and

Finally, surface conductivity should be high in order to prevent the build-up of

harmful potential gradients that might result from charging.

3.3.1 Anodized AI Foil

Anodized aluminum foil is an excellent coating for use on tubular and flat shapes 34'3t .36

The aluminum provides stable optical properties, provides a barrier to atomic oxygen erosion and

to moisture/outgassing and provides the best mircrometeoroid impact resistance, i.e., impact hole

diameter doesn't change with time. Anodized aluminum foil adhesively co-cured to composites has

excellent bond strength to the composite substrates.

The life of the protected composites is strongly dependent on the number and severity of

high velocity impact (HVI) hits penetrating the foil cover and subsequently exposing the resin and

fibers to AO. For example, HVI statistical analysis showed that for a 0.13 mm foil on a 2.5 mm

thick, 50 rnna diameter tube, there will be approximately 13 tubes penetrated in 30 years (a bonded

foil cover or extruded and thinned aluminum tube was initially chosen to provide AO protection for

the truss tubes and mobile transporter base for International Space Station Alpha), as well as

hundreds or thousands of penetrations through the aluminum foil on each tube. One model in a

study using two different orbital debris models showed 141 penetrations of a 0.13 mm aluminum

foil in 30 years, while the other model predicted 1633 penetrations. Increasing the foil thickness to
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60>'o.The erosion of the unprotected0.20 mm will reduce the number of foil penetrations by about o,

composite in the worst orientation is around 0.1 mm per year, indicting that there may be some

through holes created by AO in the lifetime of the truss tubes, aT

3.3.2 Sputtered Coatings

Sputter_ coatings on composite materials are attractive due to the ab:,lity to apply very thin

coatings and their tailorability of optical properties. However, there is limited application for use

due to the complexity of the coating deposition (i.e., partial vacuum requirements limit substrate

sizes).

Table 3-36 summarizes the thermo-optical performance of several sputter-deposited

coatings applied to carbon-epoxy composite substrates flown on the various flight experiments. 3a _9

The coati ;s evaluated on the STS-8 were generally unaffected by the atomic oxygen environ n,nt.

The opaque nickel coating appeared slightly rougher after exposure than the preflight coating. The

atomic oxygen stability demonstrated by th_e sputter deposited coatings suggest that this

technique could be used to protect polymer matrix composites from erosion in long-term LEO

applications.

Table 3-36. Sputter Coatings on Carbon/Epoxy Composites.

Designation Sputter Coatings Substrate Exp't AO Huence
10Ztatoms/cm z

a._ ratio

BOL EOL

Opaque Nickel 1600 _ ofC.999 0.025 cm thick STS-8 0.35 0.52/0.45 0.5210.45

Nickel T300/5208

Ni/SiO2 600/i, SiO2 over 0.025 cm thick STS-8" 0.35 " 0.50/0.2"/ 0.49/0.27

1600 A Nickel T300/5208

AIzO_/AI 800 _ Al20_ over 0.025 cm thick STS-8 0.35 0.29/0.78 0.29/0.78
1800 :k of 0.9995 T300/5208

pure A1 ninum

AJ lt.bYF 8.99 0.16/0.240.05-0.09/
(420-2520 ,_, thick) I 0.19-0.30

I

Sputter-deposited metallic coatings on T300/934 composites were observed to be effective

in preventing mass loss flora exposure to the LEO atomic oxygen environment in experiment

A0134 on the LDEF (ref 11) The T300/934 composite, a 4-ply [+_45], lay-up with a coating of

I000 A of nickel with a 600 A overcoat of sili_'_,n dioxide, exhibited no mass loss aRer 5 years and

9 months of LEO exposure A _,apor deposited, 1200 A-thick aluminum coating also protected the

T300/934 from atomic oxygen with negligible weight penalty. No coating delamination from the

composite surface was noted a_qer approximately 34000 thermal cycles in In contrast, the
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unprotected composite on the same experiments experienced a thickness loss of 0.0045 inch of the

0.0055-inch thick outer ply.

A 0.41 mm (16 mils) thick T300 carbon fiber 934 epoxy composite sample with a protective

coating consisting of < 1000 A of A1203 was exposed to an atomic oxygen fluence of 8.99 c 10z_

atoms/cm 2 on row 9 of LDEF. 4° This atomic oxygen protective coating was extremely thin, poorly

attached to the substrate, and proliferated with defects as observed by scanning c'_ctron

photomicroscopy.

A 0.64 mm (25 mils) thick T300 carbon fiber 934 epox 3, composite sample with a protective

coating of 400 A of aluminum on top of 800 ,_ of chromium was exposed to an atomic oxygen

fluence of 8.99 x 10z_ atoms/era 2 on row 9 ofLDEF (ref 43). The highly irregular quilted surface

texture of the composite sample due to the carbon fiber fabric greatly contributed to the occurrence

of defects in the protective coating. 4_ Scanning electron microscopy revealed a significantly larger

undercut cavity diameter compared to the respective protective coating defect. Measurement of

the area of the undercut cavity given the row 9 LDEF atomic oxygen fluence of 8.99 x 102_

atoms/cm z resulted in an effective erosion yield under the defect site of 2.46 x 10 .24 cm3/atom. This

erosion yield is approximately twice that of unprotected carbon epoxy based on previous LEO

evaluation of carbon fiber epoxy composites. 4_ The higher effective erosion yield for atomic

oxygen entering defects, compared to atomic oxygen impinging upon unprotected material, is

i thought to be due to the opportunities for it to react with the underlying organic material.

An indium-tin eutectic coating was exposed to an atomic oxygen fluence of 7.15x I 021

atoms/era 2 (leading edge) and 2.3 lxl0 s atoms/era 2 (trailing edge) as part of the M0003-10

experiment (ref 38). This moisture barrier coating prevented composite mass loss even though the

exposed surfaces became dull and discolored. There was minor visual difference between leading

and trailing edge specimens.

3.3.3 Thermal Control Paints

Most standard space qualified paints are good for short-term missions. Spray application

makes these coatings easy to apply A study of the effects of thermal control coatings on the

thermal-_cled induced mircrocracking behavior i, carbon/epoxy composites indicated adequate

coating capability by A276 white polyurethane in effectively reducing thermal o/cling extremes and

shocks (see page 3-36 and ref 9)

Z-93 and YB-" e best for long-term missions (see Chapter 10, Sections 10.3). These

coatings are the leading candidate for the space station radiator coatings, providing excellent o,/e

ratios. However, the adhesion to bare composite needs to be verified.
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3.3.4 Aluminum Thermal Control Tape

S glass epoxy composite samples (0.5-in. x 6-in.) covered with an aluminum thermal control

tape were flown as part ot the LDEF flight experiment A9171, the Solar Array MaterieJs Passive

LDEF Experiment (SAMPLE).43 The thermal control tape was a 2 mil aluminum with 2 rail

pressure sensitive silicone adhesive SR574. The LDEF A0171 tray was located on the leading edge

row A8 of the LDEF satellite, and was in orbit at an angle of-380 from the ram vector. The

environmental expo._ure conditions included UV radiation of 9,400 esh, atomic oxygen exposure of

7.15 x 102I rtoms/crn2, -32,000 thermal cycles, and 2 to 7 impacts of <. lmm per composite.

Comparative mechanical and optical properties of hare and tape covered composites are

summarized in Table 3-37.

The thermal control tape proved successful in protecting the underlying composite from the

atomic oxygert/UV radiation resin erosion as evident in the comparative mass loss data of Table 3-

37. The mass loss tbr the bare composite was four times greater tl.an for the tape covered

comp ,ite. Th_ small degree of mass loss on the tape covered specimens wac due to erosion along

the specimen e:_ges where the composite was exposed. The tape silicone adhesive also proved to

withstand the rigors of the environment, with the flight specimens showing an increase in peel

strength over ti_e control by a factor greater than 2 to 1. This increase in peel strength is again

probably due to thermal cycling effects. Difficulties in conducting the peel te_s on the flight tape

specimens also suggested that the flight tape had become embrittled by the space exposure. The

so_ar absorptance and IR enuttance on the tape covered specimens showed httle change between

the flight and control specimens, with the differences in recorded values considered to be in the

noise range of me portable instruments used to measure the properties. T_e tape did not however

provide complete protection from micrometeoroid/debris. One debris hit did penetrate the

protective tape, causing damage to the composite substrate, while a second impact, originating

most probably from a shuttle fluid dump, was unable to penetrate the tape.

Table 3-37. Mechanical and Op!ical Properties of Bare and Tape Covered Composite

Properties

Peel Streogth (lb./m)

Mass _ (mg/cm _)

Bare Composite

Flight

2.40

Tape Covered Composit_

FlightControl

1.9

0.140

0.025

4.6

0.59

Solax _ (avg.) 0.723 0.787 O. 103

!9, c (iv_.) O. 894 O. 895 0.020
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3.3.5 RTV Silicone Atomic Oxygen Protective Overcoat

McGhan NuSil CV-1144-0 i._ a one-part, silicone dispersion specially designed and

processed for applications requiring extreme low temperature, low outgassing and minimal volatile

condensables under extreme operating conditions. CV-1144-0 is based on a dimethyl diphenyl

silicone copolymer with a service temperature range of-115°C to 232°C.

This silicone coating was applied to the original Hubble Space Telescope Solar Arrays. It

was applied to carbon/epoxy composites, Kapton, Dacron and Chemglaze paint. This coating was

recently flight tested on the STS-46 LDCE-3 experiment.** No correlation was observed between

the flight weight loss of 0.491 percent and the ASTM E-595 CVCM and TML values of 0.00 and

0.31 percent, respectively. Possible mechanisms for the reaction of the silicone elastomer with

oxygen atoms that caused the weight loss. are:

s SiCH3 + 40 ........... SiOSi 4- 3H20+2C

• SiCH 3 + 40 ........... SiC + SiOH + H20 q- CO 2

This silicone coating was also applied to a carbon/PEEK thermoplastic composite. No

measurable erosion was observed in the protected layer. 4s
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3.4 METAL MATRIX COMPOSITES

Aluminum and magnesium reinforced with P75 or P 100 pitch base carbon fibers arc leading

candidate composites for precision space structures. Graphite/aluminum and graphite/magnesium

composites offer better thermal conductivity than polymer matrix composites, and hence, offer

advantages for space structures particularly where very tight thermal stability requirements are

needed. Other desirable attributes of metal-matrix composites are no outgassing, zero moisture

absorption, high material damping, and lower susceptibility to space environmental effects (e.g.,

atomic oxygen, electron, proton, ultraviolet radiation stability) as compared to polymer matrix

composites (refs. 3, 8, and 11). The main disadvantages of metal matrix composites aa'e that they

axe difficult to process and are expensive.

3.4.1 Graphite/Aluminum

3.4.1.1 Thickness Erosion from Atomic Oxygen Exposure

No information available from flight experiments. However, metal matrix composites are

not expected to suffer any significant surface erosion due to its resistance to atomic oxygen

erosion.

3.4.1.2 Impact Damage from Micrometeoroid and Debris

Numerous micrometeoroid or debris impact craters were observed on exposed _mples of

metal matrix composites on the LDEF flight experiment. Graphite/aluminum metal matrix

specimens were part of the "Advanced Composites Experiment," which was a sub-experiment of

LDEF Experiment M0003-i0, "Space Environmental Effects on Spacecraft Materials" (ref. 1).

The metal matrix composites included in the experiment are listed in Table 3-38. The

graphite/aluminum strip samples included three different graphite fibers and two different alloy

matrices with four different lay-ups

The diameter of most of the crater was less than 100 gin. Since the graphite/aluminum had

an aluminum alloy surface foil, the crater had the same appearance as for monolithic aluminum. A

cross section of this crater showed that it extended completely through the 0.004 in. (0.010 cm)

2024 aluminum surface foil, but did not extend into the underlying graphite fiber-reinforced

interior. This may imply that penetration through the foil is much easier than through the fiber-

reird,,,ced region of the composite, but may also be the characteristic depth of penetration into

aluminum for this particular size of impact particle.
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Table 3-38. Graphite Aluminum Metal Matrix Composites Exposed to the LEO

Environment

Material Lay-up Ntanber of Samples

Leading Edge Trailing Edge Control

'A-Deck

Space
Exposed

B-Deck
Shielded

A-Deck

Space
Exposed

B-Deck

Shielded

GY70/201/2024Strips 0,90,(0/i-60), 15 14 13 118 20

P5516061/6061Strips 0 or90 8 I0 8 8 12

PI00/201/2024Strips (_.20). 2 2 2 2 2

P100/6061Wires 0 4 I 4 I 2

P55/6061 Wires 0 or (0L- 8 3 8 3 6

CY70/201 Wires (0)s 2 1 2 i 2

T300/6061 Wires 0 1 2 1 2

Note:Materials were flown inthe direct space exposure positions on the "A-deck" as well as m shielded positions
on the "B-deck," both st the leading and trailing edges. The environments for the samples mounted on the

leading and trailing A decks were similar except those on the leading edge were also exposed to relatively high
fluxes of atmospheric constituents (primarily atomic oxygen). Although the samples on the B decks were not
exposed to the radiation environment, the experiment design wzs such that they experienced thermal excursions
similar to those of the exposure samples. Also, a complete set of specimens were kept at controlled temperature
and humidity conditions at the Aerospace Corporation. These specimens were shielded from exposure to ambient
!ight and were used as ground controls.

Perhaps the most significant observation is the presence of a delamination of the surface foil

over an area approximately three times the crater diameter. It is not known whether the

delamination occurred due to the impact energy or formed later due to thermal fatigue. Surface foil

delaminations would affect important through-thickness properties, such as the thermal

conductivity. In addition, the transverse strength ofgraphite./alurninum and graphite/magnesium is

primarily provided by the surface foil. Large foil delaminations could therefore have serious

consequences on the performance of these composites. Thus, if the delaminations propagate due to

thermal fatigue, they could reach much larger sizes during extended missions _d have substantial

adverse effects.
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3.4.1.3 Dimensional Changes

3.4.1.3.1Outgassing

No information available _om flight experiments. However, metal matrix composites do

not outgass due to the characteristics of its metal matrix.

3.4.1.3.2 Coefficient of Thermal Expansion

Graphite/aluminum composites showed a stable, linear thermal expansion behavior with

near-zero thermal hysteresis over the LDEF temperature range.' Graphite/aluminum metal matrix

specimens with continuous graphite fiber reinforcements were part of the "Advanced Composites

Experiment," which was a sub-experiment of LDEF Experiment M0003-10, "Space

Environmental Effects on Spacecraft Materials" (ref. 2). The locations of the flight samples on

LDEF were Bay D, Row 4 on the trailing edge and Bay D, Row 7 on the leading edge. The

samples were 3.5 in. long x 0.5 in. wide x 0.032 in. thick strips.

The thermal expansion behavior of P55/6061/6061 composites was fairly linear with ordy a

small hysteresis. Typical plots of dimensional change vs. time for graphite/aluminum revealed

normal behavior of expansion and contraction vdth heating and cooling throughout the cycle. Post-

flight thermal expansion behavior of the flight samples and lab-control samples using laser

interferometer data analysis indicated that after a certain number of thermal cycles in space, strain

hardening in the matrix stabilized the composites, reducing thermal hysteresis for subsequent

thermal cycles. A similar behavior was observed for the GYT0/201/2024 composites, except that

this material showed more thermal hysteresis, particularly in the trailing edge sample. However, in

all cases, the total changes in dimension and the slopes remained constant during the entire time of

recording.

i The flight data revealed that in the space environment, the temperature distribution in • structure is non-uniform due
to radiant her,ling. For • satellite like LDEF in a low Earth orbit with alternating eclipse and manexposure, the data

showed that the materials experienced thermal cycling over diffe,_ent temperature extremes (-29°C (-20eF) to 71°C
(160"F) ±I2°C (_.O'F)), with differem heating/cooling rates depending on the location of samples on the satellite.

In • thermal cycle, the heating/cooling rtzm could vary from O°C/min. to 12°C/min. when LDEF was going in or out
of the Earth's shadow. On the I.E, the mtm were almost double those on the TE. Hence, the differential

heatmg/cooli_ ratm caused a differemce in the total changes in dimension between LE and TE samples over the mine

temlmramre range as obeerved in ipmphite/alummumcomposites.
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TheaverageCTEsfor the graphite/aluminum composite samples determined over the entire

temperature range are listed in Table 3-39. Apparently, the CTEs of both composite materials were

unaffected by the extended space exposure. These results indicated that the LDEF space

environment has little effect on the thermal behavior of graphite/aluminum. Thermal cycling in

orbit stabilized the graphite/aluminum composites, eliminating thermal hysteresis effects.

Table 3-./9. CTE of Graphite/Aluminum Composites on LDEF

Materials Coefficient of Thermal Expansion
x0-6/oc (lO'_/*F3

Lab-Control Leading Edge Trailing Edge

GY-70/201/2024 (1 ply) 6.3 (3.5) 5.8 (3.2) 6.8 (3.8)

P55/6061/6061 (1 ply) 5.4 (3.0) 5.9 (3.3) 6.3 (3.5)

3.4.1.3.3 Microcracking

Graphite/aluminum revealed no evidence of matrix microcracking during the LDEF flight

experiment/ Since these samples were exposed to over 34,000 thermal cycles, this indicated that

these composites have excellent resistance to thermal fatigue for the LDEF thermal environment.

However, extensive thermal fatigue cracking was observed on the surface foils of selected

GY70/201/2024 graphite/aluminum strip samples. This was surprising since the thermal stresses

should be lower within the surface foils than within the fiber-reinforced regions of the composites.

However, further inspection revealed that the cracks were always associated with a surface

contaminant that was clearl.v visible on several trailing edge samples that had been mounted

adjacent to one another. X-ray Photoelectron Spectroscopy showed the presence of silicon and

oxygen, probably fi'om on-orbit silicone contamination. The cracks probably imtiated in a brittle

oxide or aluminum silicate layer on the sample surface. Once the cracks were initiated, they

propagated into the bulk of the foil. In some cases, the cracks propagated completely through the

surface foil. However, there was no evidence of the cracks extending into the underlying Gr/AI

region or along the interface between this region and the foil.

Less severe, isolated f,_tigue cracks also were observed on several graphite/aluminum

specimens. These cracks are associated with surface defects such as surface-foil blemishes,

micrometeoroid craters, and engraved identification numbers, which presumably acted as stress

concentrators and crack-initiation sites.

J Etching of graphite/aluminum cro_ sections produced matrix darkeaing in the fiber-reinforced mgiom, which ia

an indication of plastic ,1: ,<)nnation. Ths is not surprising since the coefficient of _ expamioa miamateh

between thegraphitefibersand matrixinduceahigh stressesinthematrix duringthermalcycling.
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3.4.2 Graphite/Magnesium

3.4.2.1 Thickness Erosion from Atomic Oxygen Exposure

No information available from flight experiments. However, metal matrix composites are

not expected to suffer any significant surface erosion due to their resistance to atomic o_.'ygen

erosion.

3.4.2.2 Impact Damage from Micrometeoroid and Debris

No information available from flight experiments.

3.4.2.3 Dimensional Changes

3.4.2.3.10utgassing

No information available from flight experiments. However, metal matrix composites do

not outgass due to the characteristics of its metal matrix.

3.4.2.3.2 Coefficient of Thermal Expansion

Graphite/magnesium composites showed non-linear, unstable thermal expansion behavior,

even after extensive cycling during orbiting, with significant thermal hysteresis over the I.DEF
If

temperature range. Graphite/magnesium metal mat-ix specimens with continuous graphite fiber

reinforcements were pat, of the "Advanced Composites Experiment," which was a sub-experiment

of LDEF Experiment M0003-10, "Space Environmental Effects on Spacecraft Materials" (ref. 2).

The locations of the flight samples on LDEF were Bay D, Row 4 c."_the trailing edge and Bay D,

Row 7 on the leading edge. The samples were 3.5 in. long x 0.5 in. wide x 0.032 in. thick strips.

Post-flight samples of the P 100/EZ33 A/AZ31B composite system exhibited non-linear

thermal behavior with a large residual thermal strain at room temperature of ~280 g-strain. The

large residual strain of the material is typical of metal matrix composites, and is caused by yielding

of the matrix. For example, the composite behavior near the cold end of the thermal cycle is

k The flight data revealed that in the space enviror_nent, the temperature distribution in a structure is olden time

varying or non-uniform due to radiant heating. For a satellite like LDEF in a low Fmrthorbit with dtenutting
eclipse and sun exposure, the data _owed that the materials experienced thermal cycling over different temperature
extremes with diffenmt heating/cooling rates depending on the location of samples on the satellite. In a thermal
cycle, the heating/cooling rates could vary from 0°C/rain. to 11°C/rain. when LDEF was going in or out of the

Earth's shadow. On the LE,, the rates were almost double those on the TE. Hence, the differential heating/cooling
rates caused • difference in the total changes in dimension between LE madTE samples over the utme temperature
nmge as observed in graphite/aluminum composites.
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dominated by the expansion of the fibers causing yielding in the matrix. This leads to an increase in

dimension and consequently an open loop with large permanent offset at room temperature, The

thermal expansion behavior of post-flight samples showed that the amount of permanent offset and

the magnitude of thermal hysteresis over the temperature range decreased remarkably after thermal

cycling. The implication of the results is that extensive thermal cycling had a large effect on

stabilizing the behavior of these materials. However, the thermal expansion behavior remained

non-linear and the thermal hysteresis could not be cycled out as in the case of graphite aluminum

composites. These data indicate that the EZ33A Mg alloy, unlike the high strength 6061 and 201

AI alloys, was not effectively strain-hardened by thermal cycling, which would have increased the

yield stiength and minimized strain hysteresis over the LDEF temperature range. It should be

noted however that the total dimensional change and average CTE of the graphite/magnesium

composites are smaller than those of the graphite/aluminum composites. This is due to the low

elastic modulus of the magnesium alloys (6.5 Msi) and the high modulus, low CTE P100 fiber. The

CTEs are near-zero and similar for both LE and TE samples within the error range of the

experiment.

Typical plots of dimensional change versus time indicates anomalous behavior for a typical

LDEF thermal cycle. As the cycle started, temperature increased slowly and the sample expanded

as expected. Howe er, as the heating rate rapidly increased, the sample contracted instead of

expanding. This can be attributed to the low matrix conductivity of the Mg alloy (54 W/m-K [31

Btu-in/hr-fi-°F]). I When the exposed surface of the graphite/magnesium samples was heated or

cooled slowly (e.g., 1.0°C/min. [ 1.5°F/rain] or less), thermal equilibrium was maintained throughout

the ,sample leading to normal behavior. However, when just leaving or entering the shadow, the

samples were heated or cooled at a much faster rate (5.5°C/rain [ 10°F/mini). Due to the low

thermal conductivity of the graphite/magnesium, a steep thermal gradient existed through the

thickness. A larger temperature gradient existed between exposed front-surface and back-side

surface in the graphite/magnesium composite materials than for graphite/aluminum. Upon heating,,

the exposed surface was therefore much hotter and consequently expanded faster than the back

surface, causing sample bending and inducing compression in the back surface These bending

deformations give the erroneous indication of a negative CTE. Similar arguments apply for the fast

cooling condition, the exposed surface cooled faster making the sample bend the other way.

From the results of flight data analysis, it is clearly shown that in a space enviromnent, the

temperature distribution in a structure is not uniform. Nonuniform temperatures grise from radiant

heating on one side of a structure as typically occurs in a geostationary satellite or by transient

heating/cooling as in the LDEF structure placed in a day-night low Earth orbit with alternating

I Matrix conductivity of aluminum alloy is 1104 Btu-in0ar-ft'F
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eclipse and sun exposure. _ ependmg on the location, as in this case LE or TE, materials are

subjected to widely different temperature ranges and heating/cooling rates. The disparity, of the

temperature range and rates of heating/cooling lead to a differential total change in dimensions that

could eventually lead to thermal distortion. In low thermal conductivity materials, such as

graphite/magnesium or graphite/epoxy composites, the thermal gradiem effects on distortion are

more severe. Therefore, besides the thermal expansion behavior (CTE and thermal hysteresis),

thermal conductivity must be considered in predicting the structural stability of a material in the

space environment.
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3.4.2.3.3 Microcracking

Graphite/magnesium exhibited no evidence of matrix microcracking after more titan 34,000

thermal cycles on the LDEF satellite, indicating excellent resistance to thermal fatigue for the

LDLF thermal environment. Graphite/magnesium metal matrix specimens were part of the

Advanced Composites Experiment, which was a sub-experiment of LDEF Experiment M0003,

"Space Environmental Effects on Spacecraft Materials" (ref. 1). The metal matrix composites

included in the experiment are listed in Table 3-40. The samples were located on LDEF Bay D,

Row 4 on the trailing edge and Bay D, Row 8 on the leading edge. The samples were mounted on

both sides of cassettes with one side (Deck A) exposed to the space environment and the other side

(Deck .3) facing inward. The graphite/magnesium strips included P 100/EZ33A/AZ3113 and

P IO0/AZ9 IC/AZ01A composites. Poor strength properties for P 100,__.Z33AJAZ31B led to the

consideration of the P 100/AZ91C/AZ61A composite system.

No evidence of matrix microcracking was observed for the graphite magnesium composites.

In contrast, extensive thermal-fatigue cracking was visible on the surface foils of selected

graphite/magnesium specimens. This was unexpected because thermal stresges should be lower in

the foils than in the fiber-reinforced interior regions. Further analysis, however, revealed that the

cracking was due to anomalous surface conditions. The cracks in graphite/magnesmm may have

initiated within a brittle, surfac*_ oxide layer that apparently formed prior to launch.

Table 3-40. Graphite Magnesium Composites Exposed to the LEO Environment

Material Lay-up

Leading Edge

A-Deck

Space
Exposed

N amber of Samples

B-Deck
Shielded

' Trailing Edge

A-Beck

Space
I Exposed

B-Deck
Shielded

PI00/EZ33A/AZ31B Strips 0,90, or (011150), 15 14 13 18 20

PIOO/AZ91CIAZ61A Staips 0.90 or (:1:10), 6 4 6 6 3

PI00/AZ3 IB Wires 0 3 1 3 1

PI00/AZ61A Wtres 0 4 ! 4 11 2

P55/AZ91C Wires (0)s 3 1 I 3 1 4

Control

J
No_e:Materials were flown in both direct sVace exposure posttions on the "A-deck* as well as in shie/ded

poaitioc_ on the _B-deck" at the leading and trailing edges. The enviro_ts for the samples mo_ated on the

leading and trailing A decks were similar except those on the leading edge were also exposed to relatively high

flaxes of atu'osph_c censtituents (prir_nly atomic oxygen). Although the samples on the B decks were not

exposed to the radiation enviromnent, the experime,_t design was sx_a that they experiemced tlmrnml

excursions similar to thole of th.e exposare samples. Also, a complete set of spechnms were kepl at controlled

temperature and humidity conditions at the Aerospace Corporation. These specimens were shtelded from
exix_are to ambiemt light and were used as ground controls.

3-65



3.4.3 Silicon Carbide/Aluminum

Silicon carbide/aluminum metal matrix specimens were part of the Advanced Composites

Experiment, which was a sub-experiment of LDEF Experiment M0003, "Space Environmental

Effects on Spacecraft Materials" (ref. 1). The metal matrix composites included in Zhe experiment

are listed in Table 3-4!

Table 3-41. Silicon Carbide/Aluminum Metal Matrix Composites Exposed to the LEO
Environment

Material Lay-up Number of Samples

AoDeck B-Deck

Space Shielded
Exposed

sic,d2124 strips Discontinuous 1 1

SiC,d6061 Strips Discontinuous 1 1

SCS2_/,_I Strips (Oh 2 2

NICALON SiCd6061 Wires ! 0 18 5
I 1

Note:Materials were flown in _th direct space exposure _sitions on

Leading Edge Trailing Edge Control

5

A-Deck B-Deck

Space Shielded
Exposed

1 1

1 1

2 2

18 5

6

5

the _A-dock" as well as in shielded

positions on the "B-deck" it the leading and trailing edges. The environments for the samples mounted ¢m the
leading and trailing A docks were similar except those on the leading edge were also exposed to relatively high.
fluxes of atmospheric constituents (primarily atomic oxygen). Although the samples on me B decks were not
exposed to the radiation environment, the experiment design was such that they experienced thermal excuraiom
similar to those of the exposure samples. Also, a complete set c.f specimens were kept at controlled temperature
r,d humidity conditions at the Aerospace Corporation. These specimens were skidded from exposure to ambient
light and were used as ground controls.

3.4.3.1 Thickness Erosion from Atomic Oxygen Exposure

No information available from flight experiments. However, metal matrix composites axe

not expected to suffer any significant surface erosion due to atomic oxygen erosion.

3.4.3.2 Impact Damage from Micrometeoroid and Debris

No information available from flight experiments

3.4.3.3 Dimensional Changes

3.4.3.3.10ut_assing

No intb_mation ava/lable from flight experiments ltowever, metal matrix composites do

not outgass due to the characteristics of its metal matrix
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3.5 CARBON-CARBON COMPOSITES

The development of high thermal conductivity reinforcing materials has stimulated interest

in developing carbon matrix composites tailored for thermal management applications, such as

radiators and electronic packaging, for solar probe spacecrafls. This class of composites, designed

to provide thermal expansion control as well as improved thermal conductivity, have the potential

to provide benefits in the remova_ of excess heat from electronic devices and to rhea ,_ssociated

thermal rejection components.

The PI30X carbon fiber with a thermal conductivity three times that of copper and a

density one-fourth that of copper is available commercially. This fiber has been successfully

incorporated into polymer or metal matrices to make prototype substrates/heatsinks for electrical

components on printed wiring assemblies and radiator panels. Recent development has focused on

using carbon-carbon's low thermal expansion coefficient and high stiffness-to-weight ratio to

produce lightweight structures with a high degree of dimensional stability.

3.5.1 Mass Loss

Uncoated and coated carbon-carbon specimens were part of the BMDO STS-46 EOIM-3

experiments, which flew in August 1992, The experiments were exposed to an atomic oxygen

fluence of 2.2 - 2.5 x 1020 atoms/era 2. The carbon-carbon specimens were supplied by the

Survivable Space Power Subsystem (SUPER) program at Martin Marietta. Fiber architecture was

6: I warp-to-fill ratio using Amoco P95WG 2K carbon fiber for the warp and Amoco T300 1K

carbon fiber for the fill. These unidirectional panels were designed for a high thermal conductivity

and elastic modulus in the direction parallel to the P95WG fibers.

Significant erosion occurred in the unprote ed carbon/carbon composite (5L5) as

compared to the tungsten (IP2) or titanium carbide (5P3, 1L1) overcoated carbon/carbon

materials. Results are summarized in Table 3-42 _s The TiC coated carbon/carbon materials were

slightly oxidized with some loss of carbon.
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Table 3--42. Mass Change for Unprotected and Coated Carbon/Carbon Composites

Material Specimm

CVD TiC/graphite

cloth/carbon foam

TiC-coated carbon/carbon

C.arbon/C.artxm comtxmite

Sample Code

IP2A

IP2C

5P3A

5P3C

1LIA

1LIC

5LSA

5L5C

Vis_ Change

Delaminated

Crocked

No

No

No

No

Blackened

Blackened

Mass Chr,nge
mg

No

-0.7

-0.6

-0.2

No

No

+2.6

-0.7

Carbon-carbon specimens were also integrated into the heated and passive trays of the JPL

STS-46 EOIM-3 experiments. The experiments were exposed to an atorrfic oxygen fluence of 2.2 -

2.5 xl020 atoms/era 2. Erosion yield data are presented in Table 3-43 .(_

Table 3-43. Erosion Yield Data fer Carbon-Carbon Composites

Specimett I.D.

SPISC

SPI8D

SPISA

Location

Con""ol

Passive (10° - 40°C)

200°C Tray

Erosion

mils (pro)

<0.o4 (< I.o)

"0.08 ('2.0)

The durability of carbon-carbon composites in the LEO environment and the effect atomic

oxygen has on the thermal emittance of the surface was determined in a 1989 study a using an AO

ground test facility" The equivalent atomic oxygen fluence was calculated based on the loss rate

of the pyrolytic graphite that was used as a control in all exposures and the crosion yield of carbon

in space, ie, 1.2 x 10_' cm3/atom '9 Carbon-carbon composites from five different manufacturers

were used for evaluation."

m Directed atomicoxygenexposurewas performedwithan oxygenionsourcefromCommonwealth Scientific.
n These compo6ites were comprised of Pan or Pitch based carbon fibers woven into • cloth, then impregnated with
phenolic ream, formed ur.._er heat and pressure, carbonized, densifiod with pitch and grtphitiz_. TwoMiraensional
we_ve carbon-carbon comtx_ites were supplied by Rohr Industries, Kaiser Aerotech, and Rocketdytm. In addition
to the two-dimemioml C-C comlxmit¢, Rocketdyne supplied a harne.m weave C-C composite with carbon
chemically vapor deposited on the surface: two-dimensional weave C-C composite with an Si/B,Zr oxidation
inhibitor; and • two-dimenmonal weave C-C composite with 2.9 •t % tantalum at an oxidation inhibitor. Fiber

Materials Inc. supplied • four-dimetmiomd weave C-C composite and a composite made with it_tatically preued
c_ fibers. Gamrtl Electric supplied a throe-dimension,,l C-C compomt, with silicon carbide on the surface
fornmd by depoaited re!icon that was flame melted into the composite. Pyrolytic graphite manufactured by Union
Carbide was included for comparison and as a flux calibrttion for the atomic, ,xygen beam.
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Results indicated that the thermal emittance of carbon-carbon composite (as low as 0.42)

can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K.

This emittance enhancement is due to a change in the surface morphology as a remit of oxidation.

High aspect ratio cones are formed on the surface which allow more efficient trapping of incident

thermal radiation.

Erosion of the surface due to oxidation is similar to that for carbon, so that at altitudes less

than approximately 600 kin, thickness loss of the radiator could be significant (as much as O. 1

cm/year). All of the composites exhibited approximately the same mass loss rate. Figure 3-19

illustrates the thickness loss of carbon/carbon that can be expected in l-year at various altitudes. If

operation is above -700 km in altitude, a 15-year exposure should result in the removal of < 11 _'n

from the surface. For most radiators, this would be an insignificant loss. At lower altitudes, the

loss can become significant. A protective coating or oxidation barrier forming additive may be

needed to prevent atomic oxygen attack after the initial high emittance surface is formed.

10"2

NOM]NA RSd_t ARRIVAL

ONE YEAR

THICKNESS 10-3
LOST, cm

SOLAR + ANTI-SOLAR

(NOMINAL)

Figure 3-19.

to_ 1 1 I
2OO 4O0 600 80O

ALTITUDE, km OIM MOt3 T]

Thickness Loss for an Exposed C_rbon-Carbon Composite as a Function of
Altitude
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3.5.2 Optical Properties

Uncoated and coated carbon-carbon specimens were part of the BMDO STS-46 EOIM-3

experiments (samples provided by Ma_qin-Mafietta; ref. 46). The STS-46 flew in August 1992, and

the e.nperiments 'were exposed to an atomic oxygen fluence of 2.2 - 2.5 x l 020 atom,_/cm 2.

Thenno-optical properties are summarized in Table 3-44.

Table 3-44. Thermo-Optical Properties of Unprotected and Coated Carbon/Carbon

Composites

_4ateriai _;pe:imm

Tungsuuilgr_hite

cloth/cas_onfoam

CVD TiC/grap_:_

cloth/carbonfoa_

TiC.-e,'ntted carbon/carbon

Cartxm/Carbot: comix)site

Sample

Code

IP2A

IP2C

5P3A

be3C

ILIA

ILIC

5LSA
, =

5L5C

Visual

Delaminated

Cracked

No

No

!

No

No

Blackened

[ Blackened
I

! I

Pie
I

0.696

0.696

0.661

TBD

0.55

_.55

0.82

0.82

Post

0.729

0.707

0.671

TBD

0.56

u.5b

0.97

0.093

0.093

Post

0.113

0.084

0.274 0.270

TBE; TBD

0.14

0.lb

0,57

0.57

0.15

0.15

0.69

Carbo- caa-bon specimens were integrated into heated and passive trays of the JPL Shuttle

46 EOIM-3 c., e,'iments Optical propert3" data are presented in Table 3-45 (ref. 47)

Table 3-45. Optical Properties for Carbon-Carbon Composites

I 1

,I SpecimeJt I.D. Location [ a s
SPI _C Control 0.76 0.41

I

I

i SP] 8D Pa.,'sive (10 ° - 40°C) 0.78 0.4-4
SP 18A l 200°C Tray 0.85 0.47

t
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3.6 DESIGN CONSIDERATIONS FOR THE SPACE ENVIRONMENT

3.6.1 Prediction of Surface Recession Rates Due to Atomic Oxygen Exposure.

A design chart, shown in Figure 3-20, permits a user to estimate material thickness loss as a

function of satellite orbital altitude, time in orbit and AO angle of incidence relative to the surface

normal. 5° Generally, the designer knows the altitude (e.g., 350 kin) and time in orbit (500 days)

required for a specific satellite application and mission. The intersection of these two lines defines a

fluence level as shown in Figure 3-20. One then follows the constant fluence curve until it

intersects the specific material reaction efficiency (R_) curve (e.g., 0. lxl0 "24cmS/atom). Moving

horizontally from this point of intersection gives the thickness loss i_ microns (e.g., 10 ttm o ). This

value corresponds to the worst case, i.e., the "ram" direction (8 km/s), assuming a standard

atmosphere. Finally, angle of incidence correction of the ram direction can be applied to the

"thickness loss" using the nomogram table.

Figure 3-20. Nomogram for Calculating AO Fluence and Material Thickness Loss
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Fiuence,asa function of altitude for various solar activities (10.7 cm solar flux index, FtoT;

geomagnetic index, Ap) is shown in Figure 3-21. st This figure also serves as a nomogra?h for

calculating the amount of surface erosion in microns for a material with 1_ = 3.0 x .10.24 cm3/atom

(e.g., Kapton) or for a less reactive material with R, = 1.0 x 10+:+ cm3/atom (e.g., carbon/epoxy

composite). Fluence increases with solar activity. For example, at a nominal altitude of 50'3 kin, :.t,_

yearly fluence on a ram-exposed surface increases from 4.6x10 !9 to 2.0x1021 atoms/era 2 as solar

activity increases from minimal (Fio.7=70; Ap--0) to maximum (F10.r=230; .%=35).

900

8OO

70O

600-

ALTITUDE, 50O
kin

400-

300--

200-

_NO_AL SOLAR ACTIVITy CONDITIONS i
I

"m'mMINIMUM SOLAR ACTIVITY CONDITIONS I
i

' i

1ool l, II I, 1, ,
1015 1016 1017 l0 Is 1019 1020 1021

ATOM/C OXYGEN FLUENCE, atom._/cn_-year

Figure 3-21,

SURFACE RECESSION (p_n) FOR Re = 1.0 x 10"24cm3/atom (CARBON/EPOXY)

10-5 10-4 10-3 10-2 l(yt 100 101 102 103

I _ I ! I i I I I l I i ! _ I i i

SURFACE RECESSION (tim) FOR Re = 3.0 x 10"24cm3/atom _ _7'ON')

10-4 10-3 10-2 10-1 100 101 102 :0 _ !04

" I °° I " I --

1022 1023

AO Fluence Nomograph for Predicting Surface Recession

O! M 94 OI3 042

Example for Determining the Thickness Loss for Carbon/Epoxy, Assume a spacecraft

is designed to operate at an altitude of 500 km and is launched into an orbit with an inclination of

28+5 ° Also assume the Sparcecrat_ is gravity-gradient stabilized, is delivered to orbit during 1990,

and has an intended operational lifetime of one year. The amount of surface recession or thickness

loss on a ram-oriented carbon/epoxy surface is calculated from the nomograph by first determining

the solar activity. From Figure 3-22 (ref. Visentine and Whitaker, 1989), a launch date of ._q90

represents maximum solar activity conditions CFt0._ = 230)
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Figure 3-22. Long Range Estimate of 10.7 cm solar flux cycles 22 and 23.

From the nomograph of Figure 3-21, curve "1EMAX" represents ram exposure for these

a_ itude conditions. Reading across the altitude scale of 500 kin, the fluence and surface recession

are 2 , 1021 atoms/cm 2 year and 20 mmlyear, respectively. Alternatively, F T x R e = _ or

2x1021 atoms/cm2x 1.0xl0 "24 cm3/atom = 20x10 "3 cm. Thus, a ram-oriented composite surface

with a thickness of.0254 cm (10.0 mil) will lose 20 _tm or .79 mil,P which is _8 percent of its

thickness during the time the spacecraft is in operation. If the surface in question is solar inertial,

sut;h as solar array panel, curve "11MAX" on the nomograph represents one side exposure for solar

ine_ial surfaces during the time this spacecraft is intended to operate. Under these cenditions, the

fluence and surface erosion would be 3 x l020 atomgcm 2 year and 3 gm/year, respectively. For

two-sided exposure, this would represent a thickness loss of 6 gin.

P Multiply by 0.03937 to convert to mils: 20 pm = 0.79 rail.
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3.6.2 Design of Composite Laminates to Reduce Mechanical Property Loss Due to Atomic

Oxygen Exposure

Polymeric composites exposed to atomic oxygen can experienced significant surface

recession as observed on the LDEF mission. Composites of carbon fibers with eooxy, polyimide,

and polysulfone matrices located on the leading edge of the LDEF satellite (panels that face the

direction of atomic oxygen motion) lost up to 0.005 inch (or about one ply of laminate). However,

on glass reinforced specimens oniy the surface resin layer was eroded. More important, material

loss due to atomic oxygen erosion can have a deleterious effect on the mechanical properties of

composites.

For example, uncoated, leading edge carbon fiber/epoxy samples (e.g., T300/934,

T300/5208) suffered a 20 to 65 percent reduction in tensile strength and modulus (see Table 3.46).

In contrast, no significant changes in tensile strength or modulus were observed for uncoated

composites located on the trailing edge of LDEF; the T300/934 epoxy specimens [0]_6 did not

show any significant loss in tensile properties. Although located on the trailing edge, the C6000

carbon fiber/PMR15 composite suffered a 20 - 30 % drop in the tensile strength (see Table 3-46).

Table 3-46. Loss in the Tensile and Compression Properties of Composites Due to LEO

Composite Laminate
Design

Epoxy

- T300/934 [0]t6

- T300/934 [+45h

- "1"300/5208 [+45h

Polyimi_

I0/+45/0/+45].
C.60_/PMR 15

Thermoplastic

- C3000/P 1700 [+45].
- C_J0/P 1700

- T300/PI700 [0"/90"Is Fabric

Exposure

V

Ref. I AO Fiuence,

atoms/cm _

8

11

8

Tensile Compressive

Strength Modulus Strength Modulus

1.32x10 _7 No Effect No Effect No Effect N.A.

8.99x 1021 45 % 20%

8.99x 10:1 65 % 33

1.32x10 _7 20 - 30% N.A. No Effect N.A.

8.99x!02t 15-30% 15-30%

1.32x1017 No Effect No Effect No Effect N.A.
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Analysis of the _exural property reduction for composites exposed *-_ the atomic oxygen

environment on LDEF provides insights into the importance of the laminate orientation on the

extent of the mechanical property degradation. The results for five epoxy composites

[0/45/90/135]_. of the LDEF Aerospace Experiment M00003-10 located near the leading edge

(atomic oxygen flue_,:e = 7.5 lxl02' atoms/cm:) indicated a reduction in their mechanical properties

(_e Table 3--47 and Figures 3-8 and 3-9). The five carbon/epoxy comv_sites all had normalized

leading edge strength values that were at least 70% of the original value, which is expected

considering that the outer 0 ° ply was mostly or completely eroded away. In contrast, the trailing

edge samples all had strength values similar to their pre-flight values.

A mhfimum reduction in flexural properties was observed for the composites that had a 45 °

ply at the outer surface (see Table 3-47). In a flexura! test, the loss of a 0 ° ply from the surface will

have a much more pronounced effect on the strength than the loss of a 45 ° ply. In assessing the

effect of atomic oxygen erosion on the strength and modulus of composites, the compogite lay-up is

an important consideration.

The T300/934 epoxy specimens [0],_ did not show any significant loss in flexure properties

between the different positions on LDEF and the ground control. As these specimens were

unidirectional [0] reinforced, the load that would have been carried by the eroded material on the

leading edgz exposed specimens was carried by the remaining 0* ply. For these specimens the only

mechanical performance loss was due to material loss on the leading edge exposed specimens. Ply

orientatio, plays a significant role in flexure properties beh,,vior when AO erosion is involved.

No significant loss in the flexure properties between the different positions on LDEF (i.e.,

space exposed and shielded) ar.d the ground control T300 ca,-bon/P 1700 polysu!fone [0,90] fabric

specimens was reported. As with unidirectional, there is continuous reinforcement in the load

direction in each ply, i.e., the load that would have been carried by the eroded material on the

leading edge exposed specimens was carried by the remaining 0* material. For these specimens the

only mechanical performance loss was due to material !oss on the leading edge exposed specimens.
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Table 3-47, Loss in the Flexural and Shear Strengths of Composites due to LEO Exposure

Laminate Ref AO Fluence

Design atoms/an _
Composite

Caxbon/Epoxies I [01451901135]2.

_poxies I [0/451901135]2.

- I-IM,F 176/934 [:1:4514,

- HMF 1761934 [:£4514,

C,arbon/Epoxies 2 [45/--452/45]_r

Carbon/Epoxies" [45/-452/4514.r

C.trbon/Epoxies 2 [0];6

Cubo_Poxies 2 [Oh6

- T3001934 [0]le

- T300/934 [0116

- T300/934 [0116

- T300/934 [0J16

- AS-4/3501-_ [0116

- AS-4/3501-6 [O]t6

Bismaleimide"

- V378A [0/45/90/13512.

[0/45190/135]2.

Polyim.ides

-PMR-15 [0/:I:45/0/:I:45],

[0/i'45/0/_5L

[01_5101_5],

[0/±45/01±45k

- LARC-160 [0h6

[01t6

3

II

3

3

3

3

7

3

g

7

4

8

8

8

11

11

7.51z102_

8
.- , . .

8

8

8

8

7

7

Thermoplastic

- T300/PI700

8.99x102t

Shear Str.

S.trength ' Modulus

10-30% 10-30%

2.31 x 10s No Effect No Effect
=.

8._)X10 21 5 - 10% 5 - 1095

1.32x10 t_ 5 - 1095 5 - 1095

8.99xI02t 5 -10% 5 -10%

1.32xI0I_ 5 -I0_ 5 -10%

8.99x1021

1.32xI017

10% 20%

1.32x10z7 No Effect

7.51x102t

No Eff_t
I

5- 10% 5- 1095

2.31x10 s 5- IC% S- 10%

5- 10% 5- 10957.51xI021

2.31x10s 5- 10% 5 - 1095

7.51xI021 60% 30%

2.31x10 s No Effect No Effect

8.99x lO21

1.32x10 n

7.51xI021

1095

No Effect

2595

No Effect

5 -10%

5- 10%

5 -10%

S - |0%

10%

No Effect

P75S/934

2.31x105

7.51x1021

2.3_xI0s

[0,90]Fabric 7.51xI021

[0,90]Fabric 2.3Ix10s

[G,90]Fabric 8.99xI021

[0,90]Fabric 1.32xI017

GY70/X30, GY70/934,OYT0/CE339, P75S/CE339,

GY70/CE339, T50/F263,T50/934,T50/X904B

6O%

4O95

25%

No Effect

5- 10%

5- 1095

5- 1095

5- 1095

25%

5-I0%

5- 10%

No Effect

5 - 10%

5 - 10%

5 - 10%

5 - 10%

5-I0%

095
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3,6.3 Dimensional Changes Due to Moisture Desorption

3.6.3.1 Laboratory Data on Composites Moisture Desorption

In the space vacuum composites, such as carbon/epoxy, desorbs its absorbed moisture,

which can cause large dimensional changes in the composite suuctures. The loss of this moisture in

space J_ accompanied by a dimensional change as reflected by the coefficient of moisture e:cpansion

(CME).q

The effects of moisture absorption are well known and have been characterized for some

dimensionally st_,ble composite structures, s2'53 Table 3-48 summarizes the percent moisture

absorption after exposure, the measured strain, and the calculated CME (13)at saturation for several

composite laminates.

Table 3-48. Laboratory Coefficient of Moisture Expansion Results for Composite Laminates

Mate 5_

T300/934

Epoxy

T300/934

Epox_

P75S/ERL 1962

Epoxy .....

P75S/RS-3

Polyqranate

IM7/PEEK

ThermoplasUc

Fiber Direction

Isotropic

Axial

Transverse

Isotropic

Isotropic

Amal

Transverse

t

Note (a) speomens e×

(b) specimens ex

Specimen
1Number

Moisture

Content
%M

1.13 (')

St 'tin
xl0 * in./in.

AL/L

452

1
I CME

xlO 4 iaJm./%M

%M

40O

1 1.22 o') 25 21

1 1.28 2435 1902

I 1.03 (°) !67 162

I 0.32(°_ 34 105

O. 110")

0.11

0.12

0.11

0.11

to 100% relative h::midity

8

8

312

320

338

I

2

I

2

3

Csed to 90% relative humidity

76

76

26O2

2913

3071

55

51

51

55

q CME is defined as a change m length per unit length per weight percent of water absorbed at constant temperature

and pressure. Dimensional charges caused by the loss of water in space can be, either negative or peeitive in a

multidirectionsl angle-ply laminate. Prediction of CME in various in-plar:e and thickness directions requirm a

knowledge of axial (fiber-direction) and trtr_verae coefficients of moisture expansion for unidirectional laminates.

CME values are readily incorporated into finite element and other computer codes of laminate design.
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The dimemsional change caused by moisture desorption is strongly influenced by the

laminate design. For example, the CMEs of T300/epoxy for an axial, isotropic, and transverse

laminate designs are 21,400, and 1902, respectively. The data are very consistent in terms of both

moisture content and strain measurements as shown for the three IM7/PEEK specimens. For

example, the final moisture contents of the three transverse specimens at saturation were 0.12,

0.11, and 0.11%, respectively. Similarly, the final strain readings for the three samples were ÷312,

+320, and +338 Ix in.fro, respectively. Compared to the carbon epoxy data, both the carbon

poly_anate a,qd carbon thermoplastic displayed lower equilibrium saturation moisture uptake and

lower strain nieasurements for the different fiber directions. However, the calculated CME values

for the carbon/PEEK were higher than for carbon/epoxy, which is attributed to the division of the

strain value by ,a ffa_ional moisture content value.

Hence, the dimensional change caused by moisture desorption is strongly influenced by the

matrix selection. Figure 3-21 shows the comparative effect of different laminate m=trix resins on

strain (ref Composite Optics, Inc.). The isotropic P75S/954-3 epoxy matrix resin has a significant

effect in reducing the composite compared to the isotropic P75S/EKL 1962 epoxy matrix resin.

Recent work on var" "s new hydrophobic resin systems has offered designers an alternative

solution to the hygrostrain problem. Modified epoxy resins and cyanate este, resins can reduce the

hygrostrain to acceptable levels for dimensionally stable structures. Research work at Lockheed

Missiles and Space Company CLMSC) s6 evaluated several mc :lifted epoxy resin systems. The

results indicated that 3M's PR-500 exhibited a hygrostrain of approximately 45 ppm after one year

at 100% RH exposure, while typical epoxies yielded 150 ppm hyg|ostrain after the same period.
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3.6.2.2 Flight Experiment Data on Composites Moisture Desorption

The space environment-induced outgassing causes dimensional changes in polymer matr:,x

composites. For example, a 900 carbon/epoxy laminate (T300/5208 epoxy) on the UTIAS/LDEF

experiment experienced a total dimensional strain change of 1550xl 0 "_ after about 80 days in orbit

(ref. 6). Similar behavior was exhibited by other composite materials (ref. 33) as shown in Table 3-

49 where outgassing time, to, and associated dimensional change, At, obtained from strain vs.

temperature plots, are tabulated. It took about 40 days for the T300 carbon/934 epoxy and the

T300 carbon/SP-288epoxy to outgas. (Note: TheT300/934 dimensionalgrains in the [90]-

direction for the laboratory-de, red and flight experiment data are 1200x 10 "s and 1902x I fie,

respectively.) For comparison, a Kevlar/SP-288 epoxy 4-ply/90 ° laminate took 120 days to outgas

As expected, very small Ae changes were observed in the axial fiber direction for the T300

carbon/934 epoxy and T300/SP288 epoxy [014 laminates (not reported). Interestingly, a post-flight

measurement of the 900 strain at ambient temperature showed a recovery in the dimensional

change. This reflects re-absorption of moisture after retrieval of LDEF.

Table 3-49. Outgassing Time and Dimensional Clmnge for Thermoset Composites

Material 1, 2

Carbon/epoxy

T300/934_ 4-ply/90 °

Carbon/epoxy

T3OO/SP-2$8 r 4-ply/90 °

Carbon/epoxy

T300/5208_ 4-p1_'/90 °

Ammid/epoxy

SP-328_ 4-ply/90°

Boron/epoxy

SP290, 4-ply/±30 °

1 Thornel T-3OO (Amoco

Dimensional change,strain,10-6
l

InitialOutgassing

Time

t_, days

40

40

8O

120

85

Laboratory
Calibration

-1360 at -340C (-300F)

-1200 at -26°C (-15°F)

-1070 at -23°C (-10°F)

-2370 at -18°C (0°F)

-800 at -23°C (-10°F)

First

Deployed

-1350

-1200

-550

I0

Performance Products Inc.,

520

F'm_d Asymptote

Greenville, S.C.);

-255O

-2100

-2100

-1200 1170 -4000

.-75 725 75

-1200

-9O0

-1550

-2800

150

934 (Composite8 Div., Fiberim

Corp., Winomt, Wis.); Scx34chply SP-328, 5P-288, and SP-290 (Structural Products Department, 3M Co.,
St. Paul, Minn.); and 5208 (Narmco Materials, 8ASF Structural Materials Inc., Anaheim, CA).

It should be noted that an elapsed time of almost two years occurred after manufacturingthemmplm, prior

to their launch. During this time the samples were exposed to ambient conditiona azat thua had achieved an

equilibrium state, m terms of moisture absorption. However, they were not m a satm_ted state and are

probably re_ remmlative of typical composite space structuree. A peat-flight memmrenznt of the 90" attain at

ambient temperature showed a recovery in the dimensional change. This reflects re-absorpt/on of moisture

aRer retrieval of I.DEF over a period of "184 days in storage at ambient condition_
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Thus, it is possible that preconditioning of composites to remove moisture prior to flight

could substantially reduce, if not eliminate, dimensional instability of polymer matrix composites in

orbit. In general, the outgassing time required to reach an equilibrium state in space depends on

such factors as the initial moisture concentrations, the vola"q,e content, laminate thi"kness, ambient

temperature and constituent material diffusion properties.

From a design viewpoint, the dimensional changes for the 0 ° and 90 ° laminates can be used

to predict the A_ for an arbitrary laminate configuration. Clearly, the matrix-dominated properties

are most affected by outgassing (i.e., see the 90 ° results) but it is also evident ",hat the angle ply

laminate of boron/epoxy (see Table 3-50) underwent a significant Ac change. Outgassing can lead

to dimensional changes of composite laminates in orbit which must be taken into account in the

design of composite structures and joints where dimensional tolerances are critical.

Several conclusions can be drawn based on the results of the analyses of the UTIAS/LDEF

composite-material samples:

• The carbon epoxy matrix composites outgassed for 40 to 80 days, depending on the

material system.

• Outgassing caused significant permanent dimensional changes, which must be factored

into the design of low-distortion laminates.
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3.6.3.3 Prediction of Dimensional Changes due to Moisture Desorption (Outgassing).

A theoretical model is available that can predict the dimensional changes due to moisture

desorption (outgassing) at any temperature once the appropriate diffusion coefficients are known.

Using Fick's law, the strain _(t)r-..,_ associated with outgassing can be calculated from the

following equation:

C(t)T=const = Co exp [-7.3 _h21 5]_-" 0.7
(1)

where _o = strain at an equilibrium state in space (determined from outgassing tests),

D- diffusion coefficie..t, and

h = thickness of the composite.

However, to develop a model for predicting the outgassing time of materials over the

complete themaal cycling space environment, it is necessary to take temperature into account. It is

possible to determine a diffusion coefficient as a function of temperature by performing outgassing

tests in a vacuum at different temperatures (T, and Tb) assuming an Arrhenius relation betweea D

and T. For a given temperature (T) and % relative humidity the strain (c) for a given material from

its dry state as a function of time (t) to saturation is measured. The experiment is repeated at

another temperature (TO. Both experiments employ samples having the same equilibrium moisture

saturation (M,,). Using the generated e(T,t) curves as shown in Figure 3-22 (ref. 6), the initial

slopes determines D,(T.) and D,(Tb) according to equation (2).

_ _h 2 [ e2_E I ]2IXtYr=_ftst - 16e_ [ q¢_'2_ ,¢/_1
(2)
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Figure 3-22.

v'r"

G(T,t) I _l •

Ii T b _',_

I •

I
Slope = D

Desorption Response
OIM 94.013.02

Typical Strain Behavior of Materials as a Function of Time and Temperatures

Using the Arrhenius relation where

D = diffusion coefficient = Doexp(-Ed/RT)

R = gas constant

T = absolute temperature

Ea = activation (diffusion) energy

the following equation is obtained:

[ in(D__ - ln(D,)

DO') = exp [ l-_bT= + In(DO

•exp[(In(Db)-In '))l

(3)

This equation can be used to calculate the diffusion coefficient at any temperature, T, as

long as the diffusion coefficients D, and D_ at temperatures T, and Th are known. (A detailed

derivation of the above equations can be found in R.C. Tennyson and R. Matthews, "Thermal

Vacuum Response of Polymer Matrix Composites in Space.")

Hence the strain e(T,t) associated w;,h outgassing car. be calculated for given time intervals

(At), using D(T) from the above equation evaluated at the appropriate temperature using the

temperature/tim,: profile obtained in-orbit. From equation (1), the e(t) function is given by:
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where Tt = average temperature over At, assuming ec is la_oga at t = 0 from the outgassing

test. By using t(/- equation at every time step over the temperature history, it is possible to

calculate, the suain change of the sample due to outgassing, takihg i_to account temperature

effects.

Dividing the total strain by the saturated moisture content yields the coefficient of moisture

expansion according to the f:fllowing equation:

e = M[3 (5)

Example - Prediction of Outgassing Behavior Using Equations (3) and (4)

Using experimental-derived diffusion coefficients together with the LDEF temperat_are/time

profile the predicted dimensional change for a carbon/epoxy 90 ° laminate (T300/520g) can be

compared with the measured LDEF response as a fimction of time in orbit. A comparison of the 13

and D results from _ound-based simulator tests conducted on two tubes: a control sample (5T5)

that had remained under ambient laboratory conditions since the manuti_,,'ture of the LDEF flight

specimens _nd a LDEF flight sample (2T13) is presented in Table 3-50. The str_ response was

measured in situ using laser interferometry. Based on the data ;n 7abie 3-50, values ofD, -

0.00013 (mm2/Fu ")*,nd Db = 0.00078 (mm2/hr) were seiected, corresponcning to temperatures of

22"C and 50"C_ respectively. Using these results in equations (3) and (4) together with the

temperature'time profile shown in Figure 3-23, the predicted dimensiol.al change tbr the

carbon/epoxj laminate is plotted in Figure 3-24 together with the measured LDEF response as a

function of time hi orbit (ref. 6).

It is cbvaous that the predicted values do not fit the actual results very closely. However, if

the predicted diffusion coefficient is reduced to 13.4% of its m_asured value, the predicted

response i3 e_remely close to the actual data. "i'his indicates :hat the model it._lfis correct Why

is there such a difference in the diffusion coefficients measur*_d in 'space' and in the vacuum

chamber? The, te3ts reported show good correlation between 'control' ann 'flight' samples. The

discrepancies may be due to differences between the test conditions and the space environment,

such as a h_gher vressure or the presence of surface contaminants in the early stages of deployment.
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Over the.e, this contamination was removed from the samples due to atomic oxygen. Hence, when

the flight samples were tested in the vacuum chan_ber, no contamination effects were observed.

Thus one can account for the apparent increase in outgassing time observed in orbit. It is also

important to note that there is a large variability in the thickness and uniformity of the samples.

Manufacturing variations may have caused the diffe,ent diffusion coefficients of the samples.

Ideally, it would be best to measure D(T) from sample 3T6, and see how well this prediction fits

the flight data.

Table 3-50. Simulator Moisture Absorption Results for LDEF Flight and Control [90]4

Carbon/Epoxy (T300/5208) Laminates

I
Sample No. Type [ M, _ CME (p) D

I % p_ pr_/% mm2/h

5T5 Control .49 - !200 2449 .0001
i

5T5 Control .55 -1939 357.5 .00047

2T13 Flight .505 -1212 2400 .00013

2T 13 Flight .510 - 1224 2400 .00008

Flight .632 -1517 2400 .000782T13
J

3T6

3I'6

Note: Before

Flight .500 -1200 2400 .00014

Flight .510 -1219 2400 .00009

starting "the out_assing tests, the samples were completely dried out under vacuum at elevated

Temperature
"C

.j

22

50

22

22
m

50

22

22

temperature. The dry weight and length of each sample was measured and recorded. The samples were then placed in a

hygroscopic chamber to absorb moisture. Each sample was left until it absorbed the same amount of moisture as was

outgassed from the equivalent LDEF sample. This value was determined by measuring the CME (13) of each material

and the_ dividing the strain change measured on-orbit by {3 to give the total change in moisture conteQt. From CME

calculations, it was determined that the flight data from sample 3T6 indicated a total moistu:e content "change of .50%.

Therefore, for all the tests on the T300/5208 [90]4 samples, a moisture content as close as po_ible to this value was

used, as summarized w Table 3-50. On average, the 22°C and 50°C tests took about 13 days and 6 days to complete,

respectively. Note that the laboratory-derived diffusion coefficients of the control and flight samples agree quite well,

indicating n_) significant changes occurred after 69 months of space exposure.
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3.6.4 Dimensional Changes Due to Temperature Extremes

The coefficient of thermal expansion (CTE) within a laminate can also vary due to exposure

to the temperature extremcs and hence, be a source of dimensional instability. Since the through-

the-thickness expansion of a laminate approaches the magnitude of the matrix rest, (2f to 40 x! 0_

in.fm.-°C which is up to 1000 times the expansion effect of the in-plane expansion of the laminate

(i.e., 0.04 x 10 "sin./in.-°C), severe distortions can result if the design does not compesate for this

effect.

Exposures to the space environment were observed not to have a substantial degradation to

the pre-launch CTE values. Table 3-51 compares the CTE data from composite specimens on

LDEF Experiment AOI$0. A comparison of the CTE values measured in space (after 371 days)

with those measured at atmospheric pressure prior to launch showed reasonable agreement (ref.

6)

Table 3-51. Comparison of CTE Data From LDEF Experiment AO180

Material Laminate Type Ambiem CTE Space ffrg
;0"_/oc 104/oC

28.1 28.9"1"300/5208 Epoxy

T300/934 Epoxy

T300/SP-28 Epoxy

Boron/SP-290 Epoxy

Boron/SP-290 Epoxy

Kevlar/SP-328 Epoxy

Kevlar/SP-328 Epox'y

[90],

[9Ol,

[901,

[_o],

t_Ol,

[90],

[o],

26.5 27.3

26.3 26.8

2.8 2.21

21.1 20.9

61.0 59.2

O.18 0.83
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3.6.5 Design of Low Distortion Composite Laminates

The effects of moisture desorption on the dimensional stability of composite structures can

be many times greater than the effect of a wide temperature change. For example, a thermally

stable structure 100 inches long with a CTE of0.04xl0 _ in./in.-°C (0.02xlO _s in./'m.-°F) will distort

0.0002 inch when exposed to a temperature change of 56°C (100°F). This same structure with a

measured strain of 80 x 10 .6 in/in, will distort 0.008 inch after 40 days. Hence the distortion due to

moisture desorption is 40 times higher than the distortion associated with the maximum

temperature change. This situation is representative _of the Mars Observer Camera (ref 53). The

camera's sensitivity to moisture is such that in less than an hour it can exceed focus requirements at

50% RH, whereas temperature variation of over a 56°C (100°F) presents no dimensional or focus

problem.

The design of low distortion laminates can be achieved by combining laminate analysis of

composite materials with diffusion data. For the case of a (_+0), structure, the question being

addressed is how much axial distortion can occur in a zero CTE laminate. Figure 3-25 presents

the variation in the otx and ot_ CTE values for a (i-f)), laminate fabricated from T300/5208 material.

The curves shown were determined from classical laminate theory. The case of oh = 0 occurs when

0 = 46 °. Using diffusion data to calculate the CME values of 13xand fly from classical laminate

theory, one can obtain from Figure 3-26 a [3x~ 200 x 10.6/%M at 8 = 46 °. Assuming a 1%

moisture uptake prior to launch yields an axial displacement ofAL = 200 x 10.6 L where L = !e_,,gh

of structure. Thus for a 10 m long structure, the axial contraction would be 2.0 mm for a zero

CTE laminate. 57
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The tailoring of the composite laminate to reduce CME effects has some limitation because

of the overall requirements of a component, e.g., axial stiffness or CTE may not meet requirements

when designing for a low CME. For example, the effe_s of compressive strength and modulus,

CTE and CME with varying ply angle theta (0) are shown in Figures 3-27 and 3-28 for the [0,±

0,0] composite lay-up being considered for a satellite optical bench application. An optical ber, ch

requires maximum stiffness with minimum CTE and CME. Using high-modulus carbon fibers, such

as P75, will meet the, 20 Msi stiffness requirement. The relatively large negative CTE of carbon

fibers requires the addition of off-angle plies greater than 70 ° to raise the CTE towards the

±0.2x10 "_ in/in-°F requirement. However, these large ply angles tend to increase the CME. A

successful approach is to use a lower modulus, higher CTE carbon fiber, such as PAN50, for the

angle plies and P75 for the un;"irecfional plies Following this approach, a lay-up consisting of

[0Ol, ±60t_j, 0[2]] where [1] is 2 nail PAN50 and [2] is 2.5 nail P75, results in a CTE of 0.17x10 "_

in/in-°F and a CME 90 of84x10 "6 in/'m-%moisture (see Figure 3-28). The disadvantage is that the

use of the lower modulus PAN50 carbon fiber reduces axial stiffness and strength by 16% and

10%, respectively. _
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3.6.6 Design of Composite Laminates to Reduce Microcricldng

Exposure of composite structures to the repeated thermal cycling space can cause

microcracking in composites. A complicating feature of the HEO and GEO space environment

with their higher particle radiation dose is the synergistic effect of combined electron radhRion and

thermal fatigue, which may cause dramatic changes in the performance of composite systems. Data

from N'ASA Langley s9'6° ,61 showed that most composite systems exposed to sequential electron

radiation and thermal fatigue are highly susceptible to microcracidng damage due to embrittlement

of the matrix ma;.erial.

Microcracking of a composite causes the following dimensional stability problems:

• Hysteresis effect in the structure

• CTE changes, e.g., CTE becomes more negative with increasing thermal cycling

• Increases in the moisture response rates

Microcracking is occasionally employed to achieve a desired CTE. The Hubble Telescope

Metering Structure was subjected to microcracking in order to "tune" the various struts to achieve

a desired CTE. 6:

Thermal cycling induced microcracking is attributed to the difference in the coefficient of

thermal expansion (CTE) of each individual ply parallel and normal to the fiber direction. The CTE

normal to the fibers is about tudfthat of the resin's CTE whereas the CTE parallel to the

reinforcement is virtually zero and sometimes slightly negative. Hence, in any crossplied lay-up this

difference in thermal expansion induces internal stresses. During repeated thermal cycling each ply

within a crossplied laminate will be subjected to thermal fatigue, which may result in the generation

o! _n'acks parallel tO the fibers as well as through the thickness of each lamina.

The degree of thermal cracking due to this mechanism has been reviewed by Tenney et al. 6_"

where the effects of thermal cycling between -156°C and 94°C were studied in Pitch and PAN

carbon-fiber reinforced epoxies. In each of the samples examined the microcracks density did not

reach equilibrium after 500 cycles. Approximately 10 microcracks/cm were obsen'_ with P75S-

reinforced epoxy. However, less than 1 microcrack/cm was developed with the same matrix

material containing the less stiff T300 fibers, ref_,cting lower intem.,l stress levels. Hence, the fiber

modulus is very important in determining the degree ofmicrocracking. With a polyacrylonitrile

(PAN) based 62 Msi (430-GPa) mod,,l_.j c_, ,orJ fiber, extensive mi..rocracking was obtained, whiie

with a PAN-based 40 Msi (280--GPa) ,_oo,ius fiber no cracking was seen under more severe

testing conditions. Composites using the higher modulus fibers such as P75S will n,icrocrack mote

readily than composites using AS-4/T300 type carbon fiber (ref 63).
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In additionto the fiber, the resin and its cure temperature will influence the extent of the

microcracking that occurs. In a study by NASA Langley" differences in the crack density induced

in three tubes of different materials were observed with increasing number of thermal cycles

between -156°C and 94°C, as shown in Figure 3-29. The P75S/934 is a high modulus brittle epoxy

system, the P75S/CE339 is a high modulus toughened epoxy system, and the T300/934 is a low

modulus brittle epoxy system. The crack densities for each material asymptotically approach

equilibrium values as the number of cycles increases. The effects of the thermal cycling or

microcracking on the torsional stiffness of these tubes are also shown in Figure 3-29. The torsional

stif_e3s of tubes of each of the three materials was reduced by about 40% and the change in the

stiffness appeared independent of the composite material sys'_em These data illustrate the

sensitivity of matrix dominated properties to micrccracking.

DAMAGE ACCUMULATION TORSIONAL STIFFNESS

0 _) 13 13
0 0 0.9

13
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I I
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Fig,ire 3-29. Effects of Thermal Cycling on Composite Tubes
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Tough epoxy resins have been developed over the past 10 years, including Hercules 8551-7

and Fiberite 977-2. These resin systems both have excellent residual strength after L,npact and are

very. resistant to microcracking. The ERL 1962 toughened epoxy was formulated for space

applications by Amoco to minimize microcracks induced by thermal cycling.

The 930 epoxy was formulated by Fiberite !CI for space applications to minim/ze

microdamage by having a low cure temperature to reduce the residual thermal stresses that are

indaced during the composite fabrication. The 934 resin is a space qualified standard epoxy that

has been successfully cured at both 121°C (250°F) and 177°C (350°F). Analytical studies have

shown that residual stress is a strong function of the product of the matrix modulus, matrix CTE

and the difference between the stress-free temperature (usually nea- the cure temperature) and the

use temperature. 6s

Thermoplastics are inherently tough composite matrix resin systems. The PEEK resin is a

thermoplastic polymer which, when reinforced by low modulus, high strength carbon fiber, shows

good resistance to thermal cycling after radiation. In a comparative study of material performance

between carbon-fiber reinforced PEEK and epoxy composite systems (ref. 60), after 500 themtal

cycles between -156°C and 120°C the PEEK-based composite developed 1 n'_crocrack/cm while

the baseline epoxy developed 8 mi,;rocracks/cm However, the PEEK thermoplastic exhibit

excellent microcracking resistant, but only with high strength carbon fibers (e.g., AS4/PEEK) (ref

61).

In a study of candidate panel facesheet composite materials for a space reflector,

microcrack density data were measured for quasi-isotropic laminates as-fabricated and after

exposure to electron and thermal cycling simulating CLEO and HEO. ss The environmental

parameters and the testing results are summarized in Tables 3-52 and 3-53, respectively.

Table 3-52. Predicted Mission Environmental Parameters

Space Param¢te_ Circular Low Earth Orbit Highly Eiliptics] Orbit

(CLEO) (HEO)

Estimated life time ei_-u'on 10 1000

radiation dose, Mrads

Thermal cycle, _F -100 ° _G6 ° -226 ° :1".-36°

Lifetime, years >10 >10

Orbit nautical miles 378 540 x 37,800
28.5 ° 28.5 °
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Table 3-53. Durability of Candidate Materials in Simulated CLEO and HEO Environments

Material

System

Vf

%
Lay-up Cracks per inch

As- +IS0OF CLEO HEO

Fabricated 25 cycles 100 cyclu 100 Cycles

1000

Mrada

C6000/ 56.7 A 0 0

F155

UHM/ 54.8 B 0 8 C

F584 0 14 C

T50/ 67.6 B 0 0 0

ERL 1962 62.5 A 0

P'7,5/ERL 66.9 B 5 64 C

1939-3

P75/ 63.8 A 50 52 C
PEEK

P75/934

250°F 55.9 B 0 38 C

350°F 54.7 B 81 85 C

P'75/930 51.3 B 0 0 C

57.2 B 0 0 C

i ....

60.I B 0 0 6

10 I 1000

MradSE I Mrada

17

12

0 0

64

58

41 58

8

0

T50/934

250°F

A- lay-up [0,90,45.-45].

B- lay-up [0,45.90,-45].

C- Testing stopped due to excessive damage

D - Testing stopped due to poor quality material

E- Testing stopped due to properties outside requirements.

With the exception of P75/ERL 1939-3, P75/PEEK, and the 350°F cured P75/934, the

laminates were free ofmicrodamage in the as-fabricated state. The P75/ERL 1939-3, P75/PEEK,

and P75/934 contained about 5, 50, and 81 cracks per inch, respectively, in the as-fabricated state.

The damage in each of these laminates was a:tributed to thermal stresses induced during cool down

from the fabrication temperatures. Note tha_ when the P75/934 laminate was cured at 250°F, no

cracks were seen, indicating that the lower cure temperature sufficiently reduced the stresses to

avoid microdamage on cool down during fabrication

After 25 cycles between -150°F and 150°F, the P75/ERL 1939-3,350°F cured P75/934,

and P75/PEEK continued to microcrack, with the P75/EKL 1939-3 reaching a crack density of

about 64 per inch. These cycles also induced microcracks in the UHM/F584 (8-14 per inch) and

the 250°F cured P75/934 (38 per inch). The remair.ing four laminates (C6000/F155, T50/ERL
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1962, P75/930, and T50/934) did not microcrack. Two materials, the 350°F cured P75/934 and

C6000/F155, were not carried any farther in the test matrix because of excessive microdamage,

poor quality (excessive voids).

Five of the remaining six materials were subjected to the simulated CLEO thermal cycling

environment with electron radiation does of both 10 Mrads and 1000 Mrads. (The 250°F cured

T50/934 was subjected only to the more severe HEO simulation.) Of these five materials, only the

TS0/ERL 1962 remained damage free. The other four materials continued to microcrack as a result

of continued thermal fatigue and/or matrix embrittlement due to elec, ron radiation.

The only two materials subjected to the simulated HEO environment were the TS0/ERL

1962 and the 250°F cured T50/934. No damage was induced in the T50/ERL 1962 laminate

during the HEO simulation. The T50/934 did exhibit some slight microdamage with a microcrack

density of about 6 per inch. The T50/ERL 1962 composite did not degrade in either environment.
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Polycyanatematrixcompositesreinforcedwith carbonfibers offer lower moisture

absorption and enhanced microcracking resistant compared to carbon/epoxy composites.

Commercially available 350°F cured polycyanate resins include YLA's RS-3 and Fiberite's 954-3.

Amoco's ERL 1939-3 is a relatively new cyanate and epoxy blend designed for space applications.

Both the toughness of the polycyanates and their low shrinkage during cure result in a more stable

matrix during thermal cycling as shown in Figure 3-30. Usihg similar P75 laminate constructions

and thermal cycling conditions, the data indicated that the number of microcracks/inch converged

after 1000 cycles, with the RS-3 polycyanate composite displaying the best perfommnce. _

150

100

Figure 3-30.
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taP75/954-3
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Comparative Microcracking Behavior for Thermoset Composites
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The influence of ply lay-up on the extent of microcracking was reported by Wolf_ for

carbon composite .'ubes. Predicted values for the onset temperature (T_) of microcracking on the

first thermal cycle as a function of the laminate ply angle are shown in Figure 3-31. A: low ply

angles no microcracking was pcedicted.

TN,oC
(ONSET FOR

MATRIX
MICROCRACKING),

0

-50

-100

-150

GY70"/934

MATRIX STRENGTH -
27.6 MPa (4000 psi) , (OI:L'O/O)s

I

,/

q

i
I

I
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PLY ANGLE, 0 oiu _l_z_,

Figure 3-31. Variation of the Temperature fc,r the Onset of Microcracking with Ply Angle

Table 3-54 shows three values of Ts for each of several ply lay-ups. The first corresponds

to a fiat laminate without edge effects, the second or a circular tube infinite in length, and the third

for the stress field near the ends of a circular tube. A flat plate with a 90/0/:1:45 layup would warp

on cooldown but a tube is constrained to a circular cross section so that end distortion occurs.

Table 3-54. Predicted Matrix Cracking on First Cooldown of Carbon Composites

Material

GY'/0/934

GY70/934

GY70/934

Lay-up

[_0],

[±45].

10/i¢,O/Ol

Onset Temperature (°C) for Microcracking

Laminate

-94

-25

-28

Tube

-94

-25

-24

Tube EudJ

-94

-25

-24

GY70/934 [0/45/90/135 ]z, -53 -37 -37
, .

HMS,r3501-6 [90/±45/0] .-4_t -25 -11

HM,.¢/'3501-6 10/±45/901 ..44 -25 - 16
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3.6.7 Contamination from Composites Outgassing

When exposed to thermal-vacuum conditions, polymer matrix composites are known to

outgas due to moisture desorption or material volatilization or decomposition. On_ the ou, gassed

species leave the surfaces, they will be at such a low pressure that they travel in a line-of:sight

trajectory until they either hit spacecra_ surface (where they will bounce or adhere) or leave the

vicinity of the spacecraft at a velocity of several kilometers/second. Approximately 1 in 10,000 to

1 in 100,000 molecules will collide with another molecule (ambient or contaminant) and return to

the spacecraft where they might hit a sensitive surface. A portion of the contaminants that contact

spacecraft surfaces w/ll stick forming a molecular layer that can darken or be eroded with

subsequent exposure to the space environment.

Molecular contamination can degrade the performance of thermal control surfaces and ..solar

ceils. This can be particularly important if sensors are cooled passively by second surfaces mirrors

that are illuminated by the Sun. The effects of relatively thin molecular films on the solar

absorptance of second surface mirrors has been shown in Figure 2-17. Typically molecular films

must not exceed 1000 A on these sensitive surfaces at the end of the spacecraft's life. In addition,

thin deposits of molecular contaminants that condense on the cold optical surfaces and infrared

sensors can seriously reduce optical throughput. Furthermore, molecular contamination from

composite materials can lead to the formation of a "cloud" of outgassed molecular particles,

resulting in a significant increase in light scattering that attenu_'.tes the signals that the sensors are

receiving. Molecular films as thin as a few hundred angstroms can seriously reduce the sensor

performance, especially when viewing targets close to bright sources of light such as the Sun.

The outgassing/volatiles characterization of composites is determined by the procedures of

the ASTM Test for Total Mass Loss and Collected Volatile Condensable Materials from

Outgassing in a Vacuum Environment (E 595). This indust_'y standard material contamination

screening procedure is based on measuring the total mass Io_s (TML), collected volatile

condensable material (CVCM'), and water vapor regained (WVF). TML is important from a

molecular "cloud" effect which can degrade instrument performance, while CVCM is a measure of

the potential for outgassed products to deposit on critical optical surfaces. W'V'R is the mass of the

water vapor regained by the specimen after an optional reconditioning step. WVR is calculated

from the differences in th_ specimen mass determined after the test for TML and CVCM and again

after exposure to a 50*/, KH atmosphere at 23°C for 24 hours. Values below 1.0% TML and 0.1%

CVCM have been acceptable for current spacecraft performance needs, but the requirements are

expected to become more stringent for future surveillance spaeecraf_ systems (see below).
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Figure 3-32 shows typical ASTM E595 outgassing test tesults for a variety of carbon

reinforced polymer matrix composite system. 69 Table 3-55 presents outgassing test remits for a

variety of spacecraft composite materials. A comparison of the outgassing results pomts to

significantly lower outgassing TML values for polycyanates and thermoplastics composites

compared to the conventional epoxy composites.

IMT/
PEEK .053

I"650-42/
Rad¢l ,0.342

IM7/855 l-7

Epoxy 0.232

PI00/RS-3

Po_

P100/1962

Epoxy

Pl001

0.0 0.1 0.2 0.3 0.4 0.5

Percentage of Total Weight

Figure 3-32, Comparative Outgassing of Polymer Matrix Composites

TaUle 3-55. Outgassing Properties of Laminated Composites

Material Matrix Type TML %

GY70/954-3 Epoxy

P'/5/930 Epoxy

XN50/RS-3 Po|ycyanat¢

IMT/PEEK Thermoplastic

VCM %
m

.00

WVR%

NASA JSC "v°T3001934 Epoxy 0.58 .00

PAN50/954-3 Epoxy O.135 0.00549 O.195 I_W _

T50/934 Epoxy 0.4 0.09 .00 NASA JSC

HMS/934 Epoxy 1.09 0.00 0.51 NASA ISC

0.104 0.00792 0.0756 TRW

0.384 0.007 TRW

0.0851 0.00379 [ 0.0287 TRW

I0.053 0004 TRW
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Although typical carbon/epoxy structures meet the current NASA outga_g acceptance

levels of 1.0% TML and 0 !% CVCM, certain spacecraft systems and sensors that operate at

extremely cold temperatures are sensitive to much lower outgassing acceptance levels. The

development of spacecraft systems (e.g., FEWS, Brilliant Pebbles, Brilliant Eyes, CERES, AXAF)

with sensors, astronomical telescopes, and spe_rographs operating at extremely cold temperatures

(i.e.,<100 K) have imposed lower contamination levels requirements for spacecraft structures and

hence, the need for spacecraft materials with reduced outgassing at these lower temperatures. In

addition, the current industry outgassing measurement test, ASTM E 595, is conducted at test

conditions that do not simulate the stringent space environment and hence, does not adequately

characterize the contamination potential of composite materials.

The TRW Contamination Effects Facility, which derives a molecular outgassing rate from

the mass accumulation on a temperature controlled quartz crystal microbalance below 150 K, have

demonstrated marked improvements in reduced outgassing from polycyanates and thermoplastics.

Table 3-56 reveals lower outgassing rates for both the IM7/PEEK and the XN50/RS-3 polycyanate

composites by an order of magnitude in comparison with the outgassing rate measured for the

P75/ERL-1962 epoxy composite (ref. 69). Water represented most of the condensable material

from both the carbon PEEK and the polycyanate composites as verified by mass spectrometry

analysis (water has a condensation temperature of 150 K under vacuum).

Table 3-56. Outgassing Rates for Structural Materiab

Maua-ial Outgassi_ Rate, IOQK

P75 C_.atbow'ERL-1962 Epoxy l.f_Oug/cm2-6

0.24 allH_2-eXNS0 Cr.rbon/RS-3 Polycyaaat¢

IM7 Carbon/PEEK Thermoplastic O.17 ng/cm2-,

A series of in-situ bakeouts were conducted to determine the chan_ ia tho outgassing rates

with time and to determine the total time to eliminate outgassing from tim polym_, matrix

composites Figure 3-33 shows the linear decay in the outgassing rates for both the PEEK and the

polycyanate composites with increasing bakeout times at 323 K (50"C) (rff. _f9). The re,ass

accumulation on the TQCM were measured both at 175 K and 100 K with the ¢ompo_e

specimens at 298 K (25°C). The outgassing rate at 100 K was higher than that measured at 175 K,

which is att.ril_ated to the significant desorption of water from both the PEEK and polycyanate

composites. Both the PEEK and the polycyanate composites exhibited similar behavior in the

changes in the outgassing rates with time The 175 K outgassing rate decreased to zero (i.e., lx10-

15 g/cmLsec) by approximate 300 hours. The 100 K outgassing rate docrcased to 1x10-12 g/oraL
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sec by 400 hours• Extrapolation to a zero outgassing rate indicated that more than 1000 horn's

(--42 days) of extended bakeout at 323 K (50°C) would be required for the composites to

completely desorb their absorbed water. This predicted outgassing time is similar to that observed

from the LDEF UTIAS Experimer_t No. A0180 where it took about 40 days for the T-300

carbon/934 epoxy and the T-300 carbon/SP-288 epoxy to outgas and 80 days for the T-300

carbord5208 epoxy to outgas (see page 3-31).

OUTGASSING

RATE
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| II
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Figure 3-33.
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RELATIONSHIPS OF SPACE ENVIRONMENT - MATERIAL INTERACTIONS

Atomic Oxygen Effects

Thickness loss of carbon composites as a function of AO fluence

Surface Recession Predictions:

Nomograrn for calculating AO fluence and material thickness loss

AO fluence nomograph for predicting suface recession

Ax (surface recession) = F T (atomic oxygen fluence) x Re (reaction efficiency)

Mechanical Properties:

Tensile and Compression prooeny loss due to LEO exposure

Fiexural and Shear Strength property loss due to LEO exposure
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_Space Vacuum Exposure Effects

Dimensional changes due to mission duration

Outgassing rates of structural materials (ground-based experiments)
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4.0 POLVMERS

4.1 INTRODUCTION

Polymeric materials exposed to the LEO space environment were included in several LDEF

and STS experiments listed in Table 4-1.

Table 4.-_. LEO Flight Experiments on Polymers

Materials

Polyethylene Terephthalate

Polyurethane
Silicones

Kevlar

Teflon

Kapton

Polystyrene

Nylon

Polymethylmethylacrylate

Polyethylene Terephthalate

Kapton
Carbon Film

Flight
Experiment

Kapton Polyimide

P 1700 Polysulfone

Kymr (PVDF)

PIPSX Polyimide-Polysiloxane
FEP Teflon Film

Kapton
Teflon

Polysulfone Tefz¢l

Polycar_nate

Nylon

PPQ

PEN-2,6 Polyesler

PMDA-DAF Polyimid¢

Kapton

AOl_t (AS)"

A0114 (C9/C3)

A0134 039)

M0003-5 (-09)

STS-8

Environment

AO = 7.15x1021 atom/cm 2

UV = 9400 esh

Row C9 Specimens
AO =--8.99x 1021atom/cm 2

UV = 11,200 esh

Row C3 Specimens
AO =1.32x105 atom/cm 2

UV - 11,100 esh

10-Month Specimens
AO=2.6 x 1020 atoms/cm 2

UV= 1,600 esh

5.8-Year Specimens
AO=8.99x1021 at_ms/cm 2

UV=I 1,200 esh

AO=8.99x 1021 atoms/cm 2

UV= 11,200 esh

AO-=3.Sx 1020 atoms/cm 2

UV=41 75 esh

(a) Denotes LDEF row number and the letter denotes the LDEF tray (see Figta'e 1-15)

I

Ref. [ PI

1 A. Whitaker

2 J. Gregory

3

4 W. Slemp

5

6

7

7 C. Hurley

8 ] V. Bell

I9

Jt
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Significant findings from the LDEF flight experiments are:

• FEP Teflon, polyethylene mechanical properties affected by UV.

• Siloxane-modified materials resist AO.

• Non-silicone polymers attacked by AO.

• AO erosion of Kapton linearly predictable.

• Greater erosion than predicted for FEP, polystyrene, PMMA.

• AO attacks carbon films.
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4.2 KAPTON

4.2.1 Composition

Polyimide

4.2.2 Manufacturing Source

DuPont

4.2.3 Effects of the Space Environment

4.2.3.1 AO Reactivity and Surface Recession

LDEF and Space Shuttle Flight Experiments. Atomic oxygen erosion of Kapton is

linearly predictable with AO fluence, based on comparison of LDEF data with Space Shuttle flight

data. Surface recession and AO reactivity (R_) data are tabvlated in Table 4-2. AO reactivity or

erosion yield is determined by dividing tb o eroded depth by the atomic oxygen fluence. The 2.9 x

10 .24 cm3/atom value determined for Kapton from LDEF Experiments AO1346'1° and A0114 (ref'.

3) is very close to the 3.0 x i 0-24 cm3/atom value measured from the STS-8 flight

experiment, tl ,|2,13,14, ]5,16

Table 4-2. LDEF and STS-8 At, Reactivity of Kapton

Experiment

LDEF A0114

LDEF-EECC(a)

(a)

Sample
Description

1.2 rail thid:
0.81 in diam.

Space £nvitoament

AO
atoms/cm 2

90 x 1021

26 x 102o

UV
esh

11,209

1,600

3.5 x 102¢

Surface
Recession

pm

260Y.5

AO Reactivity
10-u cmJ/atom

2.89_z0.06

2.9

STS-8 0.5, 10, 20 mils 41.75 10.5 3.0

0.99 x 10 20 279STS-5 4352.0 mils 2.8

Kapton film was located on Row 9 in the Experiment Exposure Coutrol Canister (EECC) as part of LDEF
Experiment AO134. This carster was closed when LDEF was deployed on April 7, 1984. It opened one
month later for 10 months and then closed, providing 10 months of LEO exposure early in the LDEF nussion.

The LDEF AOI 14 value of 2.89:t-O06x10 24 crr,3/a_om is vdthin 3 percent of the normally

quoted value of 3.0x10 24 cm3/atom It is interesting to note that the silicone contamination known

to be present on LDEF (and on all shuttle-borne vehicles) does not seem to affect the linearity of

the erosion. Perhaps the silicones aggregate upon adsorption or oxidation, or perhaps adsorption is

4-3
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low on these materials. It is, however, well known that ifa continuous film of SiO2 is actually

formed, such a film is very effective in preventing oxidation by fast AO.

STS-5 and STS-8 Space Shuttle Flight Experiments. Kaptun films of different

thicknesses were flown on both the STS-5 and the STS-8 Space Shuttle missions to measure

surface reactivity with atomic oxyg_.n in the low Earth orbital environment. Samples on STS-5

were exposed to an atomic oxygen sweeping impingement across the surfaces with a total exposure

fluence of O.99x1920 atoms/era 2 for 43.5 hrs. Samples on STS-8 were exposed to ram (normal to

surface) conditions for 41.75 hrs leading to a total atomic oxygen fluence of 3.5 x 1020 atoms/era 2.

The high fluence on STS-8 was achieved by lowering the vehicle altitude to 225 km and by

maintaining the payload bay pointing into the velocity vector, nose to the Earth.

Average film thickness loss for Kapton on STS-5 is summarized in Table 4-3. x_ The film

samples (2.54 x 25.4 cm) were held in place on heater plates set to three temperatures (24°C, 65°C,

and 121°C). Mass loss determinations were made by comparing mass measurements obtained for

the control and exposed specimens. Since mass loss is film thickness dependen:, _hese

measurements were converted to thickness loss by using bulk film density. Preliminary examination

of the data did not show any variations in mass loss for the three temperatures involved within the

accuracy, (1 o = _+20%) of the measurements. This relatively large error was attributed to cutting

techniques and film thickness variations. Since no temperature dependency was evident (only

minor temperature dependency was expected due to the high kinetic energy of the impinging

atomic oxygen, all of the data (10 samples per thickness) shown in Table 4-3 were grouped

together,

Table 4-3.

12.7

STS-$ Kapton Surface Recession and AO Reactivity

25.4

50.S

AO Fluence
10:° a;oms/cm 2

0.99

Sudace Recession

gin

1.50

2.18

2179

AO Reactivity
10 44 cm$/atom 0'_

1.5

2.2

2.8

(a) Film thickness of 12.7, 25.4 and 50.8 gm correspond to 0.5, _ 0 and 2.0 n_ils,

respectively

(b) Most probable error is .f30 to 40%

The results show a reaction dependency on film thickness with K aoton showing increasing

thickness loss as thickness increases (the opposite is true for Mylar; see Section 4.7). Mass loss

measurements obtained on normal and oblique specimens indicate that reactivity of thin film

materials to atomic oxygen bombardment is a function of impingement angle, as expected from flux

reductions due to cosine angle effects, Specimens inclined at an angle of 45 ° to the flat surface of

4-4
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the heater plate experienced approximately 70% of the mass loss of film material attached to the

fiat surfaces.

The STS-8 mission average thickness loss for strip and disc samples are shown in Table 4-

4. is The notations "air" and "roll" under the "exposed side" column refer to the manufacturing

9rocess for the Kapton film. "Roll" is the film side in conU.ct with the manufacturing rolls, and

"air" refers tt_ the opposite side. The roll side of Kapton is inherently rougher than the air side of

Kapton. Both sides of the film were exposed co determine reaction rate dependency on

manufactu,-'ing details. Each sxdp data point represents three individual specimens (5 cra 2 in size)

with a standard deviation of 0.6 _tm. In general, the data for Kapton are in good agz a..-nt

considering all the. ratio, hies involved in the measurements (i.e., Kapton recession varies by only +5

to 10 percent).

Table 4-4.

Thickneu

(mils)

12.7 (0.5)

25.4 (1.0)

STS-8 Kapton Surface Recession and AO Reactivity

air

roll

Surface Recession, 0) tun

Strip Samples

121°C 65°C

9".5 10.5

Disc Average (c)

Samples

11.1

10.5

AO Reactivity
10-24 cm3/atom

11.8 10.3air 9.8 :0.7 3.0

roll .I 9.9 9.0

50.8 (2.0) air I 11.1 10.6roll ' 11.1 11.1

(a) Refers to manufacturing process

Co) Corrected for flux reduction due to nonnormal impingement (cos s)

(c) Strip samples and disc samples

No recession rate temperature dependency was evident for any of the Kapton films.

Temperature effects on recession rates were assessed by comparir, g the 12 I°C and 65°C strip

samples with the disc samples, which had an est;mated equilibrium temperature of-I 5°C. This

finding is in agreement with the organic film data obtained on the STS-5 (ref 15) mission and

ground simulation results '9 and is not unexpected since the incoming atoms have >5.0 eV of kinetic

energy, which appear, based or, scattering measurements made by Gregory, 20 to be totally

transferred to the surface.

No differences in recession rates for roll and a. gides were evident for Kapton. Since the

thickness dependence might arise from minor surface density ,:ariations introduced in the

mam,facturing process, reactivity of both sides (roll and air) of the film_ was examined and the data

are included in Table 4-4.
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There is no apparent recession rate dependence on sample thickness for K-r .on. As the

recession rates are not affected by either temperature or the specific side exposed, these data points

were combined (average recession for temperature, air and roll) and examined for thickness

dependency. This finding is in disagreement with the STS-5 results which show an increased

recession rate with increasing film thickness. Hence, thickness dependency for Kapton may be

surface-property controlled.

The AO reactivity for the Kapton films shown in Table 4-4 is 3.0x10 -24 cm3/atom. This

value is based on a total AO fhence of 3_5 x 10:° atoms/era 2. (AO reactivity is computed by

normalizing the total surface recession by the mission atomic oxygen fluence.) This AO reactivity

is higher than the values measured for the same materials on STS-5 by approximately a factor of 2.

There are three significant differences, all related to exposure conditions, wh/ch could affect

reaction rates. These are, for STS-8 and STS-5 respectively, incident flux, 2.3x10" atoms/cm:-sec

vs 3.8x1014 atoms/cm_-sec, total fluence, 3.5x10 2° atoms/cm 2 vs 9.9x10 _9 atoms/cm2; and sample

orientation relative to ram, or normal versus sweeping impingement.

Flux differences do not appear to be a significant factor in influencing reaction rates. In

fact, one would expect lower flux to result in higher reaction ¢fficiencies since atom to atom

recombina',ion's or other competing reactions should be less favored at lower flux as a result of

lower atomic oxygen surface densities. Reaction rates may have been affected by total fluence

d'-_'erences in that low fluence results in small suffac,_ recession which could be dominated by

surface effects or minor amounts of contamination. High fluence results in rates representative of'

bulk properties. Aside from fluence considerations, if contaminants were prescn; on tile sample

surfaces, the STS-5 recession rates should have been lower than the STS-8 rates. It should be

noted that the STS-5 strip samples were attached with silicone-based adhesive tape, and although

the samples were outgassed prior to flight, some silicone contaminant may have been transferred by

migration to the sample surfaces. It has been si_own previously 2_ that silicones are considerably

less reactive than non-silicon-containing organics. To preclude similar problems, tape with acD, lic-

based adhesive was used exclusively on lhe STS-8 samples.

Finally, the capture probabiiity for the hnpinging atoms by the surface may be dependent on

impingement angle. The Kapton samples (12.7 and 50.8 gm) on the STS-8 r,_ssion were mounted

on the inclined portion of both heater plates, positioned 42 ° of the main beam axis, and were

exposed to only 74 percent of the normal impingement flux. When the recession data gathered

from the samples inclined at 42 ° were combined and divided by the respective normal impingement

recession, fl_e result is a ratio of 0.64 _+0.03 rather than 0.74. This indicates that recession at low

impingement angles is less than would be expected, as it would be if it were simply due to flux

4-6



reduction.This findingis in qualitati,e agree_lemwith theSTS-5results. Thedatafit a (cos0)' _

functio_ better than co:, 0 If such dependence exists, it might be expected that low impingement

angles, as result from the sweeping-beam case of STS-5, may lead to lower capture probability and

lower reaction efficiency. Hence, if impinging angle increases, reaction probability decreases.

Although data from the reclined samples support this hypothesis, additional data on impingement

angle effects are needed to completely define reaction rate dependency. Thus, differences in the

reaction rates determined on the two experiments were most likely due to either ,,ni:qor

contaminants or atom impingement angle

COMES/MIR Flight Experiment. On MIR, erosion differences vary according to the

position, and hence, the atomic oxygen fluence levels. 22 The 1.1 year COMES/MIR flight

experiment consisted of four panels that were deployed by an cosmonaut in space outside of MIR

with the possibility of exposing samples on both sides, conventionally identified as "V" and "R".

The results, shown in Table 4-5, clearly indicate that the two sides did not undergo the same

fluence and also that some samples were more c.,i less protected by contaminants (mainly on the V

side). The high level of contamination oa MIR prevents one from drawing a definitive conclusion

about these anomalies but they seem to indicate that precise, local amb;ent conditions greatly

influence degradation. The films located on the V side were attacked much less (erosion from 0.11

to 2.2 0an) than those on the R side (erosion from 11 to 17 _n). Finally, the Kapton with a

protective coating (ITO, aluminum, silicone) did not suffer any erosion (see Section t..3).

Table 4-5. Kapton F'dm Erosion After Ex

MIR

Position
Environment

)omre to LEO on MIR

# of

Samples

esh

1900 3

2850 9

Minimum

er_-_ _gn

(_)

Maximum
erosion

(tun)

Average

erosion

Otm)

AO atoms/cm 2

Side R 3.5x1020to 5.8x1020 10.7 16.7 14.6

Side V 1.2x10181o 7.5x1019 0.11 2.2 0.5

Environmental Variations on M/R-COMES SI

Spite Eavironmem

Oxyl_ atoms cm "2

Solaruv (,_)

"rm_p.Cold_ (°C) . .
!

FACE V

k 2x1018 to 7,5x1019 (a)

ace Experiment:
FACE R

3.5xI020 to 5.8x!0 2_

2g_o(b) 19oo

-60 to -70 450 to -70

Temp. ttoli c_ (*C) I +10to +30 +50 to +60
{i) Eatinvt_ffemAOivltvofKaptonf3.0x10-i4cm_atom-i)_dTetptuuz(PET) (3.0xl0.,t4cm3atm

(b) Fadhnated from data of e_l calofunet_

a-1)
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4.2.3.2 Thermal-Optical Properties

Generally, in LEO there is much synergy betweeh the different parameter_ c_fthe natural

and induced environments (I.YV, atomic oxygen, thermal cycles, micrometeofites and debris,

contaminatior x On MIR, tests on ti.:: V side of the COMES experiment were conducted to

separate the effects of different environmental components. Table 4-6 presents the variations of

solar transmittance for Kapton film samples exposed to different environments (AO = 1.2x1018 to

7.5xl 019 atoms/era2; 2850 esh) _,,Iter their flight on the COMES/MIR. The Kapton HN fi!m

suffered deterioration under the combined effect of atomic oxygen and UV radiation.

Table 4-6. AO/UV Effects on the Solar Transmittance of Kapton on the COMES/MIR

Chemical Nature

UV + AO + UV UV
Material vacuum(a) (7,>190 urn)(b) (_360 am)(c) Vacuum (d)

ATs" ATs ATs ATs

Kapton I-IN 50 pan Polyimide Kapton 4).03 0.00 .0..00 0.00

(a) an exposure to all of the parameters: ultra-violet solar radiation (including far UV), atomic oxygen, vacuum and

tlae temperature.

0a) an exposure to ultra-violet radiation with a wavelength greater than 190 nln, to the vacuum and to the temperature

(c) an e_ to radiations wltli a wavelength greater than 360 rim, to the vacuum and to the temperature

rd) an exposm_ to the vacuum and to the temperature.

Space Environment on the V side of the COMES experiment:
Atomic Oxyge_ atorra can"2 1.2xl018 to 7.5x1019 (l)

Sohruv (_) 2ss0(2)

...Tesnp. Cold _ _"C) -60 to -70

_',.mp. Hot case (_) +10to +30

',1) _ from AO rcaoavity _ioa of Ka_oa (30 x 10 "z4 cmJatom'J)amt "l"¢_aaac
(PET) (3.0 x !0 .24 ¢m3atom "1) samples

(2) _ from dataof experiment calocim¢_
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Table 4-7 presents the variations of the solar reflectance and the emissivity of Kapton film

samples after their flight on FRECOPA/LDEF. _ Experiment AO 138-6 was part of the

FRECOPA experiment located on the trailing edge of LDEF. The experiment was designed to

allow exposure of a part of the samples to the whole spacecraft environment by being laid directly

on the FRECOPA tray surface.

Table 4-,7. Solar Reflectance and Emissivity Variations of Kapton lrflm on LDEF

Material

Pt_lyimide Kapton H (12 microns)

Polyimid.e Kapton H (50 microns)
L,L

Polyimide Kapton (50 microns)

Rs initial ¢initial 6Ra

0.21 0.694 0 ,0.015

0.13 0.778 0.02 -0.004

0.13 0.778 0.01 -0/; 4

Environmental Variations of FRECOPA/LDEF Space Ex eriments: Because of its position on trailing edge

row 3 of the LDEF, the AO 1384 experiment did not receive any oxygen atoms duti_ the mission, with the

exception of a short period durra 8 the capture when it received a fluence evaluated at 1.32 < 1017 atoms ¢m "2.

The solar illumi-,ation was 11100 equivalent san hour_, (esh) for the samples iocated on the tray. The particle

irradiation dose (mainly due to the electron flux) was weak: 3 x 105 fads. The number of temperature cycles

was 34000 for the follo_g terapcrature ranges: Cold case (°C) -43 to -52; Temp.; (°(2) +45 to +63.
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4.2.4 Design Consideration for the Space Environment

The atomic oxygen reactivity (1_ = 3.0 x 10 .24 cm3/atom) or erosion yield fo: Kapton

combined with the specific space vehicle atomic oxygen fluence can be used to determine the

expected surface recession for a specific space mission. The product of atomic oxygen fluence and

the material AO reactivity is the expected thickness loss for the specific spacecraft mission

according to the following equation:

AX=FT xRe

Hence, as discussed in Chapter 2, the amount of surface recession for a material of known

reactivity is directly proportional to atomic oxygen fluence, or the total number of atoms impinging

on each square centimeter or surface area during the duration of the intended mission. Fluence, in

turn, is dependent on such parameters as spacecraft altitude, surface attitude relative to the

spacecraft velocity vector, orbit inclination, duration of exposure, and solar activity conditions

during the lifetime of the spacecraft (as atomic oxygen is produced by the photodissociation of

molecular oxygen initiated by the absorption of solar near-ultraviolet radiation, its concentration is

known to change as sun spot activity va..._s during the 11-year solar cycle).

Surface recession predictions as a function of atomic oxygen fluence can be determined

from the nomograph of Figure 4-1 for a circular orbit with front and back surfaces exposed and

inenially fixed and normal to the orbit plane
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Figure 4-1.
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4.3 PROTEC'rEI_-COATED KAPTON FLEXIBLE SOLAR ARRAY BLANKETS

4.3.1 Introduction

Polyimide (Kapton), the baseline material for the flexible solar array panel the Hubble Space

Telescope, is known to be susceptible to attack by atomic oxygen in LEO. The erosion yield, or

the volume of organic material oxidized per incident atomic oxygen, for polyimide Kapton was

found to be 3.0x10 "24 cm3/atom (ref 18). Considerable research has been performed to identify

durable, protective coatings for Kapton against atomic oxygen attack) 4 _

Polycrystalline ceramic films, such as SiO x (where 1.9 < X < 2.0), SiO2, fluoropolymer-

filled SiO2, and A1203, have been demonstrated in both ground and space tests (i.e., LDEF,

Lockheed flight experiment) to be effective in protecting polyimide Kapton from oxidation by LEO

atomic oxygen. _'27 ,28 SiOx coated Kapton was chosen as the baseline design material by Lockheed

Missiles and Space Company (LMSC) for use on the Space Station Freedom (now the International

Space Station Alpha) solar array panels.

4.3.2 SiOx-Coated Kapton

4.3.2.1 Composition

Sputtered deposited SiO x coating of 1300 ,_, thickness over Kapton.

Coatings of SiO x are clear and provide protection with minimal impact on solar absorptance

and thermal emittance properties of underlying materials.

4.3.2.2 Source

Manufacturer: Sheldahl Inc.

Northfield, M.N 55057

Tel: 507/663-8000
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4.3.2.3 Effects of The Space Environment

4.3.2.3.1 LDEF Flight Experiment

Uncoated Kapton and several candidate protective coatings on Kapton were exposed to the

LEO environment on the LDEF to deter,',,ine if the coatings could be used to protect polymeric

substrates from degradation in the LEO environment (ref. 28). Coatings evaluated included 650 A

of silicon dioxide and 650 A of a 4% polytetrafluoroethylene - 96°,/0 silicon dioxide mixed coating.

All of the coatings evaluated were ion beam sputter deposited.

These materials were exposed to a very low atomic oxygen fluence (4.8 x 1019 atoms/cm 2)

as a result of the LDEF experiment S1003 tray being located 98 degrees from the ram direction.

Comparison of the optical properties of coated and uncoated Kapton exposed to the low-Earth

space environment to a control uncoated Kapton sample is presented in Table 4-8.

Table 4-8. Comparative Optical Properties of Coatca and Uncoated Kapton on LDEF

Material (LDEF Sample Designation)

Uncoated Kapton (not flown)

Uncoated Kapton (LDEF no.6)

Uncoated Kapton (LDEF no.34)

SiO_ on Kapton(not flown)

SiO 7 on Kapton (LDEF no.9)

4% PTFE-96 SiO? on Kapton (not flown)

4% PTFE-96 Si07 on Kapton (LDEF no.7)

4% VITE-_ SiO_ on Kapton (LDEF no. 14)

Total
Refle_ tance

0.135

0.136

0.130

0.116

Total
Transmittance

0.576

0.580

0.583

0.573

Solar Themal

Ab|orptance Emittance

0.289 0.70

0.285 0.72

0.286 0.71

0.311 0.72

O.105 0.561 0.334 0.72

0.109 0.584 0.307 0.72

0.103 0.578 0.319 0.72

0. 103 0.576 0.321 0.71

Solar absorptance increased between 7 to 8 % for the SiO x coated Kapton and only 4 % for

the mixed coating. Apparently, the addition of a small amount offluoropolymer reduced the

magnitude of absorptance increase due to environmental exposure. Thermal emittance did not

change significantly for any of the exposed saraples Scanning electron microscopy revealed few

micrometeoroid or debris impacts, where the extent of damage or cracking of the coating around

the defec'_ site did not extend beyond a factor of 3 of the impact crater diameter. This limiting of

impact damage is of great significance for the durability of thin film coatings used for protection

against the LEO environment. Determination of a mass change was not possible for any of the

samples including the uncoated Kapton due to the low AO fluence There was no evidence of

spalling of any of the coatings after the approximately 34,000 thermal cycles recorded for LDEF.

The surface of the uncoated Kapton, however, did show evidence of grazing incidence texturing.
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4.3.2.3.2 Ground Simulation Experiment

NASA Lewis Research Center conducted AO plasma asher testing for a SiO x coated

Kapton. 29 The SiO x coated Kapton samples used for the ground simulation experiment were

0.00254 cm (1 mil) thick Kapton H samples, which were coated with 1300 ,_ SiO x (where 1.9 < X

< 2.0) films on both sides of Kapton by means ofRF magnetron sputter deposition. The coatings

were deposited by Sheldahl Corporation. The atomic oxygen durability for the SiO x protected

Kapton samples and unprotected Kapton samples was evaluated with an RF plasma asher (SPI

Plasma Prep H). The plasma asher discharge creates a mix of atomic, molecular, ionic, excited-

state species, as well as vacuum ultraviolet (VUV) and ultraviolet (UV) radiation.

The effectiveness of electrically conductive coatings, including germanium and indium tin

oxide, to prevent oxidation on Kapton resulting from reaction with environmental atomic oxygen

was also investigated) ° These coatings have adequate surface electrical conductivity for use in

LEO polar applications where draining of electrically charged surfaces is desirable to prevent the

occurrence of electrical breakdowns and arcs. Draining of surface charging for geosynchronous

spacecratt can be achieved with surface resistivities less than 10 9 ohms per square. Draining of

surface charge for LEO polar spacecraft applications requires lower surface resistivity, 10 s ohms

per square because of higher auroral charging current densities. 3t Table 4-9 lists the atomic

oxygen protective coatings, their thicknesses, as well as the thickness of the Kapton polyimide

substrates and the suppliers of the protective coatings.

Table 4-9. Protective AO Coatings and Kapton Substrates

Protective Coating

Materials Thickness A

SiO, (1.9<x<2.0) 1300

Kapton Polyimide
Substrate

Thickness, mm

0.0254

Coating Supplier

i
Sheldahl

Germanium 1500 0.0508 TRW

Indium Tin Oxide 2000 0.0508 TRW

SiO: 1500 0.0508 TRW

None 0.1270 -
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Mass Loas Degradation. Figure 4-2 compares the mass loss per unit area as a fum.'tion of

effective atomic oxygen fluence for the atomic oxygen protective coatings listed in Table 4-9.

Based on the plasma exposure to both sides of the protected Kapten specimens, the mass loss per

unit area of the protected Kapton relative to the unprotected Kapton ranges between 0.03% for

SiOx Sheidahl coated Kapton to 0 5% for ITO protected Kapton (ref 30).

I 0.17

o.14

0.10

0.07

0.03

0.00
0.00

"Nff- Kapton

-_ fro

SiO 2

.-O- Ge

--jr SlOx

J

J

J

J
_. .°°

J, °if°

-O" .--41""

ss _" _" s...ll_ .... • ....

1.42 2.84 4.26 5.68 7.10 x 1021

AO FLUENCE, atom/cm 2

Figu,-e 4-2.

OIM 94 013 369

Mass Loss Dependence on AO Fluence for Various Protected Kapton Samples

and Unprotected Kapton

From Figure 4-2, the worst performing protection coating was indium tin oxide, which

exhibited an increase in the slope of mass loss ,er unit area with fluence. This increase is typically

due to atomic oxygen defects which grow in stze with atomic oxygen fluence. If the indium tin

oxide film is sufficiently stressed, or if the stress increases with atomic oxygen fluence, tearing of

the coating at defect sites can allow a gradual increase in exposure of the underlying unprotected

Kapton, thus giving rise to an increasing rate of mass loss per unit area with fluence The most

protective coating (SiO x coated by Sheldahl), has very little intrinsic stress and does not tear with

atomic oxygen fluence when undercut cavities become large. This is probably why the plot of mass

loss per unit area for the SiO x Sheldahl coated Kapton has a rather constant slope.

Since silicon dioxide, germanium, and indium tin oxide are all inherently atomic oxygen

durable, or develop durable oxides, the range of protection afforded by the various coatings is a

measure of the defect area for each type of coating. Hence, the amount of erosion of SiO x coated

Kapton which occurs upon exposure to AO is due to pinhole defects in the SiO x coating which

allow a small anaount of AO to reach the Kapton (i.e., AO undercutting via inherent manufacturing
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pinhole defects). Tests were also conducted on samples of SiO x coated Kapton which had

undergone a lamination process to determine the effects of handling the material on AO resistance.

These tests indicate that scratches introduced during the handling of the SiO x coated Kapton

decreased the effectiveness of the SiO x to protect the Kapton. However, the erosion rate of the

SiO x coated Kapton after handling is still very low - the erosion rate for the handled sample was

measured to be 10% of the erosion rate for unprotected Kapton. 32 Furthermore, Monte Carlo

mc_deling of the processes that occur in plasma ashers as well as in space predicted that the mass

loss of SiO x overcoated Kapton upon exposure to actual space conditions is approximately 1/3 of

the mass loss observed in plasma ashers. 3_'3' Hence, asher data may provide a much more

pesstmistic prediction of mass loss than would really occur in LEO.

Based on the mass loss rate shown ?hove, 7.24 x 104 gm/cm 2 of SiOx-protected Kapton

would be oxidized as a result of a 15-year anti-solar facing fluence of 5.40 x 10 _2 atoms/cm 2. This

type of protection would be used on the anti-solar side of the Space Station Freedom (now

International Space Stetion Alpha). 39'3S The desired lifetime of the array is 15 years at altitudes

ranging from 400-500 km This represents an atomic oxygen fluence exposure of 5.4 x !0 2

atoms/or, 2 on the anti-solar side of the solar array blanket. These flexible arrays are composed of

the following two bonded layers: the flexible circuit on the solar facing side which supports the

copper foil cu_ent carriers, and the ceverlay (laminate) on the anti-solar facing side which provides

the primary structural support. The coverlay is composed of I mil thick Kapton, fiberglass scrim

cloth, and silicone adhesive Hence, typical asher mass loss data for SiOx-protected l-mill thick

Kapton indicates that -80 % of the anti-solar facing Kapton blanket would remain after 15 years in

LEC,
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Thermo-Optical Properties. Table 4-10 shows c_ and c values of several samples of SiO x

coated Kapton. Nominal film thickness is 1300 A on each side of the Kapton. In all cases there

were no significant differences in the optical properties before and after a 24 bout oxygen plasma

etch (AO testing at Sheldahl was done with an SPI Plasma Prep II plasma asher with a maximum

R.F. power of 100 watts). This was expected due to the fully oxidized nature of the SiO x coating,

and the fact that uncoated Kapton exhibited little change in optical properties after AO exposure) 6

Table 4-10. Solar Absorptance, Infrared Emittance, and Relative AO Reactivity for

Unexposed and Oxygen Plasma Exposed SiO x Coated 1 Mil Kapton H

Sample Solar Absorptance g Infrared Emittance t_ Relative AO
Number Reactivity (a)

Pre-Exposure Post-Exposure Pre-Exposure Post-Exposure

1 0.195 0.190 0.849 0.860 .010

2 O.195 O.190 0.850 0.861 .022

3 0.200 0.00 0.850 0.848 .018

4 O.197 O.190 0.850 0.847 .016

5 0.199 0.200 0.850 0.847 .017

6 0.195 0.190 0.850 0.848 .013

Control (b) 0.200 0 210 0.850

(a) Mass loss rate of SiO x coated 1' rail Kapton H relative to

0.850

mass loss rate of Uncoated 1 Kapton H.
Specimen exposure was for 24 hours.

(b) Bare 1 rail Kapton specimen exposed under the same conditions would lose 5.5 mg/cm 2.
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4.3.3 Al203-Coated Kapton

4.3.3.1 Composition

Ion beam sputtered deposited AI203 coating of 700 £ thickness over Kapton

4.3.3.2 Manufacturing Source

Sheldahl Inc., Northfield, MN 55057, Tel: 507/663-8000

4.3.3.3 Effects of the Space Environment

4.3.3.3.1 LDEF Flight Experiment

Samples of 700 A. of aluminum oxide protective coated Kapton and u,,,_oated Kapton were

exposed to the LEO environment on LDEF Tray S 1003 to determine if the coatings could be used

to protect polymeric substrates from degradation in the LEO environment (re£ 35). These

materials were exposed to a very low AO fluence (4.8 x 10t9atoms/cm 2) as a result of the

experiment tray being located 9.8° from the ram direction. Determination of a mass change was not

possible for any of the samples, including the uncoated Kapton, due to the low AO fluence. There

was no evidence of spalling of any of the coatings after the approximately 34,000 thermal cycles

recorded for LDEF. The surface of the uncoated Kapton, however, did show evidence of grazing

incidence texturing. There was a 7 to 8 percent increase in solar absorptance for the aluminum

oxide coated Kapton (see Table 4-11). Thermal emittance did not change significantly for any of

the exposed samples. Scanning electron microscopy revealed few micrometeoroid or debris

impacts, but the impact sites found indicated that the extent of damage or cracking of the coating

around the defect site did not extend beyond a factor of 3 of the impact crater diameter. This

limiting of impact damage is of great significance for the durability of thin film coatirgs used for

protection against the LEO environment.

Table 4-11. Optical Properties of Exposed AI203 Coated and Uncoated Kapton on IA)EF

Material and Sample Designation Total Total Solar Thermal

Reflectance Transmittance Ab_rptance Emittauce

Uncoated Kapton (not flown) 0.135 0.576 0.289 0.70

Uncoated Kapton (LDEF no.6) 0.136 0.580 0.285 12.72

Ut_x_ated Kapton 0._EF no. 34) 0.130 0.583 0.286 0.71

AI203 on Kapton (not flown) 0.120 0.571 0.309 0.72

AI.203 on Kapton (LDEF no. 12) 0.118 0.545 0.337 0.71

AI203 on Kapton (LDEF no. 26) 0 119 0.551 0.330 0.72
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4.4 TEFLON FEP

4.4.1 Composition and Formulation

Copolymer of fluorinated ethylene propylene

4.4.2 Manufacturing Source

DttPont

4.4.3 Effects of the Space Environment

4.4.3.1 Atomic Oxygen Effects

4.4.3.1.1 AO Reactivity

AO reactivity value of TFE Teflon polymeric washer from the Solar Array Materials

Passive LDEF Experiment (SAMPLE), Experiment A0171 (ref. 1), calculated from thickness

decreases or mass loss, are contained in Table 4-12 along with similar da'a generated from short

term Space Shuttle exposures. This data is compared to FEP Teflon data from LDEF Experiments

S0069 and A0178. This comparative analysis shows a definitive atomic oxygen erosion difference

between TFE and FEP Teflon which short term exposure data could not previously resolve.'

Table 4-12. Comparative AO Reactivities for Teflon on LDEF and Space Shuttle Flights

Space Experiment

LDEF A0171 Row 8

LDEF A0178 Row 9

LDEF S0069 Row 9

STS-5

STS -8

AO Reactivity, 10 -24 cm3/atom

3'_E T_loa

0.20

< 0.05 (estimated)

< 0.03

FEP 1'edon

(i)

0.364£-0.5

0.35

< 0.05 (estimated)

Not Tested

AO atoms/,',n 2

Space Environment

UN esh

7.15xi0 :l

8.99xl021

8.99x1021

0.99x10 _

3.5x10 _

9,4(}0

11,200

t 1,200

43.5

41.75

(1) The 0.5 rail FEP Teflon on Experiment A0171 was eroded away as a result of the 5.8 ,ears of expom_.

The predicted average AO erosion yield of silver Teflon thermal control blankets exposed

on LDEF Experiment A0178 to an AO fluence of 8.99xl 021 atoms/on 2 m_d to 11,200 equivalent

sun hours (esh) is 3.64 +0.05x10 -25 cm3/atom for normal incidence atomic oxygen at ram. 37

i "I'FE (i.e., polyletrafluorocthylene) is a completely fluorinated polymer with a 2600C service temperature. FEP

copolymer is a product of the copolymerization of tetrafluorocU ylene and hexafluoropropylene with a lower service

temperature of 200"C.
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4.4.3.1.2 Surface Recession

Teflon FEP fiom silver Teflon thermal control bi_:r,kets located near the leading edge (Row

10) of the LDEF High Resolution Study of Ultra-Heavy Cosmic Ray Nuclei Experiment A0178

(AO fluence = 8.43x1021 atoms/cm2; UV = 10,700 esh) lost about 31 microns (1.22 mils) _rom an

original thickness of 127 microns (5 mils). 3s Tile decrease in the thickness of the Teflon film as a

function ofAO fluence is she am in Figure 4-3. The measured thickaless of the leading edge

expo:,ed specimens was determined from the mass measurements and the assumption of 2.15 g/cm 3

FEP density. The silver Teflon materials located on LDEF Row 9 of the Thermal Control Surfaces

Experiment (TCSE) were observed to lose approximately 25 microns to 33 microns of Teflon due

to AO exposure. 39 Eddy current thickness measurements corff;rmed these values.

25 cm

130 _ t-- 0.012697cm-[3.64 x 10 _ xAO] 0_OEING)

120 _

THICKNESS (0,

microns 115 -4.5 (mils)

0105

-4
1011

95
0 10° 2 1021 4 1021 6 1021 8 1021

AO (atoms/cm2) otu94ol3ioo

Figure 4-3. Teflon Thickness Variations from LDEF Leading Edge Exposed Specimens

This surface recession is considerably higher than previous data generated for silver Teflon

material samples exposed for several days at high AO flux in the Space Shuttle Orbiter payload bay

during Space Shuttle missions STS-5 and STS-8 or _luring other longer space duration missions

(e.g., LDEF Experiment A0134 and COMES/MIR)
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For example, the FEP film located in the Experiment Exposure Control Canister of Row 9

of the A0134 experiment, showed no visibly effects of UV exposure as shown in Table 4-13. This

canister was closed when LDEF was deployed on April 7, 1984. It opened one month later for l0

months and then closed, providing 10 months of LEO exposure early in the LDEF mission. The

FEP Teflon film showed ao visible effects of exposure. X-ray photoelectron -_pectroscopic (XPS)

analyses of two 10-month specimens and one 5.8 year specimen located at 139 showed no

differences _ the XPS scans. Multiple carbon I s peaks associated with a crosslinked FEP surface

were absent. Thus,' VUV expc, sure of these films was either insufficient to crosslink the surface, or

that AO had eroded the crosslinked surface away.

Table 4-13. Erosion of Teflon Films after exposure to LEO on LDEF _'37_s'4°'4° Space

Shuttle Flights 17't8 and MIR 22

Teflon

Polymer
Space Experiment Environment

AO atom/cm 2 esh

FEP/T.eflon LDEF A0178 _'_ 8.43x1021 10.700

FEP_'eflon LDEF S0069 TCSE °') 8.99x102_ 11,200

I_,_P LDEF A0134 EECC (_) 2.60x102° 1,600

FEP & TFE STS-5 0.99x102° 43.5

TIrE STS-8 3.5x102° 41.75
........ | .

FEP COMES/MIR: Side R 3.5x102e to 5.8x10 _°

FEP

(a)
(b)
(c)
(d)
(e)

18 19

12x10 to7.5xl0COMES,q_IR: Side V

Exposed
Thickness

tun (mid

1_7(5)

127 (5)

127 (5)

127 (0.5)

12.7_(0.5)

1900 127 (5)

2850 127 (5)

Row 10; 69 months exposure

Row 9; 69 months exposure

10 months exposure

FEP minimum and maximum erosion between 1.1 and 1.8 t.tm (3 sm_ples)

FEP minimum and maximum er(,:,lc, n be.'ween 0.8 and 1.1 t.tm (4 samples)

Average

erosion

(_m)

31

25-33

None

< 0.50

< 0.10

1.5 (d)

1.0 (')
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4.4.3°2 Ultraviolet Radiation

4.4.3.2.1 Thermo-Optical Properties

Table 4-14 presents the variations of the solar reflectance and the emissivity of Teflon film

samples after their flight on FRECOPA/LDEF (ref. 23). Experiment AO 138-6, which was located

on the trailing edge of LDEF. The experiment was designed to allow some of the sampies to be

protected from the exteraal environment of LDEF for all mission phases, except free flight, by the

means of a vacuum-tight FRECOPA canister in whi,_h they v,_ere stored.

Table 4-14. SoLar P.eP.ectance and Emissivity Variations of Teflon Film on LDEF

] Fi!m FEP Teflon (1"5 microns_ 0.060 0 802 -0.01 -0.003

Environmental Variations ofLDEF AO 138-6 Experiment_ Tl-e AO 138-6 camster ex3m'anent did not receive any ox_'gen

atoms during the missmn. The solar illurmnation was only i.148 esh for the samples ms:de the camster. The numlxa, of

temperature cycles was 34000 wRh the following temperature r_.'lges: Cold cue CO) -20 to -26; Hot case OC) +¢7 to +g3.
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4.4.3.3 AO/UV Synergism

The findings of higher erosion rates for some Teflon samples than predicted on the basis of

previous short-term flight exposure data appear to be an example of AO/UV synergism wherein a

threshold of UV exposure is reached, after an extended time in orbit, which affects the polymer

surface and makes it more susceptible to reactions with atomic oxygen. 4t After that time, the

erosion is accelerated, as postulated by Koontz et al. 42 Hence, comparison of the LDEF and the

Space Shuttle flights results show that the degradation of Teflon FEP depends on the relative

quantities of atomic oxygen ar, d UV-radiation received. Detailed chemistry studies of the FEP

surfaces of LDEF silver Teflon blankets 43 revealed that atomic oxygen dominated the

environmental interactiong on LDEF leading edge surfaces (AO Fluence = 8.99xl 021 atoms/cm2;

UV = 11,200 esh), leaving virgin FEP on the surfaces. Beginning at LDEF row 6 (AO Fluence =

4.94x I019 atoms/cm2; UV = 6,400 esh) the interactions transitioned to solar UV dominated

interactions on LDEF trailing edge surfaces

Teflon film suffered deterioration under the combined effect of atomic oxygen and UV

radiation during the COMES/MIR. flight experiment. Table 4-15 presents the solar reflectance

degradation of Teflon film samples after their flight on COMES/MIR, exposed to different

environments. The COMES experiment consisted of four panels which were deployed by a

cosmonaut in space outside of MIR with the possibility of exposing samples on both sides,

conventionally identified as "V" and "R". The more significant deterioration was surely due on

the one hand to the effect of the atomic oxygen which causes a greater diffusion ot Teflon by

attacking the surface, but was also probably caused partly by contamination of the sample. The high

level of contamination on ME'( preve..:s one from drawing a definitive conclusion about these

anomalies but they seem to indicate that precise, local amo:ent conditions greatly influence

degradation.
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Table 4-15. AO/UV Effects on the Solar Transmittance of Teflon on the COMES/_A[R

UV+AO+ UV UV
Material Chemical vacuum (.) (X>190 nm) °') 0,.>360 nm) (° Vacuum (..)

Nature ATs ATs AT, ATs

Teflon 25Fm FEP -0.05 0.00 0.00 0.00
(a) an exposure to all of the parameters: UV so'lar radiation (includiv_, far UV), AO, vacuum and'the

temperature. ATs-_nal Ts-initial Ts
(b) an exposure to LrVradiation with a wavelength greater than 190 nm, to the vacuum and to the temperature

(c) an exposure to radiations with a wavelength greater than 360 rim, to the vacuum and to the temperature
(d) an Cxposure to the vacuum and to the temperature.

Space Environment on the V side of the COMES experiment:
Atomic Ox_,¢_ _ cm "2 ] 1.2x10 lg to 7.$x1919 (1)

Sot_uv (_) . I 2s_o(2)

Temp. Cold case (_2:) .60 to -70

Temp. Hot case (°C) +I0 to +30

(1)

(2)

L

fi-om AO re,_'Uvity.er_ion of Kaptoci (3.0 x 10 .24 om3atom'l)and Tctpha_,_

(PE'I') (3.0 x 10 .24 cm3atom "l) samples

troth data of experiment caionmetec

The exact synergy of the observed effects is difficult to understand It may depend on the

relative intensity of the elements involved (UV radiation, oxygen atoms and contamination) and

also on whether they are or are not simultaneous. We do not know how impo_ant is the fact that

LDEF received the majority or its a:or_fic oxygen exposur: during the last portion of the flight.

Damage kinetics during the flights is unknown for most of the LDEF and COMES experiments.

We must, therefore, bear in mind that variations in solar activity, altitude, and ;:rientation may

influence the importance and r.ature of damage.
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4.5 POLYSULFONE

4.5.1 Composition

An amorphous polymer whose molecular structure features the diar3,1 sulfone group.

Polysulfone has good thermal stability and rigidity at high temperatures with a 3000F continuous

use temperature.

4.5.2 Manufacturing Source

Union Carbide

4.5.3 Effects of the Space Environment

4.5.3.1 Atomic Oxygen Reactivity

Polysulfone represents a pure polymer (i.e., polymers containing no components that erode

at different rates) wluch appear to erode linearly with atomic oxygen fluence. Comparable atomic

oxygen reactivity values generated from both short term space exposures (STS-5) and long term

space exposures (LDEF) are summarized in _'able 4-16. Samples on the STS-5 (ref. 15) were

exposed to an atomic oxygen sweeping impingement across the surfaces with a total exposure

fluence ;:f 9.9x 1919 atoms/cm 2 for 43.5 hrs. Polysulfone located on LDEF Experiment A0171 (ref

1) was exposed to an atomic oxygen fluence of 8.99x 1021 atoms/cm 2 and to 11,200 equivalent sun

hours (esh). The similar reactivity values indicate that long-term thickness changes due to atomic

oxygen attack in these materials can be predicted from short exposure data for this pure polymer.

Table 4-16. AO Reactivity of Polysulfone on LDEF and STS-5

Polymer

Polysulfon¢

AO Reactivity
10 -24 cm3/atom

r LDEF AO171 STS-5

2.2 2.4

ComllacntJ

Erodes linearly with atomic oxygen flucnc¢
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4.6 MYLAR

4.6.1 Composition and Formulation

Polyethylene Terephthalate Polyester

4.6.2 Manufacturing Source

DuPont Telephone: 800-237-4357

4.6.3 Effects of the Space Environment

4.6.3.1 Atomic Oxygen Reactivity

Mylar films of diflerent thicknesses were flown on both the fifth and the eighth Space

Shuttle missions to measure reaction of gurfaces with atomic oxygen in the low Earth orbital

environment. Samples on STS-5 were exposed to an atomic oxygen sweeping impingement across

the surfaces with a total exposure fluence of 9.9x 19 _9atoms/cm 2 for 43.5 hrs. Samples on STS-8

were exposed to ram (normal to surface) conditions for 41.75 hrs leading to a total atomic oxygen

fluence of 3.5 x 10z° atoms/era z. The high fluence on STS-8 was achieved by lowering the vehicle

altitude to 225 km and by maintaining the payload bay pointing into the velocity vector, nose to the

Earth

Surface Recession. Average film thickness loss for Mylar on STS-5 is summarized in

Table 4-17 (ref. 17). The film samples (2.54 x 25.4 cm) were held in place on heater plates set to

three temperatures (24°C, 65 oC, and 12 l°C). Mass loss determinations were made by comparing

mass measurements obtained for the control and exposed specimens. Since mass loss is film

thickness dependent, these measurements were converted to thickness loss by using bulk film

density. Preliminary examination of the data did not show any variations in mass loss for the three

temperatures involved within the accuracy (1o = +20%) of the measurements. This relatively large

error was attributed to cutting techniques and film thickness variations. Since no temperature

dependency was evident (only minor temperature dependency was expected due to the high kinetic

energy of the impinging atomic oxygen., all of the data (10 samples per thickness) shown in Table

4-17 were grouped together.

The results show the dependency of the atomic oxygen reactivity with material film

thickness, i.e., the Mylar recession rate decreases slightly with increase in film thickness. Mass loss

measurements obtained on normal and oblique specimens indicate that reactivity of thin film

materials to atomic oxygen bombardment is a function of impingement angle, as expected from flux
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reductionsdue to cosine angle effects. Specimens inclined at an angle of 45 ° to the q,t surface of

the heater plate experienced approximately 70% of the mass loss of film material atta,_ned to the

fiat surfaces.

Table 4-17. STS-5 Mylar Surface Recession and AO Reactivity

Thickness

Fm(o)

12.7

Fluence

10_ atoms/cm 2

0.99 2.16

25.4 0.99 1.83

50.8 0.99 1.5

Reaction Efficiency
10 -u cm3/atom ¢')

2.2

1.5

1.3

(a) Note: Film thickness of 12.7, 25.4 and 50.8 gm correspond to 0.5, 1.0 and 2.0

mils, respectively

(b) Most probable error is _:30 to 40%

STS-8 average thickness loss or surface recession for strip and disc samples are shown in

Table 4-18 (ref. 18). The notations "air" and "roll" under the "exposed fide" column ret_r to the

manufacturing process for the Mylar film. "Roll" is the film side in contact with the manufacturing

rolls, and "air" refers to the opposite side. Both sides of the film were expo,ced to determine

reaction rate dependency on manufacturing details. Each strip l,,ta point represents three

indi,ddual specimens (5 cm 2 in size) with a standard deviation of 0.6 gu,,. In general, the data for

Mylar are in good agreement considering all the variables involved in the measurements (i.e., Mylar

recession varies by only +5 to 10 percent).

Table 4-18. STS-8 Mylar Surface Re_sion and AO Reactivity

Material Thickness

tan

(mils)

Exposed
side (a)

12.7(0.5)

4O.6 (1.6)

50,8 (2.0)

Mylar A air

M_'lar A air

Mylar D air
roll

(a) Refers to manufacturing process

Surface Recession, 00 pm Reactivity
10-24c ,_3/atom

Strip Samples Disc Average (c)

Samt)le$

121°C 65°C

12.7 12.3

12.1 11.9

9.9 { 10.211.0 10.4

12.7 12.6 3.6

12.0 3.4

(b) Corrected for flux reduction due to nonnormal impingement (cos o)

(c) Strip samples s-_d disc samples

IO4 3.0

No recessio, rate temperature dependency was evident for any of the Mylar films over the

temperature range involved _LSshown in Table 4-18. Temperature effects on recession rates were

assessed by comparing the 121°C and 65°C s_rip samples with the disc samples, which had an
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estimated equilibrium temperature of-15°C. This finding is in agreemem with the film data

obtained on the STS-5 mission, and is not unexpected since the incoming atoms have >5.0 eV of

kinetic energy, which appear, based on scattering measurements made by Gregory (ref'. 20) to be

totally transferred to the surface.

No differences in recession rates for roll and air sides were evident for Mylar D. Since the

thickness dependence might arise from minor surface density variations introduced in the

manufacturing process, reactivity ofboth sides (roll and air) of the films was examined and the data

arc included in Table 4-18.

The Mylar recession rate decreases slightly with increasing film thickness. As the recession

rates are not affected by either temperature or the specific side exposed, these data points were

combined (average recession for temperature, air and roll) and examined for thickness dependency.

The Mylar thickness dependency is in general agreement vdth he STS-5 results. Because Mylar has

similar recession dependency on thickness for considerably different total recession levels (STS-5

and STS-$), thickness effects seem to be a characteristic of bulk properties.

AO Reactivity. The atomic oxygen reactivity for the Mylar films on STS-5 and STS-8 are

shown in Tables 4-17 and 4-18, respectively. The atomic oxygen reactivity was computed by

normalizing the total surface recession by the mission atomic oxygen fiuence. A fluence of

0.99x102o atoms/era 2 for STS-5 and a total fluence of 3.5 x 102o atoms/era 2 for STS-8.

The STS-8 AO re,activities are higher than the AO reactivities measured for the same

materials on STS-5 by approximately a factor of 2 There are three significant differences, all

related to exposure conditions, which could affec_ reaction rates. These are, for STS-g and STS-5

respectively, incident flux, 2.3xl 0 _s atoms/cruZ.see vs. 3.8x 10 _ atoms/cruZ-see; total fluence,

3.5x10 :° atoms/era 2 vs. 9.9x10 t9 atoms/era:; and sample orientation relative to ram, or normal vs.

sweeping impingement.

Flux differences do not appear to be a significant factor in influencing reaction rates. In

fact, one would expect lower flux to result in higher reaction efticiencies since atom to atom

recombination or other competing reactions should be less favored at lower flux as a result of lower

atomic oxygen surface densities.

AO reaction rates may have been affected by total fluence differences in that low fluence

results in small surface recession which could be dominated by surface effects or minor amounts of

contaminatioa. High fluence results in rates representative of bulk properties. Aside from fluence

considerations, ff contaminants were present on the sample surfaces, the STS-5 recession rates
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should have been lower than the STS-8 rates. It should be noted that the STS-5 strip samples were

attached with silicone-based adhesive tape, and although the samples were outgassed prior to flight,

some silicone contaminant may have been transferred by migration to the sample surfaces. It has

been shown previously (ref. 21) that silicones are considerably less reactive than non-silicon_

containing organics. To preclude similar problems, tape with acrylic-based adhesive was used

exclusively on the STS-8 samples.

Finally, the capture probability for the impinging atoms by the surface may be dependent on

impingement angle. The Mylar samples (12.7 and 40.6 gin) on the STS-8 mission were mounted

on the inclined portion of both heater plates, positioned 42 ° of the main beam axis, and were

exposed to only 74 percent of the normal impingement flux. When the recession data gathered

from the samples inclined at 42 ° were combined and divided by the respective normal impingement

recession, the result is a r,,fio of 0.64 _+0.03 rather than 0.74, which indicates that recession at low

impingement angles is less than would be e,_pected, as it would be if it were simply due to flux

reduction. This finding is in qualitative agreement with the STS-5 results. The data fit a (cos 0) Ls

function better than cos 0. If such dependence exists, it might be expected that low impingement

angles, as result from the sweeping-beam case of STS-5, may lead to lower capture probability and

lower reaction efficiency, as can be seen by comparing the curves in Figure 4-4. Hence, if

impinging angle increases, reaction probability decreases. Although data from the inclined samples

support this hypothesis, additional data on impingement angle effects are needed to completely

define reaction rate dependency. Thus, differences in the reaction rates determined on the two

experiments were most likely due to either minor contaminants or atom impingement angle.

4.6.3.2. Ten3ile Strength

Exposure to UV radiation reduces the tensile strength of Mylar Figure 4-5 illustrates the

effect of grour, d-simula*ed U'V radiation on the performance of prot_-ted and uaprot,_ct_l Mylar.

Solar ultraxiolet irradiation can l_d to crosslinking of polymer surfaces which may lead to

embrittlement tad possibly to surface cracking. _s
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4.7 TEDLAR

4.7.1

0.890.

4.7.2

Composition

A highly crystalline polyvinylflouride (PVF) film with thermal properties: a = 0.301; _ =

PVF film is used as glazing in solar energy collectors

Manufacturing Source

DuPont

4.7.3 Effects of the Space Environment

4.7.3.1 Atomic Oxygen Reactivity

Clear and white Tedlar films were flown on the Space Shuttle STS-5 (ref. 17) and STS-8

(ref. 18) missions and on LDEF (ref. 1) to measure reaction of surfaces with atomic oxygen in the

low Earth orbital environment. Table 4-19 summarizes the atomic oxygen fluence, thickness loss,

and reaction efficiency. Samples on STS-5 were exposed to an atomic oxygen sweeping

impingement across the surfaces with a .oral exposure fluence of9.9x19 _9atoms/cm 2 for 43.5 hrs.

Samples on STS-8 were exposed to cam (normal to surface) conditions for 41.75 hrs leading to a

total atomic oxygen fluence of 3.5 x 1020 atoms/cm 2. The high fluence on STS-8 was achieved by

lowering the vehicle altitude to 225 km and by maintaining the payload bay pointing into the

velocity vector, nose to the Earth. The atomic oxygen reactivity for white Tedlar, flown on the

LDEF Experiment A0171, is 0.29x10 -24 cm3/atom. This was calculated from thickness decreases

or mass loss. This data is in general agreement with the reaction efficiency calculated for the White

Tedlar sample on the STS-5 mission.

Table 4-19. LDEF and Space Shuttle Tedlar Surface Recession and AO Reactivity

Space Shuttle
Mission

STS-5

STS-8

STS-5

LDEF

Material

Tedlar r Clear

Tedlar t Clear

Tedlar_ White

Tedlar r White

Thickness

_m (')

Thickness

Loss lun

1.30

[i_ueuce

10 2t atoms/cm _
AO Reactivity

1044 cm_latomC._

12.7 0.099 1.3

12.7 11.2 0.350 3.8

25.4 < 0.50 0.099 < 0.5

7.150 0.29

(a) Film thickness of 12.7 and 254 pm correspond to 0.5 and 1 0 mils, respectively

(b) Most probable error is L30 to 40%
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4.7.3.2 Solar Absorptance

The LEO environment had minimum effects on the solar absorptance of Tedlar film. The

changes in the solar absorptance of a white Tedlar film as a function of mission duration on the

LDEF satellite are summarized in Table 4-20. 45 The TCSE experiment combined in-space

measurements with extensive post-flight analyses of thermal control surfaces to determine the

effects of exposure to the low earth orbit space environment. The primary TCSE in-space

measurement was hemispherical reflectance as a function of wavelength (100 wavelength steps

from 250 to 2500 nm) using a scanning _ntegrating sphere reflectometer The measurements were

repeated at preprogrammed intervals over the raiss_an duration. The secondary measurement used

calo:_.etric methods to calculate solar absorptance and thermal emittance from temperature-

versus-time measurements.

Table 4-20. Variations in the Optical Properties of White Tedlar F'dm Control Coating on

LDEF TCSE Experiment

Material Solar Absorptance (oh) (a),(b)

Pre-flt In-fit Post-fit A%
(15 Months) (69 Months)

White Tedlar Film .25 .26 .22 -0.03

(a) ____,_._: The TCSE operated for 582 days before battery depletion. The battery power
was finally expended while the sample carousel was being rotated. This left the carousel in a
partially closed position. "ibis carousel position caused 35 of the samples to be exposed for the
complete LDEF mission (69.2 months), amd 14 exposed for only 582 days (19.5 months) and

therefore protected from the space environment for the subsequent four years
(b) Since Environmental Ex_sure: The LDEF was deployed with the TCSE located on the leading

edge (row 9) and at the earth end of this row (position A9). In this ¢onfigaratioeh the TCFbE wm
facing the ram direction. The LDEF was rotated about the long axis where row 9 was _ from
the ram direction by about 8°. The exposure environment for the TCSE was:

Atomic oxygen fiuence 8.99 x 1021 atoms/cm 2

Solar UV exposure 11,200 esh
Thermal cycles 3.3 x 104 cycles
Radiation (at surface) 3.0 x 105 rmls
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4.8 PEEK

4.8.1 Composition

Polyetheretherketone. PEEK is a semi-crystalline thermoplastic with a glass transition of

144°C (291°F) and a melting point of 366°C (690°F). It has a low water absorption of 0.15%.

4.8.2 Manufacturing Source

ICI

4.8.3 Effects of the Space Environment

4.8.3.1 Atomic Oxy_,ea Reactivity

Different atomic oxygen reactivity values, shown in Table 4-21, were generated from both

short-term STS-5 (--40 hrs) and LDEF (69 months) exposures. Samples on STS-5 were exposed

to an atomic oxygen sweeping impingement across the surfaces with a total exposure fluence of

9.9x19 _9atoms/cm 2 for 43.5 hrs. Samples on the LDEF flight experiment were located 38 ° of the

ram direction and exposed to 7.15 x 102t atoms/era 2. The reactivity value of PEEK fi'om

Experiment A0171 (ref 1) was calculated from thickness decreases or mass loss. This difference in

atomic oxygen reactivities between STS-5 and LDEF indicates that for PEEK, long-term thickness

changes due to atomic oxygen attack in these materials cannot be reliably predicted fi-om short

exposure data

Polymer

Table 4-21. AO Reactivity for PEEK on LDEF and Space Shuttle

AO Reactivity
10-24 cm3/atom

Comments

LDEF AOI71 STS-5

PEEK 2.3 3.7 + 1.0 Space Shuttle tested matel_l was thin film with
low emittance
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4.9 HALAR

4.9.1 Composition

Ethylene-chlorotrifluoroethylene resin is a predominantly 1:1 alternating copolymer, the

product of copolymerization of ethylene and chlorotrifluoroethylene.

4.9.2 Manufacturing Source

DuPont

4.9.3 Effects of the Space Environment

4.9.3.1 Atomic Oxygen Reactivity

Halar represents a pure polymer (i.e., polymers containing no components that erode at

different rates) which appear to erode linearly with atomic oxygen fluence. Comparable atomic

oxygen reactivity values, shown in Table 4-22, were generated from both the short-term Space

Shuttle STS-5 mission (-40 hrs) and from LDEF (69 months) exposures. Samples on STS-5,were

exposed to an atomic oxygen sweeping impingement across the surfaces with a total exposure

fluence of9.9x1919 atoms/cm z for 43.5 hr_ Samples on :h_ LDEF flight experiment were located

38 ° of the ram direction and exposed to 7.15 x 1021 atoms/cm 2. The reactix, ity values ofHalar fi'om

Experiment A0171 (re£ 1) were calculated from thickness decreases or mass loss. Hence long-

term thickness changes due to atomic oxygen attack: in this polymer can be predicted from short

exposure data for this pure polymer.

Table 4.-22. AO Reactivity for Halar LDEF and Space Shuttle

Polymer AO Reartivity Comments
10-24 cm3/atom

• . , = . . .

LDEF AOI71 STS-5
, . . .

Halar 2.1 2.0 See also Brower et al. "s
. -
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4.10 KEVLAR

4.10.1 Composition

Poly Para-Phenyleneterephthalamide (Ararnid)

4.10.2 Manufacturing Source

DuPont

4.10.3 Effects of the Space Environment

4.10.3.1 Atomic Oxygen Reactivity

Comparative atomic oxygen reactivity values for Kevlar were generated from both short

term space exposures (STS-8) and long term space exposures (LDEF), and the results are

summarized in Table 4-23. Samples on STS-8 were exposed to ram (normal to surface) conditions

for 41.75 hrs leading to a total atomic oxygen fluence of 3.5 x 1020 atoms/cm 2. The high fluence

on STS-8 was achieved by lowering the. vehicle altitude to 225 km and by maintaining the payload

bay pointing into the velocity vector, nose to the Earth. Kevlar located on LDEF Experiment

A0171 (ref. 1) was exposed to an atomic oxygen fluence of 8.99x1021 atoms/cm 2 and to 11,200

equivalent sun hours (esh).

Kevlar 29 and 49 reactivity valves an A0171 were based on thickness measurements of

woven fabrics, and Kevlar 29 data from shuttle flight STS-8 was' used on mass loss sustained from

a woven tether. These data show a distinct difference in the response between Kevlar 49 :.ad 29.

Variability of sample configuration and method of determination of reactivity in the short term

STS-8 exposure and A0171 exposure for Kevlar 29 leave considerable uncertainty in the data.

Kevlar 49 whose reactivity is higher is a more stressed material than is Kevlar 29, suggesting a

connection between stress and atomic oxygen reactivity.

Table 4-23. AO Reactivity for Kevlar on LDEF and Space Shuttle

Kevlar Reactivity
10-24 cm3/atom

Comments

LDEF AOITI STS-8

Kevlar 29 I. 5 + O.5 1.1 + 0.2 Shuttle da:a based on STS-8 tether mass loss

HighToughness ....

Kevlar49 4.0 --

HighModulus
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RELATIONSHIPS Or' SPACE ENVIRONMENT - MATERIAL INTERACTIONS

• /_x (surface recession) = F T (atomic o_gen fluence) x Re (reaction efficiency)

Page No.
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5.0 ADHESIVES

5.1 _TRODUCTIG N

Composit* components are frequently assembled into larger structures through adhesive

bonding. Finished comixnents that a_e damaged during assembly or service can also be

repaired wi'.h bonding techniques. Similar to fiber reinforced eompofite material adhesive can

h3 tailored to meet specific engineering and manufacturing process requirements. Adhesive-

bonding techriques are used only if subsequent disassembly of the subcomponents is unlikely.

Adhesives are produced in both film (with and with out scrim perforated and non-perforated)

and paste forn.. Table 5-1 presents some of the adhesive being used in the aerospace industry.

Heat-resistant epoxy adhegive_, which meet the qualifications of Federal Specification

MMM-A-132_ are used in bonding primary and so-'mdary structural and external metallic

aerospace pans and for applicafion_ which require similar properties. The_ adhesives are used

in bondir_g aluminum alloys for long exposures (192 hours) to temperatures from -55°C (-67°F)

to 149°C (300°F) and for use ,.'r.bonding corrosion-resisting steel alloys for long exposures (192

hours) to teml"Jeratures from from -55°C (-67°F) to 149°C (300°F) and short exposures (10

minutes) to temperatmes from l_tg°c (300°F) to 260°C (500°F). A two-part epoxy paste

adhesive, such as 3M Scct.ch-Weld EC1614, is recommended for bonding electronic parts to

printed wiring boards. The_e type of adhesives are not recommended for service above 850C

(185°F). Epcxy film adhesives, _uch as Ablefilm 501, are used for bonding aluminum and

magnesium heat sinks to printed wiring boards. These adhesives are not recommended for use

in excess of 93°C (200°F).

A one component silicone elastomer adhesive/sealant is used primarily for bonding

wires, electrozdc parts and threaded fasteners on RF assemblies. This -,adhesive has good

adhesion to glass, cer, tmic, metals and most plastics without a primer. A silicone pressure-

sensitive adhesive is used for non-struct,,ral bonding of silicone materials to themselves and to

other material.
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Epoxy

Acrylic

Type

Polyurethane

Silicone

Hot melt

Table 5-1.

Cure

Temperature

-c (or)
Room or
accelerated st

93-178 (200-

350)

Adhesives for Bonding Spacecraft Components

Advantages DisadvantagesForm

Bisnmleinmde

Polyirmde

Two-part

paste

One-part film 12_(250)

Max. Use

Temperature

°c (°D

Generally
below 82

OSO)

To 82 (180)

Ease of storage at

room temperature;
ease of mixing and

use; long shelf life;

Not generally as

strong of

env_tally

resistant as typical

Two-part

liquid or

pastes

Room to 100

(212)
105 (221)

gap filling when filled

Phenolic-based

One or two

parg.

One- and two-

part pastes

One-part

One-part paste
or fil_

Thermoplastic

liquids; one-

and two-part

pastes

Room or heat

cure

Room to 260

(500)

Melt at 190-

232 (375-450)

> 178 (350)
and 246 (475)

postcure

260 (500) and

postcure

163-177 (325-

350)

To 260 (5(',0)

18-171 (120-

340)

232 (450)

204-260

(400-500)

To 177 (350)

Covers large areas;
I bondlme thickness

[ control; wide variety
of formulas; higher-

temperature curing
materials; better
environmental

properties

Fast setting; easy m

mix and use; good
moisture resistance;
tolerant of surface

contamination

Good peel; good for
cryogenic use

High peel and impact

resistance; easy to use;

good heat and
moisture resistance

Rapid application; fast

setting; low cost;
indefinite shelf life;

nontoxtc; no mixing

Structural bonds with

bismaleimide

composites: higher

temperature than
epoxies; no volatile;

g .ood_shelf life

High-temperature
resistance; structural

strength

High-temperature use

h_ezat-cured epoxies

Store at 180C (OCF),

short shelf life; high

temperature cure;

brit:le and low peel

strength

Strong, objectionable

odor; limited pot life

Moisture se._itive

before and after cure

High cost, low

strength

Poor heat resistance:

special equipment

required; poor creep

resistance, low

stteng_; high melt

temperature

Brittle and low peel;
limited formulas

available

High cost; low peel

strength; high cure

and postcure

t¢mpemtunm; volatilea
for some forms

Low peel strength
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5.2 LDEF SPACE ENVIRONMENTAL EFFECTS

A variety of adhesives and adhesive-like materials were flown on LDEF. These included

epoxies and silicones, conformal coatings and potting compounds, and several tapes and transfer

films. Six different adhesive systems were evaluated using lap shear specimens exposed to leading

and trailing edge experiments. All other materials were used in assembly of the various experiments

flown on LDEF Typically, these adhesives were shielded from exposure to the external spacecraft

environment. The various materials are listed in Tables 5-2 through 5-7.

In most experiments, the adhesive were of secondary interest and were only investigated by

visual examination and a "Did they fail?" criteria. Because of this role, most adhesive applications

had only a few specimens, not enough for statistical data generation. Oftert, no control samples

were kept, and documeptation of what was used was occasionally sketchy. With few exceptions,

the adhesives performed as expected, that is they held the hardware together. Several

experimenters noted that the adhesives had darkened in areas that were exposed to UV. The

follov_qng sections will document the additional information available on the performance of these

materials along with the status of their evaluation.

One of the two primary conclusions of this investigation was that if the material was

shielded fiom direct or indirect exposure to atomic oxygen and/or UV radiation, the materials

returned in nominal condition The only exception to this was outgassing of the material. While

the outgassing proved to have no effect on the material's ability to function as design, in several

cases it did contribute to the overall molecular contamination that was throughout LDEF. The

other primary conclusion was that if the material is e_posed to the exterior spacecraft environment,

a thorough knowledge of both the microe_vironment that the material will see and how that

material will interact with that microenvironrnent is essential.

5-3
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5.2.1 Silicone Adhesives

A discussion of the performance of the silicone adhesives flown on the LDEF is provided

below and summarized in Table 5-2.

Table 5-2.

I Vendor Product Experiment

Dennison Densil Silicone PSA A0076

6-1104 A0178Dow Coming

General Electric

Silicone Adhesives t a

Substrates

43-117 A0171
93-500 A017i

M0003-5
RTV 3140 SI001
RTV 56O + I2%

graphite

RTV 566

R'I'V567'

RTV 655

M0003-5

A0076
A0171
S0014

A0054
A0171

A0076SR 585 PSA

Velcro to Silver Teflon

Blankets

Polymeric Film

Silver Teflon to

Aluminized Kapton c°)

Comments( a)
1

1,3

1

1

It3
1

2,3
J

1
1
1

1
J

1

1

(a)

(b)

1 Performed as expected
2 Adhesive failure
3 Discussed in this section

Adherends were Inconel on the back side of the Teflon Blanket and the Kapton side.

RTV DC6-1104 Silicone Adhesive. Dow Coming 6-1104 silicone adhesive was used to

bond velcro to the thermal blankets on the sixteen trays that comprised experiment LDEF AO1783

"A High Resolution Study of Ultra-Heavy Cosmic Ray. Nuclei." The bond between the velcro and

the blanket performed very well. No degradation of the adhesive was noted. This adhesive was

observed to outgas over a long period of time as noted in Table 5-3.

t.

'Fable 5-3. Outgassing Properties of DC6-1104 Silicone Adhesive.

Material Conditions TML CVCM

DC 6-1104(a) Post-Flight 0.343 0.033

Pre-Fiight 0,14 0.03

(a) 16
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RTV 560 plus 12% Graphite. R.TV 560 is a two part room temperature cure silicone and

the graphite is used to increase the electrical conductivity through the bond, This adhesive was

used to bond silver Teflon to aluminized Kapton on Experiment M0003-5. The adherend was the

Inconel on the backside of the siiver Teflon and the Kapton. Four specimens were located on the

leading edge and four specimens were located on the trailing edge. All eight lap shear specimens

had become debonded during the mission. Visual examination showed that it was an adhesive

failure.

DC 93.-500. Experiment M0003-5 included the exposure of 32 - l"x6" polymeric film

strips. The ends of all 32 strips were wrapped around and then bonded to the backside of the

mounting plate using a clear RTV silicone (though to be Dow Coming DC 93-500). All 64 of

these shielded bonds survived the mission intact.
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5.2.2 Epoxy Adhesives

A dis. 3ion of the performance of the epoxy adhesives flown on the LDEF (Reference 1)

is provided below and summarized in Table 5-4

V eudor

Cib, Ce,gy

Ct_t

Emeraou & Cumm_

Epoxy T_lmoto_

FuPim_

Hytol

Table 5-4. E ,oxy Adhesives

i_'oded

An_i_ ^v to0.mvjo0

._ltldilt AV 138/HV 998

Ex [m'imeut .....

A0056.A.0.139

A00_.3 .A0056

A0138-I z$I002

A0tSS,-I_

.=

Ar,dd_AV 138/I¢W9*S , ,

Ar_li_ AW 136/HY 994 M0002 ......

_Rc ._t.W'2.IOI/H'W 2951 A013S-I ................

Ar,_i= ,d£ .Ts0_v 9s6..... A00S,S....

3115/711.1 A01g0

A0147

S1004

Fk-cobor_l 55 + I0_ _osil S1002.

Eccobond 5(d2" A0076 ,A0171 ,$0069

E_cobo__.SC+ A! po*d_f
Ecc.obo_ 57C

Epo-Tcc30!

EI_-?. _ 3_331 .

EA956

EA _10tto__519 _

...... EA 9621..

M_t, ...... MBo_l _¢_O_ _

Shell

3M

[ Vm

K-14

N-580

Epo_878

AF-143

EC 2216

Tomal

(*)

sl0o2,
MO_O3 -5

A0147

SOOI4

M009.
S0014

S/bdcr Teflon to

I A._mmiz_ KJ_oa0,) _ .

A0180

MO00¢

S10Ol

A00M

M0o_. .

^o,7,

A0171

A0180

P0003 $I00{

M0003-8 . . Solar Cclh _ ___

"ri to T300/934 Cc, mp¢_
M0003-8

I"3.001934_ '1300P934

....... Ce*apoaite .......

Mt,_O3 3 {

S1005 ]

V_ou. ,1_, [ .....

0,)

Sul2_rt_¢ C_. m

I_2A

l

1,2A

1

1,3

!

!

1

i.2.A

1

1

1

l

I. 2B_ 3

I, 2C, 3.

1

1

1.2A

1

d 2D, 3

A, ZA, 3

i. 2A, 3

I

|1

2A Diwotoeed wh_ eqmml m U'V

2C F_tr out or 40 |m_m d_dod

2D Bo_l frill m Ih¢ mlat _eU mt_ff'aoe
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EC 57C. EC 57C is a two part conductive epoxy. This adhesive was used to bond silver

Teflon to aluminized Kapton on Experiment M0003-5 The adherend was the Inconei on the

backside of the silver Teflon and the Kapton. One specimen was located on the leading edge and

one specimen was on the trailing edge Both bonds were intact.

Shell Epon 828. Shell Epon 828, an unfilled low viscosity epoxy, was used to bond four

solar cells deposited onto an alumina substrate to an aluminum mounting plate as part of the LDEF

Experiment M0003 On-orbit photographs showed that all four solar cells were no longer bonded

to LDEF No adhesive remained on the cell mounting plates on the leading edge tray but some

remained on the mounting plates located on the trailing edge This indicated that the bond failed at

the solar cell interface, and then the adhesive was attacked by atomic oxygen Epon 828 was used

successfully on other experiments so no conclusions have been drawn as to the failure mode

Possibilities include surface contamination prior to bonding, excessive thermal cycling and high

loads due to different thermal expansion coefficients between the solar cell substrate and the

aluminum mounting plate

MBond o00. MBond 600 epoxy, was used to bond strain gauges, made by

Micromeasurements, to composites, and were cured at 200°F. Four out of 40 strain gauges

bonded to _ omposite parts on the LDEF Experiment M0003 debonded The substrates were

carbon-epoxy (1), carbon-polyimide (1), and carbon-polysulfone (2) The strain gauges which

were mounted on the shielded side of the specimens saw no atomic oxygen or UV. The specimens

saw thermal cycles of-40 to 176°F The composite substrate had the rough texture of the bleeder

cloth used to lay up the specimens No sanding was done to smooth the surfaces prior to bonding

It is thought that the failures were due to a combination of the thermal cycli,_g and poor surface

preparation.

EC 2216 (BMS 5-92) and AF 143 (BMS 5-104). EC 2216, a room temperature epoxy

cure system, and AF 143, a 350°1= epoxy cure system, were used to prepare epo_' adhesive lap

shear specimens, and were flown on the trailing edge of the LDEF satellite Both titanit:m-

composite and composite-composite adherends were evaluated. Composite adherends were

T300/934 carbon/epoxy The lap shear specimens were mounted such that one surface was facing

ot_t towards space Visual examination of the specimens showed the exposed bondline to have

become dark brown when compared to the shielded bondline on the Da:kside of the specimens

Five specimens for each of the two epoxy systems were flown (three Ti-composite and two

composite-composite specimens for the AF 143 and two Ti-composite and three composite-

composite specimens for the EC 2216) The results ofpost-fl=ght testing indicated that the :hear

stress values increased 6.8 to 27.8 percent over preflight values (see Table 5-5 and Figure 5-1) _
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The preflight specimens were tested in _'_78. No control specimens existed. The reason for the

increase in strength compared to pre-flight values is speculated to be related to continued cure

advancement.

Table 5-5. Adhesive Lap Shear Test Results for Epoxy Adhesives

Adhesive

AF 143 Epoxy.

(BMS 5-104)

Adheread

Ti - Composite

Composite-Composite

Preflight
Shear Stress

Psi

4515
3640

Po_Fli_t
Shear Stress

4821

4273

EC 2216 Epoxy Ti - Composite 3750 4479 2

(BMS 5-92) Composite-Composite 3145 4019 3

# Teated

Hysol EA 9628. Hysol EA 9628, a 250°F epoxy cure system, was evaluated on LDEF

using T300/934 composite lap shear specimens. Three specimens were located on the leading edge

a,,d three specimens were on the trailing edge. All six specimens were mounted so one flat surface

was facing towards space. The pre-flight measurements were made in 1978 and no control samples

existed. Post-flight lap shear testing results indicated a decrease in she_', strength for all flight

specimens when compared to pre-flight measurements and a decrease fo;- the trailing edge

specimens (UV only) compared to the leading edge specimens (UV and atomic oxygen). The

reason for the difference between leading and trailing edges is unknown as the vast major:,:, or'the

adhesive is between the mating surfaces and, therefore, shielded from the detrimental effects of the

atomic oxygen and UV.
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5.2.3 Conformal Coatings and Potting Compounds

A summary of the conformal coatings and potting compounds flown on the LDEF

(Reference 1) is presented in Table 5-6,

Table 5-6. Conformal Coatings and Potting Compounds

Vendor

Conap

Emerson & Ctmfing

General Electric

Products Research

Thiokol

Product Comments(a)

CE-1155 1

Sylgard 182 l
Sylgard 186
Stycast I090

Stycast 2850 I

s cast 3050 l
RTV 411/511 1
PR 1535

PR 1568

Solithane 112
Solithane 113

3M ' Scotchcas_28c

Experiment

A0201
P0005
SI001
SI001

A0056
P0003
S0069

S0014
A0038
A0201

A0178

A0038,
A0178,

A0187-2,
S000I,SI001,

SI002

A0139

(a)Performedasexpected
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5.2.4 Adhesive Tapes

A discussion of the performance of the adhesive tapes flown on the LDEF (Reference 1) is

presented below and summarized in Table 5-7.

Y966. 3M Y966 is a press-re sensitive acrylic adhesive. This adhesive was, "1to bond

silver Teflon to aluminized Kapton on the LDEF Experiment M0003-5. The adherend was thz

Inconel on the backside of the silver Teflon and the Kapton. One specimen was located on the

leading edge and one specimen was on the ,,tailing edge. Both bonds were intact.

3M tape Y966 was also used in LDEF Experiment A0054. The tape was used to bond

vapor deposited aluminum (VDA) Kapton film to the aluminum trays The tape was tested using a

90 degree peel test similar to ASTM DIO00 except that tape width was 0.4 inches. Tape from the

leading edge tray had a 4.5 pound peel strength while tape from the trailing edge tray had a 3.5

pound peel strength. A ground control specimen made from a different lot of material had a peel

strength of 1.4 pounds. The differences may be attributable to tape variations from batch to batch,

additional "cure" of the space exposed tape, and experimental variation. Comparison of the failure

mode of the tapes from the leading ana trailing edge trays showed significant variation. On the

trailing edge tray approximately 75 percent of the adhesive stuck to the VDA Kapton while on the

leading edge, 85 percent of the adhesive stuck to the aluminum tray and pulled the VDA from the

Kapton film

3M tape Y966 on a silver FEP film was also used to hold the thermal blankets to the tray

fre,_,, on LDEF experiment M0001. The blankets apparently shrunk in flight causing the blankets

to detach from lhe frame. Portkms of the tape were attached to both the blanket and to the frame,

having failed across the width of the tape in tension The film and Y966 remained pliaole.

Attempts t_, f._il the tape to frame joint in shear were unsuccessful even through a load of roughly

100 pounds v,.as applied to a piece of tape less than a qu,tt_er inch wide. The tape was then tested

ia peel. Ti_e Y9e6 bonded to the aluminum and to the silver on the film well enough to cause

delan,matlo_a c_f _ht: sil, - from the film

3M Y843" Tape. 3M ta_,: Y8437, a VDA Mylar tape, ,vas used as a coating on the

viscous _,_p_r sh_o_Jd, a fibc,glass epoxy structure. The tape used on/,P"*: had a 90 degree peel

strength of approximately ' pounds r_er inch After the LDEF tape had been removed, a new piece

of the same type of tape (different batch and manufacture time) was applied to the shroud This

tape had a peel stren, " of only 05 pounds per inch. Apparently, the adhesive on the tape sets up

with time to give increased adhesion. Space did not appear to have any adverse effect on the tape.
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3M Tape 92 ST, 3M tape 92 ST, a Kapton tape with a silicone adhesive, was flown on

LDEF Experiment A0054, Space Plasma High Voltage Drainage. Peel strength of tape 0.787 inch

wide bonded to aluminum was 1.3 pounds on a leading edge tray, 1.2 pounds on a trailing edge

tray, and 0.9 pounds for a fresh, unflown tape.

3M Tape X-l181. 3M tape X-1181, a copper foil tape with a conductive adhesive, was

used as grounding straps for the silver/Teflon blankets. The grounding straps were constracted by

plying two layers of tape, the adhesives together, with m area of,'dhesive remaining on each end.

A peel test was performed on a sample of the ground strap and compared to a control sample of a

freshly constructed strap made from the same roll of tape. All samples had a peel strength of 3.5 to

3 9 pounds per inch. No difference was found between space hardware and ground hardware.

Table 5-7. Tapes and Other Materials

Vendor Product

Eccoshield PST-CEmerson & Cunun_

Lo_te

Mystic Tapes

3M

3M 56

3M 74

3M

7355

92 ST - Kapton Foil

4333M

3M X-1181 - Copper Foil

3M Y966 - Acrylic

3M

(a)

Y8437 - VDA Mylar

Polyester Hot Melt Adhesive

1: Perform_ as expected
2: Blankets detached from trays

3:Resultsdiscussedinthischapter

Experiment

M0003

A0119

A0138-1

M0001

P0003

A0139

S0069

S0069

A0054

Substrate

Aluminum

A0076

A0178 Grounding Strapsfor the
MOO01 Silver Teflon Blank_s

A0054

M0003-5

S0069

M0001

A0_76

Viscous Damper

A0133

VDA Kapton to AI trays

Silver Teflon/Kapton

Silver Teflon to Trays

Fiberglass Epoxy

Comments(")

1

1

113

1

1,3

1,3

1,3

I

213

I

1,3

I
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6.O METALS

6.1 INTRODUCTION

6.1.1 Mechanical and Thermal Properties

Aluminum is the most commonly used metal for the spacecraft structure. It has good

strength/weight capability, easy workability in various shapes and forms, and its availability. For

lighter weight structures, magnesium is oRen used. To meet even more stringent requirements for

lig_tt weight, high stiffness and minimum themlal distortien, advanced materials such as beryllium

are use& Titanium and stainless steel are most corranonly used for such applications as pressure

vessels. A summary of the commor,Jy used metals are provided in Table 6-1. Comparative

properties are sammarized in Table 6-2.
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Material

Aluminum Alloys

• 2024 alloy
. 6061 alloy

• 7075 alloy
Magnesium Alloys

• AZ31B
• AZ92A

Titanium Alloys
• Ti-6AI-4V
• Ti-5Al-2.SSn
• Ti-3AI-2.5V

Structu_d Steels
Carbon steels

• A366, A36
Low Alloy Steels

• HSLA, 4130

Con'osion Resistant Steel

• Type 3161.
• T_l)e I ?-7PH

• Type 15-5pH
Heat. Resistant Alloys

• A-286
• inconel 600

• Ha_llo 7 X ....
Refractory Metals

• Columbium

• Molybdenum
• Tantalum

• Tungsten

Copper
• C-_gen-Free High

Conductivity I02
• Beryllium copper

Berylliam

Kovar

• Ni-Cc-FeAlloy

Table 6- 1. Characteristics of Spacecraft Metals

General Property

• Lightweight;p=0.1Ib/m3
• Corrosionresistance

• Excellent electrical and

thermal conductivity
• Lightweight

• High damping
• Dimemienal stability

• Lightweight
• Corrosionresistance

• High strength-to-weight ratio
• Low CTE

• I-li_h tou_mcss
• Low Cost

• High strength

• Hish electrical conductivity

• High thermal conduc*Jvity

• Hi_ elastic modu]u.s

• High thermal conductivity
• Dimensional stability

Applications
• Electronic Housings
• Cryogenic
• Structural as_'mblies

Hardwarerequiring high
strength with transverse
toughness

• Pressure vessels

• Cryogenic
• Pressunz_ tubing

Used in structural

applications where
minimum cost materials
aredesired,andwhere

adequatecorrosion
resistancecanbeobmmcd

with paint coatings

Structural applications m
1200 to I800°F

temperature range

• Structuralapplications
over 1800"F

"* Electricalcircuitryw/ring

• Waveguides

• Heat exchangers

• Structural shells

• Tubularstruts

. housingsand shafl_

• heatsinkscomponents

Environment Llmitstiom

• Coatingsreqmrcdfor
industrial and seacoast

exposures

* Susceptible to galvanic
corrosion

• Susceptibleto galv_mic
corrosion and ,¢a'ess-

corrosion cracking

• Lack of oxidation
resistance

• Joining and machmir,g
problems

• Brittle at RT

• Low C"IE

• High toughness

Glass-to-metal seals in
electronics

Invar • Low CTE • Precision mstrumenLs • Limited to below

• iron base. alloy • Optical equipment 400"F use

containing 36*/0Ni
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6.2

6.2.1

LEO ENVIRONMENTAL EFFECTS ON METALS

Silver

A considerable number of silver specimens, including interconnects, disk-type, and vapor-

deposited films were flown on STS-8 to determine quantitative effects resulting from exposure to

the orbital atomic oxygen environment. The STS-8 Atomic Oxygen Effects Experiment provided

an atomic oxygen fluence of 3.5 x 102° atoms/cm 2 incident perpendicular to the expeSment material

surfaces over a period of 41.17 hr at 120 nautical miles. These silver specimc _:"_ e idemified in

Table 6-3, and their exposure configurations are noted.

Silver is utilized as solar cell interconr, ect material. The silver-plated and clad Invar

specimens are candidate interconnect substitutes. Lead/tin solder and chromate conversion coating

were evaluated for their effectiveness in protecting the silver. The vapor-deposited films were

designed for two purposes: (1) to evaluate the atomic oxygen _uence/cosine law degradation

dependency in silver, and (2) to assess as far as possible the e,oncept of utilizing the resistance

changes induced in a thin film due to atomic oxygen exposure as an environmental monitor.

Table 6- 3. STS-8 Property Data On Silver

Silver Types/Configurations Exposure Conditions

Cold-rolled (1) Aton_c oxygen (AO) normal, and at 45 ° angle to specimen,

(solar call-interconnects) temperature controlled at 99 +8°C (210 :I:15°F), 61:1:80C (142.-t:150F)

(2) AO normal to specimens, temperature uncontrolled - 10*C (50*F)

AO from reflected oxygen only, temperature uncontrolled

AO normal to specimen, temperature uncontrolled

Silver-plated and clad Invar. Pb/Sn
solder-clad silver

are and chromate-conversion-coated

lver

ai_r.deposited films,

.85 tun, 1.70 _tm, 3.05 _tm

AO incident to films normal, at 45 ° angle and at 65 ° angle,
temperature uncontrolled

All exposed silver specimens were affected, including those which had no direct exposure

but were subject only to reflected atomic oxygen atoms. However, the attack was less severe on

those specimens with no direct exposure than on the directly exposed surfaces. The exposed

surfaces were converted through oxidation processes to gray/blackf0rown loose scale or to thin

interference films depending on the temperature of the specimen. As expected according to

established oxidation theory, considerably more silver was converted to scale on the higher

temperature surfaces. The vapor-deposited silver films ranging in thickness fr, m 08 to 3.0 lam

showed scale formation ofaefinite area and thickness dependent on the initial film thickness.
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An activation energy of 0.61+0.9 ev over the temperatures range from ÷ 10°C to 99°C

(+50 ° to +210°F) was generated for the conversion to scale of the cold-rolled silver interconnect

material. Although the thickness of converted silver at the high temperature varied by about a

factor of 2, the variation from the high temperature to the low was as great ag a factor of 26,

thereby providing well-resolved data. The lead/tin solder protected the low temperature silver, as

would be expected since it was thick (-2.41am) and nonreactive, wherea_ the chromate conversion

coating failed, probably because it was thin and porous No strong dependency of the conversion

process was noted on total incident atomic oxygen, and no conclusion could be reached concerning

the role of the angle of incidence of atomic oxygen.

Following silver, the most reactive metal examined was copper with a measurable mass

increase. When initial examinations of the metals revealed little reactivity, more sensitive

evaluation techniques were attempted, and in many instances the sample preparation was not

adequate for good resolutions under these evaluations. These metals generally showed low

reactivity, possibly as a result of: (1) low exposure temperature, (2) low oxygen flux, and (3)

limited exposure time.
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6.2.2 Aluminum

Bare aluminum and anodized aluminum clamps were flown on LDEF to determi_

quantitative effects resulting from exposure to the orbital atomic oxygen environment and solar

ultraviolet radiation. 2 Comparison of the thermal-optical properties indicated mirfimum property

changes caused by flight exposure as discussed below and summarized in Table 6-4.

Table 6- 4. Thermal-O _tical Properties of Bare and Anodized Aluminum Clamps

Sample

C03-5

C03-5

C09-7

C09-7

Control#4

C03-6

C09 -2

|
LDEF

Location

Trailing Edge
Back Surface

Trailing Edge

i

Leading Edge
Back Surface

Leading Edge

Ground Control

Trailing Edge

Leading Edge

Exposure

No Direct Exposure

2 66x103 AO/cm 2

11,00 ESH Solar

No Direct Exposure

9.02x102_ AO/cm:

11,200 ESH Solar

No Space Ex-posure

2.66x 103AO/cm 2

11,00 ESH Solar

[ 9.02x10 :_ AO/cm _11,200 ESH Solar

Su trace
Treatment

Bate

Bare

Bare

Bare

CAA

CAA

CAA

Average Solar
AbsorlPtanee

071

Average Thermal
£mittance

0.72

|

0.69

0.32

0.35

0.33

0.09

0.06

0.18

0.14

]
_ L

[ 0.17
i
1

The retaining clamps on LDEF Experiment Trays C9 and C3 offered a_ opportumty to

compare the behavior of bare and chromic acid anodized (CAA) aluminum when exposed to space

in Low-Earth-orbit. The four comer clamps that held this tray in place on the vehicle are oare

6061-T6 aluminum. The remaining four clamps on Tray C9 are anodized aluminum. Two bare

aluminum clamps (C09-7, leading edge and C03-5, trailing edge) and two CAA clamps (C09-2,

leading edge and C03-6, trailing edge) were selected for laborato_ testing of post-flight

measurements and comparison of thermal-optical properties The thermal-optical properties of

exposed surfaces of CAA flight clamps were compared with those of a ground control clamp (data

for control clamp 64 were taken after the clamp was removed from storage). The thermal-optical

properties of exposed surfaces of the bare aluminum flight clamps were compared with those of the

unexposed surfaces (back surfaces) of the same clamps Solar absorptance and thermal emittance

properties a_e _,i_o'_ _ in Table 6-4 along with the _.'_lar radiation and atomic oxygen exposure data

for these clamps. S"'ar absorptance was measured in ac_,oldance with ASTM E903-82 and ASTM

E424-17. Thermal emittance was measured in accorda,ce with ASTM E408-71.
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Flight exposure caused little change in the thermal-optical properties of either bare or CAA

clamp surfaces. The thermal-optical properties of bare clamp surfaces and CAA clamp surface

differ significantly. Average solar absorptance for bare flight clamp surfaces (leading edge and

trailing edge) is 210 percent that of CAA flight clamp surfaces. Average thermal emirtance for bare

flight clamp surfaces (leading edge and trailing edge) is 45 percent that of CAA flight clamp

surfaces.
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6.2.2 Coi_er

Thin films and solid forms of copper samples were flown on the leading edge C9 tray of the

LDEF experiment A0114 with matching trailing edge samples in the C3 tray)'4 Thin films of

copper were prepared at the Space Sciences Laboratory, NASA Marshall Spa_ Flight Center.

Substrates were fused silica optical flats, obtained from Acton Research Corporation. These were

coated with ca. 69+_1 am copper using an RF sputtering system. The solid copper sample was cut

from OFHC copper rod of one inch diameter and polished with l _tm diamond powder.

Leading Edge Samples, X-ray diffraction (XRD) analysis of the leading edge 68 nm thin

film detected a rpfixture of mainly Cu20 and metallic Cu with some CuO being present. These

surfaces on rGw 9 received a total flucnce of 8 72x10 zt oxygen atoms per s re cm. This result,

combined with thickness measurement of the exposed region of 105.3 +1 run using a stylus

profilometry technique, s indicated that 55 nm of Cu were oxidized to Cu20 during the full LDEF

exposure. ESCA analysis of both t,.e thin film and the bulk copper verified the conversion of

metallic Cu to CuzO.

Trailing Edge Samples. The trailing C3 samples showed little effect of atomic oxygen.
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6.2.3 Refractory Metals For Rocket Nozzles

Table 6-5 lists six classes ofrefcacto_ metals used for rocket nozzles along with their

melting temperatures. Table 6-6 lists the expected natural environmental effects on these refractor5'

metals. No effects are expected except for object (micrometeoroids and space debris) impacts

(which can damage a rocket nozzle, especially when the rocket is firing) and atomic oxygen erosion

and glow. The geomagnetic field will only have a small effect because the rocket nozzles are

heated beyond the Curie temperatures of any ferromagnetic material present when they are

operating. 6

Environment

Table 6- 5. Properties of Refractory Metals

Material Melt Temperature (*C)

Haynes (Co) ~1,495

lnconels (Ni) ~1,453

N'b Alloys ~2,468

Mo Alloys ~2,610

Ta Alloys -2,996

W Alloys -3,387

Table 6- 6. Natural Environmental Effects on Refractory Metals

UV Objects lono- Hot

sphere Plasma

Vao

Mien

Belts

Magnetic Vacuum
Field

Torques

Torques

, =

Material

Haynes (Co) -

R,ICONELS

(Ni)

Nb Alloys

Mo Alloys

Ta Alloys

W Alloys

Primary Concern:

Possible

Damage

Possible

Damage

Possible

Damage

Possible

Damage

Possible

Damage

Possible

Damage

Possible Damage Due to Debris Object Impact in LEO

Ga.lg_

- - Erosion,
Glow

- Erosion,
Glow

- Erosion,
Glow

=

- Erosion`
Glow

Erosion,
Glow

Erosion,
Glow

_J
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6.2.4 Metals on the LDEF Mission

6.2.4.1 Experiment AOI71

Several metal samples were flown on the LDEF A0171 Experiment. ) These consisted of

various copper and silver ribbon materials, miscellaneous metallic specimens, and 1" diameter bulk

metals including materials which readily oxidize and which resist oxidation in the atomic oxygen

environment. A series of alloys containing various ratios of aluminum, chromium and nickel in the

as-received and preoxidized condition were also flown. Cold rolled silver ribbon both thermally

heat sunk to the experiment base and thermally isolated configured with and without a stress loop

completed the metal samples reported in this section.

All the metals reported g,,ined weight as a result of being exposed to orbital atomic oxygen.

Reactivity values based on linear effects were reported for these materials even though it is known

that metals oxidize nonlinearly. This was done in order to give a comparative measure of the

observed effects. With the exception of silver, the magnitude of reactivity numbers was less than 1

x 10 .26 cm3/atom for the conditions experienced on AO 171 (see Table 6-7). Accommodation

numbers presented are given in terms of atomic oxygen atoms reacted ratioed to the incident atoms.

These calculations based on the mass increase show that, with the exception of stressed, thermally

isolated silver, less than 10 atoms per 104 incident are reacted. The basic assumption for these

accommodation numbers is that the mass increase resulted from tke formation of the most

thermodynamically favorable oxide. The presence of some of these oxides is yet to be confirmed

The reactivity and accommodation values for the cold rolled, stressed, and thermally isolated silver

are an order of magnitude greater than that of the same material which had no additionally applied

stares and was heat sunk to the structure These results suggest that the atomic oxygen effects are

more dependent on temperature and microstn, cture than on total incident atomic oxygen.
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Table 6- 7. LDEF AOITI Metals Atomic Oxygen Erosion Data

METAL AO Reactivity
(10 "u cm 3/atom)

Copper 0.g7

Accommodation of

AO per 10 4
Incident AtoL_

3.6

Molybdenum 0.14 -I 2.8

Tungsten 0.044 -1.0

HOS 875 0.29 2.5

Pre-Ox HOS 875 TBD TBD

Tophe_ 30 0.55 5.0

Ni-Cr-AI-Zr Alloy TBD TBD

Pre-Ox Ni-Cr-M-Zr _

Tantalum 0.60 8.3

Titanium 75A 0.39 4.4

Mg AZ31B 0.45 2.0

Niobium 0. i 4 2.0

Silver disk-fine grain 2.9 8.4

27.5 80.0Silver-cold rc"ed ribbon

in stress loop

CommenU

Accommodation

strongly dependent

on temperature and

stress, numbers are

tentative pending

confirmation of

oxide identity.
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6.2.4.2 Ion Beam Textured Surfaces Experiment (IBEX)

Titanium, copper, Inconel, and stainless steel metals were textured 8 using Ta as a seed

material with an ion source of 1500 eV argon ions to obtain high thermal emittance surfaces.

These samples were part of the LDEF Experiment S 1003 located in Row 6. These samples were

exposed to 6500 ESH as well as 33,700 thermal cycles.

Results of optical property measuremems, shown in Table 6-8, indicated no changes in solar

absorptance for all the, metals. Table 6-8 shows an increase in thermal emittance only for textured

copper (from .50 to .69). This change was probably due to an oxide formation on the surface,.

which could cause an increase in thermal emittance. SEM analysis indicated no change in surface

morphology for the ion beam textured materials flown on LDEF.

Table 6- 8. Ion Beam Textured High Absorptance Metals Flown on LDEF.

Sample Solar Absorptance
I

Post-flight 1990

Thermal Emittance (325 K)

Pre-flight 1982 Pre-flight 1982 Post-flight 1990

Ti (6% AI, 4%V) .88 .88 .21 .18

Cu .94 .94 .50 .69

Inconel .92 .92 .25 .25

Stainless Steel type 304 .91 .93 .26 .28
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6.2.4.3 LDEF Metal Samples

The surface films of six different metals (AI, Cu, Ni, Ta, W, and Zr) exposed to the space

environment on the LDEF were studied by variable angle spectroscopic ellipsometry 9 . Thickness

and surface comp_qition measurements, carried out on portions of each sample exposed and

shielded to the space environment, are summarized in Table 6-9. The analysis revealed that

exposed portions of the Cu, Ni, Ta and Zr samples are covered with porous oxide films ranging in

thickness from 500 to 1000 A. The 410 A thick film of A1203 on the exposed AJ sample is

practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin

non-porous oxide films characteristic of exposure to air. Tne shielded part of the Cu sample has a

much thicker porous coating of Cu20. The tungsten data cold not be analyzed.

Table 6- 9. Thickness and Surface Composition of LDEF Metals

Sample LDEF Location Space Conditions Oxide Thickness Proportion
of Oxide of Voids

AI D3 Trailing Edge A1203 395 0

Cu

Ni

Tantalum

Tungsten

Zirconium

GI2 Earth End

D3 Trailing Edge

D9 Leading Edge

D9 Leading Edge

D9 Leading Edge

1.32xi017atoms/cm2

II,I00esh

Shielded

3.33xI0_ atoms/cm:

4,500esh

Shielded

1.32x10 _7atoms/cm2

11,I00 esh

Shielded

8.99x102_ atoms/cm 2

11,200 esh

Shielded

8.99x 102| atoms/cm 2

11,200 esh

Shielded

8.99x 1021 atoms/cm 2

11,200 esh

Shielded

A]203

Cu20

Cu20

NiO

NiO

Ta2Os

Ta205

Zi<h

ZrO2

68

1039

449

687

60

505

31.5

not known

not known

688

42

0

0.71

0.69

0.65

0.73

not known

not known

0.81
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6.2.5 Metals on the Space Shuttle Missions

6.2.5.1 STS-8 Mission

The STS-8 Atomic Oxygen Effects I,xperiment, a follow-on experiment to that flown on

STS-5, was configured to expo:,e a large number of disk-type material specimens for reactivity

assessment, to The experiment pro'Aded an atomic oxygen fluence of 3.5x102° atoms/era 2 incident

perpendicular to the experiment material satfaces over a period of 41.17 hr at 120 n. mi.

Ten metals we_ e exposed on STS-8: silver, copper, lead, magnesium, molybdenum, nickel,

platinum, tungsten, HOS-875 (FeCrAI alloy) in the bare and preoxidized condition, and Tophet-30

CNiCr alloy) in the bare and preoxidized condition. These metals are of interest for a variety of

reasons. Silver is utilized as solar eel! interconnect material on the solar array. High electrical

conductivity is required to mair,_a_n ddequate spacecraft power. Copper and molybdenum are

alternate solar cell interconnect materials, and, further, all of these metals have well-known high

temperature oxidation chara,,teristk, s. Under high temperature oxidation conditions, the HOS-875

andthe Tophet-30 form their own protective o,'dde films of A1203 and Cr203: respectively.. With

the exception of some of the silver specimens, these metals were exposed on surfaces that were in

the low temperature region, estimated ,o be about 50°I:. The data regarding the results of the

metals' exposure are shown in Table 6-10.

Table 6- 10. STS-8 Metals Data Summary.

Silver

Copper

Lead

Magnesium

Metal

L

btolybdenum

Nickel

Platinum

Tungsten

HOS-875 -Bare -
Pmoxidized

Exposure R_sults

Well-defined visual changes, severe oxidation on all specimens, dilute penetration of
oxygen i,_ bulk, increases in refractive index, and decrease in electrical conductivity.

Visual difference, tarnished appearance, mass increase: 0.5 mg/cm2 or 1.4x10 23

mg/atom, dilute penetration of oxygen into bulk, increased oxidation to CuO.

No visual change, no mass change

dilute penetration of oxygen wto bulk, increased

No visual cLange, no mass change.

No visual change, no ra_ss change,
oxidation to MOO3.

No visual change, no mass ckange.

No visual change, no lr_.ss :hange.

No visualchange,no w,tsschange,decreaseinrefractiveindex,no treaglinabsorl_on
coefficient.

Toph_ 30 -Bare. -
Preoxidiz_l

No visual change, no mass change, no other changes discernible by SEM/x-ray
diffraction.

No visual change, no _ chmlge, no other changes di_emible by SEM/x-ray
diffraction.
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6.2.5.2 STS--41-G Mission

The effects of the space environment on metals which have applications to space telescope

were measured by ellipsometry before and aider flight. _ The metals included Cu, Ag, Au, Ni, Cr,

AI, Pt, and Pd on flight 41-G (STS-17). Optical constant data consisting of refractive index n _d

absorption coefficient k were obtained for each metal specimens and their control. The specimens

were evaporated layers of silver, gold, palladium, platinum, nickel, copper, aluminum, and

chromium on metal substrates. The nominal thickness of the layers ranged from 500 to 5000 A..

The results showed that by far the greatest changes which can be attributed to exposure to

the space environrrent occurred for silver. The changes were very large for both the refractive

index and the absorption coefficient. Changes in both optical constants due to space exposure were

found also for palladium, copper, and c_omium, although the effects are not as large as for silver,

and likewise (but to a somewhat lesser extent) in gold and aluminum. There was also a change in

the refractive index of platinum, but this was of the same order as the sample to sample va:'iation in

the absorption coefficient of platinum prior to flight.
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6.3 DESIGN CONSIDERATIONS FOR SPACE ENVIRONMENTAL EFFECTS

A number of observations concerning the effects of the LEO environment on metals can be

summarized as follows;

• Metals are highly variable in their response to the LEO environment.

• Gold and platinum are nonreactive.

® Osmium, which forms a volatile oxide, is rapidly eroded.

• Silver, which forms a nonprotective oxide, is rapidly eroded.

* Other metals (AI, Cu, Ga, Ge, Ir, Mo, Ni, Ti, and Sn) show some level of reaction

unless protected.

, Contamination is a major contributor to exposure effects on metal surfaces.

Table 6-11 provides a summary of the space environment effects on metals.

Table 6- 11. Summary of Performance of Metals in the Space Environment

Observations Principal Exposures Engineering Significance

Ram-exposed copper straps
darkened

Bare 606 !-T6 aluminum discolored
relative to anodized aluminum

Function of AO dose and possibly
temperature

High AO exposure

High AO exposure

Surface oxidation, copper would
survive as interconnect material, but

possibly operate at a higher
temperature

Anodized aluminum maintained

desires optic,al properties

Thin aluminum film on alumimzed

Mylar and Kapton disintegrated
after Kapton and Mylar eroded

away

Significant particulate
contamination
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Most of the data related to the behavior of materials in the atomic oxygen environment

involves the rates of surface erosion. Most of the data obtained are reported in terms of a

parameter used to quantify the susceptibility of a material to erosion by atonuc oxygen, known

the "erosion yield" or the "reaction efficiency'' (R_). This parameter is defined as

l_ = Volume 0fMateri¢i Lo_t (cm3/atom)

Total No. of Incident O Atoms

I_ can be calculated using the relation:

A

where Am = mass loss (g)

p = material density (g/cm 3)

@ = incident AO Flux (atoms/cm:-s)

t = exposure time (s)

A = exposed surface area (cm:)

Note that the product qbt= F, where F is the total fluence of oxygen atoms

which is obtained from atmospheric models, spacecraft velocity, and exposure

history.

Consequently, the reaction efficiencies derived from previous Space Shuttle flights (see

below) can be used in computing surface recession for materials subject to the orbital environment

with the following equation:

AX=FTxR e

where FT is accumulated fluence, R_ is reaction efficiency, and _,x is surface recession.

6-17
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A summary of data obtained from space flight experiments conducted to date are shown

quantitatively in Table 6-12. _2 Metals, except/'or silver and osmium, do not show macroscopic

changes. Microscopic changes have, however, been observed and should be investigated for

systems very sensitive to surface properties. Silver and osmium react rapidly and are generally

considered unacceptable for use in uncoated applications. Copper forms a protective oxide which

adversely affects optical and thermal properties.

The major limitation of the current reaction rate data base is that atomic oxygen fluence to

which the recession rates are normalized are not precisely known. Atomic oxygen number densities

used to compute fluence for previous space flight missions were obtained using thermospheric

models to predict atmospheric constituent concentrations as functions of altitude, time of year,

Earth latitude and longitude, local solar time, and solar activity conditions. Typically, errors of as

much as 25 percent or more can be expected for the density estimations, and since they are used to

compute t'luence, these errors also appear in the surface recession rates for satellite materials. To

improve the database, amt_ient density measurements need to be made simultaneously with

recession measurements during future flight experiments.
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Table 6- 12. AO Reaction Efficiencies of Selected Metals in Low Earth Orbit

Material

Aluminum(XSOA)

Chromium (123 A)
, , ,,

Copper (bulk)

_pper O,oooA)onsapphire
Copper (I,000 A)

Reaction Efficiency, ]xl0 -24 cm3/atom

Osmium

0

partially eroded

0

0.007

0.0064

t_ference

13

14

15

16,17

14

Gold (butt) o 15

Gold appears resistant 18

Iridium Film 00007 15

Lead 0 13,10

Magnesium 0 13,1.0.

Molybdenum (I,000k) 0.0056 19

Molybdenum (I,000 A) . . 0.0..06 17,20

Molybdenum 0 I0,13 __

! ic ome(ioo ,> o 13
Nickel film 0 15

Nickel 0 21,10
...... ,.. , , .

Niobium film 0 15,13
- -- . ,,

220.026

heavilyattacked

0.314

0

appears resistant

0

10,5

appears _esis.tam ,.

0

Osmium
, =

Osmium (bulk)

Platinum

Platinum

Platinumfilm

Silver

Tantalum

Tung_en

18

15

10,13

18

15

23

18

10,21
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7.0 CERAMICS

Approximately thirty silver and aluminum solar reflectors with thin coatings of various

glassy ceramics were nown or the LDEF A0171 experiment. _ A large group of these reflector

samples were configured with one-half of the sample exposed and the other half covered. Small

decreases in reflectivity were noted in these samples but no contamination was present to account

for these reflectivity decreases.

"7.1 ATOMIC OXYGEN EFFECTS

Precision angstrometer traces were made on all the coated silver and aluminum solar

reflectors samples, and it was noted that a decrease in film height occurred in the exposed areas.

Selected samples were examined with low energy Rutherford backscattering which revealed that a

densification of the film materials had occurred in the exposed region. A conversion of SiO to

SiO 2 was identified. The results of these measurements are presented below under atomic oxygen

erosion effects. However, several factors can bring about the densification of these materials and it

remains to be proven that the effects noted rare the result of atomic oxygen attack.

Table 7-1 provides a listing of these effects for the various solar reflectors. Decreases in

thickness of' ese materials range up to 160 angstroms. For applications of these materials where

the total c,_ating thickness is 1000 to 1300 angstroms, the percentage change is considerable and

the effect can be substantial for space optics. Reactivity values for these materials rare based on the

assumption that the observed effects result from atomic oxygen attack range from 0.4 to 2.3 x 10"

28 cm3/atom

7-1
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Table 7-1. Property Changes in A0171 Glassy Ceramics

Coating/Solar Reflector

sio2/Ag

SiO21AI

SiO-SiO2/Enhanc_ AI

SiOIAl

MgF2. Sapphire,/Enhanc_l AI

MgF2-Sapphire/Ag

Change in Solar

Reflectance (%)
-<1

-<1

-2

-1.5

+1.5

-5 to -10

Decrease in Film

Thickness (,_
4O

50

125

150

25

150

Dielcctric./Ag Allo]_ -1 to -5 160

No changes observed for shuttle flight exposures. On LDEF SiO-SiO2,

increase in film density noted. Defect observed on all reflectors except SiO2/AI,

small decreases inRs measured. Re,activity ranges from 0.4 to 2.3 x 10 -28

cra3/atom for these materials.
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8.0 PROTECTIVE COATINGS

8.1 SILICON OXIDE (SiOx)

8.1.1 Introduction

Polycrystalline ceramic films, such as SiOx (where 1.9 < X < 2.0), SiO2, fluoropolymer-

filled SiO 2, and AI203 (see below) have been demonstrat_d in boih ground and space tests (i.e.,

1.2
LDEF) to be effective in protecting polyimide Kapton from oxidation by LEO atomic oxygen.

These films are often used as an. environmental protective coating due to its resistant to atomic

oxygen exposure, and provides improved radiative properties during space environment e_posure.

8.1.2 Source

Manufacturer: Sheldahl Inc.

North.field, MN 55057

Tel: 507/663-8000

Sheldahl's SiOx coating is applied in e roll-to-roll RF. sputtering process. The vacuum

chamber is a 5,000 liter stainless steel vessel with a thirty-two inch diffusion pump. The SiOx is

sputtered from two 5-in x 30-in magnetron cathodes with SiO2 targets. Power is supplied by a

pair of five kilowatt Radio Frequency (R.F.) operating at 13.56 megahertz. Nominal film

thickness is 1300 A on each side of the polyimidt Gas control is separate for each cathode and

limited only to the cathode area, which allows the chamber background pressure to remain in the

low 10-5 torr range. Maximum film width is 25 inches ,xrth a maximum roll diameter of 14

inches. The entire deposition system is monitored by a computer controlled data acquisition

system capable of monitoring over 300 separate points (e.g., web tension, speed, power, etc.).

This allows a constant log of all important parameters versus time and web footage and helps

maintain coating quality and integrity. Because particulate contamination of the Kapton film

before coating would be detrimental to its AO resistanc,:, special handling ted,'aques are

employed and the entire chamber carriage is enclosed in a hood capable of class 10,000 cleanroom

performance.

8.1.2 Properties

Table 8-1 compares the thermo-optical properties of SiOx coated aluminum/Kap_ _a to that

of aluminum/Kapton thermal control material. 3
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Table 8-1.

.Material Description

Typical Thermo-Optical Properties of SiO,-Coated Aluminum/Kapton

_o) _o) _ / _ Temp. Range Continuous

Vacuum deposited Silicon Oxide x
vacuum deposited aluminum x 10 mil
Kapton x 1.0 rail Silicone pressure
sensitive adhesive tape

Vacuum deposited aluminum x 1.0 rail
Kapton x 966 acrylic pressure sensitive
adhesive tape

__0.14 --,0.12

<0.14 <:0.05

-I.0

--4.0

occl0

-184 to 150

(-300 to 300)

-184 to 150

(-300 to 300)

(1) Solar absorptance testing was done with a dual beam, ratio recording Beckman DK-2A UV-VIS-NIR

spectrophotometer. Solar absorptance was computed based on 25 equal energy intervals centered on
w_velengt_ from 314 nanometers to 2191 nanometers. These wavelengths are computed from tables of
spectra in NASA SP-8005 and ASTM E490-73a.
(2) An approximationtototalhemisphericalemittanccwas obtainedfromaLionResearchCorporation
emissometer.ThisinstrumentrespondstotheIR energyemittedfrom a samplethrougha potassium

bromidewindow intothedetector.The wavelengthrangeis3-30microns.ThismethodequatestoASTM

F/108,MethodB.

8.1.2

8.1.2.1

Effects of the Space Environment

1000 A SiO x on VDA/Kapton

A 1000 A SiOx coating on vact_um deposited aluminized (VDA)/Kapton was flown on the

LDEF to determine its ability to perform in the harsh environment.' This sample was composed

of 1000 ,/_ of SiOx deposited on VDA face of Kapton, which was attached to the aluminum

support disk with 3M Corporation's Y-966 transfer adhesive. FigJre 8-1 shows the side view of

this specimen. The weight of the assembled components was 4.34883 g and its total thickness

was 0. 1294 in. (0.3287 cm). The weight of the support disk was 4.25987 g and its thickness was

0.1148 in. (0.2916 cm).

8-2



l o014,2}__O.1294"

0.1148"1

SiOx

VDA

KAPTON

Y-966TRANSFER ADHESIVE

SLV3STRATE
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_1 OIM _1.013.112

Figure 8-1. Side View of Kapton/VDA with 1000 A SiO x Coating

The sample was mounted in the Experiment Environmental Control Canister (EECC),

iden;.ified as Experiment No. S0010, and was located in Tray B9, which was situated at an angle

of 8° from the ram vector. The coated specimen was located in the ram direction of the

spacecraft, exposed for l0 months to the low-Earth orbit environment at an orbit of 260 nautical

miles. For the. ,0-month exposure at an altitude of 260 nautical miles, the oxygen fluence is

estimated to have been 8.99 x 1021 atoms/era 2. The UV radiation exposure was 11,200 esh.

Mass Loss. The sample of SiOx was uniformly eroded. The mass loss of the flight sample

was 3.3 x 10 -5 g or about 8.9 x 10 -6 gcm -2 of the exposed area. The thickness change

amounted to 3.032 x 10 " cm, corresponding to about 0994% of the total sample thickness. The

concentrations of O and S, emained constant The change in thickness, 3.032 x 10-3 crn, is

considerably more than the SiO 2 thickness of 1000 A (1 x 10 -5 cm). Some of the VDA Kapton

was eroded. One cannot establish a reaction rate constant because the measured mass loss and

thickness may include changes due to the sample's outgassing losses.

Optiral Properties. Some improved reflectance occurred below 450 run and above 700

nm 2he integrated properties are _ = 6.127 and e = 0023 for the flight sample, and cL= 0.155

and _. = 0.025 for the reference sample.

8.1.2.2 1300 ._ SiO x on Kapton

NASA Lewis Research Center conducted AO plasma asher testing for a SiOx coated

Kapton. _ The SiOx coated Kapton samples used for the ground simulation experiment were

0.00254 cm (1 nail) thick Kapton H samples, which were coated wi'_h 1300 A SiOx (where 1.9 <

X < 2.0) films on both sides of Kapton by means ofRF magnetron sputter deposition. The

coatings were deposited by Sheldahl Corporation. The atomic oxygen durability for the SiOx

protected Kapton samples and unprotected Kapton samples was evaluated with an RF plasma
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asher(SPI Plasma Prep II). "ihe plasma asher discharge creates a mix of atomic, molecular, ionic,

excited-state species, as well as vacuum ultraviolet (VUV) and ultraviolet CUV) radiation.

Mass Loss Degradation. Based on the plasma exposure to both sides of SiOx -protected

Kapton, the erosion rate of SiOx coated Kapton is reduced to less than 1% of the erosion rate of

unprotected Kapton (ref. 5). Figure 8-2 compares the mass loss per unit area as a function of

effective atomic oxygen fluence for the a_mic ox'ygen SiO_ protective coated Kapton and the

uncoated Kapton. Also included are the effec)iveness of electrically conducted atomic oxygen

protective coatings, germanium and indium tin oxide.

The mass loss of the ground simulated SiOx coated Kapton sample was ~ 1 x 10 .5 gcm 2 at

an atomic oxygen fluence of 7.10 x 1021 atoms/era 2 This erosion is similar to that observed for a

1000 A SiO_ on VDA/Kapton in which the mass loss of the flight sample was 3.3 x 10 -5 g or

about 8.9 x 10 -6 gcm -2 of the exposed area for an atomic oxygen fluence of 899 x 1021

atoms/cm z (see above).

0.17 i _ Kapton _/"_

e_0"141,d" +ITO ."

0.10 | _ SiO2 ,,"

[ --_Ge ,, ,. " g • .-ir_ . a_¢' " ....-"" °"

0o7 --/k- siOx .,,,4)" ..-41""'"

0,03 ] s s "_ .11.... • ....

_ °..o*'' "

000 J _,_-z_:....-._ " , _.

0.00 1.42 2.84 4 26 5.68 7.10 X 102

AO FLU'[:,'_CE, atonvc.,n"

OIM qM,013.369

Figure 8-2. Mass Loss Dependence Upon AO Fluence for Silicon Dioxide Coated Kapton

and Unprotected Kapton
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8.1.2.3 650 A_SiO2 and 650 A PTFE/SiO2 on Kapton

Several candidate protective coatings on Kapton and uncoated Kapton were exposed to

the LEO environment on LDEF Tray S 1003 to ctetermine if these coatings could be used to

protect polymeric substrates from degradation in the LEO environment (ref. 2). Coatings

evaluated included 650 A of silicon dioxide and 650 A of x 4% polytetrafluoroethylene - 96%

silicon dioxide mixed coating All of the coatings evaluated were ion beam sputter deposited.

These materials were exposed to a very low atomic oxygen fluence (4.8 x 1019 atoms/cm 2) as a

result of the experiment _.ray being located 98 degrees from the ram direction. Comparison of the

optical properties of coated and uncoated Kapton exposed to the low-Earth space environment to

a control uncoated Kapton sample is presented in Table 8-2

Table 8-2. Effects of SiO2 Coating on the Optical Properties of Kapton on LDEF (S1003)

[ Material and Sample Designation

Uncoated Kapton _not flown)

Uncoated Kapton (LDEF no.6)

Uncoated Kapton (LDEF no.34).

SiO2 on Kapton(not flown)

Total
Reflectance

Total

Transmittance

Solar

Abserptance

0.289

Thermal
Emittance

0.135 0.576 0.70

0.136 0.580 0.285 0.72

0.130 U.583 0.286 0.71

0.116 0.573 0.311 0.72

SiO2 on Kapton (LDEF no.9) 0.105 0._ol 0.334 0.72

4% PTFE-96 SiO2 on Kapton (not flown) 0. i09 0.584 0.307 0.72

4% PTFEu96 SiO2 on Kapton (LDEF no.7) 0.103 0.578 0.319 0.72

4% PTFE-96 5iO 2 on Kapton (LDEF no. 14) 0.103 0.576 ! 0.321 0.71

|

Sdar absorptance increased between 7 to 8 % for the SiO x coated Kapton and only 4 %

fer the nfixed coating. Apparently, the addition of a small amount of fluoropolymer reduced the

magnitude of absorptance increase due to environmental exposure. Thermal emittance did not

change significantl/for any of the exposed samples Scanning electron microscopy revealed few

micrometeoroid or debris impacts, where the extent of damage or cracking of the coating around

the defect site did not extend beyond a factor of 3 of the impact crater diameter. This limiting of

impact damage is of great significance for the durability of thin film coatings used for protection

against the LEO environment Determination of a mass change was not possible for any of the

samples including the uncoated Kapton due to the low AO fluence. There was no evidence of

spalling of any of the coatings after the approximately 34,000 thermal cycles recorded for LDEF.

The surface of the uncoated Kapton, however, did show evide_:ce of grazing incidence texturing.
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8.2 ALUMINUM OXIDE (AI203)

8.2.1 Introduction

Polycrystalline ceramic films, such as SiO x (where 1.9 < X < 2.0), SiO2, fluoropolymer-

filled SiO2, and AI20 3 (see below) have been demonstrated in both ground and space tests (i.e.,

LDEF) to be effective in protecting polyimide Kapton from oxidation by LEO atomic oxygen._'2

These films are often used as an environmental protective coating due to its resistant to atomic

oxygen exposure, and provides improved radiative properties during space environment exposure.

8.2.2 Effects of the Space Environment

8.2.2.1 700 ,_ A!203 on Kapten

Samples of 700 A of aluminum oxide protective coated Kapten and uncoated Kapton

were exposed to the LEO environment on the LDEF to determine if the coatings could be used to

protect polymeric substrates from degradation in the LEO environment (ref. 2). The coating

evaluated was ion beam sputter deposited. These materials were exposed to a very low atomic

oxygen fluence (4.8 x 1019 atoms/era 2) as a result of the experiment tray being located 98

degrees from the ram direction.

As a result of the low AO fluence, determination of a change in mass was not possible for

any of the samples i_c!u_: :_ _ne uncoated Kapton. There was no evidence ofspalling of any of

the coatings after the approximately 33,600 thermal cycles recorded for LDEF. The surface of

the uncoated Kapton, however, did show evidence ofl_razing incidence texturing. There was a 7

to 8 percent increase in solar absorptance tor the aluminum oxide coated Kapton (see Table 8-3).

Thermal emittance did not change significantly for any of the exposed samples. Scanning ele_,ron

microscopy revealed few micrometeoroid or debris impacts, but the impact sites found indicated

that tt_e extent of damage or cracking of the coating around the defect site did not extend beyond

a factor of 3 of the impact crater diameter. This limiting of impact damage is of great significance

ibr the durability of thin film coatings used for protection against the LEO environment.
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Table 8-3. Optical Properties of Al203 Coated and Uncoated Kapton Exposed

! Material and Sample Designation

Uncoated Kapto D._not flown)

Uncoated Kapton (LDEF no:.6)

Unfoated Kapton (LDEF no. 34)

AI203 on Kapton (not flown)

Al203 on Kapton (LDEF no. 12)

AI203 on Kapton (LDEF no 26)

on LDEF Tray SI003

Total Total

Reflectance Transmittance

0.135 0.576

Solar

Absorptance

0.289

V Thermal

gmittance

0.70
b

O.136 0.580 0.285 0.72

0.130 0.583 0.286 0.71

0.120 0,571 0.309

0 118

0.72

i 0.119

0.545 0.337 0.71

0.551 0.330 0,72
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8.3 INDIUM OXIDE (In203)

8.3.1 Introduction

Indium oxide coati_lg pro-tides sufficient electrical conductivity, has little effect on

substrate solar absorption and emissi,Aty, and remains stable during long exposure in space to UV

radiation and particle bombardment.

8.3.2 Effects of the Space Environment

8.3.2.1 100 _ In203 on Kapton/VDA

100 A. In20 3 coating on Kapton/VDA was flown on the LDEF to determine its ability to

perform in the harsh environment (ref 4). 100 A of indium oxide was deposited on Kapton. The

Kapton was attached with its vacuum-deposited A1 face to the aluminum support disk with 3M's

Y-966 adhesive. Figure 8-3 shows a side view of the sample. The assembled sample weight was

".328355 g and its thickness was 0.1271 in (0.3228 cm) The support disk weight was

approximately 4.259878 g and its thickness was 0.1160 in. (0.2946 cm) The surface was

Figure

InO x

KAPTON

WA

[ " Y-966 TRANSFER #d_ItESIVE

F ALUMINUM SUBSTRATE

I).9956" _! o,_ _13.a3
A

Side View of Kapton/VDA with 100 A ln203 Coating

The sample was mounted in the Experiment Environmental Control Canister (EECC),

identified as Experiment No S0010, and was located in Tray Bg, which was situated at an angle

of 8.1 ° from the ram vector. The coated specimen was located in the ram direction of the

spacecr.'fft, exposed for 10 months to the low-Earth orbit environment at an orbit of 260 nautical

miles For the 10-month exposure at an altitude of 260 nautical miles, the oxygen fluence is

estimated to have been 2.6 x 1020 atoms/cm 2 The UV radiation exposure was 16,000 hours.

The sample was severely eroded, with the indium reduced to less than 0.95 atomic *A in

comparison to the unexposed sample at 7 atomic %. "Ihe color changed from yellow to gray.

8-8



Kaptonwasexposedto theenvironmentthrougherosionof theInO, in some areas and the

Kapton exhibited substantial erosion.

The mass loss for the sample was 0.001867 g, or about 5.37 x 10-4 gcm "2 of exposed

area. The thickness change amounted to about 5,08 x 10 -3 cm, corresponding to about 1.538V0

of the total thickness.

The 100 A. (10 -6 era) of ln20 3 and a considerable amount of the VDA/Kapton were

eroded. In addition, considerable material and thickness must have been lost by outgassing in

space. Not knowing ifbakeout in vacuum was performed on the material before launch, it is not

possible to estimate the reaction efficiency of the indium. However, the various analyses have

indicated that the indium was completely eroded. The reaction rate for the Kapton is known to be

about 3 x 10-24 cm3/atom from other orbital tests.

Losses of 5% to 10% in reflectance resulted below 450 nm and between 600 and 1600

rim, respectively. The integrated values are 0.391 abso_tion and 0.547 emittance for the flown

sample and are 0.363 and 0.564, respectively, for the reference sample.
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8.4 CLEAR RTV SILICONE

8.4.1 Introduction

This type of coating is an environmental protective coating used as a sealant and is

particularly resistant to atomic oxygen.

8.4.2 Effects of the Space Environment

8.4.2.1 Atomic Oxygen Reaction Efficiency Data

A summary of the AO reaction efficiencies of various silicones flown in low Earth orbit on

the Space Sh,ttle flights is provided in Table 8-4.

Table 8-4. AO Reaction Efficiencies of Silicones in Low Earth Orbit

Material Mfg. Reaction Efficiency, xl0 -24 Flight Reference

cm3/atom Expe_ment

DC 1-2577 Dow Coming 0.055 6

DCI-2577

DC 1-2755-coated Kapton

D.C1-2775-.coated Kapton

DC6-1104

DC6-1104

RTV-615 (black, conductive)

r_TV-615 (dear)
RTV-560

RTV-670

Dow Cormng

DowCorning

Dow Coming

Dow Corrung

Dow Corning

GE

GE

GE

GE

0.02 a STS-8

0.02 a

0.05 STS-5

<.5 STS-5 14

0.515 8
9

0.0

0.0625

0.02 a

0.0
°, ,

STS-8

STS-8

|r

II

16

12

13P,TV-S695 GE 1.48

RTV-3145 GE 0.128 20

T-650 0.02 a STS-8 16

'CV-I- 144-0 McGhan NuSd 0.00 STS46
m

14

(a)Untts of mg/cm: for STS-8 mission Loss is assumed to occur tn early part of exposure;
therefore, no assessment of efficienQ can be made.

|
It
It

!
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8.4.2.2 Devolatized RTV-615 Boaded on AI with SS 4155 Primer

RTV-615 Silicone on aluminum w:.:; 5_,,:n on the LDEF to determine its ability to

perform in the harsh environment. A sample consisting oL devolatized General Electric

Ce'-poration (GE) RTV-615 two-part silicone with an A/B parts-by-weight mix ratio of 10/1 was

bonded to an aluminum disk via GE primer SS4155. The total thickness of the assembly was

0.1253 in. (0.3183 cm) The weight of the support disk was 4.25987 g and its thickness was

0.1127 m. (0.2862 crn). Figure 8-4 shows a side view of the sample (ref. 4).

0.0122"

0.1253

O.1i97,,

9.9955"_-------_

RTV-615, DEVOL

PRIMER, GE SS4155

ALUMINUM SUBSTRATE

OIM 94.O13.114

Figure 8-4. Side View of RI v'-615 Silicone on Aluminum

The sample was mounted in the Experiment Environmental Control Canister (EECC),

identified as Experiment No. S0010, and was located in Tray B9, which was situated at an angle

of 8.1 o from the ram vector. The coated spec, _en was located in the ram direction of the

spacecraft, exposed for 10 months to the low-Ea _h orbit environment at an orbit of 260 nautical

miles. For the 10-month exposure at an altitude of 260 nautical miles, the oxygen fluence is

estimated to have been 26 x 1020 atoms/era 2 The UV radiation exposure was 16,000 hours.

The sample experienced a mass loss of 0 0037 g, or about 8.983 x 10 -3 gcm -2 of the

exposed area The thickness change an:ounted to about 8.63 x 10 -3 cm, corresponding to about

2.617% of the tot',d thickness.

The change in thickness, 0.0034 in (8.63 x 10 "3 cm), is considerably less than the

tlfickness of the RTV and primer 00167 in (4.24 x 10.2 cm) Under the assumptions that the

loss was the result of the oxygen erosion, one could calculate the reaction efficiency. However,

calculations to estimate the reaction efficiency using the above data indicate a considerable

oxygen erosion, much larger than the value of 625 x 10.26 cm3/atom reported by B.A. Banks el

al _s The discrepancy in order of magnitude must be assumed to have been produced by loss of

material from outgassing
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The flight sample experienced a loss of about 5% in reflectance throughout the measured

range of wavelength with respect to that of the reference sample. The integrated properties are: ot

= 0.489 and _ = 0.819 for the flight sample, and a = 0.432 and _ = 0.824 for the reference sample.

8.4.2.3 McGhan NuSil CV'1144-0 RTV Silicone

McGhan NuSil CV-1144-0 is a one-pan, silicone dispersion specially designed and

pi'ocessed for applications requiring extreme low temperature, low outgassing and minimal

volatile condensables under extreme operating conditions. CV-1144-0 is based on a dimethyl

diphenyl silicone copolymer with a service temperature range of-115°C to 232°C.

This silicone coating was applied to the original Hubble Space Telescope Solar Arrays. It

was applied to carbon/epoxy composites, Kapton, Dacron and Chemglaze paint. "this coating

was recently flight tested on the STS-46 LDCE-3 experiment. _6 No correlation was observed

between the flight weight loss of 0.491 percent and the ASTM E-595 CVCM and TML values of

0.00 and 0.31 per:ent, respectively. Possible mechanisms for the reaction of the silicone

elastomer with oxygen atoms are:

• SiCH3+40 ........... SiOSi + 3H20+2C

• SiCH_-e40 ............. SiC + SiOH+H20+CO2

This silicone coating was also applied t. a carbon/PEEK thermoplastic composite and

flown on the STS-46 LDCE-3 experiment. 1"4omeasurable erosion was observed in the protected

layer (ref. 14).
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8.5 SILICO.._E WITH SILICATE-TREATED ZINC OXIDE (ZnO)

8.5.1 Introduction

This combination is a thermal control coating and is used as a white paint for spacecraR

and other structures. It is resistant to UV radiation exposure.

8.5.2 Effects of the Space Environment

8.5.2.1 RTV-615, Silicate-Treated ZnO

RTV-615/silicate-treated ZnO on aluminum was flown on the LDEF to determine its

ability to perform in the harsh environment. This sample consisted ofGE's devolat_ed RTV-615

two-part silicone with 68% oflITRrs K2SiO 3 coated and buffered SP-500 ZnO pigment. The

RTV-615 silicone had an A/B parts-by-weight mix ratio of 10:1. The material was bonded to the

aluminum disk _a GE primer, SS4155. The total weight was 4.55060 g and the total thickness

was 0.1343 in. (0.3411 cm). The weight of the support disk was 4.25987 g and its thickness was

0.1197 in. (0.3040 cm) Figure 8-5 shows a side view of the sample (ref. 4).

T 0.0144" _.___

0.1343" t

I 0.1i97,,

" 0.9926"

SILICONE 615/IITRI's

K2SiO 3 COATED AND
BUFFERED SP-500
ZnO PIGMENT

PRIMER, GE SS4155

ALUMINUM SUBSTRATE

OI lt'l _1.013.11_P

Figure 8-5. Side View of RTV-615 Silicone Treated ZnO

The sample experienced a mass loss of 8.27 x 10-4 g, or about 2.332 x 10 -4 gcm "2 of

exposed surface. The thickness change amounted to 3 x 10 -3 in. (7.78 x 10-3 cm), corresponding

to about 2.142% of the total thickness.

Both the RTV and the silicate were eroded. The actual erosion and mass thickness are not

known because of the possible loss by outgassing, and the calculation for the reaction efficiency

could be erroneous. Bat, as indicated, erosion did occur
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The reflectance versus wavelength, not shown, revealed some loss between 400 and 700

run and between 1800 and 2100 run. The integrated absorption is 0.201 and the emittance is

0.891 for the flown sample, and 0.190 and 0.907, respectively, for the reference sample.
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8.6 GERMANIUM-COATED KAPTON

8.6.1 Introduction

Germanium is an opaque conductive coating that is applied to the front surface of second-

surface mirrors to provide a means of draining static electricity induced by Van Allen radiation

belts. Without a conductive coating it is possible to build up charges of 20,000 to 30,000 volts on

the surface of a second-surface mirror. When discharge takes place, it can result in erosion of

thermal control coatings and electronic systems can be turned on, of, or burned out. Draining of

surface charging for geosynchronous spacecraR can be achieved with surface resistivities less than

l09 ohms per square. Draining of surface charge for LEO polar spacecra_ applications requires

lower surface resistivity, l0 s ohms per square because of higher auroral charging current

densities. 17 The germanium coating has an adequate surface electrical conductivity for use in

LEO polar applications where draining of electrically charged surfaces is desirable to prevent the

occurrence of electrical breakdowns and arcs.

A coating of germanium is applied to Kapton blanket material to achieve required thermo-

optical properties as well as to protect the polymer from the space environment, in particular

erosion caused by atomic oxygen. Germanium/Kapton is used in blanket and closeout

applications, and as an interstitial layer betw, .'n ),he photovoltaic cells and the facesheet on solar

array panels.

i he germanium is apphed to the Kapton by sputter deposition in a batch process to

produce coated material which may then be cut to size. The coating may also be applied to pre-

cut pieces of blanket if necessary. The ceated blanket is installed in the usual manner with the

germanium side typically facing outward. Coating thickness may be varied to tailor thermal the

properties of the blanket, but nominal germanium thi,:kness is 1500 A. The coating has good

abrasion resistance and is xeadily cleaned by wiping with standard solvents.
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8.6.2 Effects of tile Space EnvirGnment

8.6,2.1 STS-46 Flight Experiment

Germanium coated Kapton is a possible nlatefial for advanced photovoltaic solar arrays.

There are limited short-term enviroi_mental expvsure data available for germanium/Kapton.

Specimens were integrated into the heated trays and passive tray of the JPL EOIM-3 experiments

on the STS-46 Space Shuttle flight.': Thermal property data for germanium/Kapton are

summarized in Table 8-5 below. The material evaluated was 1500 A germanium on 2 rail Kapton.

Table 8-5, Space Exposure Data for Germanium/Kapton

Specimen IR Refleetaece Solar Absorptance Emittance t_/_
Condition Pm _

Preflight 0.384 0.453 0.617 0.78

Control 0.384 0.452 0.616 0.78

Flight 0.386 0.485 0.614 0.79

Estimated Germanium Oxide layer thicknesses were determined by ESCA as shown in

Table 8-6._8 Possible formation of vohtile GeO (direct reaction and/or disproportionation).

Table 8-6. GeO, thicknesses for Coated Kapton Specimens

Specimen Location GeOx Thickness (A)
m

Passivc (10 ° - 40°C) 60

60_C Strip 40

200°C Stop 20

i Flight exposure of germamum/Kapton took place on the Evaluation of Oxygen Interactions with Materials,
Minion 3 (EOIM-3) flight experiment sponsored by NASA/BMDO Space Environnmatal Effects program.
Results documented in TRW Advanced Interceptor Technologies Program report No. 57888.93.4404303; toad
atomic oxygen fluence of 2xlO 2t atords/cm 2 over 42 hours.
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8.6.2.2 Ground-Based Space Sim_afion Experiment

NASA Lewis Research Center conducted AO plasma asher testing for an electrically

conductive germanium coated Kapton. J9 The coated Kapton specimen used for the ground

simulation exper:anent consisted of a 0.00508 cm (2 mil) thick Kapton H substrate coated with

1500/_ germanium films on both sides of Kapton by means ofP, F magnetron sputter deposition.

The coating was deposited by TRW. The atomic oxygen durability for the germanium protected

Kapton samples and unprotected Kapton samples was evaluated with an RF plasma asher (SPI

Plasma Prep II). The plasma asher discharge creates a mix of atomic, tool -,,far, ionic, excited-

state species, as well as vacuum ultraviolet (VUV) and ultraviolet (UV) r_., .ation

Mass Loss Degradation. Based on the plasma exposure to both sides of the germarfium-

protected Kapton, the erosion rate of germanium coated Kapton is considerably reduced

compared to the erosion rate of unprotected Kapton (ref 19). Figure 8-6 compares the mass loss

per uuit area, s a function of effective atomic oxygen fluence for several atomic oxygen protective

coatings to that of unprotected Kapton From Figure 8-6, silicon dioxide and germanium coated

Kapton samples were found to have the lowest mass loss per unit area. S;nce germanium is

inherently atomic oxygen durable, or develops durable oxides, the range of protection attbrded by

this coating is a measure of the defect area for this coating.

eq_ 0.17

<- o.14

0.10

0.07

0
.d

0.03tq

Figure 8-6.

Kapton b / ,,",,0

ITO /"

/
-'l- SiO 2 ,,

j,

--O-- C,e ,-_
°._
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_. "0" .... ..-41 ......
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.°.-°

0.190
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Mass Loss Dependence Upon AO Fluence for Germanium*Coated Kapton and

Unprotected Kapton
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Optical Transmittance. The optical transmittance of the opaque germanium-coaied

Kapton was not noticeably altered by plasma asher atomic oxygen exposure.

Surface Resistance. The ,'-,-Suctive germanium coating was observed to be sufficient to

meet polar LEO charging requirements 1he surface resistance of germanium coated Kapton was

found to stabilize at atomic oxygen fluence of 7 x !0 2oatoms/cm 2

8.6.3 Design Consideration

Germanium/Kapton is stable in the LEO space environme-t, ex_hibiting no quantitatively

significant degradation in thermal properties from short term space exposure. However, pin-holes

in the coating characteristic of the coating process may allow atomic oxygen to erode the Kapton,

thus undermining the structural integrity of the blanket. This phenomenon should not significantly

affect the thermal performance of the blanket until undercutting has progressed to the point where

fragments of the material come fr" ,: from the body of the blanket. The dislocated fragments may

also present a contamination hazard to other systems on a spacecra_. There are no definitive

measures of the rate at which this phenomenon occurs, but a conservative estimate would take the

erosion rate ofunco,.. J Kapton at the orbit of interest and multiply by a factor of one-half.

There are no long-term data on the space-stability ofgermanium/Kapton, but the germanium

coating is expected to be stable in the sl_ace environment

Hence, germanium films many find use where conductivity and atomic oxygen protection

are required provided visible light transparency is not required.
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8.7 INDIUM TIN OXIDE-COATED KAPTON

8.7.1 Introduction

Indium tin oxide is a transparent conductive coating that is applied to the front surface of

second-surface mirrors to provide a means of draining static electricity induced by Van Allen

radiation belts. Without a transparent conductive coating it is possible to build up charges of

20,090 to 30,000 volts on the surface of a second-surface mirror. When discharge takes place, it

can result in erosion of thermal control coatings and electronic systems can be turned on, of, or

burned out. Draining of surface charging for geosynchronous spacecra_, can be achieved with

surface resistivities less than 109 ohms per square. Draining of surface charge for LEO polar

spacecraft applications requires lower surface resistivity, 108 ohms per square because of higher

auroral char_ng current densities (ref. 17).

The ITO coating has an adequate surface electrical conductivity for use in LEO polar

applications where draining of electrically charged surfaces is desirable to prevent the occurrence

of electrical breakdowns and arcs. Indium tin oxide, as manufactured, has a surface resistivity of

approximately 10,000 ohms per square. This coating increases the solar absorptance 3 percent

aad the emittance is unaffected. It has excellent adhesion. However, care in handling must be

exercised because the coating is sensitive to high humidity, abrasion, flexing and thermal cycling.

8.7.2 Source

Manufacturer: Sheldahl Inc.

Northfield, MN 55057

Tel: 507/663-8000
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8.7,3 Properties

Table 8-7 compares the typical thermo-optical properties of transparent ITO conductive

c,_'_ting/Kapton/aluminum thermal control material to that of Kapton/aluminum thermal control

material. 2° The absorptance and emittance values are measured through the Kapton surface.

Tabk 8-7.

Material Description

Typical Thermo-Optical Properties of riO-Coated Kapton/Aiuminum

1 _. / c_ Temp. Range Continuous

: °C CI_

ITO x 1.0 mJl Kapton x
vacuum deposited almninum

ITO x 2.0 rail Kapton x
vacuum deposited -aluminum

<0.44

<0.49

_>0.62

L,0.71

i --0.50

--0.50

1.0 ,,nil Kapton x vacuum <0.39 _>0.62 --0.50
deposited alununum

2.0 nail Kapton x vacuum _0.44 >0.'_, --0.50

de,_sited aluminum I

(1) Solar absorptance testing was done with a dual beam, ratio recording Beckman

-184 to 150

(-300 to 300)

-184 to 150

(-300 to 300)

-184 to 150

(-300 to 300)

-184 to 150

(-300 to 300)

DK-2A UV-VIS-NIR

_ophotometer. Solar absorptance was computed based on 25 equal energy intervals centered on
wavelengths from 3 _4 nanometers :o 21_;I nanometers. These wavelengths are computed from tables of
spectra in NASA SP-8005 and ASTM E490-73a.

(2) An approxinmtion to total hemispherical emittance was obt.qined from _ Lien Research Corporation
ernissometer. This instrument responds to the IR energy"enut,.=a from a sample through a potassium
bromide window into the detector. The wavelength range is 3-30 microns. This method equates to
ASTM E408, Method B.

8.7.4 Effects of the Space Environment

NASA Lewis Research Center conducted AO plasma asher testing for an electrically

conductive indium tin oxide (ITO) coated Kapton (ref. 19). The ITO coated Kapton specimen

used for the ground simulation experiment co :_sisted of a 0.00508 cm (2 rail) thick Kapton H

substrate coated w4th 2000 A ITO films on both s,ues of Kapton by means ofRF magnetron

sputter Jepus,_,-,n The coating was deposited by TRW The atomic oxygen durability for the

_20 protected Kapton samples and unprotected Kapton samples was evaluated with an KF

plasma asher (SPI Plasma P. ep Ii) The plasma asher discharge creates a mix of atomic,

molecular, ion:c, e i, d-,, " species_ as well as vacutml ultraviolet (VUV) and ultr,_violet (UV)

radtation

Mas_ Loss Degradation. Based on the plasrna exposure to both si:les of the !TO-

protected Ka+,ton, the erosion rate of II'O coated Kapton is consHerabiy reduced compared to

the erosior_ r_tc oftmprotectcd I,;_pton (ref 19) Figure 8-7 compare= the mass loss per unit area
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as a function of effective atomic oxygen fluence for several atomic oxygen protective coatings to

that of unprotected Kapton.
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Figure 8-7.

OIM 94013.369

Mass Loss Dependence Upon AO Fluence for ITO-Coated Kapton and

Unprotected Kapton

From Figure 8-7, the worst performing protection coating was indium tin oxide, which

exhibited an increase in the slope of mass loss per unit area with fluence. This increase is typically

due to atomic oxygen defects which grow in size with atomic oxygen fluence. Since indium tin

oxide is inherently atomic oxygen durable, or develop an durable oxide, the range of protection

afforded by the coating is a measure of the defect area of the coating. If the indium tin oxide film

is sufficiently stressed, or if the stress increases with atomic oxygen fluence, tearing of the coating

at defect sites can allow a gradual increase in exposure of the underlying unprotected Kapton,

thus giving rise to an increasing rate of mass loss per unit area with fluence. In contrast, the most

protective coating (SiOx coated by Sheldahl), has very little intrinsic stress and does not tear with

atomic oxygen fluence when ur'dercut cavities become large. This is pcobably why the plot of

mass loss per unit area for the SiO_ Sheldahl coated Kapton has a rather constant slope.

Optical Transmittance. The optical trensmittance of the transparent indium tin oxide

film was noticeably altered by plasma asher atomic oxygen exposure. The film developed a more

metallic appearance with increasing atomic oxygen fluence. Figure 8-8 shows the comparative

plots of changes in the total spectral transmittar ;e versus fluence for uncoated Kapton and indium

tin oxide coated Kapton specimens before and after exposure to an atomic oxygen fluence of 3.48
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x 1021 atoms/era 2. The total spectral transmittance of the indium tin oxide film alone can be found

by dividing the total spectral transmittance of _he coated Kapton by the total spectral

transmittance of the uncoated Kapton at each wavelength As can be seen from Figure 8-8, a

significant reduction in total transmittance occurs over a broad wavelength region as a result of

atomic oxygen exposure. Such optical degradation may inhibit the use of indium tin oxide for

coatings on radiator paints, photovoltaic cover glasses, or on photovoltaic concentrator surfaces.

Figure 8-8.
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9.0 LUBRICANTS, GREASES, AND SEALS

9.1 LUBRICANTS AND GREASES

9.1.1 Introduction

Lubrication is primarily concerned with reducing the fiiction which occurs at the

interacting surfaces of two solid parts when one is moved relative to the other. Any

material introduced between two such surfaces to accomplish a reduction in fi'iction is

called a lubricant. Oils, greases, anti-seize compounds, bonded or unbonded solid films,

compact and composite materials are some of the kinds of materials which satisfy the

definition of a lubricant. Some of the functions of lubricants are to reduce friction,

dissipate heat, protect surfaces from corrosion, prevent the entrance of foreign matter,

cushion against shock, and distribate loads. Solid-film lubricants have less tendency to

perform the same function of removing heat as fluid-film lubricants.

Oils are generally used where lubricant retention is not necessary or where a means

of providing a continuous supply of oil is provided as part of the design of a component.

Retainer materials which are porous can be impregnated with oil to provide a continuous

supply of oil.

Greases are generally used where retention of the lubricant is a requirement.

Normally a bearing is partially filled (10-15% ofthe total void volume), depending upon

the operational requirements, to provide for long life operation.

Solid-film lubrication involves a material such as molybdenum disulfide powder,

which is normally burnished or bonded onto a part surface. Solid-film lubricants also

include compact and composite materials.
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9.1.2 Space Environment Effects

A variety of lubricants and greases were flown on LDEF. With the exception of

three lubricant systems flown as specimens in experiment M0003, all lubricants were

components of functioning hardware, not the primary item of the experimenter's

investigation. Table 9-I identifies the lubricants flown on LDEF, where they were

located, and a brief summary of their performances. The majority of the lubricants were

shielded from direct exposure to space and performed their design fianction as anticipated.

A detailed review of the investigations into the labricants and greases flown on the LDEF

can be found in the NASA Contractor Report by Harry Dursch et al. t The following

paragraphs are exerpted from this report.

MoS2 Dry Film Lubricant. A MoS2 dry film lubricant and cetyi alcohol were

used on nut plate assemblies on the LDEF experiment A0175. Nut plates were coated

with either MoS2 or cetyl alcohol. During post-flight disassembly, severe difficulties were

encountered with seizure and thread stripping of the nut plates Post-flight inspection of

the fasteners installed into nut plates with MoSs dry film lubricant showed no damage to

the threads and nominal removal torques. Fasteners installed into nut plates using only

cetyl alcohol sustained substantial I damage to the fasteners and nut plates. Post-flight

FTIR examination of the nut plates found no remaining traces ofcetyl alcohol.

MIL-L-23398 air-cured MoS2 lubricant was used on several components on each

of the five NASA provided Environmental Exposure Control Canisters (EECC). The

EECC's were located on rows 9 (leading edge), 8,4,3 (trailing edge), and 2. The lubricant

was applied to the Bellevile washers, drive shafts, and l;nkages. Portions of the Bellevile

washers and drive shafts were exposed to the external environment. Visual examination of

the EECC located on the trailing edge revealed no evidence of abnormal wear or coating

degradation on the surfaces not exposed to UV. Portions of the drive shaft exposed to

UV exhibited slight discoloration.
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Table 9-1. Lubricants and Greases on the LDEF Satellite

Material - Description LDEF Location F'mdinp

Cetyl Alcohol A1 & A7 Used on nut plates, no trtc_ remain

MoS 2 A 1 & A7 Used on nut plates, appears to be
nominal

MoS 2 - sir cured dry film lubricant EECCs (shielded No apparent visual change, further

(MIL-L-23398) and exposed) testing required

MoS 2 - chemically deposited B3 Degraded

Ball Aerospace 21207 - MoS 2 A9 (shielded) System test results nominal, lubricant not
evaluated

Ball Aerospace VacKote 18.07 - MoS 2 A9 (shielded) System test results nominal, lubricant not

with polyimide binder evaluated

Molykote Z - MoS 2 B3 (shielded) Not tested

WS 2 (tungsten disulfide) Grapples Bulk properties unchanged, no difference

between leading and trailing edge

Apiezon H - petroleum based tLermal F9 (shielded) Outgassmg tests showed no change

grease

Apiezon L - petroleum based thermal D 12 Not tested

grease

Apiezon T - petroleum based thermal H3 ,u H12 (space Slight separation of oil from filler, some

grease end) migration

Ball Brothers 44177 - Hydrocarbon oil EECCs (shielded) Not tested, extensive outgassmg

with lead naphthanate and clay thickener

Castrol Braycote 601 - PTFE filled A3 Extensive testing, to date results show no

perfluoronated polyether lubricant change

Dow Coming 3440 - Silicone heat sink Shielded IR spectra unchanged

compound

Dow Coming 1102 - Mineral oil based Shielded Appearance unchanged

heat sink compound

Exxon Andok C - Petroleum grease Shielded System test results nominal, lubricant not
evaluated

Mobil Grease 28 - Silicone grease MTMs (shielded) System test results nominal, lubricant not
evaluated

DuPont Vespel bushings - polyimide Vtnous Aplxarance unchanged

DuPont Veeq_l 21 - Graphite filled D3 Optical, EDX, and friction tests showed

polyimide no change

E/M LubricanLs Everlube 620C - MoS 2 D3 Complete binder failure, only minimal

with modified phenolic binder traces remained

D3Rod end bearings with PTFE c( '
Nomex iine_

Extensive testing showed no clumges
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VadKote 18.07 and 21207. VacKote 18.07 xnd 21207, both made by Ball

Aerospace, were used on carousel components of experiment S0069. VacKote 18.07 is a

polyimide bonded MoSs that is sprayed on to the substrate and then cured at elevated

temperatures (1 hour at 310°C or 50 hours at 149°C). This lubricant meets NASA

outgassing requirements. The 21207 is thin pure MoS2 that contains no binder or glue. It

is applied by high velocity impingement. Its primary use is in reduction of rolling Diction

(it possesses poor properties for sliding Diction applications). The only post-flight

evaluation of either lubricant has been a system functional test of the overall experiment.

The system performance was unchanged. No post-flight examination of either lubricant

has been performed.

Tungsten Disulfide. Tungsten disulfide WS2 dry film lubricant was used as the

lubricant on both the rigidize sensing and flight-releasable grapple shafts. This lubricant

was used to ensure successful release of the grapple from the RMS during, initiation of the

active experiments, deploymem, and retrieval of LDEF. The grapples performed as

designed. The tray containing the grapple used for deployment and retrieval was located

122 degrees to ram and saw an atomic oxygen exposure of 22x1017 atoms/crn 2.

However, because the shaft extended 3 to 4 inches beyond the LDEF surface, portions of

the shaft (and the Teflon tip) were exposed to a much greater fluence. During post-flight

analysis at JSC, samples of WS2 were removed from both grapple shafts for SEM and

EDX analysis. This analysis showed the bulk lubricant to be intact with no discernible

difference between the lubricant exposed on the ram surfaces of the shafts and the

lubricant exposed on the trailing edges. No surface analysis was performed. The

tribological properties of :he WS: have not been determined.

Apiezon H. Apiezor. H was used as a heat sink grease on experiment A0076,

Cascade Variable Conductance Heat Pipe. The grease was not exposed to atomic oxygen

or UV. To determine the effect of extended vacuum on the grease, a sample was tested

for outgassing in accordance with NASA SP-R-0022A. The LDEF sample had

considerably higher total mass loss than the control sample, but the volatile condensable

material was similar. It was postulated that this was due to the LDEF sample picking up

moisture between satellite retrieval and sample test. Therefore, a series of tests were

performed to determine the propensity of Apiezon tt to absorb atmospheric moisture. A

thin film of the grease was exposed to 10c_/_ humidity at room temperature prior to

testing. The absorbed moisture caused a total mass loss similar to the difference between

the LDEF sample and the control sample. Chemical analysis of the grease indicates that
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both the grease and the condensable material from the volatility test match those of a

control sample. This implies that changes noted in the LDEF material were caused by

storage on Earth, not by exposure to LEO.

Apimn L. Apiezen L was used on Experiment A0180, as a lubricant during

fastener _nstallation. It has not been examined.

Apiezon T. Apiezon T was used on experiment M0001 as a lubricant for

installation of a large O-ring in a flange seal. Examination of the lubricant/O-ring by

optical microscopy revealed some slight separation of the oil from the filler. _ed

spectroscopy of the !ubricant showed no changes from the control. The O-ring was

entirely wetted with the oil and showed no evidence of attack. Post-flight examination of

the flange revealed migration of the Apiezon T onto the flange. This migration was not

quantified.

Ball Brothers 44177 Lubricant. Ball Brothers lubricant 44177 was used to

lubricate the thrust washer on the five EECC's. A nearby bracket was found to have a

diffraction pattern due to the outgassing of the volatile component of the lubricant.

Although the 441"17 is still used on previously designed spacecraft, Ball Brothers no

longer recommends it for new design.

Cgstrol Braycote 601. Castrol Braycote 601 was used to lubricate the four drive

shafts which opened and closed the clam shells (canisters) of experiment A0187-1,

Chemistry of Micrometeoroids. The drive shafts were located on the exterior surface of

tray A3 (trailing edge) but saw minimal direct exposure to UV as the clam shells shielded

the drive shafts. Due to the trailing edge location, the 601 saw very minima! atomic

oxygen. The lubricant had picked up a black color, as yet not identified, but thought to be

some form of contamination. Castrol (manufacturer of Braycote) examined the Braycote

601 with the following results. Infrared and thermogravimetric analysis did not indicate

any degradation of the base oil or thickener. Differential infrared analysis of the LDEF

Braycote 601 showed it to be virtually identical to new 601. Thermal gravi,,etric analysis

results of the flight sample are very similar to those of a control sample. A slight

difference was observed but is likely due to traces of moisture and r'_ntamination. No

significant change in the temperature at which de,:,omposition begins or in the relative

levels of base oil to thickener was observed, indicating that the Braycote was unchanged.
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Dow Coming 340. Dow Coming 340 heat sink compound was used on two

LDEF experiments, 3,0133 and M0001. The heat sink compound in both experiments

performed as expected, transferring heat from one surface to another. Neither application

exposed the Dow Coming 340 to UV or to atomic oxygen. The infrared spectra of a

sample of Dow Coming 340 from experiment M0001 were unchanged compared to that

of a control sample.

Dow Coming 1102. Dow Coming 1102, used on Experiment S1001, Low

Temperature Heat Pipe, is an obsolete heat sink compound that was cor,_posed of 85%

mineral oil, 10% Bentonite, 3% MoS 2, and 3 percent acetone. Post-fl:ght visual

examination of the material showed no change from the initial conditio,L

Exxon Andok C. Exxon Andok C was used in Experiment S0069, Thermal

Control Surfaces Experiment. No results have been reported.

Mobil Grease 28. Mobil Grease 28 was used on the NASA provided magnetic

tape modules (MTM). The MTMs contained the cassette tape that recorded on-orbit

data. The MTMs were tested and compared to pre-flight measurements. No significant

changes were noted. The M'rMs were not disassembled so no grease analysis has been

performed. No change in the grease was expected as it was in a sealed enclosure

bacidilled with an inert atmosphere.

Vespel Bushings. Vesp._.l bushings were used in experiments A0147, A0187, and

S 1002 None of the bushings were exposed to UV or to atomic oxygen. All Vespel

bushings performed as expected.
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9.2 SEALS

9.2.1 Introduction

A variety of seals were used on LDEF, all of them as components of various

experiments These were generally O-rings, although sheet rubber was also used as a seal

In adoition, materials that are commonly used for seal,, were used as cushioning pads. A

detailed review of the investigations into the seal materials used on the LDEF can be

found in the NASA Contractor Report by Harry Dursch et al. (Reference 1). The

following paragraphs are exerl::ed from this report.

9.2.2 Space Environment Effects

The performances of the elastomeric seal materials flow on LDEF are listed in

Table 9-2. These materials performed as designed, sustaining little or no degradation

caused by long term exposure to LEO. The only failure was the ethylene propylene O-

rings on Experiment S0069 used to seal the lithium carbon monofluoride (LiCF) batteries.

This fa/lure was caused by long term exposure to the LiCF electrolyte (dimethyl suite)

which caused a compression set to occur in the O-flag This same phenomenon occurred

on ground stored batteries; therefore, this failure is not attributed to space exposure.
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Table 9-2. Seals on the LDEF Satellite.

Elutomeric Parts Experiment Co_u(a)

'3utyl O-ring PO004 1, 3

Butyl rubber seal A0138 1

El' O-ring S0069 2A,3
. • ,, , - -- ,

EPDM rubber P0O05 1.3

NBR rubber P0005 I. 3

Neoprene gasket A0139
., . , , .. , , , . ,,.

Nitrile O-ring M0006
, ,. . , ,, , •

Silicone gasket
., ! --,

S0050 1,2B, 3

Silicone pad M0004 1, 2B, 3

Vimn O-ring A0015, A0134, A0138-2, 1, 3
A0139, A0180, M00C1, M0092,
PO005,SO010,S0069

Viton washer A0189 1, 3

Metal "V" washex EECC's 1, 3

(a) 1: Performed as expected
2A: Failure due to attack by dimelhyl sulfit,:
2B: Discolored where exposed to UV
3: Resetsdisc_,_edm thissection,

The effects of the space environment on specific mate_als flown on the LDEF are

discussed in the following paragraphs.

Butyl O-Rings. Butyl O-rings were used in face seals oa Experiment PO004,

Seeds in Space Experiment. Because the O-rings were sandwiched between metal

surfaces, their exposure was limited to vacuum and thermal cycling. The O-rings were

apparently installed without lubricant and 3ustained some sc'Jff marks and pinching upon

installation. Accurate post-flight weights of each seed container were taken and compared

to preflight values. The results showed no change in weight• This means that the O-rings

performed as designed by preventing any desorption of moisture in space (7% of a seed's

weight is moisture). There was no eviderce of _')ace-induced degradation and the

performance of the O-ring seal was as predicted.

Ethylene Propylene (EP) O-Rings, Ethylene propylene O-rine,_ were used to

seal the lithium batteries on LDEF Experiment S0069, Thermal Control Surfaces

Experiment. These seals failed doe to excessive compression .set oft.he O-rings. The

temperatures seen by the batteries, 13 to 27°C, were well within the limits of EP O-ring
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capabilities. Therefore, failure has been a' _ributed to attack of the O-ring by the battery

electrolyte, dimethyl sulfite.

Ethylene Propylene Diene Monomer Rubber (EPDM). EPDM rubber was

tested in Experiment P0005, Space Aging of Solid Rocket Materials, which was located

on the interior of LDEF. This elastomer exhibited slight changes in strength, modulus and

ultimate elongation, as shown in Figure 9-1.

Acrylonitrile Butadiene Rubber (NBR). NBR rubber was tested in Experiment

P0005, Space Aging of Solid Rocket Materials, which was located on the interior of

LDEF. This elastomer exhibited slight changes in strength, modulus and ultimate

elongation, as shown in Figure 9-1.

Silicone Rubber. Silicone rubber w,_ used as a cushioning gasket between the

sunscreen and the tray in Experiment S0050, Investigation of the Effects on Active Optica_

System Components. Portions of the gasket were exposed through holes in the sunscreen.

Since the experiment was on the trailing side of LDEF (row 5), the gasket saw UV, but

not atomic oxygen. The exposed areas of the gasket were slightly darkened but did not

show any other signs of degradation. The hardness of the gasket was the same in exposed

and unexposed areas, a, id all material was very pliable. Although control specimens were

not available, tensile strength and elongation were determined and found to be within the

range of other silicone elastomers.

Silicone rubber was als', used as a cushioning pad between a metal clamp and

some optical fibers in Experiment M0004, Space Environment Effects on Fiber Optics

Systems. The rubber was mostly shielded, but some edges were exposed to UV and

atomic oxygen. The rubber remained pliable and flee of cracks. Some darkening of the

rubbec was observed ill the exposed areas.
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Figure 9-1. Mechanical Properties of EPDM and NBR

Viton O-Rings. A large number of Viton O-rings were used on LDEF. Post

flight examination showed that the ones exatnined were in nominal condition. All Viton

O-ring seals maintained a seal. None of the Viton O-tings were exposed to UV or to

atomic oxygen.

A group of Viton washers was used to pad the quartz crystal oscillators in

Experiment A0189. The washers were apparently taken out of sheet stock as a fabtic

texture was apparent on the fiat surfaces. Many of the washers had indentations on one or

both of the contacting surface, indicating compression set. No further analysis is pla_ed

because the original Compression is unknown.

Metal "V" Seal. A metal "V" seal was used to seal the pressure valve in the

EECC's. The sea2 was made oflnconei 750 and had a currently unknown finish. It was

sealing the stainless steel valve to an aluminum surface. There was no evidence of cold

welding between the valve, the seal, and the mating aluminum surface contacting an

aluminum surface.
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