
(NASA-CR-199282) AN IMPLEMENTATION N96-11209
AND PERFORMANCE MEASUREMENT OF THE
PROGRESSIVE RETRY TECHNIQUE (Bell
Telephone Labs.) 8 p Unclas

G3/61 0065036

https://ntrs.nasa.gov/search.jsp?R=19960001202 2020-06-16T06:43:16+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42779829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA-CR-199282

An Implementation and Performance Measurement of the
Progressive Retry Technique

Gaurav Suri * , Yennun Huang * Yi-Min Wang* W. Kent Fuchst Chandra Kintala*

•AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

t Coordinated Science Laboratory
University of Illinois

Urbana, IL 61801

Abstract
This paper describes a recovery technique called pro-

gressive retry for bypassing software faults in message-
passing applications. The technique is implemented
as reusable modules to provide application-level soft-
ware fault tolerance. The paper describes the imple-
mentation of the technique and presents results from
the application of progressive retry to two telecommu-
nications systems. The results presented show that the
technique is helpful in reducing the total recovery time
for message-passing applications. . •

1 Introduction
For computer systems designed to provide contin-

uous services to customers, availability is an impor-
tant performance measure. In such systems, software
failures have been observed to be the current major
cause of service unavailability [1, 2]. Residual-software
faults due to untested boundary conditions, unantic-
ipated exceptions and unexpected execution environ-
ments have been observed to escape the testing and de-
bugging process and, when triggered during program
execution, cause service interruption [3j. It is there-
fore desirable to have effective on-line retry mecha-
nisms for automatically bypassing software faults and
recovering from software failures in order to achieve
high availability (4, 5, 6, 7|.

Several studies [2, 8, 9] have shown that many soft-
ware failures in production systems behave in a tran-
sient fashion, and so the simplest way to recover from
such failures is to restart the system, an approach that
we call environment diversity. The term Heisenbug [1],
has been used to refer to the software faults causing
transient failures, while the term Bohrbug refers to
software faults which have deterministic behavior.

Watchd daemon and libf t library have been used
in several AT&T products to tolerate Heisenbugs [10].

The research of the fourth author was supported in part by
the Department of the Navy and managed by the Office of the
Chief of Naval Research under Contract N00014-91-J-1283, and
in part by the National Aeronautics and-Space Administration
(NASA) under Grant NASA NAG 1-613, in cooperation with
the Illinois Computer Laboratory for Aerospace Systems and
Software (ICLASS).

Watchd is a daemon process which monitors system
failures like machine crash, process death and pro-
cess hang. If a machine crashes, all critical applica-
tions running on the crashed machine are migrated
to another machine. If a process dies (due to bugs
in the program), watchd first restarts the process lo-
cally. If the restarted process fails again, the pro-
cess is then migrated to another machine. Libft
.provides functions for message logging, critical-data
checkpointing, fault-tolerant inter-process communi-
cation and name services. With libft, an application
process can checkpoint its critical data on the local
machine as well as on backup machines. Therefore,
when a process is restarted, it can restore its check-
pointed state and replay its message log to reconstruct
its pre-failure state. Watchd keeps track of the depen-
dence between processes. In the event of a failure, the
failed process as well as all other processes that depend
on it are rolled back in order to guarantee state consis-
tency. Watchd and libft together provides a simple,
portable and reusable component for an application to
tolerate Heisenbugs.

Our experience has shown that many errors can
be successfully tolerated by using the simple rollback-
and-retry mechanism provided by watchd and libft.
The simple mechanism, although effective, presents
some problems. First, the recovery time can be long
so that the service disruption due to the recovery can
be unbearable. Any process failure results in a global
restart. In an application consisting of many pro-
cesses, a global restart can take a long time before the
application returns to normal execution. Therefore,
it is desirable to limit the scope of rollback by keep-
ing track of the dynamic inter-process communication
patterns and rolling back only the processes which di-
rectly communicate with the failed processes in the
current checkpoint interval. Second, the simple retry
with a deterministic replay of message logs usually re-
constructs-the application state to the same state as
existed before failure. If the state is erroneous and the
application behavior is deterministic, the retry and re-
play will not help. However, if message'dependency is
recorded, a failed application can replay the messages
in a different but consistent order so that the appli-

0-8186-7059-2/95 $04.00 © 1995 IEEE
41

cation reaches a new but correct state after retry. In
other words, by replaying the message log in a differ-
ent but consistent order, more software failures may
be bypassed.

The above two observations motivate the exten-
sion of the rollback-and-retry mechanism provided
by watchd and libf t. This paper describes a pro-
gressive retry technique for software failure recov-
ery in message-passing applications1. The target ap-
plications are continuously-running software systems
for which fast recovery is essential and a reasonable
amount of run-time overhead may not result in no-
ticeable service quality degradation. Many telecom-
munications systems fall into this category. There are
several reasons that fast recovery is desirable in appli-
cations requiring high availability. In the cases where
service quality is judged at the user interface level,
small "computer down time" involving only a small
number of processes may be translated into zero "ser-
vice down time." Most importantly, when the pro-
longed unavailability of one part of the system may
trigger the boundary conditions in other parts of the
system, localized and fast recovery can reduce the pos-
sibility of cascading failures which may lead to a catas-
trophe.

The progressive retry technique is based on check-
pointing, rollback, message replaying and message re-
ordering. The goal is to limit the scope of rollback the
number of involved processes as well as total rollback
distance. The approach consists of several retry steps
and gradually increases the scope of rollback when a
previous retry fails. The technique is implemented in
watchd daemon and libf t library.

^

2 Progressive Retry
The simple example in Fig. 1 is used to illustrate

the basic concept of progressive retry. The reader is re-
ferred to [12] for a detailed discussion. For the purpose
of presentation, we assume every message is logged be-
fore it is processed, and is .therefore available at the
time of recovery. Suppose pa detects an error at the
point marked "X" in Figure 1 and initiates the pro-
gressive retry. In the Step-1 receiver replaying retry,
P2 rolls back and replays messages Ma and MI, in ex-
actly the same order as they were processed before
the rollback. If the detected error was caused by some
transient environmental problems (such as mutual ex-
clusion conflicts, resource unavailability, unexpected
signals, etc.) then Step-1 retry may succeed and pj
can proceed. Under the deterministic assumption, the
exact same copy of M0 will be generated during the
recovery. Therefore, P2 does not need to resend M0
and the receiver of M0, process p«, does not have to
be involved in the retry..

If Step-1 retry fails, then ps rolls back again and
executes Step-2 receiver reordering retry by reordering
Ma and A/6 in its message log. If the original error
was triggered by a boundary condition, then message
reordering may be useful for bypassing that condition
and thereby recovering from the error. Note that since

'We will focus on error recovery in this paper; the issue of
error detection is considered elsewhere [10].

M. M,

\\
P2 _y

M

Figure 1: Example for illustrating the basic concept
of progressive retry.

message reordering forces a different execution path
for PS, we cannot expect that the same message M0
will still be generated. Such a message is called an
orphan message [11] and should be discarded. As a
result, P4 should also be rolled back in order to undo
the effect of M0. The message Af<, however, is not an
orphan message because its sender is not rolled back.
Such a "sent but not yet received message" is called an
in-transit message [12]. It needs to be processed again
by the restarted receiver but its associated processing
order information can be discarded.

There are several potentially useful algorithms for
reordering the message logs. Random reordering can
be used when no knowledge about the possible cause
of the software failure is available. If the failure is
possibly due to the interleaving of messages from dif-
ferent processes, reordering by grouping the messages
from the same process together may be useful. If the
software fault might have been triggered by exhaust-
ing all available resources, reordering the messages so
that every resource is freed at the earliest possible mo-
ment can often bypass the boundary condition.
- If Step-2 retry fails, then Step-3 sender replaying
retry will involve in the recovery process all the pro-
cesses that have sent messages to pj. In Fig. 1, pi
(pa) rolls back and replays Mw and Mx (M, and Afy)
in their original order2. Step-3 retry basically gives
the messages a second chance to interleave "naturally"
with each other, and can be useful for error recovery
if the original error was due to some rare message rac-
ing conditions. Under the deterministic assumption,
the exact same copy of M, will be generated and so
Po does not need to be involved in the rollback. In
contrast, p4 needs to roll back because of the orphan
message M0, and Mi remains an in-transit message.

If Step-3 retry still fails, it is suspected that an
undetected error might have occurred at pi or pa and
was propagated to pa through the erroneous messages

3 Messages Mm, Mx, Mv and M, are from processes other
than the five processes shown in the Figure.

42

A/a or MI, to cause the detected error. Step-4 sender
reordering retry is designed to bypass the software bug
that caused the undetected error. In this step, process
pi rolls back and reorders Mw and Mx, and pa rolls
back and reorders Mf and Mv. As a result, messages
Ma, MI,, Mi, Mo and M, all become orphan messages •
and all the five processes in Fig. 1 need to participate
in the recovery.

When all previous small-scope retries fail, the ob-
jective of localized recovery can no longer be achieved
and a large-scope rollback needs to be initiated. All
the processes in the system, including the senders of
Mw, Mx, My and Mt,~ are rolled back to the latest
globally consistent set of checkpoints obtained through
coordinated checkpointing [13] or lazy coordination
[14]. If a system has been functioning correctly for
most of the time and failures are rare events, rolling
back the entire system can often recover from the fail-
ures. The potential disadvantages of a large-scope roll-
back include unnecessarily involving healthy critical
processes in the rollback and a longer recovery time.
In a later section, we show that, for certain systems,
the cost of the first four steps of progressive retry is
small compared to the cost of a large-scope rollback.
For such systems, the five-step progressive retry de-
scribed in this section is an attractive technique for
providing low-cost and efficient software failure recov-
ery.

3 Implementation

The progressive retry mechanism is implemented in
the libft library and the watchd daemon [10]. .The
heart of the system is a centralized message server
which dynamically keeps track of all the information
required for progressive retry. The message server runs
as a child of the watchd daemon and uses the check-
pointing capabilities of the libft library in order to
make its own operation fault-tolerant. The other im-
portant components of the progressive retry mecha-
nism are watchd, the throwback agents and the recov-
ery management functions (see Figure 2).

Watchd monitors user processes for failures. As
soon as it detects a failure, it restarts the process. It
also communicates with the message server to get in-

.formation about the other processes that need to be
restarted. It then kills and restarts those processes.
The first action taken by each of the restarted pro-
cesses is to communicate with the message server and
find out the recovery actions that need to be taken.
Each process then sets up its recovery status accord-
ingly and proceeds with recovery. The following sub-
sections explain each of these functions in detail.
3,1 Message Server

As described earlier, the message server is the most
important component of the progressive retry mecha-
nism. It has the following functions :

• Keep track of the communication graph during
failure-free operation,

• Maintain status information for each process in
the system, and

RMF - Recovery Management Functions

Figure 2: Progressive retry system architecture

• Compute the recovery line during failure recovery.

3.1.1 Dynamic Communication Graph .

The message server needs to keep track of the message
dependencies during normal program execution in or-
der to be able to compute the recovery line during the
recovery process. The graph is computed on the basis
of the pattern sent to the message server by the re-
ceivers of messages in the system. Each process main-
tains a local communication graph in which it keeps
track of all the processes that have sent messages to
it so far. Whenever it gets a message from a process
that is not present in its local graph, it adds the pro-
cess to the local graph and also sends the information
to the message server so that the global communica-
tion graph can be updated.

3.1.2 Process Status Information

When the application is recovering from the failure of
a process under progressive retry, the status of other ,
processes is also affected to some degree depending on
the communication pattern and the stage of retry the
system is in. The processes need to be assigned differ-
ent status values so that they know whether they have
to detenninistically replay the pre-failure receiver log ,
reorder and replay the log, receive in-transit messages
from the communication channel or perform as normal
processes. The reasons for making these distinctions
are explained in Section 3.4.

43

3.1.3 Recovery Line Computation

Recovery line computation is the first step to be car-
ried out when a failed process restarts and progressive
retry needs to be initiated: It involves carrying out
the following functions:

• Calculate the retry step number for the system

• Analyze the communication graph, and

• Determine the status of each affected process
based on the first two steps

The recovery line computation may result in a
change of status for some of the processes in the appli-
cation. Since all processes run as children of watchd,
this information is conveyed to watchd so that it can
take appropriate action and restart processes that
need a status change.
3.2 Watchd

The basic functions of watchd [10] are to period-
ically monitor processes to see if they are alive, and
to restart failed processes. Under progressive retry
watchd is given the following additional responsibili-
ties:

• Invoke the message server to initiate progressive
retry when a failed process is brought up again.

• Kill and restart all the processes that require a
status change during retry.

3.3 Throwback Agents
The throwback agents are invoked on a one-per-

process basis and their function is to simulate the pres-
ence of in-transit messages. If a process is assigned a
status which implies that there are pending in-transit
messages, these messages need to be resent to it during
recovery. The process fires a throwback agent which
analyzes the log of the process and sends back to the
process all messages that have become in-transit ac-
cording to the new recovery line. Once all in-transit
messages have been re-sent, the throwback agent ter-
minates indicating the completion of recovery at that
node. . .,
3.4 Recovery Management Functions

The recovery management functions are a part of
libft and are responsible for recovery initialization,
setup and management for each process in a local man-
ner. The functions in libft that do recovery manage-
ment are checkpoint(), recover(), recoveredO,
setlogfileO, ftrecsetupO, ftreadO and
ftwriteO.

ftrecsetupO is the function that sets up the re-
covery for each process. It communicates with the
message server to get the recovery line information. It
then uses that information to set its local status value
and fire a throwback agent, if required.

The function recovered () returns a value which
indicates which stage of recovery the system is in. The
stages can be: doing deterministic replay, receiving in-
transit messages, or recovery completed. The return

value is used by the process to determine whether
it should be receiving messages from the communi-
cation channel or retrieving them from the log files.
These values, in conjunction with the status values are
also used by ftreadO aad ftwriteO. The function
f tread O examines the status value of the process,
and based on that value reads the next message ei-
ther from the log or from the communication channel.
Even when reading from the channel, a distinction is
made for receiving in-transit messages and new mes-
sages. In order to maintain consistency, all in-transit
messages from a sender must be received before, any
new messages can be received from that sender and
fifo order maintained for the in-transit messages. The
received messages are logged before they can be pro-
cessed. The status value determines whether they are
logged in a temporary log file or in the regular log file.

The function ftwrite{) sends messages after log-
ging them. The status values indicate whether mes-
sage comparison needs to be done (in order to verify
the deterministic execution assumption) or not, and
whether the message actually needs to be sent out on
the communication channel at all.

A message in a receiver log file contains five fields:
message sequence number, sender id, reference id,
message size and message data. Sender id is the num-
ber assigned by watchd to each application at start-
up time. Sequence number.is used during message
reordering to ensure that fifo order for messages from
the same sender is maintained. Reference id is given
by ftwriteO and is also .used during message re-
ordering. The message structure in the sender log is
the same except that it contains the receiver id instead
of sender id, and it does not contain the reference id.

4 Experimental Results

Performance measurements for' failure-free over-
head and recovery time were carried out by applying

, progressive retry to two telecommunications systems.
The two systems used were the REPL [15] file system,
and a subsystem of a switched service network sys-
tem (which we refer to only as System N due to its
proprietary nature).

Since most of the source code was unavailable and
.our objective was to measure the performance, not the
effectiveness, we implemented two simulators which
use the same software architectures, follow the same
communication patterns and generate the same work-
load conditions as the actual systems. The simulators
were also useful for doing controlled fault injection at
specific points in the programs.
4.1 General Experimental Setup

The experiments for both the systems studied the
performance under two categories :

• measurement of failure-free overhead;

• measurement of recovery time for different steps
of progressive retry.

The run time of each simulation was in the order of
one hour or more and each measurement was averaged
over four runs.

44

4.2 Performance measurement on System
N

The part of System N that we modeled has the
communication pattern shown in Figure 3. Nodes A
and B report to Node D every 10 seconds. C sends
a status report to D every 2 seconds. D periodically
reports to F which also receives reports from E every
30 seconds and which in turn reports to G 3.

Figure 3: Communication pattern for the part of Sys-
tem N under study

System N uses a coordinated checkpointing scheme
where process D is the coordinator. The failure free
overhead was measured for two different checkpoint
intervals: a checkpoint every 200 messages received
by D and every 400 messages. Synchronous logging
was used for both sender and receiver logging. The
critical data sizes for each of the processes were of the
order of a few kilobytes.

The recovery time measurements were done for the
checkpoint interval with 400 messages in order to get
a worst case measure of timing. Three different failure
instants were assumed: failure at 259c of checkpoint
interval, at 50% of checkpoint interval and at 75% of
checkpoint interval. The failures were injected at the
node shown as G in the Figure.

The observations are given in Tables 1 and 2. Ta-
ble 1 shows the failure-free overhead for System N
while Table 2 shows actual recovery time in seconds
for step 1 alone, steps 1 & 2, steps 1, 2 & 3, steps 1,

2, 3 & 4, and step 5. Table 2 also shows the recovery
times for the first four cases as a percentage of the
time taken for step 5 (large-scope rollback recovery)
and the number of processes involved at each step.

Table 1: Failure-free overhead for System N

Execution
Type
Time(s)
% overhead

No logging/
checkpointing

3040
-

Chk&Logging
4UU | 200
3137
3.1%

3140
3.2%

3The timings uaed in the simulations were obtained from the
specification documents of the system.

From Table 1, the run time overhead of message
logging and checkpointing for system N is about 3%.
In case of a failure, the time taken for doing retry is
very low compared to the time that large-scale roll-
back takes, as shown in Table 2. Also note that the
number of processes involved in doing steps 1 to 4 is
at most 2, compared to 7, which is the number of pro-
cesses involved in step 5. In most systems, the smaller
the number of processes involved in recovery, the less
impact the failure has. The results shown here cou-
pled with this observation make the progressive retry
technique extremely attractive for use with System N.

System N has been deployed in the field for more
than 2 years now. Data obtained from the field has
shown that more than 90% of the exceptions (failures)
that occurred in the last 2 years have been successfully
recovered by steps 1 to 3.

4.3 Performance measurement on REPL
REPL [15] is a collection of file system library func-

tions and server processes that runs on a primary and
a backup machine. Applications run on the primary
machine and write critical files onto the primary file
system. The REPL library intercepts the file system
calls, produces update'messages and sends the update
messages to the REPL server processes, which then
transfer the update messages to the REPL processes
on the backup node. The backup REPL processes
replay the update messages and reproduce the file up-
dates on the backup node. REPL has been used in
several telecommunications systems to replicate criti-
cal files and databases. The communication graph for
REPL is shown in Figure 4.

A normal workload for REPL is a burst mode work-
load. It receives a burst of messages from an applica-
tion, then becomes idle for some time and this cycle
repeats over and over again. Since the burst frequency
depends on the application that is using REPL, it is
not possible to define one workload for the system.
Thus the experiment has to be conducted for different
burst frequencies.

A standard burst size of 10 messages per burst was
used for the experiment. The workload was varied be-
tween 6 bursts per minute and 1.25 bursts per minute
for measuring the recovery time. The failure free over-
head was measured for the workload with a frequency
of 6 standard bursts per minute, which is the worst

45

Table 2: Recovery times for System N. t:time in seconds, %:recovery time as a percentage of step 5 time, n:number
of processes involved

Failure at

25%-chk
50%-chk
75%-chk

Step 1
t

2s
3s
4s

7o
1.4%
1.1%
0.9%

n
1
1
1

Steps 1,2
t
7s-
8s
9s

%
4.8%
2.8%
2.1%

n
1
1
1

Steps 1-3
t

.16s
18s
20s

%
11.0%
6.3%
4.6%

n
2
2
2

Steps 1-4
t | %

26s
28s
30s

17.9%
9.8%
6.9%

n
2
2
2

Step 5
t

145s
285s
437s

n
7
/
/

Primary machine Backup machine

Backup REPL mechanisms

Figure 4: Communication pattern for REPL

case workload due to the high communication fre-
quency.

The failure-free overhead measurements are given
in Table 3. Checkpoint intervals of 500 messages, 400
messages and 250 messages per checkpoint were stud-
ied. The checkpoint size varied from 10 Kb to about
100Kb. The failure-free overhead for the worst case
workload has a maximum value of 10.9%, which is ac-
ceptable in most REPL applications.

Table 3: Failure-free overhead for REPL

Execution
Type
Time(s)
% overhead

No logging/
checkpointing

3092
- -

Chk&Logging
500

3387
9.5%

4UU | 250
3398
9.8%

3432
10.9%

Recovery time data was collected for message densi-
ties of 6, 3, 2,1.5 and 1.25 standard bursts per minute
(see Figures 5 and 6). For each message density the
data was collected for failure rates corresponding to
failures at 20% of checkpoint interval, 40% of check-
point interval, 60% of checkpoint interval and 80% of
checkpoint interval. Fault injection was done at the
node marked S in the Figure. Figures 5 and 6 present
the plots corresponding to failures at 20% and 80% of
the checkpoint interval.

From the Figures, we observe that:
• steps 1 and 2 have a low recovery time compared

to that of step 5 for all the message densities;

therefore, steps 1 and 2 are very attractive for
various message densities;

• step 3 or step 4 of progressive retry could save a
lot of recovery time only if the message density is
low;

• the later a failure occurs in a checkpoint interval,
the lower is the percentage of the recovery time
compared with that of the step 5 retry. In other
words, if a failure occurs later in a checkpoint in-
terval of a system, progressive retry has a greater
impact in reducing the recovery time provided the
system successfully recovers at an early step.

5 Concluding Remarks
We have described a 5-step progressive retry tech-

nique using message logging as well as checkpointing
to limit the scope of rollback and thereby provide a
means for achieving localized and fast recovery. The
technique is designed for continuously-running soft-
ware systems which can absorb a certain degree of
performance overhead and significantly benefit from
reduced service unavailability. Our approach, which is
based on the piecewise deterministic execution model,
employs message replay to reconstruct state during
recovery, message comparison to verify whether the
above assumption is true, and message reordering to
introduce environment diversity. Progressive retry has
been implemented as part of a Software Fault Tol-
erance Platform developed at AT&T Bell Laborato-
ries to provide automatic, economical, effective and
efficient software failure recovery. Experiments con-
ducted using this implementation of progressive retry
have shown that the technique can significantly reduce
failure recovery time while incurring only small per-
formance overhead. Experience has also shown that
incorporating progressive retry is easy as it requires
adding only a few lines of code to a program.

Acknowledgements
The authors wish to express their sincere thanks to

Chia-Mei Chen for her contribution to the implemen-
tation.

References
[1] J. Gray and A. Reuter, Transaction Processing:

Concepts and Techniques. San Mateo, CA: Mor-
gan Kaufmann Publishers, 1993.

46

CD

in
o.
CD
55
"5
CD
O>
CO

CO
at
03
<O

CD

O
O
CD<r

6 bursts per minute -»
3 bursts per minute -+
2 bursts per minute -a

1.5 bursts per minute ••*
1.25 bursts per minute -̂

1.2 f 1,2.3

Progressive retry steps executed

1,2.3,4

Figure 5: REPL : Time taken for retry (as a percentage of large-scope rollback recovery time) vs. the retry steps
executed: failure at 80% checkpoint interval

<o

a.CD
55
"o
CD
O)
CO32
CO

<n
ca
CD

CD

O
O
CDcc

6 bursts per minute -e
3 bursts per minute -*
2 bursts per minute -a--

1.5 bursts per minute -x—
1.25 bursts per minute

1.2 1,2,3

Progressive retry steps executed

1.2,3,4

Figure 6: REPL : Time taken for retry (as a percentage of large-scope rollback recovery time) vs. the retry steps
executed: failure at 20% checkpoint interval. .

47

[2] J. Gray, "A census of tandem system availability
between 1985 and 1990," IEEE Trans. Reliab.,
Vol. 39, No. 4, pp. 409-418, Oct. 1990.

[3] M. Sullivan and R. Chillarege, "Software defects
and.their impact on system availability - A study
of field failures in operating systems," in PTOC.
IEEE Fault-Tolerant Computing Symp., pp. 2-9,
1991.

[4] D. Jewett, "Integrity S2: A fault-tolerant UNIX
platform," in Proc. IEEE Fault-Tolerant Comput-
ing Symp., pp. 512-519, 1991.

[5] J. Gray and D. P. Siewiorek, "High-availability
computer systems," IEEE Comput. Mag., pp. 39-
48, Sept. .1991.

[6j J. Gray, "Dependable systems." Keynote Speech,
llth Symp. on Reliable Distr. Syst., Oct. 1992.

(7J F. Cristian, "Exception handling and software
fault tolerance," IEEE Trans. Comput, Vol. C-
31, No. 6, pp. 531-540, June 1982.

[8] E. Adams, "Optimizing preventive service of soft-
ware products," IBM J. R&D, No. 1, pp. 2-14,
Jan. 1984.

[9] I. Lee and R. K..Iyer, "Faults, symptoms, and
software fault tolerance in the tandem guardian90
operating system," in Proc. IEEE Fault-Tolerant
Computing Symp., 1993.

[10] Y. Huang and C. Kintala, "Software implemented
fault tolerance: Technologies and experience,"
in Proc. IEEE Fault-Tolerant Computing Symp.,
pp. 2-9, June 1993.

[11] R. E. Strom and S. Yemini, "Optimistic recov-
ery in distributed systems," ACM Trans. Com-
put. Syst, Vol. 3, No. 3, pp. 204-226, Aug. 1985.

[12] Y. M. Wang, Y. Huang, and W. K. Fucas, "Pro-
gressive retry for software error recovery in dis^
tributed systems," in Proc. IEEE Fault-Tolerant
Computing Symp., pp. 138-144, June 1993.

[13] K. M. Chandy and L. Lamport, "Distributed
snapshots: Determining global states of dis-
tributed systems," ACM Trans. Comput Syst,
Vol. 3, No. 1, pp. 63-75, Feb. 1985.

[14] Y. M. Wang and W. K. Fuchs, "Lazy checkpoint
coordination for bounding rollback propagation,"
in Proc. IEEE Symp. Reliable Distributed Syst,
pp. 78-85, Oct. 1993.

[15] D. Korn, Y. Huang, G. Fowler, and H. Rao, "A
user-level replicated file system," in Proc. Sum-
mer '93 USENIX, pp. 279-290, June 1993.

48

