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FOREWORD

This contractor report was prepared by the Boeing Commercial Airplane Group, Renton,

Washington, under contract NAS 1-20013. It covers work performed between May 15, 1993, and

February 28, 1995. The contract was sponsored by the National Aeronautics and Space

Administration, Langley Research Center (NASA-LaRC) as part of the Materials Development

Omnibus Contract (MDOC) program. The work was performed under Task Assignment No. 10.

Portions of this work, from May 15, 1993, to October 22, 1993, were performed under

Transcentury Composite Aircraft Primary Structure (TCAPS) Task 11.

Use of commercial products or names of manufacturers in this report does not constitute official

endorsement of such products or manufacturers, either expressed or implied, by The Boeing

Company or National Aeronautics and Space Administration.

Current program management for this task includes Ms. Heather Allen-Lilly, task leader, Mr. Dan

Hoffman, task integration leader, Mr. Peter Rimbos, principal investigator, and Mr. Don Grande,

program manager. Authors listed for this contractor report prepared portions of the document.

Prototype fixture concept development, design, and analysis were performed by Boeing.

Integrated Technologies, Inc. (Intec) of Bothell, Washington, modified the compression prototype

fixture, fabricated all test fixtures, and conducted all validation testing described herein. Thermal

chambers design, fabrication, and validation testing were performed by Intec. Several of the

conclusions and recommendations for future testing are based on Intec observations (refs. 1-4).

This is a multiple-year task that will continue under High-Speed Research (HSR) II, Contract

NAS 1-20220, Task 15, Materials Durability. Results for durability testing of composites are not

included in this report. This testing will be conducted and reported under Task 15.
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1.0 SUMMARY

This report documents the design, analysis, fabrication, and testing of equipment intended for use

in validating the long-term durability of materials for the High-Speed Civil Transport (HSCT)

project. This equipment includes thermally actuated compression (TAC) and tension (TAT)

fixtures, hydraulic-actuated reversible (HAR) load fixtures, and thermal chambers. The fixtures

were designed to facilitate simple and economical long-term thermal and mechanical aging testing

of coupon-sized polymeric composite specimens. Implementation of large numbers of these

fixtures in a single environmental chamber is intended to minimize the cost of expensive load
frames and environmental chambers.

The TAC and TAT fixture designs take advantage of the coefficient of thermal expansion (CTE)

mismatch of two metals (invar and stainless steel) to provide displacement-controlled load cycles

in phase with slow thermal cycles. A feasibility study was conducted to select a design for this

concept. From this study a prototype compression and tension fixture were designed, optimized

(with the aid of a Microsoft Excel TM spreadsheet program), fabricated, and validation tested. The

test results demonstrated that, for both fixtures, strains can be reliably and repeatably induced in

the test specimen sufficiently high to be practical for long-term fatigue testing. The prototype

f'Lxtures are shown in figures 1.0-1 and 1.0-2. An HAR fixture was designed to accommodate

tension or compression specimen testing. This fixture can mimic the performance of the thermally

actuated fixtures, but is also capable of faster cycle times and higher loads.

Thermally actuated fLxtures are recommended for fatigue cycling when long-term thermo-

mechanical fatigue (TMF) data are required on coupon-sized tension or compression specimens.

This method works best with relatively slow cycle times and works either in phase or out of phase

with a significant change in temperature. Analysis of the fixture is required for each different

material because the performance of the fixture will depend on the coupon size and ply

orientation, as well as the specimen length. For materials with especially high CTE (>12

microstrain/°F), significant modifications to the fixture or the specimen may be required.

Two chambers were fabricated for thermal cycling TAC and TAT fixtures from room temperature

to 300°F and 350°F. Each chamber contains 25 cells with modulm" doors for individual cell

access. A 100-cycle validation test of one chamber filled with 25 fixtures demonstrated that a

uniform temperature profile could be maintained throughout the cycle.

A third 25-cell chamber was constructed for the dual purpose of thermal cycling HAR fixtures, as

well as the TAC and TAT fixtures. Chamber validation involved a thermal cycle-hydraulic load

equivalence test, to verify that hydraulics can mimic the thermal loads, and a spectrum test th'_t

included load spikes.

Long-term durability testing plans for polymer matrix composite (PMC) specimens are included in

this report. Material types, prestrain and maximum strain conditions, and instrumentation are

outlined for a 1,000-thermal-cycle test using TAC and TAT fixtures in the 300°F and 350°F

chambers.



Figure 1.0-1. Thermal Compression Fixture Setup



Figure1.0-2. ThermalTensionFixtureSetup



2.0 INTRODUCTION

2.1 HSCT DURABILITY REQUIREMENTS

The HSCT program is currently looking at three families of materials for use in building the

airplane. These include aluminum, titanium, and PMCs. Any material that will be selected for use

must be able to survive a 60,000-hr life at elevated temperatures. (The adiabatic wall temperature

for a mach 2.4 cruise speed is 350°F). Figure 2.1-1 shows proposed vehicle envelope

requirements for the HSCT, including those concemed with the durability issue. Figure 2.1-2

shows the latest thermal profiles for a Mach 2.4 version of the airplane.

An extensive program to provide environmental durability test data and life-prediction

methodology has been established to ensure that any material (PMC or metal) is viable for the

HSCT. New aluminum and titanium alloys show potential for meeting the durability requirements

but have not yet _n fully tested. However, trade studies show that the airplane will pay a

weight penalty if these are the primary materials.

The use of PMCs as primary structure could greatly reduce aircraft weight, and HSCT program

objectives include developing composites that possess high-temperature and long-term durability

capabilities for up to two lifetimes_120,000 hr at temperature. Even more extensive testing will

be required to ensure the environmental durability of this material class.

Design Element

Mach number

Flight length, hr

En_.ne fuel type

Number of flights

Tune at cruise, hr

Range, nmi

Altitude, ft

Noise

Lifetime, hr

Temp limit, °F

Requirement

2.0 to 2.4

Conventional

30,000

60,000

5,000 to 6,500

60,000 to 70,000

FAR 36, Stage 3

72,000

<350 (400 dive)

Figure 2.1-1. Vehicle Design Requirements



Cruise conditions
• 60,000-ft altitude

• 4.4 o angle of attack
• Standard day

Model 1080-892

350

Coated surface properties
• Emittance = 0.8

• Absorptance = 0.2

Upper surface

320
330

300
345 320

310 350*
320*

370

Lower surface

310
330

345

* Assumes no exhaust impingement on tail.

350

310

_320

350* 320*

Figure 2.1-2. Study Vehicle Configuration and Thermal Profiles



2.2 PMC DURABILITY TEST REQUIREMENTS

The HSR program has adopted a 'building-block" approach to develop this material and to

determine its aging characteristics. The first part of this approach consists of selecting three to

four representative PMC materials for insertion into a long-term test program. This program

would be designed to validate predictive methodologies for material response, residual strength,

and life. Approximately 6,000 test coupons per material will be subjected to various tests

including open-hole compression, open-hole tension, compression after impact, unnotched

compression, unnotched tension, toughness, bearing, and microcracking tests under various load

and temperature conditions. Many of these tests must be conducted simultaneously, thereby

requiring a large number of test setups (18,000 to 24,000). Because time-at-temperature effects

are expected to be significant, much of the testing must be performed for long periods of time.

The cost of tying up expensive hydraulic load apparatus for 7+ years is prohibitive. This

equipment is better used for more complex loading such as spectrum fatigue where no alternatives

currently exist. To keep the cost of this program to an acceptable level, a series of low-cost test

fixtures must be developed that will thermomechanically load the specimens and be able to

maintain this capability for the duration of the test program.

The second phase of the building-block approach involves testing elements. One or two of the

candidate PMC materials will be selected based on their ability to perform in the HSCT

environment. The elements will consist of crippling specimens, padups, flanges, stiffeners, and a

host of other specimen types. The number of these will be on the order of 2,000 to 3,000

specimens per material, significantly less than in the first phase. With the experience and data

obtained from previous testing, low-cost test fixturing will be developed that will thermo-

mechanically load the elements in a similar fashion as before. A portion of both the phase 1 and 2

tests specimens will also be used to help develop and validate an accelerated test methodology in

order to quickly screen new materials introduced into the program. These accelerated tests will

be validated by ongoing real-time testing.

The third portion of the approach involves testing subcomponents and components manufactured

from the downselected PMC material (fig. 2.2-1). This testing will serve to validate the

manufacturing process, predictive aging methodology (scaled up to assess structural behavior),

and analysis methods developed in parallel efforts.

An approach for durability testing of composites at the coupon and element level was developed

under this task for the long-term testing of composites undergoing thermal cycling. It takes

advantage of the difference in CTEs of two dissimilar metals (steel and invar) to provide the

displacement-controlled compressive or tensile load cycles in phase with thermal cycles.
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• Material screening
• Failure mechanisms

• Material modeling

Maximum dimension < 1 ft
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• Analysis verification
• Scaling effects

/

• Design variables
• Process variables

• Manufacturing variables

ttj_

co _." _-
PP ._

• Combined loading
• Scaling effects

(assembled structure)

1 to2ft

"f- o.

• Overall validation

Figure 2.2-1. Structural Hardware Definitions



3.0 OBJECTIVES
.

The long-term objective of this task is to study composite durability for HSCT applications. The

short-term objectives of this task were to develop and fabricate low-cost single coupon test

fixtures and thermal cycling chambers and perform validation tests of these systems. Fixture

designs were to be based on the differential coefficient of thermal expansion (DiCTE) concept.

Low-cost modular hydraulic, pneumatic, or mechanical fLxtures were also to be designed and

fabricated to demonstrate equivalence to the DiCTE fixture test results. Testing, using design of

experiments, was to focus on determining the key variables and main interactions between time,

temperature, environment, and stress (or strain).

The technical approach included fixture concept definition and downselection, fixture design and

analysis, fixture fabrication, and validation testing. Thermal cycling chambers and data acquisition

systems were designed and fabricated to perform composite durability testing with thermal and

hydraulic fLxture s.

The specific tasks performed on this program include the following:

a. Develop fixturing concepts and accompanying test coupons.

b. Define design criteria and performance specifications.

c. Downselect and perform detailed design, analysis, and sensitivity studies on two prototype

fixture designs.

d. Manufacture a minimum of one TAT and one TAC prototype fixtures.

e. Design an HAR load fixture and manifold system.

f. Perform testing as required to ensure correct load levels and repeatability.
..

g. Fabricate 16 TAT, 16 TAC, and 4 HAR fixtures.

h. Design, manufacture, and test three thermal cycling chambers: Nos. 1 and 2 for cycling the

TAT and TAC fbxmres from room temperature to 300°F or 350°F, and No. 3 for the dual

purpose of cycling either the TAT, TAC, or HAlt fixtures from room temperature to 300°F or

350°F.

i. Plan for long-term thermal cycling tests of available HSCT candidate composite laminates.



THERMALLY ACTUATED FIXTURES

FIXTURE CONCEPTS

Fixture concept development began with brainstorming and a review session that yielded more

than 15 potential concepts. These concepts were sketched and described in sufficient detail for

further evaluation. The majority of these concepts are "strain controlled" in nature. Many of

these concepts represented variations on a theme to accommodate different specimen geometries.

Figure 4.1-1 lists these concepts.

Concept
1

4

7

8

9

10

11

12

13

14

15

Description

Inline driver compression
Inline driver tension

Heated driver compression

Cooled driver tension

Picture frame compression

Expanding ring uniform tension
Tube tension

Tube compression

Hoop tension

Off-angle tension tube

Off-angle compression tube

High-CTE polymer compression

High-CTE polymer tension
Unbalanced torsion tube

Nitinol driver tension

Figure 4.1-1. Concept List

Work also was performed on identifying failure modes for each fixturing concept and determining

general fixturing requirements and constraints (e.g., test fixture margin of safety, minimum

load/strain capability repeatability limits, 'allowable drift over time, temperature capability) and

downselection criteria (e.g., volume, projected cost, ease of adjustability, thermal mass).

An initial downselection (to six concepts) based on qualitative assessment of ability to provide

useful data and potential functional difficulties was performed. Following this activity,

preliminary sizing, capabilities, volumes, costs, and specimen types and potential output data were

developed for each of the promising concepts. Sketches and detailed descriptions (including key

features, potential driver and frame materials, advantages, and disadvantages) were produced.

Three typical examples are shown in figures 4.1-2, 4.1-3, and 4.1-4.
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General Description and Key Features:

This concept uses a high-CTE driver in series with the specimen. A low-CTE frame is connected

in parallel to this combination as shown in the figure above. The frame can be monolithic, as

shown, or consist of any number of low-CTE rods connected (bolted) to upper and lower base

plates. A center base plate (between the driver and specimen) that slides on the rods may be

added so that the specimen may be properly gripped.
Possible Materials:

Drivers: stainless steel, zinc, aluminum, Nitinol (with modified design), and others

Frame: invar, low-CTE metal-matrix composites (MMC), and others

Potential Advantages:

Simple; version with bolted base plates is inherently adjustable; tabbed specimens not required.
Disadvantages and Concerns:

Frame materials are relatively expensive; difficulty in achieving specimen edge fixities to test long

(>4 in) or thin (16 plies or less) specimens; expensive grips may be required to adequately
distribute load and provide end fixity.

Data and Specimen Types:

Useful for testing composite specimens that are less than 4 in long and greater than 16 plies thick

in cyclic unidirectional compression loading (in combination with inphase cyclic temperature);

exposure to moisture, fluids, gases, and partial vacuums or increased pressures is also possible.

Figure 4.1-2. Concept No. 1: Thermal Strain Compression (Simple)

10
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General Description and Key Features:

This Concept uses a high-CTE driver in parallel with two specimens. A low-CTE frame is

connected in parallel to this combination as shown in the figure. Driver and base plate may be

integrated or separate. A low-CTE filler plate may be used to connect a short specimen to a

longer driver to obtain sufficient strain values. Analysis pending.

Possible Materials:

Drivers: stainless steel, zinc, aluminum, Nitinol (with modified design), and others

Frame: not applicable

Potential Advantages:

Simple; potentially very efficient (low volume); no frame required.

Disadvantages and Concerns:

Difficulty achieving balance if specimen stiffnesses degrade at different rates; adjustability

unknown (dependent on exact connection of specimens to base plates); thick driver with high

thermal mass may be required; tabbed specimens or expensive "wedge" grips may be required to

adequately distribute load.

Data and Specimen Types:

Useful for testing composite specimens in unidirectional tension loading (in combination with

inphase cyclic temperature); exposure to moisture, fluids, gases, and partial vacuums or increased

pressures is also possible; no restrictions on length (some modification may be required for short

specimens).

Figure 4.1-3. Concept No. 2: Dual Specimen Tension

11



-. Low CTE material

/
Driver

0 0 0

o o o

/

Panel coupon

jb/c043

General Description and Key Features"

This concept uses a high-CTE driver/frame that surrounds the specimen (panel) on three sides to

produce biaxial tension loading on a composite panel. A low-CTE load adjustment plate may be

used in conjunction with the high-CTE driver/frame to increase the applied strain in one direction.

Varying the dimensions or material of this adjustment plate can change the relative magnitude of

the x and y direction loads. Bolted attachment is likely on all sides. Analysis pending.
Possible Materials:

Driver/frame: stainless steel, zinc, aluminum, and others

Adjustment plate: many options_invar to steel

Potential Advantages:

Simple way to get various biaxial data; frame materials are relatively inexpensive.

Disadvantages and Concerns:

Tabbed specimens may be required; uniform load distribution may be difficult to achieve; bolted

specimen connection could cause excessive creep in bearing.

Data and Specimen Types:

Useful for testing composite panels under biaxial tension loading (in combination with inphase

cyclic temperature); exposure to moisture, fluids, gases, and partial vacuums of increased

pressures is also possible; no restrictions on panel size.

Figure 4.1-4. Concept No. 5a: Picture Frame Tension

12



Two potentially suitable load application concepts were investigated. One used a DiCTE driver

and the other used a tubular shape memory alloy driver. Both of the concepts could theoretically

use stiff springs to create a "quasi-load-controlled" fixture. Load-controlled fixtures provide a

constant load to the specimen that is insensitive to specimen stiffness changes caused by

viscoelastic responses (creep/recovery) or mechanical damage. Actual redundant aircraft

structure (i.e., skins, spars, etc.) behave in a manner that falls between load controlled and strain

controlled. By using long, stiff springs that are relatively insensitive to small changes in

displacements caused by specimen creep and so forth, a normally strain-controlled design can be

converted to a quasi-load-controlled design. Using Belleville spring washers for this function

would allow tailoring of the spring length and spring constant; however, springs possessing the

required force and displacement characteristics have not been located.

The shape memory alloy concepts used 55 Nitinol alloy for the driver material. Nitinol (nickel

titanium Naval Ordinance Lab) is an alloy consisting of roughly equal parts of nickel and titanium.

One interesting characteristic of this formulation is that it may be "trained" (annealed and

prestressed) such that it undergoes a Martensitic phase transformation when raised above a

transition temperature (approximately 210°F). At this temperature the part attempts to return to

its "trained" shape. Materials that exhibit this behavior are known as "shape memory alloys."

A truly load-controlled fixture concept was developed using this alloy. The scheme used the

Nitinol to support a weight. Above the transition temperature, it shortens so that it no longer

provides support and allows the weight to load the specimen. Other concepts were quasi-load

controlled. The following paragraph contains a general description of how these concepts would

operate.

At the transition temperature, the driver material changes phase. At this time, the material strains

3% (i.e., gets 3% longer) and builds up some internal stresses. Because this is much greater than

the strain required to fail the specimen, most of this strain must be absorbed by something other

than the specimen. In this fixture concept, this function is accomplished by springs. In addition,

the springs serve another critical function_they recompress the Nitinol. After the temperature of

the Nitinol again drops below the transition temperature, it must be recompressed so that it may

repeat the cycle. This recompression strain must be 1.5% to 4.0% for the Nitinol to return to its

former phase. Hysteresis problems would be encountered if the strain exceeded 4%. This strain

range would require a great amount of load if the modulus of the material in this state were

identical to the initial elastic modulus of 4.5 msi. In this phase, however, the material has

deformed into the "pseudoplastic" range and its secant modulus at 2% strain is only 1.0 msi,

resulting in a much lower load required to recompress the driver. The pseudoplastic region on the

stress-strain curve is equivalent to the plastic region, except that the strain is recoverable by
means of the phase transformation (whereas plastic strain is generally considered nonrecoverable).

The sizing of the Nitinol driver requires keeping the cross-sectional area of the driver as small as

possible (to keep the recompression force reasonable), while avoiding a stability failure in the

driver itself. The driver is especially prone to this type of failure because it is operating in the

pseudoplastic region. If the initial heat treatment and recompression can be properly performed,

this transition has been shown to be repeatable for an indef'mite number of cycles. Many of the
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propertiesof the Nitinol show a strong dependence on the exact composition and heat-treat of the

alloy, including recompression stress. To determine the recompression stress of a Nitinol driver, a

prototype cylindrical Nitinol tube was obtained. Initial analysis of the tube indicated that the force

required to recompress the Nitinol was unacceptably high (32 ksi) for our sample. This results in

a combination of spring constant and deflection that is difficult to achieve with either helical

springs or Belleville spring washers.

Although acceptable helical springs were found, the wire diameter was an inch or more. This

resulted in greater fixture volumes and complexity than those for purely DiCTE-driven fixtures,

even though the Nitinol driver is very small. Based on these results, the modification of the

current fixture for use with the Nitinol driver has been postponed until a more viable concept

emerges.

Initial analysis and optimization of fixture design No. 1, the strain-controlled DiCTE-driven

concept illustrated in figure 4.1-2, indicated that this design was potentially viable and would be

included as one of the downselected designs. Using a previous Boeing fixture design along with

available hardware and materials, a prototype of this fixture was inexpensively constructed. It

consisted of a stainless-steel driver of 1.5-in diameter, two threaded invar flame rods (0.5-in

diameter), steel endplates and midplates, and simple 0.5-in grip blocks.

This prototype was used to verify analytical results and can act as a testbed to assess the viability

of conventional and innovative driver materials. A computerized analysis tool was designed and

adapted to perform preliminary sizing of all selected concepts and was expanded to include

limited analysis for material cost and thermal mass. Following this analysis, a summary of

capabilities, volumes, rough material costs, thermal mass, and specimen types and potential output

data was developed for each remaining design.

Using a numerical optimization feature of the Excel spreadsheet, optimized fixture designs for a

single-specimen, strain-controlled compression fixture (fig. 4.1-2) were generated for (1)

minimum fixture volume, (2) minimum fixture material cost, (3) minimum thermal mass, and (4)

maximum strain. Results are shown in figures 4.1-5, 4.1-6, 4.1-7, and 4.1-8. One interesting

result is that the optimized fixtures for volume, thermal mass, and material cost are all very

similar, and the primary difference between these designs and the current prototype is the driver

diameter (1.5 in for the prototype versus approximately 0.5 in for the optimized designs).

Another interesting result is that a fixture can be produced that would provide over 9,500

microstrain within a 500-in 3 volume and 24-in length constraint. The material cost of this fixture,

however, is over 10 times the current prototype. The analysis tool is described further in the

following section.
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PERFORMANCE

SUMMARY INFORMATION

CURRENT FIXTURE - #I

GEOMETRY STRESS I MARGINS

FIXTURE MATL COST= 41.50

FIXTURE VOLUME= 141.90

SPECIMEN STRAIN= 2521

FIXTURE MASS= 9.18

FIX DIFFUSlVITY/VOL. 0.09

ADJUSTABILITY EASY

DRIFT ?

FIXTURE HEIGHT= 15

DRIVER HEIGHT= i!i_ii_iiii!_i

SPECIMEN LENGTH=
ENDPLATE THKNS=

MIDPLATE THKNS=

DRIVER DIAMETER= ii !i!i
FRAME ROD DIAl= ii!!i{iiiii_!_iii!iii !

SPECIMEN THICKNESS=@ iiiii_i:_ il il
SPECIMEN WIDTH= iilj!!!ii!i_!_ii{iiiiiiii

BASEPLATE LENGTH=: ................3:...............I
BASEPLATE WIDTH= 2.5 I

LOAD=- 1920.24

DRIVER BUCKLING= 97.52

SPECIMEN BUCKLING= 3.98

DRIVER YIELD (cys)=- 20.47

FRAME YIELD (tys)=- 1.64

FRAME FATIGUE= 2.17

DRIVER FATIGUE= 32.46

TEM PERATURE DATA MATERIAL PROPERTIES

Tmin= iiiiiiiiiiii{ii_i!@iiiiiii[

iii!!ii.ii   iiiiii@i
Delta T= 275

MODULUS (msO CTE(x !0,6J MATL
DRIVER i!!_B_!! STEEL
FRAME ii_ il i_i!_ _.iipi: INVAR

SPECIMEN iiii_i_!{ i!i i_i_! PMC
ENDPLATES ii!!iii_ ili ii iiiiiii_i_!ii:i :: STEEL

1. CTE OF ENDPLATES AND MIDPLATE WERE NOT INCLUDED IN INDUCEDSTRAIN
CAN ESTIMATE EFFECTS OF PRESENT FIXTURE BYADDING END + MIDPLATE THICKNESSES TO DRIVER LENGTH

2. EFFECTWE WIDTH FOR BEAM BENDING OF ENDPLATES ASSUMED TO BE 0.5 INCHES

3. ESTIMATED VOLUME ASSUMES: (I) 0.5 IN. BETWEEN DRIVER, RODS, SPECIMENS AND PLATE EDGES
(2) .06 ADDED FOR FRAME THREADS, (3) MIDPLATE THICKNESS--0.5

4. CONSTRAINTS: VOLUME<500 IN.^3, LENGTH<24 IN., STRAIN>2500, MARGINS OF SAFETY>O.

Figure 4.1-5. Summary Information for Current Fixture No. 1
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SUMMARY INFORMATION

VOLUME OPTIMIZED FIXTURE - # I

PERFORMANCE H oEo.o.,II STRESS I MARGINS

FIXTURE MATL COST= 17.56

FIXTURE VOLUME= 51.39

SPECIMEN STRAIN= 2500

FIXTURE MASS= 2.83

FIX DIFFUSlVITY/VOL. 0.03

ADJUSTABILITY EASY

DRIFT ?

FIXTURE HEIGHT= 12.91

DRIVER HEIGHT= ii_i_iiiiiiii_!ililiilil

SPECIMEN LENGTH= !iiiiii!i!_ii !iii

ENDPLATE THKNS= iliiiiiiii_ii!iiii!ii

MIDPLATE THKNS= iiiiiiiii_!_ iiii!

DRIVER DIAMETER= iil

FRAME ROD DI/L= i i: ? _iiii i!iii
SPECIMEN THICKNESS=I iii'i!ii!_i_9 _i!i!ii::

SPECIMEN WIDTH= .ii.i.!i!ii_!i.i.i...i:

BASEPLATE LENGTH= 1,91

BASEPLATE WIDTH= 1,50

LOAD=- 1904.00

DRIVER BUCKLING= 0.00

SPECIMEN BUCKLING= 4.02

DRIVER YIELD (cys)= 0.76

FRAME YIELD (tys)= 1.42

FRAME FATIGUE= 1.91

DRIVER FATIGUE= 1.74

I,, TEMPERATURE DATA i MATERIAL PROPERTIES II

I MOD.U.L.U.S.(msO CTE(x 1...0:6..1MATL I

Tmin= iiiiiiiiiiiiiii_!i}ii ii!} DRIVER ii_i !}!iiii_i iiii STEEL

Tmax= iiiiiiiiiii!_5_i iii .IFRAME i}i_il INVAR

Delta T= .............27S................... lSPEClMEN iiiii_!_iiii i i:i!i_ i ili! PMC
IENDPLATES ii i}!!_i!il iii_,,,,ii}ii_iiiiii}ii} STEEL

1. CTE OF ENDPLATES AND MIDPLATE WERE NOT INCLUDED IN INDUCED STRAIN
CAN ESTIMATE EFFECTS OF PRESENTFIXTURE BY ADDING END + MIDPLATE THICKNESSES TO DRIVER LENGTH

2. EFFECTIVE WIDTH FOR BEAM BENDINGOF ENDPLATES ASSUMED TO BE0.5 INCHES

3. ESTIMATED VOLUME ASSUMES: (1) 0.5 IN. BETWEEN DRIVER, RODS, SPECIMENS AND PLATE EDGES
(2) .06 ADDED FOR FRAME THREADS, (3) MIDPLATE THICKNESS--0.5

4. CONSTRAINTS: VOLUME<500 IN.^3,LENGTH<24 IN., STRAIN>2500, MARGINSOF SAFETY>0.

Figure 4.1-6. Volume-Optimized Fixture No. 1
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SUMMARY INFORMATION

THERMALLY-OPTIMIZED FIXTURE - # I

PERFORMANCE II GEOMETRY II STRESS I MARGINS Jl

FIXTURE MATL COST: 13.12

FIXTURE VOLUME= 64.58

SPECIMEN STRAIN= 2500

FIXTURE MASS= 2.54

FIX DIFFUSIVITY/VOL. 0.03

ADJUSTABILITY EASY

3RIFT ?

FIXTURE HEIGHT= 18.15

DRIVER HEIGHT= i iiiiiii_!llSi_iii_!i

SPECIMEN LENGTH= i iiiiili_i i!!!

ENDPLATE THKNS= ii!iiiii!i_iiiiii

M,DPLATET,-,KNS=.ili.. i  !iiiiiii

DRIVER DIAMETER=

FRAME ROD DIA.= iiii!iiii_i_7 iiiiiii

SPECIMEN THICKNESS= iiiliiii_!!_9 }}}iii

SPECIMEN WIDTH= i!!i.j!!:!!i_i_................
BASEPLATE LENGTH= 1.87

BASEPLATE WIDTH= 1.54

LOAD=- 1904.00

DRIVER BUCKLING= 0.00

SPECIMEN BUCKLING= 4.02

DRIVER YIELD (cys)= 1.79

FRAME YIELD (tys)= 0.00

FRAME FATIGUE= 0.20

DRIVER FATIGUE= 3.35

TEM PERATURE DATA MATERIAL PROPERTIES

I MODULUS(ms_ CTE(x 10_6J MATL I

DRIVER ;ii_!i :_:!_ii_!iiii_i STEEL

IFRAME i_!_ii INVAR
ISPECIMEN iiiii_!_ i i!iii_i_iiiii PMC
IENDPLATES ii!iiii_iiiiii .ii!iliiiiii_i!!ii!i!i!iil STEEL

Tmin= !i i iiiiiiii_!!:!:'i ii i

Tmax= i i.l.ii.i.i_:: ii
Delta T= 275

1. CTE OF ENDPLATES AND MIDPLATEWERE NOT INCLUDED IN INDUCED STRAIN
CAN ESTIMATE EFFECTSOF PRESENT FIXTURE BY ADDING END + MIDPLATE THICKNESSES TO DRWER LENGTH

2. EFFECTIVE WIDTH FOR BEAM SENDING OF ENDPLATES ASSUMED TO BE0.5 INCHES

3. ESTIMATED VOLUME ASSUMES:(1) 0.5 IN. BETWEEN DRIVER, RODS, SPECIMENS AND PLATE EDGES
(2) .06ADDED FOR FRAME THREADS,(3) MIDPLATE THICKNESS-"0.5

4. CONSTRAINTS: VOLUME<500 IN.^3, LENGTH<24 IN., STRAIN>2500, MARGINSOF SAFETY>O.

Figure 4.1-7. Thermally Optimized Fixture No. 1
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SUMMARY INFORMATION

MAXIMUM STRAIN OPTIMIZED FIXTURE - # I

PERFORMANCE li O il STRESS I MARGINS

FIXTURE MATL COST= 514.10

FIXTURE VOLUME= 500.00

SPECIMEN STRAIN= 9560

FIXTU RE MASS= 70.50

FiX DIFFUSlVITY/VOL. 0.95

ADJ USTABILITY EASY

DRIFT ?

FIXTURE HEIGHT= 24,00 J

DRIVER HEIGHT= i!

SPECIMEN LENGTH= i!!iiiiiiiii_! i !
ENDPLATE THKNS= ! iii_i!_

DRIVER DIAMETER= iiiiiiiiiiii_!_; _

FRAME ROD DIA.= iiiii__ :!
SPECIMEN THICKNESS=ii_ii!!i_!_ _. _

SPECIMEN WIDTH= !i!i.!iiii.i_i_:; ii.:._
BASEPLATE LENGTH= 4.39

BASEPLATE WIDTH= 2.74

LOAD=- 7281.16

DRIVER BUC KLING= 9.05

SPECIMEN BUCKLING= 0.31

DRIVER YIELD (cys)= 5.40

FRAME YIELD (tys)=- 9.87
FRAME FATIGUE= 12.05

DRIVER FATIGUE= 8.98

TEMPERATURE DATA MATERIAL PROPERTIES

Tmin= iiiiiiiiiiiiiii_iiii:iiiiiiiiiii!

Tmx= i.iiiii.liiii_:iiiii!ii!i
Delta T= 275

MOD.U.L..U.S.(ms_ C_.(x .!..0_..j MATL
DRIVER i_!_ ii!iiiiiii_i_iii i STEEL
FRAME i:_!_0!_0_: iiiiiiiiiiii_i_iiii iilii INVAR

SPECIMEN ii_!_01 _iii iiii_i_ili i iiii PMC

ENDPLATES iii_Sii!iiii iiiiiiiiii!8_iliiii STEEL

1. CTE OF ENDPLATES AND MIDPLATE WERE NOT INCLUDED IN INDUCED STRAIN
CAN ESTIMATE EFFECTS OF PRESENT FIXTURE BY ADDING END + MIDPLATE THICKNESSES TO DRIVER LENGTH

2. EFFECTIVE WIDTH FOR BEAM BENDING OF ENDPLATES ASSUMED TO BE0.5 INCHES

3. ESTIMATED VOLUME ASSUMES: (1)0.5 IN. BETWEEN DRIVER, RODS, SPECIMENS AND PLATE EDGES
(2) ,06 ADDED FOR FRAME THREADS, (3) MIDPLATE THICKNESS--0.5

4. CONSTRAINTS:VOLUME<500 IN.^3, LENGTH<24 IN., STRAIN>2500, MARGINSOF SAFETY>0.

Figure 4.1-8. Maximum-Strain-Optimized Fixture No. 1
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4.2 FIXTURE ANALYSIS

The fixture actuation concept is quite simple: because the stainless-steel driver has a much higher

CTE than the invar reaction rods (9.0 microstrain/°F versus 1.1 microstrain/°F), as temperature

increases, the driver expands and exerts a compressive force on the specimen, which is reacted by

the relatively constant-length invar reaction rods. An estimate of the applied strain produced by

the fixture as shown in figure 4.1-2 can be obtained by writing an equation for the change in

length of each component (driver, reaction rods, and specimen) due to thermal expansion and

relative stiffness. Beginning with the relations shown in equations 1, 2 and 3 below, an equation

for the strain applied to the specimen, equation 4, can be derived (for simplicity, the reaction rods

are treated as one rod with twice the cross-sectional area of an individual rod). The subscripts
denote D - driver, R - reaction, and S - specimen.

PS = PD - -PR (1)

where P- load

ALr = ALs + AL. (2)

where AL- total change in length

Ps
t_S - AsEs (3)

AT(CsLs-CRLR+C DLD)

qERAR] "qEDAD]/

where:

AT - temperature change

C - coefficient of thermal expansion

L = original length

A = cross-sectional area

E = modulus

(4)

Note from equation 4 that the predicted specimen strain is dominated by the CTEs in the

numerator, and by the ratio of specimen stiffness to the stiffness of the other components in the

denominator. It is also important to note that the predictions based on this equation will be high_'r

than the actual values, as no provision for flexing of the load platens is included. This feature is,

however, included in the analysis spreadsheet developed for this task.

The expected specimen buckling strain shown can be estimated using Euler's equation:
7z2E

O critical =
(L'/k) 2
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where:
Ocritical- critical stress

L' = length/2 (correct for clamped end fixity)

k = (I/A) 1/2 (I = moment of inertia)

A program for analysis and optimization of DiCTE fixture designs was created for a variation of

fixture design No. 1 (compression). Because the basic principle for obtaining strain in the

specimen is similar in all strain-controlled fixtures, only minor modifications were required to

apply this analysis tool to other DiCTE fixture designs. The program is written using an Excel

spreadsheet and analyzes induced strain in the specimen (for any given temperature difference)

and all pertinent failure modes of the fixture and specimen. For the compression fixture

mentioned above, these failure modes, along with a brief description of the analysis method and

the preliminary safety factor used for analysis, are listed in figure 4.2-1.

Failure Mode

Compression strength failure of

specimen

Compression buckling of specimen

Compression buckling of driver

Compression yield of driver

Tensile yield of flame

Tensile ultimate of flame

Frame fatigue

Analysis Method
Maximum strain

• Wide column buckling

• Plate buckling
Euler or Johnson-Euler

Stress

Stress

Stress

Endurance limit

Safety Factor
1.2

10% under

limit

Figure 4.2-1. Safety Factors Used in Design

Note that this spreadsheet incorporated ref'mements of the aforementioned basic equations such as

inclusion of endplate bending effects and corrections due to Poisson ratio effects in specimen

buckling. Using one of two numerical optimization routines, the analyst is able to determine the

lengths and cross-sectional areas required (for the driver and flame), which lead to the minimal

fixture volume. This will quickly perform tasks such as determination of most efficient

combinations of materials for the driver and flame and determination of the sensitivity of induced

strain or fixture volume to the effects of variables such as flame modulus, specimen end fixity, or
driver cross-sectional area.

Constraints used in the optimization analysis include (1) the minimum strain value required for a

typical quasi-isotropic layup of an intermediate modulus specimen must be greater than 3,000

microstrain for cycling from room temperature to 250°F and (2) margins of safety (including

appropriate safety factors) must be greater than zero. Material cost data were collected so that

some capability could be developed for optimization based on material cost. Assuming similar

amounts of machining and assembly requirements (within a given fixture type), this should give a

rough estimate of relative cost of fixtures using differing material combinations.
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4.3 FIXTURE DESIGNS

4.3.1 Compression Fixture Design

The downselected TAC fixture configuration is shown in figure 4.3.1-1. The fixture was initially

configured as shown on the left, but after 61 cycles, a thermocouple failure coupled with fixture

alignment problems and a miswired oven overtemp shutoff led to specimen failure. Subsequent

analysis showed the configuration on the fight was superior in providing even, symmetric loading

to the specimen. The TAC fixture was modified to this configuration for the remainder of the

testing. Figure 4.3.1-2 shows detail design parameters.

Initial Modified

I Fixed Platen
I

, +

S,II "
"+

1 Fixed Platen

X = Positioning
I

t/" /7 1/2-20Nuts

rti rf
! 1.0

,, I--

/
/
/
/
/
/
/ INVAR Threaded

7' 7 Reacdon Rods
/
/

X Chamber Temp

/ Stainless Steel Driver
//
,/
/
/
/
/
/
/
/
/
/
/

/t C [ _ Stainless Loading
_'_ Platens

1.5" High Specimen

_" Clamp Blocks

i

3.2" x .5" Specimen

Figure 4.3.1-1. Initial and Modified Compression Fixture Schematic
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Reaction (invar)

Length (in)=

Area 2 rods (in^2) =

Modulus (psi) =

CTE (in/in)=

1 rod dia (in)=

16.7

0.341

20.5E+6

1.40E-06

0.466

Driver (316 SS)

Length (in) = 13.5

Area (in^2) = 1.767

Modulus (psi) = 28.0E+6

CTE (in/in) = 8.90E-06

Diameter (in) = 1.500

Specimen

Length (in)= 3.2

Area (in^2) = 0.093

Modulus (psi) = 8.5E+6

CTE (in/in) = 1.10E-06

Thickness (in) = 0.185

Width (in)= 0.500

Figure 4.3.1-2. Compression Fixture and Specimen Analysis Parameters

Compression Fixture Strain Predictions

Based on the values shown in figure 4.3.1-2, a conservative estimate of the expected thermally

induced strain for the prototype TAC fixture is shown by the solid line in figure 4.3.2-1. These

values do not reflect endplate bending. (Boeing analyzed for endplate bending and predicted
values within 1% of those observed during test.) A sensitivity study was conducted to determine

the effect of specimen stiffness. The dashed line predicts strains for a specimen with 10% higher

stiffness. The predicted strains do not vary significantly from the baseline. Also note that the

predicted maximum strains are well below the buckling strain.

Strain

8OOO

6OOO

4OOO

2OOO

As Tes

Bucklin_

Ied (280°AT_

D

m

D

| I i t

0 100

| w | • • | e •

Strain

/
To

I I I I I

300 41
Temperature Change (°F)

200

w • w_r w•- • • • •

...J.'.! _

I

t i | I | I | t

)(3 500

w

4=

I

600

Figure 4.3.2-1. Predicted Compression Strain Versus Temperature Change
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4.3.3 Tension Fixture Design

The TAT fixture design parameters included the desired specimen dimensions and material,

thermal cycle maximum and minimum, and the desired applied strain. Figure 4.3.3-1 outlines

these properties.

Spec Length Spec Width

(in) (in)

10.0 1.0

# Plies Min. Temp.

(quasi) (°F)

8 7O

Max. Temp.

(°F)

350

Target Strain

(_)

4,000

Figure 4.3.3-1. Tension Fixture and Specimen Design Parameters

Load was to be applied in phase with a thermal cycle by using two materials with dissimilar CTEs.

Stainless steel 304 and invar steel, with CTEs of 9.75 microstrain/°F versus 1.1 microstrain/°F,

respectively, were chosen as the fixturing materials. Actuation is simple: a specimen placed in

parallel with the two fixture materials could be forced to stretch an amount equal to the difference

in expansion of the two steels, minus any expansion of the specimen (the CTE of which is

comparable to invar) and any mechanical strain of the fixture components. Design of the fixture

therefore took into account each component's CTE and stiffness.

The final design parameter, beyond the size and shape of the fixture, is the heat transfer of each

component. The thermal cycle time necessary for the fixture to reach equilibrium is dependent on

each component's ability to heat and cool rapidly. Optimization of the surface and cross-sectional

areas of each component is therefore important in order to minimize necessary cycle times.

Consideration of the above issues, as well as size and ease of alignment of the specimen in the

fixture, led to the configuration shown in figure 4.3.3-2. The stainless-steel tube was chosen

because of its large surface area, which maximizes heat transfer and its inherent alignment and

stability advantages. Optimization of the various parameters was accomplished using the

Microsoft Excel Solver program. Specimen strain was calculated with the same program.
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. .

X
Thermocouple location X chamber air

_ Stainless X tube

End Cap

Stainless driver tube (0.12" wall thickness)

I I _ _ intec Grips v

Tube end is threaded CUTAWAY VIEW

Tension Adjust
Nut

Stainless End Cap

Tube end is threaded

Figure 4.3.3-2. Tensile Fixture Schematic

• .Figure 4.3.3-3 shows detail design and analysis parameters, along with the predicted specimen

strain at the maximum test temperature.

Tube Parameters

Length (in) = 17.0

Outside Dia (in)= 3.50

Wall Thkns (in)= 0.12

Area (inA2)= 0.850

Modulus (Msi)= 28.00

CTE (pin/in/°F) - 9.75
Temp. Variation

Delta T (°F)= 280

Invar Parameters

Length (in)= 9.0

Diameter (in) = 0.63

Area (inA2)ffi 0.307

Modulus (Msi)= 20.50

CTE (lain/in/°F) ffi 1.10

SPECIMEN CONDITIONS

Strain (pin/in)= 4626

Load (lbs)- 1839

Specimen Parameters

Length (in)= 8.0

Thickness (in) - 0.047

Width (in)= 1.000

Area (inA2)= 0.0448

Modulus (Msi)- 8.50

CTE (pin/in/°F)= 1.20

Figure 4.3.3-3. Tension Fixture and Specimen Analysis Parameters

4.3.4 Tension Fixttwe Strain Predictions

Using the values of figure 4.3.3-3 for the variables shown, a curve of expected applied strain

versus change in temperature can be drawn, as shown in figure 4.3.4-1. For the tension case, an

increase in specimen stiffness of 10% provided a change in applied strain of only about 1%,

because of the much higher stiffness of the invar and stainless-steel tube. It is important to note

that the simple expression given in section 4.2 does not include terms for flexure or thermal ,,

expansion of the end caps. For this reason, the spreadsheet was modified to include endplate

bending and thermal expansion. The tool then predicted strains within 0.6% of those recorded in
test.
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Figure 4.3.4-1. Predicted Tensile Strain Versus Temperature Change

4.4 FIXTURE VALIDATION TESTING

4.4.1 Compression Fixture

4.4.1.1 Test Specimens and Instrumentation

Four 0.5- by 4- by 0.1792-in (32-ply) intermediate modulus bismaleimide (BMI) specimens were

machined by Intec from a Boeing-furnished laminate. (The BMI laminate cure cycle is contained

in appendix A.) Two of these specimens were strain-gaged as shown in figure 4.4.1-1, and the

remaining two were held as spares. The specimen geometry was chosen to match the end-loaded

compression specimen defined in the SACMA SRM1-88 specification (similar to the ASTM D695

geometry without tabs).

Strain gages were Measurements Group model WK-00-125BB-350, a single-axis, 350£2 gage

with a 0.125-in gage length. The WK-00 series gages are self-temperature-compensating to

correct for thermal drift and are matched to the approximate CTE of graphite-reinforced PMCs.

The gages were applied with M-Bond 610, a high-temperature strain gage adhesive, cured for 1
hr in 3 50 OF dry heat.

Temperature compensation error for these gages is rated at less than +40 microstrain and -145

microstrain (ref. 5) and was further reduced as described below. The second strain-gaged

specimen, termed the "control specimen," was suspended in the thermal environment, and one

gage was monitored to track thermally induced axial strains. The loaded specimen strains could

then be corrected for thermal expansion of the specimen and strain gage thermal responses by

subtracting the control strain from the loaded specimen strains. These corrected strains were
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termed"inducedstrains."
values.

In this way, strain errorswere controlledto well below the rated

_Sym

CL Sym

L2 back-to-back axial gag lT
3.150 _1

Figure 4.4.1-1. Strain Gage Schematic
\

Calibrated type K thermocouples were used to monitor the temperature of the system, one each

on the specimen, the driver, reaction rod, and in the chamber air near the specimen. Two

additional thermocouples were used to supply control and overtemperature feedback to Watlow

model 942 and 985 PID (proportional integral derivative) controllers, respectively. These sensors

were located with the chamber-monitoring thermocouple, so feedback control was supplied by the

chamber air temperature.

The thermocouples that monitored surface temperature were adhered with high-temperature

fiberglass tape, which kept the thermocouples in contact with the surface throughout the test.

The outer portions of the sensors were insulated to minimize the influence of air temperature.

Data from the strain gages and thermocouples were acquired using OnGuard 1.0, a Microsoft

Windows-based data acquisition system produced by Intec. Strain and temperature data were

collected at 5-min intervals throughout the duration of the test. Data from the two process

feedback thermocouples discussed above were not recorded.

4.4.1.2 Test Procedure

The specimen was mounted in the fixture by placing it between the 0.5-in clamping blocks on the

lower platen (fig. 4.3.1-1), verifying vertical placement with a precision square, and securing the

blocks with 0.25-in bolts. The specimen was then clamped in the upper platen, using steel

alignment plates to ensure alignment with the lower platen. The platen assembly was then placed

in the fixture and tightened into place with the 0.5-in nuts. Symmetric front-to-back loading was

assessed by activating the data acquisition system and evenly tightening the nuts. When the initial

configuration was used, it was found that tightening the nuts caused significant torsion of the two

reaction rods, which contributed to uneven front-to-back loading of the specimen by up to 30% at

maximum temperature. In contrast, the modified configuration gave front-to-back agreement

within 6% throughout the thermal cycle.
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Oncealignmentwasoptimized(thiswasfront-to-backagreementwithin 15%at 3,000microstrain
in the initial configurationandwithin 2% at 3,000microstrainfor themodifiedversion),a preload
of about 300 microstrainwasapplied,the straingagesand timer were initialized, and thermal
cyclingwasstarted.

Thethermalchamberusedwasa BemcomodelFTU-3.2-100/600,equippedwith theprocessand
overtemperaturecontrollerslisted above. The control unit was programmed to automatically

maintain the appropriate ramp and soak times using electric elements for heating and liquid

nitrogen injection for cooling. The overtemperature controller sensitivity was 20°F over the
target temperature.

4.4.1.3 Thermal/Mechanical Testing

The thermal cycle profile used for testing is shown in figure 4.4.1-2.
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Figure 4.4.1-2. Thermal Cycle Profile

This thermal cycle contains a 3-hr soak time at 350°F, which is near the upper limit of an actual

HSCT ground-air-ground cycle. Time was required to reach maximum strain because of the

substantial thermal mass in the driver. One complete cycle is of 4.75-hr duration. For accelerated

testing, thermal optimization of the fixture is possible, which would significantly reduce the time

at temperature necessary to achieve maximum strain.
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It is interestingto notethatdesignof therelatiyeheattransfercapabilitiesof thereactionrodsand
driver is theoreticallypossible,which would drive swain spikes at theend of each high-
temperaturehold. For example;if amaterialwith a higherCTE thaninvar,but still lessthanthe
driver,wereusedfor thereactionrodsandtheheattransferof thedriver wassignificantlyhigher
thanthereactionrods, thesuddentemperaturechangeat theendof the 350°Fholdperiodwould
causethereactionrodsto cool(andshrink)muchfasterthanthedriver. ThisWouldtherebyspike
thecompressiveswainuntil the driver cooledenoughto negatethe spike. An examplecurve is
shownin figure 4.4.1-3.
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Figure 4.4.1-3. Theoretical Strain Spike

As mentioned previously, the first 100-cycle test performed with the initial configuration shown in

figure 4.3.1-1 ended prematurely at cycle 61 when an overtemperature condition and specimen

misalignment caused specimen failure. The overtemperature condition was caused by the gradual

abrasion of the insulation surrounding the controlling thermocouple by a sharp metal burr in the

chamber wall. When the thermocouple wires were eventually exposed and shorted across the

burr, a low-temperature feedback signal was sent to the controller. The heating elements were

thereby activated, but the low feedback signal was unaffected. In this way, the temperature was

driven to 445°F and the asymmetric loading of the specimen due to the fixture torsion discussed

above promoted severe buckling and eventual failure. Normally, the overtemperature protection

controller would have shut down the system at 370°F, but it was inactive because of a

programming error. The specimen strain and temperature data for cycle 61 are shown in figure
4.4.1-4.

It can be seen in figure 4.3.2-1 that the analytical buckling strain of the specimen, assuming fixed

end supports, is about 8,500 microstrain, which is applied at about 450°F. Although this is very

near the point of dramatic buckling shown in figure 4.4.1-4, where the bag side strain inverted and

became less compressive (at about 430°F) and the tool side became dramatically more
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compressive,bucklingonsetappearsto beginatapproximately350°F.This trendwasalsoseenin
all cyclesprior to cycle61. The onsetof bucklingso far below the predictedbuckling load
(assumingfLxedsupports)demonstratesthe less-than-clampedendfixity condition providedby
theend-loadgrips,aswell asoff-axisloadsduetofixture misalignment.
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After the specimen failed, Intec determined that reconfiguration of the assembly could

significantly improve loading symmetry by minimizing the transfer of torque from the reaction

rods to the specimen and maximizing the bending stiffness of the assembly in the vicinity of the

specimen. After several additional single-cycle trials, the test program was restarted and

successfully completed 100 cycles using the modified configuration shown in figure 4.3.1-1. No

evidence of buckling was noted in the second trial.

The average temperature and induced strain history for trial No. 2 is shown in figure 4.4.1-5.
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Figure 4.4.1-5. Trial No. 2, Average Temperature and Strain History

The short cycle at hour 85 (cycle 19) is not due to actual temperature cycle error, but to 13

missing data points caused by necessary data acquisition system maintenance. Cycle 19's shape

before and after the missing hour is consistent with the previous and following cycles, indicating

uninterrupted thermal cycling performance and relatively unchanged strain data.

The maximum and minimum average strains for each cycle shown in figure 4.4.1-5 demonstrate a

generaUy decreasing trend with time. In order to characterize this effect as a result of specimen

creep, fixture relaxation, and/or fixture seating or as an effect of averaging, the measured strains

are shown for selected ranges in figure 4.4.1-6. Notice that the maximum induced tool strain is

initially 250 microstrain higher than the induced bag strain, but by the 12th cycle, has stabilized to

100 microstrain below the bag strain, where it remains for the duration of the test. It appears that

during the first 12 cycles, the specimen and fixture configuration is seating itself. Tiffs trend is

typical of end-loaded specimen geometries and can be illustrated by plotting the difference

between the two strains at the maximum of each cycle as a percentage of the maximum strain, as

shown in figure 4.4.1-7. After cycle 12 (hour 55), the percentage difference remains consistently

around 2.5%, indicating constant relative strains.

Also from figure 4.4.1-7, the low percentage difference indicates no propensity toward buckling,

as opposed to the first trial in which the bag-to-tool difference at maximum strain was consistently
over 25%.
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4.4.1.4 Strain Loss Analysis

Because the bag and tool strains had reached relative equilibrium by the 12th cycle and did not

change significantly after that point, it seems that fixture loading configuration is stable beyond at

most the 20th cycle (95 hr). In fact, if the percentage difference between the maximum strain of

each cycle and the initial average maximum strain is plotted as above in figure 4.4.1-7, the slope

of the line is constant after cycle 20. Figure 4.4.1-8 shows the slopes of the linear curve fits of the

maximum and minimum average strains for cycles 20 to 100. (Averages may be used because the

maximum and minimum strain differences of the tool and bag strain gages are constant.) The

decreasing maximum and minimum strains that are evident after cycle 20 are then due to either

specimen creep and/or fLxmre relaxation. Further analysis indicates that fixture relaxation is

probably the dominant phenomenon, although specimen creep is also occurring.

' ' ' ' ! ' ' ' '

Slope - 0.346

Slope = 0.308

0 100 200 300 400

Time (Hrs)

5O0

Figure 4.4.1-8. Maximum and Minimum Strain Trends

Fixture relaxation should result in equivalent maximum and minimum strain slopes greater than

zero. As the fixture loosens by relaxation of the nuts, deformation, or other causes, the gap

between loading platens increases, resulting in a lower applied strain throughout the loading cycle.

Although both slopes shown in figure 4.4.1-8 are positive, the minimum strain slope is about 10%

lower than the maximum strain slope. Although the standard deviation of each slope can vary up

to several percent depending on which points are included in the curve fit, it seems probable that

the difference between maximum and minimum strains is due to specimen creep. (The slope

values as shown include all points from the beginning to the end of the maximum strain plateau-

(about 36 data points) for maximums, and the minimum three to five points for the minimums.

Because data were collected every 5 min, this was deemed a more representative method of slope

calculation than using only the maximum and minimum point of each cycle.)

Specimen creep is def'med as the time-dependent portion of the deformation of a material under

load. In this case, as the specimen crept, the strain gage would measure an increasing (more
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negative)minimum (unloaded) strain from cycle to cycle, but the maximum measured strain

would remain unchanged because the fixture is displacement controlled. In this way, if no other

phenomena were affecting the strains, one would expect a negative minimum strain slope and a

maximum strain slope of zero. Therefore, if the effects of fixture relaxation and specimen creep

were combined, the relative maximum and minimum slopes shown in figure 4.4.1-8 are reasonable

and expected. The slopes measured in figure 4.4.1-8. correlate to a specimen creep rate and

fixture relaxation rate of approximately 0.2 microstrain per cycle and 2.0 microstrain per cycle,

respectively (after the first 20 cycles).

4.4.1.5 Discussion of Results

With several minor modifications, the current compression fixture design was found capable of

performing its intended function; however, redesign of the fixture would significantly improve its

performance (see sec. 4.5).

4.4.2 Tension Fixture

Testing consisted of several single-cycle checkout runs followed by fifty 4-hr cycles from room

temperature to 350°F, simulating a simplified ground-air-ground temperature and load profile for

the HSCT. This multiple-cycle testing of the prototype fixture was used to assess effects of

fixture drift and specimen creep and determine probable calibration intervals for this fixture

design. Thermal and mechanical strains and specimen and steel driver temperatures were

monitored during the entire test.

4.4.2.1 Test Specimens and Instrumentation

Two quasi-laminate, eight-ply graphite specimens of an IM7/K3B material system were strain

gaged as shown in figure 4.4.2-1. (The K3B Laminate cure cycle is contained in appendix A.)

Specimen BC113-1 was loaded during an initial checkout cycle of 3-hr duration, and specimen

BC113-4 was loaded during the 50-cycle test run. The axial gages on the unloaded control

specimen were used to track thermally induced strains in both the preliminary and 50-cycle runs.
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Figure 4.4.2-1. Strain Gage Schematic

Strain gages, thermocouples, chamber controllers, and data acquisition equipment and procedures

were the same as those reported in section 4.4.1.

4.4.2.2 Test Procedure

The mechanical grips used in this program are designed for tensile or compressive loading over

long time periods. A simple schematic of the grip assembly is shown in figure 4.4.2-2. Detail

drawings of the grips are contained in the appendix B. The gripping surface of each wedge was

textured by a chemical bonding process, producing a 100-grit surface. This surface allows nonslip

gripping of graphite-reinforced PMCs without excessive damage to the outer plies of the material

and may be easily varied from 350- to 30-grit for various material types. The grip assembly also

allows specimen thickness to vary up to 0.25 in with only minor modifications.

Mounting the specimen in the mechanical grips provides for relatively easy specimen alignment,

and the symmetric design of the fixture maintained alignment throughout the test. In fact, the

tension fixture was far superior in ease of setup, alignment, and maintainability than the ..

compression fixture.
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Figure 4.4.2-2. Mechanical Grips

Once the specimen was mounted in the grips, the invar rod was screwed into the middle grip plate

and secured with a locknut. The specimen and invar assembly was then inserted into the tube and

the end grip plate was screwed into the tube. The other end cap was then screwed into place,

aligning keyways that were cut into the invar rod and the end cap and inserting a key. The key

locked the invar rod into place, insulating the specimen from any torque applied by tightening t.he

tension adjust nut. (See figure 4.3.1-1 for fixture assembly clarification.)

After the fixture was assembled, the data acquisition system was activated and the tension adjust

nut was tightened to apply tension to the specimen. The back-to-back axial strain gages were

monitored to verify symmetric front-to-back loading. If the gages indicated strains within 5 % of

each other, the system was considered aligned and ready for testing. The tension adjust nut was

then positioned to supply approximately 150 microstrain to the specimen. The assembly was then

placed in the thermal cycling chamber described in section 8.1.

As was done with the compression fixture checkout, two specimens were manufactured and strain

gaged. The extra control specimen was suspended in the thermal environment and axial strains

were monitored to track thermally induced axial strains. The loaded specimen strains could then

be corrected for thermal expansion of the specimen and strain gage thermal responses by
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subtractingthe control strainfrom the loadedspecimenstrains. Thesecorrectedstrainswere
termed"inducedstrains."Notethatonly oneaxialcontrolstrainwasmonitoredin thepreliminary
thermalcycle,but both a tool- andbag-sidecontrol strainwere monitoredduring the extended
50-cycletestrun. The 50-cycletestproducedtool- andbag-side-inducedstrainsby subtracting
thetoolandbagcontrolstrainsfrom thecorrespondingloadedstrains.

4.4.2.3 Thermal/Mechanical Testing

A preliminary single-cycle test was run with specimen BC113-1 in the fixture. This cycle was

conducted to verify the strain and alignment performance of the fixture and provide an indication

of the heat transfer capabilities of the fixture in.preparation for defining the thermal cycle profile

to be used for a 50-cycle test run. The trial thermal cycle used a 45-min ramp from 70°F to

350°F, followed by a 2.5-hr soak at 350°F and 45-min rampdown back to 70°F.

The strain and temperature data collected during the cycle are shown in figure 4.4.2-3. Based on

the data, it is apparent that all components of the fixture assembly, including the tube and the

specimen, reached equilibrium within less than 1 hr from the beginning of the soak.

4000

Induced

Strain

(_)

5000
I I I I

3000

2000

-/
1000

-1000 ....
0.0

I I I I I I I I

o°o...

./,.,,.
/
/

/ I I

I I I I I I I I

..... o

i I\
Tool 0°
Bag 0 °
Tool 45 °

I I I I

.=

_.___ ¢: "

.... [ I I I I [ .... Is II |l ..... I I I

0.5 1.0 1.5 2.0 2.5 _

Time (hours)

Temp
(F)

400
.l I l l I l l l I l I l l I l I l ll I I I I I I I I I=

350

300! :

- o

150 :i

lOOt__ i i ,,t-
_.'1 ......... TubeChamber----'- % .

50 • Specimen
: Invar "
=,

"1 I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I"

0.0 0.5 1.0 1.5 2.0 2.5 3.03.5

Time (hours)

Figure 4.4.2-3. Preliminary Cycle Strain and Temperature Data

The tube design of this fixture allowed temperature equalization well over twice as fast as a

similar compression fixture that used a solid steel driver. Note that the slowest heat transfer

component of the fixture is the invar rod. Because this rod was also the component with the

lowest CTE, its impact on specimen strain was slight, and the specimen relaxed only slightly after

the invar reached equilibrium.

The temperatures shown in figure 4.4.2-3 plateau 4° to 5°F below the target temperature of

350°F. Because the control thermocouple (which was not monitored with the others) was located
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in closeproximity to thechamberthermocouple,thedifferenceis probablydueto theinsulationof
thecontrollingsensor.

Severaldesignparameterswere verified by the single-cycledata. The test indicatedthat the
predictionsmadein section4.4wereveryaccurate(within 0.6%)andthatthetargettensilestrains
of 4,000 microstrainwere met. Figure 4.4.2-4 shows the predictedand actualaxial strains
throughoutthethermalcycle.

The preliminarycyclealsoshowedreasonableagreementbetweenthe back-to-backaxialstrain
gages(betterthan8%throughoutthecycle),indicatingreasonablealignmentof thefixturing. The
specimengrips performedwell with no evidenceof specimenslippageunderload. It was also
apparentthat a 2-hr soakat 350°F wouldbe adequateto ensurethat thermalequilibriumwas
reached.
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Figure 4.4.2-4. Predicted and Actual Strain Versus Time

At completion of the preliminary cycle, because little fixture or specimen refinement was

necessary, a 50-cycle extended checkout test was started. The thermal cycle used for the

extended test was identical to that described for the preliminary cycle, except the high-

temperature soak time was shortened to 2.0 hr (from 2.5). The average temperature and induced

strain history for all cycles is shown in figure 4.4.2-5. The four cycles between 75 and 86 hr were

affected by a faulty liquid nitrogen (LN2) valve, which did not supply sufficient liquid nitrogen to

completely cool the system within the required cycle time. The portion of the cycles above 200°F

was not affected. Careful inspection of this figure also reveals that a total of 51 cycles were
completed.
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Figure 4.4.2-5. 50-Cycle Strain and Temperature Data

Three cycles representative of typical induced strains are plotted in figure 4.4.2-6 to illustrate the

performance of each axial strain gage. As discussed above, induced strains were calculated by

subtracting the thermal strains measured by the axial strain gages placed on specimen BC113-1

(which was in the test environment, but not loaded) from the mechanical and thermal strains

measured by specimen BCl13-4, which was in the test fixture. In this way, the strain errors

induced by thermal expansion of the specimen relative to the strain gage, as well as by

temperature changes in the gage leadwires, were minimized.

This figure demonstrates that the gages maintain an error of less than 5% through the cycle until

the temperature was below approximately 85°F, at which point the strains diverge as the specimen

buckled slightly. Apparently, the tube was at a temperature slightly above 70°F when the tensile

preload was applied to the specimen at the beginning of the test. For the applied preload of 150

microstrain, a temperature delta of only about 10°F would be capable of driving the specimen into

compression. In fact, when cycling was complete and the fixture was removed from the thermal

chamber, the tension adjust nut was barely finger tight. Furthermore, no evidence of specimen

slippage or fixture relaxation was present.
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Figure 4.4.2-6. Representative Induced Strain Cycles

A total of 20 data points (1.5 hr) are missing from between hour 114 and hour 116, due to

necessary maintenance of the data acquisition (DAQ) system. No apparent deviation from

expected strain or temperature cycles was noted during this time.

Figure 4.4.2-7 shows the temperature data for a representative cycle from the three temperature

channels monitored during the test: specimen, tube, and chamber. The invar rod was not

monitored because its temperature was shown in the preliminary cycle to have minimal influence

on the applied strains because of its relatively low CTE. The temperature sensors track each

other extremely well, indicating good heat transfer properties of the tube and efficient heat

transference to the specimen through the tube. The controlling thermocouple was also replaced

and all cycles reached and settled at the target of 350°F. The cycle shown in figure 4.4.2-7 is

virtually identical to all the temperature data for the other cycles (except those affected by the

faulty LN2 valve discussed above).
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4.4.2.4 Strain Loss Analysis

Figure 4.4.2-5 showed an overview of the strains for the entire trial. Figure 4.4.2-8 shows details

of first and last cycles. These figures show that the strains applied to the specimen are very

consistent from the 1st to the 51st cycle. In contrast to the compression case, there is little

evidence of either specimen creep or fixture relaxation. It is not surprising that little specimen

creep should have taken place, because tension stiffness is much more fiber dominated than the

compression case, the specimen was gripped (therefore, not as susceptible to initial load

relaxation as the end-loaded compression test), and the duration and total number of cycles were

relatively small.

The maximum strain peaks do show a slight trend of strain relaxation with time, but such a small

effect is difficult to attribute to a specific source such as specimen creep or fixture relaxation. The

slope of the decreasing maximum strain trend correlates to a strain loss of only 1.3 microstrain per

cycle. This is such a small value that more than the 51 cycles performed here are necessary to

quantify it with certainty.

Finally, because the specimen was buckling slightly at the minimum strains, a minimum strain

trend is not possible to determine reliably.
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Figure 4.4.2-8. First and Last Cycle Strains

4.4.2.5 Discussion of Results

Several design parameters were verified by the single-cycle data. The preliminary cycle indicated

that the predictions made in section 4.2 were very accurate (within 0.6%) and that the target

tensile strains of 4,000 microstrain were met. Figure 4.4.1-4 showed the predicted and actual

axial strains throughout the thermal cycle. The preliminary cycle also showed reasonable

agreement between the back-to-back axial strain gages (better than 8% throughout the cycle),

indicating reasonable alignment of the fixturing. The specimen grips performed well, with no

evidence of specimen slippage under load. It was also apparent that a 2-hr soak at 350°F would

be adequate to ensure that thermal equilibrium was reached.

At completion of the preliminary cycle, because little fixture or specimen refinement was

necessary, a 50-cycle extended checkout test was started. The results of this 50 cycle test are
discussed below:

a. Specimen and fixture alignment properties are very good for the tension fixture.

b. The Intec specimen grips performed well, allowing easy specimen alignment, with no evidence

of specimen slippage; however, they are the single most expensive component of the fixture.

C, The tension tube design was easy to assemble and align, provided symmetric loading, a_d

demonstrated good heat transfer properties.

d. A higher prestrain (e.g., R = +0.1) to minimize the potential for specimen buckling at low

temperatures should be used.
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e. Little evidenceof specimencreepor fixture relaxationwasnotedoverthe tension test duration

of 51 cycles, at 3.25 hr per cycle. The slight observed effect amounted to a decrease of 1.3

microstrain per cycle.

4.5 FIXTURE REDESIGN AND FABRICATION

The prototype compression fbxture (sec. 4.3.1) was redesigned because of problems encountered

during fbxture validation testing (sec. 4.4.1). These problems included alignment difficulties due

to the reaction rod configuration, excessive thermal mass of the driver, and difficulty in applying

symmetric load or adjusting the applied load. The reaction rod configuration was changed from

two to three to minimize the torsional tendencies exhibited by the prototype fixture. Three rods

also allow for load introduction adjustment in two directions, side to side and edge to edge. This

ensures symmetric load introduction. The prototype fixture could only be adjusted in the edge-to-

edge direction. Increasing the number of reaction rods also eliminates the need for alignment
plates. The driver diameter was reduced to 0.75 in to minimize thermal mass and decrease the

cycle time necessary to bring the fixture to equilibrium. The driver was also threaded to allow for

a single-point load adjustment. In this way the magnitude of the applied load can be adjusted

without affecting the load distribution, which is defined by the reaction rods.

Design analysis was carried out by Intec using a Boeing-supplied analysis spreadsheet (as used in

sec. 4.1). The fixture load and strain analysis generated from this spreadsheet are shown in figure

4.5-1. Finite element analysis was also used by Intec to analyze the reaction rods. A photograph

of the redesigned fixture is shown in figure 4.5-2. A drawing of this fbxture is shown in figure

4.5-3. Drawings of the detail parts are contained in appendix C.

COMPRESSION FIXTURE LOAD AND STRAIN ANALYSIS

Reaction (lnvar) Driver (304 SS) Specimen (PMC) Buckling Info

Length (in) = 17 Length (in) = 14 Length (in) = 3.00 Clamp height = 0.5

Area 3 rods (in^2) = 0.3311 Area (in^2) = 0.442 Area (in^2) = 0.083 Fixity = 2

Modulus (psi) = 20.5E+6 Modulus (psi) = 28.5E+6 Modulus (psi) = 08.5E+6

CTE (in/in) = 2.60E-06 CTE (in/in) = 9.70E-06 CTE (in/in) = 1.10E-06 Fixture Geometry

I rod dia (in)= 0.375 Diameter (in) = 0.750 Thickness (in) = 0.1664 Plate Thkns = 0.75

Width (in)= 0.500

DeRa T (°F)= 280

Specimen Load (Ibs) = 3382 BUCKLING

Specimen Strain (E-6)= 4782 (no flex) Effective Length (in) = 1

TRUE STRAIN (E-O= 4236 (includes flex) Critical Load (lbs) = 16105

Critical Strain (micro) = 22773

Fixture Strain = 269 Critical Stress (IGfi) = 194

Load = Temp.delta* { (CTE.s*L.s)-(CTE.r*L.r)+(C'rE.d*L.d) }/{ [L.sl(A.s*E.s))+(L.rl(A.r*E.r))+(L.d/(A.d*E.d)] }

Critical PI0 2 E.s W.s t.s 3/(12 (G12_'2)

True Strain = Strain.s-(0.0244-0.0764 t.plate+0.0853 uplate 2-0.0325 LplateA3) Strain.s/4000/L.s 1000000

. 3rd order polynomial obtained by FEM. Cases run using load of 40001bs; normalized to actual load as above.

Variable Names

L = Length .s = Specimen 1

iA = Area x = Reaction

E = Modulus .d = Driver

The fixture must be capable of 2000 and 4000 microstrain. Invar and driver were cut down by 8.5 inches to

accommodate 2000 strainlevel.

Figure 4.5-1. Compression Fixture Load and Strain Analysis
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Figure 4.5-2. Redesigned Compression Fixture
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Part A

\
Specimen Clamp

(Part D)

A..__]

Part F

Part E

Pan F

PLAN vIEW

Stainless Driver

invar reaction rod

Compression Adjustment

Part C

VIEW A-A

ng Blocks

$ •

PRINCIPLE OF OPERATION

Three invar rods (Part F) are threaded into Part A, and Parts B and C

slide along the rods. Part C is located using nuts threaded onto the

invar rods. Part E, the driver, is butted against Part B, and threaded

into part C. As the assembly is heated, the stainless steel of Part E

expands approximately 9 times farther than the invar rods, thereby

providing a compressive load to the specimen, which is held in place

between Parts A and B by the clamping blocks of Part D.

Figure 4.5-3. Drawing of Redesigned Compression Fixture

44



The tension fixture design remained essentially the same as the prototype. A photograph of the

current tension fixture is shown in figure 4.5-4. A drawing of this fixture is shown in figure 4.5-5.

Drawings of the detail parts are contained in appendix D. The mechanical grips used to hold

specimens in this fixture were discussed in section 4.4.2.2.

!iii!iii_!....... i_:iii<ii_iit !!iiiii_U_ <i _ _!__ _ _ ili ii i_ _i _

ii!iiiili!ii!!!!!!!iii!!ii!i!ii! ii!!i!i!!iliiii!!!!!ii!fillip!!!!!i!iii!!!i i!!!i!i!i!ii!!iii!!!!!!!i!!ii!iiii!iiiiiii!!i!i!!i!!i!!!!i

Figure 4.5-4. Current Tension Fixture
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"---_.'-B

Stainless driver tube (0.2" wall thickness)

I0" Specimen _ [

intecGrips--

lnvaf

--'I_B
CUTAWAY VIEW

Tension Adjust Nut

1

g..ql----

A.91.-..-

L.
-" 20

i 7
--_F_--_-- !

"_ I.......= o,:V 

J_ ..... :--II

Cutouts allow heat transfer to specimen

Part E

-I

illI"
PRINCIPLE OF OPERATION
A test specimen is mounted in a set of grips, which mount to Parts D and B.

Part E is constructed of invar steel, which is a low thermal expansion steel.
Part E is mounted to Part D, and is restrained by a nut against Part A. As
Part C expands with increasing temperature at a rate of about 9 times that

of the invar and the specimen, a tensile load is applied to the specimen
in-phase with rising temperature. This fixture will be placed in a thermally
cycling chamber for up to 7 years to apply cyclic tensile loads to graphite
specimens. (Note that the grip assemblies are not included in these
drawings.)

Figure 4.5-5. Drawing of Current Tension Fixture
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NumeroUs tension and compression fixtures and grips were fabricated by Intec. Figure 4.5-6

provides the fixture quantity and identification and whether these fixtures are being leased or were

purchased.

Tension

Fixture ID

_TAT)
TAT-2-01

TAT-2-02

TAT-2-03

TAT-2-04

TAT-2-09

TAT-2-10

TAT-2-11

TAT-2-12

TAT-2-13

TAT-2-14

TAT-2-15

TAT-2-16

TAT-2-17

TAT-2-18

TAT-2-19

TAT-2-20

Own/

Lease

OWl]

own

own

own

lease

]e_se

lease

lease

lease

lease

lease

Mech.

Grip ID

MGR-1-01

MGR-1-02

MGR-1-03

MGR-1-04

MGR-1-05

MGR-1-06

MGR-1-07

MGR-1-08

MGR-1-09

MGR-I-10

MGR-I-11

MGR-I-12

Own/

Lease

own

own

own

own

own

lease

lease

lease

lease

lease

lease

lease

Comp.
Fixture ID

_TAC)
TAC-2-09

TAC-2-10

TAC-2-11

TAC-2-12

TAC-2-13

TAC-2-14

TAC-2-15

TAC-2-16

TAC-2-17

TAC-2-18

TAC-2-19

TAC-2-20

Own/

Lease

own

own

own

own

lease

lease

lease

lease

lease

lease

lease

leaselease

lease MGR- 1-13 lease TAC-2-21 lease

lease MGR- 1-14 lease TA C-2-22 lease

lease MGR- 1-15 lease TAC-2-23 lease

lease MGR- 1-16 lease TAC-2-24 lease

MGR-I-17 lease

MGR-I-18 lease

MGR-I-19 lease

MGR-1-20 lease

Figure 4.5-6. Tension and Compression Fixure Inventory
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FIXTURE DESIGN

HYDRAULICALLY ACTUATED FIXTURES

Intec designed and fabricated hydraulic fixtures for use in chamber No. 3 (350°F). (Section 8.0

contains the chamber and hydraulic manifold design.) A maximum of 25 hydraulic fixtures can be

thermally cycled in this chamber. Hydraulic actuators can be independently mounted to (and

removed from) the chamber front enclosure. A drawing of the tensile hydraulic fixture and

mounted hydraulic actuator is shown in figure 5.1-1. Drawings of the detailed parts are contained

in appendix E.

A room temperature hydraulic system was also fabricated. This setup allows for load testing of

materials without thermal cycling. Both composites and adhesives can be tested using this setup

(hydraulic fixtures for adhesives were fabricated under MDOC Task 11). The design
specifications are as follows:

Actuator:

Control"

Enerpac double-acting Model BMD-70251

Loads: 15,440 lb compression, 9,120 lb tension
Max stroke: 0.98 in

Operating pressure: 5,000 psi

Response: spikes up to 1 Hz

Digital PID controllers (Watlow 982)

Valving: coupled directional and proportional mechanical valves (4 zones)

Sensor input _-

HycL in/out

Hydraulic Actuator

j_-i
.... I --l" ......

I I
I I
I I
I I

.... r2 J.......

Vertical support

7-I1

t_J I,P

t;i
[-1]
| Ii

.J_J.J

too view

1:2.25

Part F

Part A

"T-T-
u . I I
e .... T_T--

-_--_-- -i_7.- ....

.... ';"":+:" -,:_-_--_ ....0

-_-k: o __9__--- -._.
---- L.L

I I
__J Part E Part E 1 I

Vertical supports enclose hydraulic plumbing and electrical wiring. Front plate

supplies plug-in access to hydraulics and dectro_ics.

Ambient environment = Heated environment

Figure 5.1-1. Hydraulically Actuated Fixture Configuration
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5.2 FIXTURE FABRICATION

Four hydraulic fixtures were fabricated in accordance with figure 5.1-1. The fixture identification

numbers and lease or own status are given in figure 5.2-1.

Hydraulic Fixture

ID (I_R)
HAR-1-01

Own/Lease

own

HAR-1-05 lease
HAR-1-06 lease

HAR-1-07 lease

Figure5.2-1. Hydraulic Fixture Inventory

5.3 FIXTURE VALIDATION

Validation testing of the hydraulic fixtures is included in section 8.3.2, "Chamber No. 3 Hydraulic

Spectrum and Load Equivalence Test."
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6.0 CONCEPT FOR 6-IN COMPRESSION FIXTURE

A compression f'_ture that could accommodate a 6-in-wide specimen was developed to increase

test capability of a single fixture. A 6- by 6-in laminate could be cut into approximately 24

compression specimens for residual strength testing. This many test specimens would require 24

of the thermal cycling fixtures described in section 4.5. By cycling multiple 6-in compression

fixtures, 25 per chamber (sec. 8.0), approximately 600 specimens per chamber can be tested

simultaneously.

The 6-in compression fixture design is based on the CTE concept described in section 4.0.

Because of the larger specimen cross section, two invar reaction rods (instead of one) and a

stainless steel I-beam driver (instead of three rods) are used. A drawing of this concept is shown

in figure 6.0-1.

Fixture fabrication was not carried out under this contract, but may be considered for the HSR II,

Task 15 study.

SIDE VIEW

(ASSEMBLY)

Load Adjustment Bolt l_
(threads into end plate) 20 _ I

l- Reaction md clearance fit to end plate

m

I:

i

I

Q Stainle._ l-Beam
Part C

lnvar Driver

• ( 1.5" diameter) Part D

12.0

TOP VIEW

(ASSEMBLY)

Figure 6.0-1.

Reaction rod threads into end phtle _11

6"x 6"

Specimen

/'7"k I-Beam (Part C) is 5"x 3"x .375"
k..L/ (Web, Flange, Thickness)

PRINCIPLE OF OPERATION

Two invar renction tx_tls mc threntled into Ihu't A, Ju_tl I'm1 I] slitic._ ldong the

rods. "l'he 0.5 hlch plates at either end of the I- "beam are welded to the l-beam,

which is thereby located by the reaction rods. As the assembly is heated, the

stainless steel of the I-beam expands approximately 9 times farther than the

invar rods, thereby imparting a compressive load to the specimen, Symmetric

load may be assured by adjustment of the four load adjustment bolts.

Drawing of 6-in Compression Fixture Concept
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The Excel spreadsheet used in section 4.0 for fixture design optimization was also used for the 6-

in compression fixture. The load and strain analysis for the f'Lxture concept is shown in figure

6.0-2.

COMPRESSION FIXTURE LOAD AND STRAIN ANALYSIS

Reaction (invar)

Length (in)= 20

Area 2 rods (in^2) = 3.534

Modulus (psi) = 20.5E+6

CTE (i_m) = 1.50E-06

1 rod ctia (in)= 1.500

Specimen Load (lbs) =

Specimen Strain (E-6)=

27644

Driver (304 SS)

Length (in) = 13

Area (in^2) = 4.125

Modulus (psi) = 28.5E+61

CTE (in/in) = 9.70E-06!

Web (in) = 5.0

Flange (in) = 3.0

Thickness (in) = 0.375

Delta T (°F) = 280

3011 (no flex)

Specimen (PMC)

Length (in)= 6.00

Area (in^2) = 1.080

Modulus (psi) = 08.5E+6

CTE (in/m) = 1.10E-06

Thickness (in) = 0.18

Widrk (in) = 6.000

Load =

Strain =
Temp.delta* {(CTE.s*L.s)-(C'rE.r*Lr)+(CTE.d*Ld) }/{ [L.s/(A.s*E.s))4_.r/(Ax*E.r))+(L.d/(A.d*E.d)] }

1000000*Load.s/(A.s*E.s)

L = Length
A = Area

E = Modulus

VARIABLE NAMES

.s = Specimen CTE = Coef. Thermal Expansion

.r = Reaction

.d = Driver

Figure 6.0-2. Strain and Load Analysis for 6-#7 Compression Fixture
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7.0 LOW-COST DISPLACEMENT MEASUREMENT CONCEPT

Current testing plans incorporate the use of strain gages to verify that fixtures are transferring

predetermined loads to the test specimens. Based on these data, mechanical adjustments to the

fixture (tightening or loosening of the reaction rod nuts) can be made if warranted. Because of

temperature degradation effects, strain gages may not be a viable strain measurement method for

long-term environmental testing. Alternative low-cost displacement measurement concepts were

investigated for accurately measuring and adjusting the loads on the driver rods (ref. 4). Although

these methods were not used for this contract, they may be considered for HSR iI, Task 15 work.

These methods are as follows:

a. Linear voltage displacement transducer.

b. Capacitive proximity sensor.
c. Ultrasound.

d. Laser displacement method.
e. Direct force measurement.

Linear Voltage Displacement Transducer (LVDT). Strain measurements could be made using

an LVDT. High-temperature LVDTs are available but very expensive. This cost would be

multiplied by the number of fixtures in test, as a dedicated LVDT would be required for each

fixture. Tooling modifications would also be required for each fixture.

Capacitive Proximity Sensor. Capacitive proximity sensors have the same drawbacks as the

LVDTs in that special high-temperature sensors would be required for each fixture. Calibration

and mounting hardware would also be required. It is estimated that proximity sensors would be

just as expensive as using LVDTs to monitor displacements.

Ultrasound. Ultrasonic methods could be used to measure the displacement of the thermal

fixture driver rods. This would require extensive calibration to accurately record the length of the

driver rod at elevated temperature. Noise due to the interference produced by the large aspect

ratio of the fixture driver, as well as the threads present on the fixture driver, would also need to

be filtered out. It may not be possible to filter out this noise, depending on its severity. To obtain

an optimized ultrasonic signal, the rod ends must be parallel, smooth (125 surface f'mish), and

perpendicular to the ultrasonic signal. This requires machining modifications for each fixture. It

is estimated that an ultrasonic system, including calibration and implementation, would cost only

slightly less than either the LVDT or proximity sensor methods.

Laser Displacement Method. Laser measurement systems are available off the shelf and have ,,

reported resolution as fine as 10 microstrain at ambient conditions. Unfortunately, these

affordable laser systems would not be able to withstand the high temperatures used for durability

testing. At high temperatures the laser would need to be moved away from the fixture

(approximately 10 in), creating sighting problems. This problem is amplified by the need to move

the laser from fixture to fixture. This would require a very accurate triaxial positioning system.

The cost of this system is estimated to be greater than the three other systems discussed above.
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Direct Force Measurement. Direct force measurement uses equipment to measure the force on

the driver directly. Schematics of this system for the compression and tension fixtures are shown

in figures 7.0-1 and 7.0-2, respectively. A hydraulic ram applies a load, which is transferred to the

fixture using threaded or smooth extension rods. The loads can be measured using pressure

transducers placed in line between the ram and the hydraulic pump. The hydraulic pump could be

automatically activated and controlled by a PID controller. Once the driver rod has been loaded

to the specified level (equivalent to desired specimen load at temperature), the load on the nut will

have been removed. Therefore, if the nut is loose, indicating the loading in the test fixture has

relaxed over time, it could be retightened by hand. The advantage of this system is that the load

adjustment is simple versus the laser or ultrasonic systems. For these systems, ff a length

measurement indicates inadequate loading, the tightening of the nut would be difficult, as the

entire load is still carried by the nut. The nut would have to be tightened at room temperature and

then verified once the fixture had been reheated. The overall cost for the direct force

measurement system is estimated to be lower than all of the systems discussed. This lower cost,

combined with direct measurement and simple load adjustment, makes it the recommended

measurement system for future work (HSR II, Task 15).

Stressed Specimen Stainless Steel Driver Ram

Steel Extension Rods

Couplers

PID Controller
Pmnp

Pressure Transducer

Pressure Indicator

Figure 7. O-1. Direct Force Application Method Used on the Compression Fixture
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CUTAWAY
Coupler

Figure 7. 0-2. Direct Force Application Method Used on the Tension Fixture
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TEST CHAMBERS

8.1 CHAMBER CONFIGURATIONS

Three thermal cycling chambers were designed and built by Intec. All of the chambers are

modified Blue M model EM-326EX 600°F electrical ovens with inside dimensions of 48 by 24 by

48 in. Two chambers were constructed for 350°F (chamber No. 1) and 300°F (chamber No. 2)

thermal cycling. The third chamber was constructed for 350°F (chamber No. 3) thermal and

hydraulic cycling. All of the chambers had the original doors removed and replaced with 25-cell

modular front enclosures (fig. 8.1-1). This enclosure allows individual access to all 25 fixtures,

and for chamber No. 3, it also allows mounting the individual fixture hydraulic actuators. A

closeup photograph of an individual cell, containing a fixture, is shown in figure 8.1-2.

49.50
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I_l Iol IoiI I°1 I°l
I°1 I°1 C) I°1
I I I I I I
iol !Ol ioi

o
Iol iol Iol
I I I I I I

,0, ,0,
Iol Iol C)
I i I I I I
Io I Iol Iol
J J I J

Ioi ,
I° I° I°

0

0

O,

Hyd. Ports

0 i

o Electronic
Ports

0

,O.
o
0

0

| i

0
0

o

0 °

,O,
o
o "

0 °

[,D

0

,1

Figure 8.1-1. Thermal Chamber Front Enclosure (25 Cells)
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Figure 8.1-2. Front Enclosure Cell Closeup With Fixture
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Other modifications were made to the ovens, including heating elements, flow ducting, cooling

system, controller and power electronics, overtemperature and undertemperature protection

devices, and temperature sensing thermocouples. Ambient air is used during the cooldown until

the required cooldown rate can no longer be maintained. LN2 flow is then activated for the rest

of the cooldown cycle. Figure 8.1-3 provides a schematic of the chamber system.

Fan

t

/
To Chamber #3 7"

®

During initial cool down, control damper Negativeopens.

pressure induced by fan pulls hot air out and replaces

with ambient air via inlet damper.

To Chamber #2

®

Uquid nitrogen (LN2) flows when cooling rate from air
exchange is no longer adequate.

Connector bank mounted on front of chamber connects
all strain gage, thermocouple, and other instrumentation

to 32 channel connectors. These then route to multiplexer

and 1:o the data acquisition computer.

Uquld nitrogen and air duct are connected to up to five
chambers in series.

Fixture's are individually accessible. System may be
configured for thermal or hydraulic fixtures. Hydraulic

ports are located in the connector banks.

Air Ducting (1st stage cooling)

(_) LN2 (2nd _aq¢ coolincl)

Inlet
Damper

ToD_.__..__! sz_oo .
C.amputef I Mult_lexer

oooo D
Control/Electronics

IoilIol[Iolllol
[l#_liN_loIiIoI
:_:F0-q:!o!:!ol

t

"Cantml" I

-mI
I I

i

if01r.
_la,l_
_IoI
:Ioi

CHAMBER# 1

Individual

Rxcure Access

F#gure 8.1-3. Thermal Chamber System Schematic
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A photograph of all three chambers is shoWn in figure 8.1-4. On the far left in the figure is

chamber No. 3 with 10 hydraulic actuators in place. The hydraulic actuator mounting schematic

was shown in figure 5.1-1. The hydraulic control system is capable of providing two separate

zones of control with a maximum frequency of 1 Hz. The manifold system is capable of

distributing 18,000 lb tension or compression to each cell. A schematic of the hydraulic system

for chamber No. 3 is shown in figure 8.1-5.

Figure 8.1-4. Thermal Cycling Chambers
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o l li
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._ Solenoid Valve
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Figure 8.1-5. Hydaulic System Schematic
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8.2 DATA ACQUISITION AND INSTRUMENTATION

The data acquisition system is composed of an Intec-produced hardware and software system that

can obtain data from up to 63 channels per chamber. The system uses an i486-based personal

computer equipped with a National Instruments M10-16 A to D board and a multichannel RS-232

controller board. This computer is linked to an $2100 conditioning multiplexer produced by

Intec. The RS-232 controls multiplexer switching toan $2000 conditioner and two 32-channel

terminal blocks for 64 channels of strain and/or temperature. (If any thermal data are taken, one

channel must be used for cold junction compensation, thereby giving 63 available channels). Data

acquisition software uses Intec software written on the Labview platform (a National Instruments

code). Figure 8.2-1 shows the data acquisition system.
_.

All thermocouples used to monitor chamber, fixture, and specimen temperatures, as well as those

used for chamber feedback and overtemperature control, were type K. The thermocouple wire

was calibrated by Pyrometrics of Seattle.

All strain gages were calibrated independently, based on the gage's published gage factor and the

bridge completion electronic circuitry used. The electronic balance and tare values required to

balance and set the gain for the Wheatstone bridge circuitry for each gage are recorded at the

beginning of the test. This ensures that every gage can be rebalanced and configured should the

electronics or data acquisition software be interrupted. Specific strain gage types are discussed in

section 8.3.

32 gages / term

I

_hamber #2_ _

channels 1 to 32 __>=

33 to 63 + C.T.C._ _

_ontrol/¢ommunications

S2100 Multiplexer" -- = * Conditioner

• ee eeee

52100 Multiplexer , . o

Output lines

Multi R5232 I
Controller ,

MlO_6 I
I

A to D Board I

I I

zX

I,(

I ,,I
A

k.

i
I
I

I

Figure 8.2-1. Data Acquisition System
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8.3 CHAMBER VALIDATION

8.3.1 Chamber No. 1 100-Cycle Test

The purpose of the 100-cycle checkout was to (1) evaluate specimen geometry and

instrumentation suitability for long-term thermal cycling and (2) evaluate temperature profiles of

fixtures and specimens during cycling.

For this test a chamber comparable to chamber No. 1, but with the original doors (rather than the

25-cell front enclosure), was used, as chamber Nos. 1, 2, and 3 were still being fabricated. There

were 25 fLxtures cycled, 8 with test specimens (4 compression and 4 tension). Initially, straight-

sided, 16-ply quasi-isotropic K3B/IM7 tension specimens (1 by 10 in) were used. These were

gripped with 70 in-lb of torque. Because specimens began slipping at 3,800 microstrain, this

torque was increased to 100 in-lb. Although supping did not occur during the next 100 cycles, it

was decided that there was a risk of slippage during a 1,000- to 2,000-cycle durability test.

Therefore, a dogbone-shaped specimen was selected to increase the specimen's gripped area. The

final specimen geometry is a 10-in-long specimen with 1.5-in endwidth and a 1- by 3.5-in gage

section. Final grip torque used was 120 in-lb. The tension specimen geometry with gage is

shown in figure 8.3-1. A 32-ply quasi-isotropic K3B/IM7 compression specimen (0.5 by 3.0 in)

was used for the 100-cycle test. The compression specimen geometry with gage is also shown in

figure 8.3-1.

TENSION SPECIMEN

1.0

÷
R2.0

10.0

3.5

Single gage, at e,cntcr

1..5

COMPRESSSION SPECIMEN

I_. 3.0 _1

!-" "-I .___

Back to back gages,
at center

Figure 8.3-1. Tension and Compression Specimen Configurations
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Initially, constantan strain gages and GA-61 adhesive and protective coating were used on the

tension and compression specimens. This decision was based on Measurements Group's (strain

gage manufacturer) recommendation. After only a few thermal cycles, several compression gages

failed because of cracking of the GA-61 coating. Discussions with Measurements Group revealed

that GA-61 was not a high-temperature sealant, as f'_rst reported. M-Bond 600 adhesive and

Loctite Ultra-Copper (780°F room temperature vulcanized (RTV)) sealant were then

recommended and used for 100 cycles without any problems. Strain readings, however, did

demonstrate a gradually increasing indicated strain. Examples of this drift for the tension and

compression specimens are shown in figures 8.3-2 and 8.3-3.
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Typical Tension Specinma Strain vs Time

(cycles 1-70)

lOO 20o 250

_;@.o__
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3

!

_00

Figure 8.3-2. Tension Strain Profile (Cycles 1 to 70)
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Figure 8.3-3. Compression Strain Profile (Cycles 1 to 70)

It was discovered that constantan gages have a documented increasing drift with high-temperature

exposure. New gages with a Kamaa backing, which is impervious to long-term temperature

exposure, were evaluated. A composite specimen was gaged with the new gage and with the

constantan gage (control), placed in a constant-temperature 350°F oven for 10 days, and

monitored daily. No drift was observed with the new gage, but the constantan gage drifted in a

similar manner to the 100-cycle test. Based on these results, the new gage with the Karma

backing was recommended for future testing. The strain gage manufacturer's name and model

number of the new gages (for PMC specimens), as well as gages recommended for other

specimen or fixture material, are given in figure 8.3-4.

Specimen/Fixture
Material

PMc

Invar

Gage
Manufacturer

Measurements Group

Measurements Group

Gage Model No.

WK-00-250BG-350

WK-00-250BG-350

Stainless Steel BLH Electronics FSM-12-35-S9

Titanium BLH Electronics FSM- 12-35-$5

Figure 8.3-4. Thermal Cycling Strain Gages

Thermal cycle temperature profiles were generated for the 100-cycle test.

beginning, middle, and end of the 100 cycles are shown in figure 8.3-5.

Cycles from the
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Figure 8.3-5. Thermal Cycling Temperature Profile
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8.3.2 Chamber No. 3 Hydraulic Spectrum and Load Equivalence Test

A hydraulic spectrum was run with the goal of providing strains between -1,000 and 3,500

microstrain at a maximum frequency of 1 Hertz. This test demonstrated the load capabilities of

the hydraulics, including a 1 Hertz load spike. Figure 8.3.2-1 shows the results of this test.

L.

2000

1500 -

1000 -

500 -

0

0

/ ' l /

10 2O

Time (seconds)

3O 40

Figure 8.3.3-1 Hydraulic Spectrum Test Results
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A hydraulic load cycle was also run to mimic.k the thermal load cycle used with the TAT and TAC

fixtures. The hydraulics were run at room temperature using the setup described in section 5.1.

Titanium dummy specimens were loaded to 750 lb (zone 4), 1500 (zone 3), 2250 (zone 2), 3000

(zone 1). The results of this test are given in figure 8.3.2-2.
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Figure 8.3.3-2 Load Equivalence Test Results
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9.0 DURABILITY TEST PLAN

9.1 PLAN FOR 1,000-THERMAL-CYCLE TEST

An initial durability test plan has been formulated. Compression and tension specimens will be

cycled in chamber Nos. 1 (300°F) and 2 (350°F). The thermal cycle profile was presented in

figure 4.4.1-2. After thermal cycling, specimens will be tested to failure to obtain residual

strength data. The planned test matrix is shown in figure 9.1-1.

Load Type

Tension

Compression

Material

K3B/IM7

PETI/IM7

Exposure Maximum Prestrain # Specimens # Gages

Temp (°F)

Room Temp

300

350

K3B/IM7

350

Room Temp

Strain

Failure

(Baseline)

on

Specimen

0.006 2

0.002 0 2 2 2

0.006 2 2 2

0.004 0 2 2 2

0.006

0.006

0.002 0 2 2 2

0.006

0.004

0.006

2

0.006 2

0.002 0 2 2 2

0.006 2 2 2

0.004 0 2 2 2

Failure

(Baseline)

0.006

2

0.006 2

0.002 0 2 4 2

0.006 2 4 2

0.004 0 2 4 2

0.006

300

# Gages
on

Fixture

0 0 2

0.006 2

0.002 0 2 4 2

0.006 2 4 2

0.004 0 2 4 2

350

0.006

Figure 9.1-1. Matrix for 1,O00-ThermaI-Cycle Test
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9.2 TEST SPECIMENS AND INSTRUMENTATION

Both K3B/IM7 and PETI/IM7 specimens will be tested during the first 1,000 cycles. K3B/IM7

laminates have been fabricated by Boeing Materials Technology Laboratories and PETI/IM7

laminates are currently being fabricated by Northrop. (The K3B laminate cure cycle is contained

in appendix A.)

A 16-ply quasi-isotropic layup, (45/-45/0/90)2S, was used for the tension laminates, and a 32-ply

quasi-isotropic layup, (45/-45/0/90)4S, was used for the compression laminates. Tension and

compression specimen configurations were shown in figure 8.3-1. The high-temperature strain

gages discussed in section 8.3 will be used on all the test specimens. Gages will also be attached

to unloaded dummy specimens to determine temperature strain effects. These data will be used to

calibrate the test specimen gages. Thermocouples will be attached to some of the tension and

compression specimens to monitor specimen heatup rate and soak times.

9.3 BASELINE TEST RESULTS FOR K3B/IM7

Baseline testing was performed as outlined in figure 9.1-1. All specimens were tested at room

temperature. Compression specimens were tested using a Northrop 3- by 1-in face-supported

fixture. Specimens were originally tested in accordance with ASTM D695, except without tabs,

but end-brooming failures occurred. Baseline test results are shown in figure 9.3-1.

Test Type

Tension

Compression

Specimen ID

BC144-T-1

BC144-T-2

Ultimate

Stress (ksi)

124.2

132.0

Notes:

Chord 1

Modulus (msi)
8.58

8.80

BC144-T-3 135.2 8.70

BC144-T-4 130.2 8.45

BC144-T-5 134.3 8.53

average = 131.2 average = 8.61
std. dev. = 3.9 std. dev. = 0.12

IT26-C-1 109.0

IT26-C-2 103.8

IT26-C-3 105.2 7.80

IT26-C-4 108.6 7.76

IT26-C-5 110.0 7.90

average = 107.3
std. dev. = 2.4

7.79

7.60 2

average = 7.77
std. dev. = O.10

1. Chord modulus calculated at: 3,000 and 6,000 microstrain for tension

1,000 and 3,000 microstrain for compression.

2. End failure; specimen too lightly tightened.

Figure 9.3-1. Baseline Test Results for K3B/IM7
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10.0 CONCLUSIONS AND RECOMMENDATIONS

10.1 CONCLUSIONS

The conclusions are as follows:

a,, The current tension and compression fixtures were capable of providing the designed strains of

approximately 4,000 microstrain, using a temperature variation of 280°F. Test results gave

agreement to predicted strains within 1% in both cases.

bo Alignment ability and torsional stability of the original compression fixture were inadequate;

however, they were improved greatly with minor redesign.

C, The currently projected price (for large quantities) of DiCTE fixtures compares favorably with

the use of hydraulic load frames; however, tension and reverse load fixtures are still expensive.

Much of this expense is due to the wedge grips.

d. With current instrumentation, it is difficult to differentiate the viscoelastic response of the

material being tested from the potential settling of the fixture components.

eo DiCTE fixtures are capable of providing limited designed-in phasing differences and spikes;

however, they are not adequate for spectrum testing.

The current compression fixture, thermal cycle, and specimen system appears to relax

maximum compressive strains applied to the specimen at a significant rate of approximately 2

microstrain per cycle, after the specimen and fixture have seated (the first 70 to 100 hr of

cycling). The resulting _calibration intervals (<1 month) are still considered acceptable,

assuming the fixtures can be adjusted outside the oven environment.

g. Although DiCTE fixtures are capable of providing constant

environment, simpler (more cost-effective) approaches are available.

strain in an isothermal

h. Fixtures, specimen configurations, and measuring devices

however, their long-term reliability is still unproved.

have proved basically sound;

Advantages and disadvantages versus the standard (hydraulic) approach are not currently well

understood.

Oven sizes, fixture thermal mass, and cycle parameters (minimum temperature, heating and

cooling rates, etc.) appear to significantly affect the cost of performing thermal cycling. Liquid

nitrogen is a major contributor.

k. DiCTE fixtures must be thermally optimized for heat transfer to eliminate any lags in phasing

and small strain irregularities at the end of each cycle and to ensure usefulness to thermal

profiles not containing significant hold times.
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The analysismethodologiesandresultinganalysistoolsperformedwell for both analyzingand
optimizingfixtures. Analyticalresultsandtestdatamatchedto within 1%for strainvalues.

m. Nitinol-driven fixtures may havegreat potential;however,significantefforts in designand
materialdevelopmentwouldberequired.

10.2 RECOMMENDATIONS

The recommendations are as follows:

a. Perform detailed cost breakdown of current fixtures, and focus fixture redesign efforts by

investigating alternatives for high-cost parts (e.g., grips).

b. Include testing of a reference material that is "creep free" for our exposure scenarios in the

l O0-cycle checkout of each fixture, and use in subsequent testing if fixture settling is

significant. This will allow differentiation of specimen creep and fixture settling effects.

c. Investigate use of high-temperature extensometers, LVDTs, and instrumented drivers to fully

assess load and displacement behavior of the fixture and specimen. These instrumentation

alternatives may provide a low-cost method for periodic fixture calibration. Instrumenting the

steel driver also may provide a load measurement that can be used to calibrate the fixtures.

d. Begin longer term (4,000-hr) testing on all DiCTE fixtures to obtain initial cyclic viscoelastic

response and residual strength data on candidate systems, to verify fixture calibration interval,

and to expose weak system elements that must be altered to ensure long-term test reliability.

e. Conduct baseline and aged property testing, including residual strength, stiffness,

photomicroscopy, and chemical and physical analysis to determine the extent and mechanisms

of material degradation after thermal and mechanical loading.

Perform initial durability testing (sec. 9.0 test plan) to verify test equipment and obtain residual

strength data.

g. Test other HSCT candidate composite materials as they become available.
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APPENDIX A - LAMINATE CURE CYCLES

K3B Cure Cycle (Autoclave)

a. Apply 5 inHg.

b. Heat up at l°F/min.

c. Apply full vacuum (30 inHg) when part reaches 350°F.

d. Apply 185 psi when part reaches 655°F.

e. Dwell at 655°F for 1 hr.

f. Cool part to 450°F at l°F/min.

g. Cool from 450°F to room temperature at 5°F/min.

h. Release pressure and debag.

BMI Cure Cycle (Autoclave)

a. Apply 22 inHg vacuum, minimum.

b. Heat to 300°F at 3°F/min.

c. Dwell at 300°F for 30 min.

d. Vent bag and apply 85 psig.

e. Heat to 375°F at 3°F/min.

f. Dwell at 375°F for 4 hr.

g. Cool to 120°F at <5°F/min before releasing pressure.

h. Debag.

BMI Post Cure (Freestanding in Oven

i. Heat to 420°F at 5°F/min.

j. Dwell at 420°F for 6 hr.

k. Cool to 120°F at <5°F/min.
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APPENDIX B - WEDGE GRIP DETAILED DRAWINGS
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APPENDIX C - COMPRESSION FIXTURE DETAILED DRAWINGS

Part A

\
Specimen

(Part D)

A.,at--]

PartF

PartB

_PLAN VIEW

Part E Stainless Driver
i" i-i

Part F invar reaction rod

Compression Adjustment

i

PartC

VIEW A-A

Clamping Blocks

S "

PRINCIPLE OF OPERATION

Three invar rods (Part F) are threaded into Part A, and Parts B and C

slide along dm rods. Part C is located using nuts threaded onto the

invar rods. Part E, the driver, is butted against Part B, and threaded

into part C. As the assembly is heated, the stainless steel of Part E

expands approximately 9 times farther than the invar rods, thereby

providing a compressive load to the specimen, which is held in place

between Parts A and B by the clamping blocks of Part D.

PART A

(Scale = 2:3)

Side View

PARTC

(Scale = 2:3)
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L.

 i,i,i

Part F

Thread is 3/8-24, both ends
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HSCT End Loaded Compression Fixture Notes

• The driver(PartE)must be manufacturedfrom 304 stainlesssteel

• Otherpartsmarked "Stainless"may be manufacturedfrom any stainlesssteel

• The reaction rods (Pans F) are invar 36.

Part Number Part Type

End Support

Center Support

Reaction Plate

Specimen Grip
Blocks

Driver

Part Description

Loads outside end of specimen

Loads inside end of specimen

Reacts load of driver. Provides

compression load adjustment

Grip specimen ends

Expands with temperature

to give compression load

Reaction Rod React compression load

Number Required

per Assembly
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APPENDIX D- TENSION FIXTURE DETAILED DRAWINGS

-----_B

Stainless driver tube (0.2" wall thickness)

lrlvar

Tension Adju_. Nut

B CUTAWAY VIEW
A.,91w

Cutouts allow heat transfer to specimen

PRINCIPLE OF OPERATION

A test specimen is mounted in a set of grips, which mount to Parts D and B.

Part E is _ of invar steel, which is a low thermal expansion steel.

Part E is mounted to Part D, and is restrained by a nut against Part A. As

Part C c_ with increasing temperature at a rate of about 9 times that

of the invar and the specimea, a tensile load is applied to the specimen
in-phase with rising temperature. This fixture win be placed in a thermally

cycling chamber for up w 7 years to apply cyclic tensile loads to graphite

specimens. (Ho_ that the grip assemblies are not included in these

drawings.)

Part A

VIEW A-A ASSY ....... _/ _

1/8" Key:

3.5 -

.25

114-28 x .5 deep (2 PLCS)

aligns end caps and pipe

ONE PART REQUIRED

3.25" dimension must fit in schedule 10 pipe

(3.5" OD, 0.12" wall thickness)

5/8 loose clearance

All Units Are In Inches
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HSCT Tension Fixture (Gripped Specimen) Manufacturing Notes

• Please quote quantifies of 1, 33, and 1000.

• All parts called as "stainless" may be any stainless steel. Pipe must be 304 stainless.

• Pipe is 3.5", schedule 10. OD = 3.5, wall thickness = 0.12".

• Construction of the first 33 fixtures must be complete by May 31. (One fixture built first for QC,

followed by numbers 2 through 33.

Part Number Part Type

End Cap

End Cap

Driver Pipe

Grip Clamp Plate

Invar Rod

Work Description

Cap reacts load from tension nut.

End cap mounts specimen grip

at outside end of pipe.

304 stainless, schedule 10 pipe

Mounts grip assembly

at middle of pipe.

Reacts load from driver

Number Required
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APPENDIX E- HYDRAULIC FIXTURE DETAILED DRAWINGS
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part D
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Reaction Tube

Cylinder Mount

Center Grip Plate

End Grip Plate

Pin Clamp
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PARTS LIST

Material
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17-4PH SS

17-4PH SS
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17-4PH SS

Quantity per Assy
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