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ABSTRACT

Numerical simulation of a very small amplitude acoustic wave
interacting with a shock wave in a quasi-1D convergent-divergent
nozzle is performed using an unstructured finite volume algorithm
with piece-wise linear, least square reconstruction, Roe flux differ-
ence splitting, and second-order MacCormack time marching. First,
the spatial accuracy of the algorithm is evaluated for steady flows
with and without the normal shock by running the simulation with a
sequence of successively finer meshes. Then the accuracy of the
Roe flux difference splitting near the sonic transition point is exam-
ined for different reconstruction schemes. Finally, the unsteady
numerical solutions with the acoustic perturbation are presented
and compared with linear theory results.

INTRODUCTION

The direct numerical simulation of very small amplitude acoustic
disturbances in compressible flows with shock waves is a challeng-
ing problem for computational aeroacoustics. For a successful sim-
ulation of such flows, the numerical algorithm is required to both
track the extremely small disturbances of the acoustic waves and
capture the shocks accurately. In addition, the appropriate algorithm
needs to be simple and efficient so that it can be used in simulations
of flows with complex geometries.

For the simulation of flows with complex geometries, unstruc-
tured finite volume methods have proven to be very popular, and
simulations of a large number of flows have been done with good
results using this approach. However, most of the finite volume
simulations to date were done for steady flows, and it is not clear
that unstructured finite volume algorithms can accurately capture
both the acoustic wave and the shock simultaneously in a computa-
tion. Therefore, there is a need to assess the accuracy of these meth-
ods for acoustic calculations.

In this paper, we perform numerical simulations of very small

amplitude acoustic waves incident on supersonic and transonic
flows in a quasi-1D convergent-divergent nozzle using an unstruc-
tured finite volume algorithm with piece-wise linear, least square
reconstruction, Roe flux difference splitting, and second-order
MacCormack time marching. First, the spatial accuracy of the algo-
rithm is evaluated for steady flows with and without the normal
shock by running the simulation with a sequence of successively
finer meshes. Then the accuracy of the Roe flux difference splitting
near the sonic transition point is investigated for different recon-
struction schemes. Finally, the unsteady numerical solutions with
the acoustic perturbation are presented and compared with linear
theory results.

TEST CASE DESCRIPTION

The test case category 5 from the 1994 ICASE/LaRC Workshop
on Benchmark Problems in Computational Aeroacoustics was
selected for this study. This test case consists of a very small ampli-
tude acoustic wave superimposed on the steady flow in a quasi-1D
convergent-divergent nozzle. The amplitude of the wave is speci-
fied to be in the order of 10° times the dynamic pressure based on
the speed of sound of the incoming flow.

The nozzle geometry is shown in fig. 1. The nozzle dimensions,
flow conditions, and normalizing conditions are the same as those
specified in the ICASE/LaRC workshop. To establish the normal
shock in the nozzle, the exit pressure to inlet total pressure ratio was
specified to be 0.76. The case with the normal shock is similar to
the study done by Meadows et al. (1993) using the MacCormack
and higher-order ENO schemes. In the current study, the inlet Mach
number is 0.5, and the exit Mach number is 1.55 (without shock) or
0.6 (with shock).

Since the test case is quasi- 1D, the computational grid used is
identical to the one that would be used in a calculation with a struc-
tured algorithm. However, the numerical algorithm used here is
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Fig. 1 Nozzle geometry

unstructured, and a simple test case such as this will allow efficient
and thorough evaluation of the algorithm’s accuracy.

NUMERICAL PROCEDURE
The goveming equation used for this study is the quasi-1D Euler
equation in the following form:
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The above equation is discretized using the finite volume
approach. In this approach, eq. (1) is integrated over a finite volume
which reduces to a single strip of length Ax for the 1D case. The
major steps in the solution procedure are: (1) reconstruction, (2)
flux computation, and (3) evolution. This is a standard finite volume
solution procedure that has been used in previous works, and it is
described in detail by Barth (1993).

Step 1: Reconstruction - A cell-centered scheme is used here.
The piece-wise linear, least square reconstruction procedure used in
this study is similar to those used by Barth (1993) and Coirier
(1994). Each of the three conservation variables is assumed to vary
linearly within a finite volume as:

U(x) = U+4U, (x-%) 3)

The overbars in eq. (3) denote cell-averaged values, and disa
gradient limiter, described by Barth (1993). The gradient limiter is
needed so that the reconstruction polynomial, eq. (3), does not pro-
duce new extrema that are outside the range of the cell-averaged
data used in the reconstruction process. A different gradient limiter
is used for each of the three conservation variables. Note that the
cell-averaged value of the unknown is recovered when eq. (3)is

integrated over the finite volume.

U is updated in step 3 below. Following Coirier (1994), U, is
computed using a least square procedure that minimizes the differ-
ences between the cell averages of the reconstructed polynomial
and the cell averages of the support set. For this 1D problem, the
support set consists of the left and right neighboring cells, and U, is
computed as:

o, = 20 ;‘ﬁl_f_i%’?‘”) @

Where the i index denotes the left and right neighboring cells.

Step 2: Flux computation - With a piece-wise linear reconstruc-
tion of the solution unknowns, the conservation variables are con-
tinuous and assumed to vary linearly within a finite volume.
However, there is no guarantee that they will be continuous across
adjacent volumes, since a different linear function is used in each
volume. As the result, a flux formula is needed to compute a single
flux at a finite volume boundary given fluxes from the adjacent vol-
umes. A popular flux formula used in finite volume codes is the Roe
flux difference splitting, and it is used here.

Step 3: Evolution - A large number of time marching algorithms
is available to advance the solution unknowns in time. Since the
problem is unsteady, an accurate time marching algorithm is
desired. In the current work, the two-stage, second-order MacCor-
mack time marching algorithm is used because of its simplicity. A
CFL number of 0.9 based on the minimum Ax and maximum (u+a)
is used in all computations, where u and a are the local flow speed
and speed of sound, respectively.

BOUNDARY CONDITIONS

Boundary conditions are needed to update the incoming flux that
is going into the first finite volume at the nozzle inlet and the outgo-
ing flux that is passing out of the last volume at the exit. Accurate
boundary condition implementations are important for successful
simulations of flows with unsteady, acoustic perturbations. For the
nozzle problem under consideration, the inflow boundary condi-
tions should accurately specify the inflow conditions and the
incoming acoustic wave, and the outflow boundary conditions must
allow the outgoing perturbations to pass without introducing non-
physical reflections back into the computational domain.

Different boundary condition implementations were tried, and an
implementation that gave the best results is described below.

Inflow - The incoming flow is always subsonic for this test case,
so the boundary conditions used are:

1. Specified Py,

Specified T,
oP o oP du
3. a—l—pca-:-l = —(u-c)(b—;-pc&)

The outgoing compatibility relation 3 above is solved with g-g

and gﬂx discretized using information from the computational



domain. For the acoustic computations, Py, and T, are specified as
functions of time.

Outflow - The outgoing flow is supersonic for the case with no
shock and subsonic for the case with shock. The applicable compat-
ibility relations are:

p_1ap__(3p 13p
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If the outflow is supersonic, then compatibility relations 1,2, and
3 are solved.

If the outflow is subsonic, then compatibility relations 1 and 2 are
solved and the nozzle exit pressure is specified.

If the outflow is subsonic with acoustic perturbations, then com-
patibility relations 1 and 2 are solved together with a modified
equation instead of the compatibility relation 3. The modified equa-
tion used is:

P du _
%Py =0

RESULTS AND DISCUSSIONS

All computations are done on an IBM RS 6000 workstation using
double precision (64 bit) floating point arithmetic. Converged
steady flow solutions are obtained to machine precision. At conver-
gence, the residual values typically have decreased by about 14
orders of magnitude. The acoustic computations are started from
the converged steady flow solutions. To assess the spatial accuracy
of the method for steady flows with and without the normal shock,
computations are performed with a sequence of successively finer
meshes. Log-log plots of the L; norm of the error versus the num-
ber of mesh points are made, and the spatial order of accuracy of
the method can be obtained from the slopes of these plots. From fig.
2, the spatial order of accuracy is seen to be better than two for the
case with no shock and between one and two for the case with the
normal shock. This is to be expected, since the limiters used in this
algorithm essentially reduce the order of accuracy down to one in
the neighborhood of a flow discontinuity.

For steady flows, Roe flux difference splitting (FDS) has been
found to give non-physical expansion shocks at the sonic transition
points. Since this would adversely affect the unsteady calculations,
it was explored further with a 30-cell grid. Fig. 3 shows that with a
piece-wise constant reconstruction, expansion shocks in the numer-
ical solutions cause them to depart significantly from the exact solu-
tions. However, with the piece-wise linear, least square
reconstruction, there is no expansion shock, and the numerical solu-
tions interpolate the exact solutions almost exactly.

A close examination of the results in fig. 3 reveals that with the
30-cell grid used, the sonic transition point at the throat of the noz-
zle is inside a cell. When the piece-wise linear reconstruction is
used, the Roe FDS never really see the sonic transition point, so that
a fortuitous choice of grid might have helped eliminating the expan-
sion shocks in the piece-wise linear calculations.
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Fig.5 Grid refinement study, no shock case

there are some spurious pressure oscillations near the nozzle inlet.

In Aftosmis et al. (1994), it was found that the piece-wise linear
reconstruction with the Barth’s limiter can produce spurious pres-
sure oscillations in their numerical simulation of the supersonic

sponding to about 30 cells per wave length), it can be seen that
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vortex, and a similar thing might be happening here. These oscilla-

Fine grid solutions with 1200 cells

Fig. 4

tions are visibly reduced when a finer mesh of 600 cells was used,
and they are essentially eliminated for a mesh of 1200 cells. This is
to be expected, since the action of the limiters diminishes with finer

meshes.

To see if that is the case, a 28-cell grid was constructed so that
the sonic transition point is located exactly at a cell boundary where

the Roe FDS is applied. The numerical solution obtained using this

grid is essentially the same as the 30-cell grid solution, so it appears
that when piece-wise linear, least square reconstruction is used with
Roe FDS, an entropy fix is not necessary to eliminate the expansion

shocks.

Grid refinement results for the case with the normal shock is
shown in fig. 6. In this case, there is a normal shock located down-

and the acoustic pressure perturbation is

amplified across the shock wave. For the mesh of 300 cells, the
computed jump in pressure perturbation is about 6% higher than the

stream of the nozzle throat,

Fig. 4 shows the fine grid numerical results with 1200 cells.
Results for the case with no shock are shown in 4a, and those for

linear theory prediction used by Meadows et al. (1993). When the

mesh is refined to 1200 cells,

the case with shock are shown in 4b. It can be seen in fig. 4b that

the difference between computational

the normal shock is sharply captured by this numerical algorithm

and linear theory predictions is reduced to about 1%.

with no visible pre- or post-shock oscillations. The computed Mach
number distributions of the steady flows agree almost exactly with

the analytical solutions. The acoustic pressure perturbations

Finally, fig. 7 plots the time history of the exit pressure for all of
the cases considered for one period of the acoustic wave. For the no
shock case, the result using a fourth-order accurate method

throughout the entire computational domain are also plotted in fig.

obtained by Casper (1994) with a 280-point mesh is also plotted for
the purpose of comparison. It can be seen that the coarser mesh

snapshots of pressure perturbations due to the

acoustic wave in the nozzle at different times are superimposed on

the same plot.

>

4. In these plots

solutions have a small phase error, which can be eliminated using a

finer mesh.

Fig. 5 shows the results of the grid refinement study for the no
shock case. In this case, the exit Mach number is supersonic, and
there is no shock in the nozzle. For the case with 280 cells (corre-
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a. Flow with shock

Fig.7  Time history of the nozzle exit pressure with the acous-

tic perturbation

CONCLUSIONS

Direct numerical simulation of acoustic waves incident on com-
pressible flows with and without a normal shock inside a quasi-1D

, Hampton,

Benchmark Problems in Computational Aeroacoustics,

convergent-divergent nozzle was performed using an unstructured

VA, October 24-26, 1994. (To be published in a NASA CP)

finite volume algorithm with piece-wise linear, least square recon-

., “An Adaptively-Refined, Cartesian, Cell-Based

Coirier, W. J
Scheme for the Euler and Navier-Stokes Equations,” NASA TM

106754,

Oct. 1994.

and second-order MacCor-

mack time marching. For steady flows, the agreement between the
numerical method and the exact solution was very good. The spatial
order of accuracy of the above method was found to be better than
two for the no shock case, and between one and two for the case
with the normal shock. With the piece-wise linear, least square

struction, Roe flux difference splitting,

Meadows, K. R., Casper, I., and Caughey, D. A., “A Numerical
Investigation of Sound Amplification by a Shock Wave,” FED-Vol.

147, Computational Aero- and Hydro-Acoustics, ASME 1993, pp.

47-52.

rect solution without using an entropy fix. The above method was
able to both track the propagation of a very small amplitude acous-

reconstruction, the Roe FDS was found to give the physically cor-
tic wave and capture the shock wave accurately.
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