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The phenomenon of strain aging has been investigated in polycrystalline and single 

crystal NiAl alloys at temperatures between 300 and 1200 K. Static strain aging studies 

revealed that after annealing at 1100 K for 7200 s (i.e., 2 h) followed by furnace cooling, 

high pmity, nitrogen-doped and titanium-doped polycrystalline alloys exhibited continuous 

yielding, while conventional-purity and carbon-doped alloys exhibited distinct yield points 

and Liiders strains. Prestraining by hydrostatic pressurization removed the yield points, 

but they could be reintroduced by further annealing treatments. Yield points could be re

introduced more rapidly if the specimens were prestrained uniaxially rather than 

hydrostatically, owing to the arrangement of dislocations into cell structures during uniaxial 

deformation. The time dependence of the strain aging events followed a t213 relationship 

suggesting that the yield points observed in polycrystalline NiAl were the result of the 

pinning of mobile dislocations by interstitials, specifically carbon. 
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Between 700 and 800 K, yield stress plateaus, yield stress transients upon a ten

fold increase in strain rate, work hardening peaks, and dips in the strain rate sensitivity 

(SRS) have been observed in conventional-pmity and carbon-doped polycrystals. In single 

crystals, similar behavior was observed; In conventional-purity single crystals, however, 

the strain rate sensitivity became negative resulting in serrated yielding, whereas, the strain 

rate sensitivity stayed positive in high pmity and in molybdenum-doped NiAl. These 

observations are indicative of dynamic strain aging (DSA) and are discussed in terms of 

conventional strain aging theories. The impact of these phenomena on the composition

structure-property relations are discerned. Finally, a good correlation has been 

demonstrated between the properties of NiAl alloys and a recently developed model for 

strain aging in metals and alloys developed by Reed-Hill et al. [1-3]. 
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CHAPTER! 
INTRODUCTION 

Backfm>und 

The development of more efficient gas turbine engines will depend upon the 

advancement of new high temperature materials with improved mechanical properties. 

These materials must have higher specific strengths and must maintain these strengths to 

higher temperatures than the nickel-base superalloys currently in use. Ordered intennetallic 

compounds are prime candidates to replace the superalloys. These materials form long 

range ordered crystal structures which are associated with the formation of strong A-B type 

bonds that typically result in high elastic moduli, high melting points, and high strengths. 

Furthermore, aluminide-based intermetallics exhibit good oxidation resistance and greater 

microstructural stability due to lower self-diffusion rates, another consequence of the 

strong bonding. 

Of the many intennetallic systems, alloys based on ~NiAI are particuJarly attractive 

for development. NiAl has a simple B2 (CsCI) crystal structure which is similar to the 

body-centered-cubic (BCC) structure. It exists over a wide range of stoichiometries 

(greater than 20 at.% at 1673 K) which allows for significant alloying to improve its 

mechanical properties. In addition, it exhibits an appreciably higher melting point (-1950 K 

versus 1573 K), lower density (5.9 g/cm3 versus 9.0 g/cm3), and a thermal conductivity 

up to eight times greater than that of Ni-base superalloys. The potential benefits of using 

NiAl in gas turbine applications would include: (1) decreased cooling requirements; (2) 

decreased weight; and (3) higher operating temperatures resulting in increased operating 

efficiencies and higher thrust-to-weight ratios. In addition, NiAl has been used for years as 

an oxidation resistant coating on turbine blades [4]. Like most intermetallics, however, 

1 
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NiAl is not currently a suitable replacement for superalloys due to its meager high 

temperature strength (above O.45T mp) and its poor fracture resistance and ductility below 

its brittle-to-ducti1e transition temperature (BDTf). 

NiAl undergoes a dramatic brittle-to-ductile transition at temperatures between 400 

and 1000K with the actual transition temperature varying strongly with alloy composition, 

processing history (i.e., thermal or mechanical), strain rate, bulk: form (i.e., polycrystal or 

single crystal), and orientation in single crystals. In polycrystals for example, Noebe et al. 

[5] have reported a 200K increase in the BDIT coinciding with a three order of magnitude 

increase in strain rate. Lahnnan and coworkers [6] have reported similar increases in the 

BOTI of "hard" [001] oriented single crystals. In "soft" non-[OOl] orientations however, 

the BOTI was found to be less strain rate sensitive. 

The BDTI in polycrystals and hard single crystals have been attributed to the onset 

of localized dislocation climb processes driven by short circuit diffusion [5]. In soft single 

crystal orientations however, the mechanism responsible for the BDTI is not as obvious. 

In crystals with soft orientations the BOTI occurs as low as O.25T mp and, as mentioned 

above, is much less sensitive to strain rate [6]. Possible explanations for the BDTI in soft 

orientations include enhancement of cross-slip leading to slip homogenization the operation 

of thermally activated deformation processes as in the other forms of NlAl or the unlocking 

of dislocations from point defects or impurities [7]. These explanations are only 

speculative and remain to be proven. Considering the peculiarly low BDIT in soft single 

crystals, an understanding of the mechanisms responsible for the BDTI in soft single 

crystals could reveal methods to lower the BDTI and lead to the development of more 

ductile alloys. 

At ambient temperatures, research has shown that NiAl deforms predominantly by 

dislocation glide on the <loo>{Oll} and <l00>(ool} slip systems of which only three are 

independent [8]. According to the Von Mises criterion, at least five independent slip 

• 
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systems are required for macroscopic plastic deformation in a polycrystalline body; this 

may account for the lack of ductility in polycrystalline NiAl [9-13]. 

In single crystals, limited tensile ductilities (S2%) are also observed. However, 

recent efforts have resulted in room temperature tensile elongations of up to 6% in 

conventional-purity binary NiAl annealed above the BDTI and rapidly cooled to room 

temperature [14,15] and in ternary NiAl crystals containing microalloying additions of Fe, 

Mo and Ga [16]. The mechanism behind this increased ductility is currently unknown but 

is suspected to be related to a gettering phenomenon since it is realized that some 

substitutional elements and interstitial impurities can cause significant embrittlement in Bee 

metals [17] and B2 ordered compounds such as NiAl [18]. Recent observations are 

consistent with this viewpoint. For example, room temperature tensile elongations of up to 

5% have been observed in low interstitial binary NiAl single crystals [19] and the ductility 

and fracture strength in biaxial bending of high purity NiAl was found to be significantly 

greater than for commetcial purity crystals [20]. Still, the effects of particular substitutional 

and interstitial elements on the mechanical behavior of NiAl is relatively unknown and the 

mechanisms by which various elements may enhance or hinder tensile ductility still remain 

a matter of conjecture. 

Hack [14,15] attributes the profound effects of heat treatment on mechanical 

properties to the creation mobile dislocations and suggests that the low ductilities reported 

in other studies are due to strain age embrittlement in which interstitial atoms segregate to 

mobile dislocations at moderate temperatures. The interstitials then pin the dislocations 

resulting in a lower density of mobile dislocations. Evidence in support of a strain aging 

effect are provided by the observation of serrated yielding [15,21-26], plateaus in the 

temperature dependence of yield strength, and low strain rate sensitivities near the BDTI 

and in the temperature regimes where serrated flow is observed [27-29]. In addition, strain 

aging has also been reported in Ni-rich NiAl [22], stoichiometric polycrystalline NtAl [30], 

mechanically alloyed NiAl [30], NiAl deformed under hydrostatic pressure [23,31], and in 
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other B2 intermetallics [32-34]. These phenomena are similar to those commonly observed 

in mild steels and Bee refractory metals [21,35-43]. However, the species responsible for 

this behavior in NiAl or other ordered alloys (i.e., interstitials, substitutional impurities, 

precipitates, vacancies, etc.) are currently unknown. A comprehensive understanding of 

these factors is required to fully discern the flow behavior of NlAl. 

Thus, the objectives of this investigation are to examine, in a systematic fashion, 

the phenomenon of strain aging and it's influence on the mechanical behavior of near 

stoichiometric NIAI. 

AWTOach 

In order to examine the effects of strain aging, several nominally stoichiometric 

polycrystalline and single crystal alloys containing varying interstitial contents were 

subjected to static strain aging (SSA) experiments and strain rate change experiments to 

reveal the temperature dependence of the strain rate sensitivity (SRS). The resulting data 

were then used to determine activation energies for deformation processes and to determine 

the species responsible for strain aging in NiAl. The resulting data was also analyzed using 

a recently developed theory by Reed-Hill et al. [1,3]. 



CHAPTER 2 
LTIERATURE REVIEW 

Introduction 

In the sections that follow, the physical metallurgy of NiAI alloys and the general 

aspects of static and dynamic strain aging phenomena are described. As the physical 

metallurgy of NiAl alloys has been described in detail in recent review articles [7,18,44], 

only a summary of the properties pertinent to the deformation of NiAl is provided. 

Physical Metallurgy of NtAI and NW Alloys 

Physicallfhermodynamic Properties 

The ordered intenneta1lic NiAl is a Hume-Rothery f3-phase electron compound with 

a valence electron-to-atom ratio of 3/2. As a result, NiAl crystallizes with a primitive cubic 

esa (cP2. B2) crystal structure which may be described as two interpenetrating primitive 

cubic unit cells where AI atoms occupy one sublattice and Ni atoms the second. This is 

illustrated in Figure 1. NiAl exists as a single phase ordered intermetallic over the 

composition range of 45 to 60 at. % Ni at 1000 K and has the highest melting temperature 

of any compound in the Ni-AI binary system although the melting point of the 

stoichiometric compound (i.e., Ni-50 at.%AI) is in dispute. For example, the phase 

diagram of Singleton et al. [45] (Figure 2) indicates that stoichiometric NiAI melts 

congruently at 1911 K. More recent evaluations, however, place the melting temperature 

of stoichiometric NiAl near 1955 K [46]. It has been suggested that the lower value might 

be attributed to the steep drop-off in melting temperature with deviation from stoichiometry 

or to unintentional contamination by ternary elements [7]. In addition, NiAl exhibits a high 

5 
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degree of thermodynamic stability, as indicated by it's large negative heat of formation 

(approximately -72 kJ/mol) [47]. 

Lattice Parameter. Density and Defect Structures 

Lattice parameter and density have been investigated thoroughly and have been used 

to deduce the types of defect structures occurring in the NiAllattice [48-50]. Nickel, being 

smaller and heavier than AI, should cause a reduction in the lattice parameter and an 

increase in the density when it is substituted for AI. This is consistent with observations 

for alloys containing more than 50 at.% Ni (Figure 3). In AI-rich alloys, however, both 

the lattice parameter and the density decrease with increasing AI content and the decrease is 

more rapid than would be expected by replacement of Ni atoms by AI. This behavior is 

rationalized by the creation of vacancies on the Ni-sublattice rather than by substitutional 

defects as observed in Ni-rich alloys. In addition to influencing the lattice parameter and 

density, the defect structures induced due to deviations from stoichiometry also 

dramatically influence the mechanical behavior. For example, Vedula and Khadkikar [50] 

have shown that the yield strength shows a minimum at the stoichiometric composition. 

Furthermore, Hahn and Vedula [9] have shown that deviations of less than 1 % from 

stoichiometry result in brittle behavior at room temperature as well as an increase in the 

BDTT. The influence of stoichiometry on the yield stress of NiAl is described in more 

detail in the next section. In all cases, the yield stress decreases with increasing 

temperature. The behavior of near-stoichiometric polycrystals resembles that of soft

oriented single crystals while the strengths of off-stoichiometric alloys approach that of 

hard-oriented single crystals. Interestingly, the increases in 0.2% offset yield stress, 00.2, 

with deviation from stoichiometry are not equivalent on both sides of the stoichiometric 

composition [50]. For Ni-rich alloys, for example, the hardening rate was shown to be 

120 MPa/at % while in AI-rich alloys the hardening rate was approximately 350 MPa/at. % 

[18]. The greater hardening rate on the AI-rich side of stoichiometry suggests that Ni 
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vacancies provide more resistance to dislocation motion than antisite atoms. These strength 

increases, however, become irrelevant above 1000 K where stoichiometric NiAl becomes 

stronger than nonstoichiometric compositions [51,52] primarily due to diffuSional 

defonnation. 

In addition to the constitutional vacancies described above, another type of vacancy 

defect can exist in NiAl. These are thennal vacancies which can be introduced by rapid 

quenching from elevated temperatures. Bowman et al. [53] have shown· that a 50-fold' 

increase in cooling rate from temperatures above 1 ()()() K can increase the compressive yield 

stress by almost 30 percent for near-stoichiometric binary NiAl. However, when the 

material is microalloyed with Zr, the dependence of strength on cooling rate disappears. 

Similarly, Nagpal and Baker [54] have shown that deviations from stoichiometry reduce 

the sensitivity of the binary alloy to cooling rate. Cooling rate has been shown to similarly 

influence the yield stress of NlAl single crystals [55] .. 

Elastic Properties 

The elastic behavior of NiAl has also been studied in some detail and has been 

shown to vary with processing technique and temperature. For example, Rusovic and 

Warlimont [56] have summarized the single-crystal elastic constants for NiAl as a function 

of temperature, cooling rate and stoichiometry showing the overall elastic properties of 

NiAl to be anisotropic with an anisotropy factor, ElOO/EuO, close to 3.3 [57] and showing 

a mild temperature dependence but a strong stoichiometry dependence. This is illustrated in 

Figure 4a along with the recent results of Walston and Darolia [46] which shows the single 

crystal dynamic Young's moduli, E, for near-stoichiometric NiAl for a variety of 

orientations. It has also been shown that minor alloying additions have relatively little 

influence on the dynamic Young's modulus of <001> single crystals [46]. In polycrystals, 

Young's modulus is relatively insensitive to stoichiometry, but is very dependent on 

processing technique [58-60] (Figure 4b); extruded materials exhibit higher moduli and 
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different temperature dependencies than conventional cast and homogenized ingots or hot

pressed prea1loyed powders. This can be rationalized, in comparison to single crystals, in 

terms of the crystallographic texture that develops during processing. Extruded NiAl-based 

materials commonly exhibit a preferred <111> orientation [61,62], whereas cast or hot

pressed materials are not expected to exhibit a strong preferred orientation. As a result, cast 

or hot-pressed materials have lower moduli in comparison to the higher moduli observed in 

<lll>-textured material. 

The remaining physical properties have not been characterized to the same degree as 

the lattice parameter, density or the elastic modulus. However, it has been reported that 

alloying NiAl with Ti and Re significantly reduces the thermal conductivity, whereas 

additions of 2.5 at. % Hf had minor effects, decreasing the thermal conductivity of NiAl 

single-crystals by only 15% [46]. These and other properties have been reviewed recendy 

[7,18,44]. 

Flow and Fracture Bebayior 

SUpSysterns 

The operative slip systems in NiAl single crystals and polycrystals are described in 

detail in recent review articles by Miracle [44] and Noebe et ala [7,18]. NlAl single crystals 

exhibit two different types of slip behavior depending upon crystal orientation. In NiAI, 

the shortest translation vector that will maintain the B2 structure is that along the cube edge 

(i.e., in the <100> crystallographic direction). For single crystals in "soft" orientations and 

in polycrystals, the dominant slip vector is <001>. However, if the loading direction is 

along [001], the "hard" orientation, then the operative slip vector at low and intermediate 

temperatures is <111>, and at elevated temperatures is a combination of <110> and <100>. 

Soft orientations include all non-<OOl> loading directions where <100> slip dominates. 

Orientations near [001] are considered hard because <001> Burgers vectors have a zero or 
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near-zero resolved shear stress resulting in the operation of alternative slip systems at very 

large yield stresses. 

Early slip system determinations between 300 and 1273 K were completed by Ball 

and Sma]Jman [51,63] who identified a <001>{ 110} slip system in all soft oriented single 

crystals. In addition, they also observed cross slip or pencil glide on orthogonal {110} 

planes. Shortly afterward, Wasilewski et al. [64] reported duplex cube slip, <001>{100}, 

in [110] single crystals. This observation was later confirmed by Field et al. [65]. Cube 

slip was also reported by Loretto and Wasilewski [66] in [112] crystals deformed between 

77 and 1053 K. Only <001> slip is observed in soft oriented single crystals due to the 

nondissociated, compact structure of the <001> dislocation core [67] making <001> 

dislocations much more mobile than those with other slip vectors. In addition, it has been 

observed that NiAl in soft orientations deforms by <001> slip on either {100} or {110} 

slip planes in accordance with Schmid's law whereas for hard orientations, Schmid's law 

fails [68]. In hard oriented single crystals, <100> slip does not occur because the resolved 

shear stress for <100> slip approaches zero. As a result, deformation occurs by non

<001> dislocations giving rise to elevated yield stresses at low temperatures [64] and 

enhanced creep strengths at elevated temperatures [69]. 

Deformation in polycrystals occurs in accordance with that in soft-oriented single 

crystals. Investigators have reported the operation of <001>{1l0} and <001>{100} slip 

systems [53,70,71]. Isolated dislocation segments with non-<OOl> Burgers vectors have 

been identified in as-extruded NiAl [72,73]; their presence is attributed to interactions 

between <001> dislocations due to the extensive deformation that occurs during the 

extrusion process [74]. The operation of <100> slip vectors on planes other than {001} 

and lOll} has been reported [75,76] under conditions of constrained flow, but are not a 

common aspect of the deformation of NlAl. 
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Yield Stren~ 

Similar to BCC transition metals, the yield and flow behavior of NiAl is extremely 

sensitive to temperature and composition. At low temperatures, the yield stress exhibits a 

strong temperature dependence. This temperature dependence is attributed to a high Peierls 

stress. At intermediate temperatures, a yield stress plateau is observed where the yield 

stress is mildly temperature dependent Finally at high temperatures, the yield stress again 

drops with temperature. Some results for single crystal and polycrystalline NiAl are shown 

in Figure 5. As shown in Figure 5a, the yield stress of single crystals exhibits a strong 

dependence on orientation. The yield stress versus temperature curves for soft oriented 

single crystals is similar to those observed for low yield strength polycrystalline NiAl. 

At low temperatures, hard oriented single crystals, on the other hand, exhibit yield 

stresses several times larger than those for other orientations and exhibit a lower 

dependence on temperature. When the temperature is increased above approximately 600 

K, however, the yield stresses of these crystals become extremely temperature dependent 

exhibiting a sharp decrease in yield stress over a narrow range of temperatures. In this 

regime, the slip vector has been shown to change from <111> to <001> and <011> [77]. 

Finally, at temperatures exceeding 1000 K, bulk diffusional processes dominate resulting 

in yield strengths similar to those observed in soft-oriented single crystals and in 

polycrystalline NiAl. 

Tensile behavior 

Single crystals of nominally stoichiometric NiAI exhibit different behaviors 

depending on crystallographic orientation. Hard-oriented single crystals exhibit essentially 

zero plastic strain to failure in tension at room temperature but undergo a sharp BDTI' at 

temperatures near 600 K [78,79]. Similarly, soft-oriented single crystals also exhibit a 

.. 
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sharp BDTI ranging from 475 to 525 K [6,80]. In hard-oriented crystals, the BDTI' 

corresponds to the temperature where the steep decrease in yield stress begins with 

increasing temperature. This decrease has been attributed to a change from <111> slip to 

climb of <100> and <110> dislocations. Initially, it was reported that soft-oriented single 

crystals also exhibited extremely low plastic strains to failure (on the order of one percent) 

at room temperature [68,80]. Slightly above the BDTI', anomalously large tensile 

elongations (greater than 100 percent) have been reported for soft-oriented single crystals 

while at even higher temperatures the ductility decreased to approximately 45 percent 

[6,78,80,81]. Takasugi et al. [80] attributed this increase to a balance between work 

hardening caused by glide and relaxation processes due to climb resulting in a large 

resistance to necking. 

More recently, however, tensile elongations approaching seven percent have been 

measured in soft-oriented binary single crystals of low interstitial high purity NiAl [19], 

conventional purity NiAl [14,15,28] and in nearly stoichiometric crystals doped with 

approximately 1000 appm of Fe, Mo or Ga [16,26]. In the conventional purity material, 

the dramatic increase in ductility occurred after rapid cooling from elevated temperatures 

(1573 K) whereas the increased ductility in the low interstitial, high purity material was not 

dependent on heat treatment and cooling rate. The influence of the ternary dopants is 

illustrated in Figure 6. Interestingly, the ductility passes through a maximum at small 

alloying additions and the benefits of doping vanish as the dopant level exceeds 0.5 at. %. 

It has been suggested that the ductilizing effect is due to the gettering of interstitials, 

although, the real reasons for this behavior remain unknown. Interestingly, similar 

alloying schemes in polycrystalline alloys have been unsuccessful [82,83]. This is not 

really surprising since deformation occurs by <001> slip with only three independe~t slip 

systems available for deformation [63], rather than the five required for extensive uniform 

deformation of a polycrystal, leaving little room for significant room temperature ductility, 

independent of the other factors. 
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Fracture toupness 

Room temperature fracture toughness of notched NiAI bend samples has been 

reported to be in the range 7 to 12 MPa.Jm when the notch is cut normal to the <100> 

direction and in the range 4 to 6 MPa..JiD. when the notch is cut normal to the <110> 

direction [84,85]. In notched polycrystalIine bend samples of nominally stoichiometric 

single phase NiAI, fracture toughness values have been observed to be independent of 

grain size, stoichiometry for Ni-rich alloys, and processing technique [86-89] with 

measmed values in the range 4 to 7 MPa.Jm . 

As mentioned previously however, Hack and co-workers [14,15,28] recently 

observed that the fracture toughness of commercial purity single crystals is extremely 

sensitive to heat treatment and cooling rate. In double cantilever beam specimens with the 

notch plane perpendicular to the <110> direction, single crystals rapidly cooled to room 

temperature from 1573 K exhibited fracture toughness values of nearly 16 MPa.rni. 

When rapidly cooled specimens were subsequently re-annealed at 473 K and slowly cooled 

to room temperature, however, the fracture toughness dropped to 3 MPa.rni. Comparable 

heat treatments had no influence on low-interstitial, high purity single crystals tested in 

four-point bending with the crack plane normal to <100>. There, fracture toughness 

values in the range 10 to 12 MPa..JiD. were observed independent of heat treatment [19]. 

More experiments using a miniaturized disk bend method [20,90] indicate that low

interstitial N'lAl has an intrinsically larger room temperature ductility and fracture toughness 

than commercial pmity material. 

Influence of Microalloyin~ Additions and Impurities 

Finally, substitutional and interstitial elements appear to significantly influence the 

yield and flow behavior of NiAl. For polycrystals, abundant solid-solution alloying data 

exist. Some of the ternary and quaternary additions have included Be, B, C, Cr, Cu, Fe, 

Ga, La, Mo, N, Nb, Mo+Ti, V, Nb and Y to name a few (reviewed in references 
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[6,18,44,91,92]). In all cases, the flow stress was enhanced by the presence of solute and 

the hardening rate was generally shown to be dependent on solute size. This is illustrated 

in Figure 7. 

In single crystals, a study [16] of the influence of Fe, Ga and Mo on the yield 

strength of <110> oriented single crystals showed Mo to be a potent solid solution 

strengthener with very limited solubility, while Ga exhibited a mild strengthening effect and 

Fe, at levels of less than 1 at. %, reduced the yield stress. In addition, recent studies 

indicated that the critical resolved shear stress in low-interstitial high purity single crystals 

is significantly lower than that for commercial purity material [55]. 

As discussed above, microalloying additions of Fe, Ga and Mo in the 0.1 to 0.2 

at.% range consistently increase the room--temperature tensile ductility of soft-oriented 

single crystal NiAl. The mechanism(s) for this increase in ductility have not been 

determined, although it is speculated that it is the result of gettering of interstitials [16]. 

Static Strain A&in~ (SSA) 

The term strain aging characterizes a time-dependent strengthening or hardening 

process resulting from elastic interactions of solute atoms with strain fields of dislocations 

in plastically deformed metals and alloys [93]. Strain aging is most common in alloys 

containing interstitial or substitutional solute atoms capable of segregating to and pinning 

dislocations. The aging reactions can occur in either static or dynamic modes depending 

upon whether they occur prior to or during plastic deformation. Static strain aging (SSA) 

typically occurs in metals and alloys following prestraining, unloading (either partially or 

fully), aging for a prescribed time and then reloading at the same strain rate as the prestrain. 

A schematic illustration of SSA is provided in Figure 8. SSA is typically manifested by an 
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increase in yield stress or flow stress following aging and the return of a sharp yield point 

in the deformed alloy [94]. 

Mechanisms of SSA 

In BCC metals, SSA can typically be separated into four processes: the Snoek 

effect, Cottrell locking, Suzuki locking and precipitate formation. Each mechanism is 

described below. 

The Snoek effect The Snoek effect is a strain-induced ordering of interstitial solute 

atoms around dislocations [95-97]. In the BCC lattice, interstitial atoms typically occupy 

octahedral sites at the center of cube edges and cube faces (Figure 9). However, the 

interstitial atoms are larger than the space available for them in an octahedral site. For 

example, an atom at position a (Figure 9a) will cause the substitutional atoms A and B to be 

displaced in the z direction. If four of the octahedral positions lying parallel to the z axis 

were to become occupied by interstitial atoms as illustrated in Figure 9b, then the unit cell 

would become elongated in the z direction and would assume a tetragonal shape. In the 

absence of an applied stress, a statistically equal number of interstitials will occupy sites 

parallel to each of the x, y and z axes. Thus, the unit cell remains cubic. The application of 

an external stress in the z direction, for example, causes the interstitial sites parallel to the z 

axis to enlarge while the openings perpendicular to the z axis decrease in size making it 

energetically more favorable for atoms in position a of Figure 9c to jump to position b. 

Schoeck and Seeger [97] have critically evaluated this mechanism and have concluded that, 

since no long range diffusion is required, this process occurs very rapidly and is normally 

completed within the time interval of one atomic jump of the species responsible for 

pinning. In addition, Nakada and Keh [98] have indicated that the apparent intercept of 

yield point retmn data plotted as AOu versus t2f3 is positive when Snoek ordering occurs 

prior to Cottrell atmosphere formation. Rosinger [42] has found that the activation energy 

for this process in ferritic steels is approximately 60 kJ mol-l. 

• 
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Cottrell lockin&. Cottrell locking (also known as Cottrell atmosphere formation), 

which has been treated in detail by Cottrell and Bilby [43], involves the time- and 

temperature-dependent growth of solute atmospheres near dislocations. During atmosphere 

formation, elastic interactions between solute atoms and the strain fields of dislocations 

create a driving force for the diffusion of interstitial solutes toward the strain field This 

mechanism results in a lowering of the total energy of the system and effectively locks the 

dislocations in the sites that they occupy during the process. The end result is an increase 

in the stress required to move a dislocation. Important characteristics of Cottrell locking are 

an aging time dependence for yield point return which follows a 2/3 power law and an 

activation energy for yield point return which is equivalent to the migration energy for the 

solute causing Cottrelllocldng. Though a 2/3 aging time dependence has been reported for 

several metals and alloys (for example, see reference [94]), the 2/3 power law often fails 

[99]. In ferritic steel, the activation energy for atmosphere formation is approximately 90 

kJ mol-1 [42], which is equivalent to the activation energy for volume diffusion of 

interstitial solutes. 

Suzuki locldn&. Suzuki locking has its origin in the chemical interaction between 

solute atoms and stacking faults [100]. This mechanism has been commonly observed in 

supera110ys and is only expected to be signific~t in metals exhibiting low stacking fault 

energies in which stacking fault widths are large, i.e., FCC and HCP metals and alloys. 

As NiAl exhibits a high stacking fault energy and no evidence of stacking faults before or 

after deformation, this mechanism inapplicable. 

Precipitate formation. Precipitate formation only occurs when the metal is 

supersaturated with solute atoms. Strain aging occurs when interstitial or substitutional 

atoms, or compounds composed of those solutes (e.g., carbides, nitrides, oxides, borides, 

etc.) precipitate on dislocations during aging, effectively pinning them. 
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Yield point return 

Yield points that repeatedly return after aging are associated with the formation of 

solute atom atmospheres around dislocations. Mobile dislocations that were once active 

during deformation prior to unloading are pinned as a result of aging. For this pinning to 

occur, solute atoms must diffuse through the lattice to accumulate around dislocations. As 

a result, the reappearance of the yield point is a function of time which depends on the 

temperature since diffusion is a temperature-dependent function. Rosinger et ale [101] have 

shown that two plateaus are typically observed when the increment of yield stress, AeJ, 

observed after SSA is plotted versus the aging time ta (Figure 10). The first plateau, which 

occurs at shorter tats, is associated with Snoek strain aging while the second plateau, 

which occurs at longer tats, is associated with Cottrell strain aging. The time 

corresponding to the fU'St inflection point between the two stages has been shown to 

correspond to the time required for a single interstitial solute atom to undergo a single jump 

[101]. Easy identification of each regime can be made by plotting Aa versus ta2/3. The 

decrease in Ila observed after the second plateau is associated with saturation which occurs 

when the interstitial atoms have migrated to dislocations in sufficient numbers to either 

relieve the strain energy induced by dislocations in the lattice or to set up concentration 

. gradients restricting the further migration of solute [43]. Saturation also occurs when the 

migration of interstitial atoms to dislocations results in the depletion of interstitial atoms in 

the surrounding lattice. At even greater times, the concentration of solute atoms about the 

dislocations may exceed the solid solubility limit of the solute in the solvent metal at that 

temperature. As a result, precipitates may form resulting in a decrease in Aa, or softening 

[102]. 

Qynamic Strain AIM~ roSA) 

Dynamic strain aging is a phenomenon exhibited by many metals and alloys [103]. 

It is the result of interactions between diffusing solute atoms and mobile dislocations during 

• 
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plastic deformation. This process tends to occur over a wide temperature range which is 

dependent upon strain rate e. 
Dynamic strain aging is manifested by: the appearance of serrations, load drops, 

jerkiness or other discontinuities in the stress-strain curves obtained in constant-extension

rate tensile or compression tests; peaks or plateaus in the variation of flow stress, work

hardening rate, e=AG/~ and Hall-Petch slope, ke, with temperature, T, and minima in the 

variation of ductility and strain-rate sensitivity, s=AG/Alne or n=AlnG/alne, with T; and 

low or negative values of s and n in the temperature region of DSA [104]. Some of these 

manifestations are illustrated in Figure 11. These phenomena are associated with the 

dynamic formation and migration of solute atmospheres around dislocations during 

deformation. 

Serrated flow cmyes 

Serrations, load drops or jerkiness in the stress-strain curves obtained in constant

extension-rate tensile or compression tests are perhaps the best known manifestation of 

DSA. In creep tests under constant load or stress, or in constant-loading rate tests, DSA is 

manifested as staircase creep whereby sudden bursts of plastic strain periodically occur 

resulting in staircase-like creep curves [104]. 

Johnston [l05] and Hahn [21] have proposed that load drops or yield point 

phenomena are related to an initially low mobile dislocation density and a low dislocation

velocity stress sensitivity. In reference to the latter, Gilman and Johnston [106,107] and 

Stein and Low [108] have demonstrated that the dislocation velocity V is related to the 

resolved shear stress according to the equation: 

(1) 

where 't is the applied resolved shear stress and D and m are material properties. In tensile 

or compression tests, specimens are deformed at constant nominal strain rates e such that 

(2) 
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where Ep is the plastic strain rate in the specimen and Ee is the elastic strain rate of the 

specimen and the machine. For a load drop to occur during deformation, the plastic strain 

rate must exceed the imposed strain rate. Assuming that the plastic strain rate under 

dislocation glide obeys the Orowan equation 

~=~~ rn 
where Pm is the mobile dislocation density, V is the average dislocation velocity and b is 

the Burgers vector; load drops or serrations can occur when there is an instantaneous 

increase in either Pm , V, or both. It is commonly accepted that the serrations observed 

during DSA are the result of repeated locking and unlocking of dislocations from solute 

atmospheres which results in a sudden increase in Pm. The solute atoms, however, 

repeatedly diffuse to form atmospheres resulting in repeated yielding (i.e .• serrations). 

DSA is, therefore, expected to be more pronounced when V is equal to the drift velocity of 

solutes in the stress field of a dislocation. Furthermore, DSA can only occur in a range of 

intermediate strain rates and temperatures. At low temperatures and high strain rates, the 

solute velocity will be too small (compared to the dislocation velocity) to cause strain aging. 

At high temperatures and low strain rates, any solute atmospheres that form will be able to 

keep up with the dislocation velocity and the serrated flow will again disappear. 

T}!Pes of serrations 

Serrated flow can exhibit itself in a number of forms. Five types of serrations 

resulting from DSA have been identified (Figure 12) and were summarized by Rodriguez 

[104] as follows: 

1. Type A serrations arise from periodic Liiders bands initiating at one end of the 

specimen and propagating along its gauge length. They are considered to be 

"locking" serrations and are characterized by an abrupt rise followed by a drop 

below the general level of the stress-strain curve. They occur in the low T, high E 

portion of the DSA regime. 

• 
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2. Type B serrations are oscillations about the general level of the stress strain curve. 

They also arise from the formation of Liiders bands, however, these bands do not 

propagate and are normally observed at higher temperatures and lower strain rates 

than type A bands; in other words they occur when there is an increased diffusion 

rate of solute atoms. 

3. Type C serrations, which occur at higher temperatures and lower strain rates than 

types A and B, are yield drops below the general level of the flow curve. These 

serrations are considered to be the result of dislocation unlocking. 

4. Type D serrations are plateaus in stress-strain curves due to the propagation of 

deformation bands with no work hardening or strain gradient ahead of the moving 

front. These serrations can occur alone or with type B serrations. 

S. Type E serrations develop from type A serrations at high strains. They resemble 

type A serrations but exhibit little or no work-hardening during band propagation. 

As noted by Reed-Hill [109], regardless of the type of serrations observed, serrated flow is 

discontinuous and involves the immobilization of dislocations. 

Often associated with the occurrence of serrations is a critical strain, £C, for the 

onset of serrated yielding. This strain is associated with the buildup of a sufficient 

dislocation density for serrated flow to occur and its value is dependent on both T and e. 
At higher strain rates and lower temperatures, £c typically increases with increasing strain 

rate and decreasing temperature [104]. However, in regions of higher temperature and 

lower strain rate, £c exhibits inverse behavior and increases with increasing temperature and 

decreasing strain rate [104]. This phenomenon is known as the inverse Portevin-Le 

Chatelier effect and is normally associated with type C serrations. Even though the 

occurrence of this "inverse" phenomenon has been substantiated, the reasons for its 

occurrence are unknown. 
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Theories of DSA 

Several theories have been advanced to explain DSA phenomena and they typically 

fall into three main categories: solute drag models based on the model of Cottrell, "static" 

aging models based on the work of McCormick [110,111] and van den Beukel [112], and 

dislocation interaction models based on the work of Kocks [113,114]. These theories will 

be discussed below along with a theory recently advanced by Reed-Hill et al. [1-

3,115,116]. 

The Cottrell model 

The Cottrell model [43,117-119] considers DSA in terms of its most visible 

manifestation, the Portevin-Le Chatelier effect This model assumes that serrated flow 

begins when the velocity of a dislocation exceeds the critical drag stress exerted by a solute 

atmosphere. The critical velocity, V c, is given by: 

Vc=4D/l (4) 

where D is the solute diffusion coefficient and I. the effective radius of the solute 

atmosphere. Above this velocity, the stress decreases with an increase in dislocation 

velocity making it logical to assume that V c represents a critical condition for the appearance 

of serrations on a stress-strain curve. 

H the Orowan equation is assumed valid, then V c can be expressed as: 

Vc= e/cpbpm (5) 

or the equation may be rewritten as: 

e = V ccpbpm = 4Dcpbpm/l (6) 

where e is the applied strain rate, cp is a Schmid orientation factor, b is the Burgers vector, 

Pm is the mobile dislocation density, D the solute diffusion coefficient, and I. the radius of 

the dislocation atmosphere. The dislocation density is normally considered to be a function 

of the strain, e, such that: 
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Pm=N~ (7) 

where N and P are constants. In the case of substitutional alloys, diffusion occurs by the 

vacancy mechanism such that the diffusion coefficient, D, is given by the relation: 

(8) 

where 

(9) 

and represents the thermal equilibrium concentration of vacancies, Do is the frequency 

factor, Qm represents the activation energy for the movement of vacancies and Qr is the 

work to form a vacancy. During plastic deformation, it is generally agreed that the total 

vacancy concentration increases with strain according the relation: 

Cv=K£m (10) 

where Cv is the vacancy concentration and K and m are constants. Based upon this, the 

diffusion equation can be rewritten as: 

D = DoKe
m 

exp( - ~~ ) (11) 

Substituting this relation back into the original Orowan equation yields: 

eP+m = leexpQm /kT 
c 4C\>bNKDo 

(12) 

This equation suggests several experiments for determining the parameters p+m and Qrn, 

but fails when it comes to predicting the critical strain itself [111]. 

The McConnick model 

The inability of the Cottrell model to predict Ec prompted McCormick to propose an 

alternative model [110,111]. The basis for this model is the assumption that dislocation 

movement is discontinuous as assumed in the dislocation arrest theory of Sleeswyk [120] 

who proposed that during the time when dislocations wait at obstacles, mobile solute atoms 
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can be drawn to them resulting in strain aging. According to this model the dislocation 

velocity, v, can be expressed as: 

L 
(13) v=---

tw+tf 

where L is the average spacing between obstacles, tr the mean flight time between 

obstacles, and tw the mean waiting time at an obstacle. In most cases, the average 

dislocation velocity is determined by the arrest time such that: 

L 
v=-

tw 
(14) 

McCormick defined the aging time, tat as the time required to lock moving dislocations and 

proposed that serrations on stress-strain curves occur when ta == two When ta > tw, upon the 

onset of plastic deformation dislocations arrested at obstacles will not be locked and flow 

will be continuous. During straining, however, ta can decrease due to vacancy production 

while tw increases due to dislocation multiplication such that a critical strain will exist where 

ta = two 

To evaluate ta, McCormick assumes a Cottrell-Bilby [43] 2/3 power law where: 

( 
C )213 kTb2 

t - --L a-
aCo 3UmD (15) 

and Cl is the solute concentration at the dislocation required to lock it, Co is the solute 

concentration in the alloy, Urn is the binding energy between the solute and the dislocation, 

D is the solute diffusion coefficient and ex is a constant equal to about 3. 

Assuming that both dislocation density and vacancy concentration are functions of 

strain as expressed above, McCormick arrives at an expression for the critical strain in 

substitutional alloys of the form: 

(16) 
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This expression can be simplified for BCC interstitial alloy systems where diffusion occurs 

independently of vacancy concentration. In this case, the equation becomes: 

(17) 

where Do is the interstitial diffusion frequency factor and Q is the activation energy for the 

diffusion of interstitial solute atoms. 

This theory has advantages in -that it is able to accurately predict the critical strain for 

the appearance of serrated yielding as well as the temperature and strain rate dependence of 

£C. This theory, however, does not take into account other aspects of DSA such as the 

yield stress plateau, abnormal and rate dependent work hardening, flow stress transients 

that occur on changing the strain rate and the development of negative strain rate 

sensitivities. 

The van den Beukel model 

In an attempt to create a more universal theory of DSA, van den Beukel [112,121], 

starting with Sleeswyk's hypothesis [120], developed a theory based on the idea that a 

moving dislocation can be subject to strain-aging during its waiting time at an obstacle. 

The major advance in this model is the inclusion of the activation enthalpy, H, in the 

thermally activated strain rate equation: 

.. (H) e=eoexp - kT (18) 

where £ is the strain rate, £0 is a constant and k and T have their usual meanings. It is 

assumed in this model that the activation enthalpy is a function of the effective stress, (J * , 

and the local solute concentration at the dislocation, C. The value of C is a function of the 

time that the dislocation waits at an obstacle, tw, and the rate of solute drift to the 

dislocation which is, in tum, a function of the diffusion coefficient or: 

(19) 
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He further shows the quantity Dtw to be a function of the strain, strain rate and temperature 

and makes use of a t213 relation between the concentration and the time formulated by 

Friedel [122] assuming that Dtw is small. Thus we have: 

(20) 

where Co is the nominal solute concentration of the alloy and K is given by: 

K = 3Um (7tC )3/2 
b2kT 0 

(21) 

In this equation Urn represents the binding energy between the solute and the dislocation. 

By further considering H to be a function of the local solute concentration at the 

dislocation and the effective stress, van den Beukel obtained an activation enthalpy equation 

of the form: 

* 
H=-T.V* oa +ToHdC 

or oCdT 
(22) 

where V* is the activation volume. The fIrSt term on the right hand side of this equation 

assumes that a single thermally activated mechanism controls the flow stress [123] and is 

considered to give the activation enthalpy in the presence of DSA. The second term on the 

right hand side of the equation is considered to represent the DSA component of the 

activation enthalpy. 

He also showed that the strain rate dependence of the flow stress could be 

expressed as: 

(23) 

where the first term on the right side is the normal strain rate dependence in the absence of 

diffusion and the second is due to DSA. 

Finally, van den Beukel obtained a relationship for the strain rate sensitivity by 

assuming that, upon an increase in strain rate from a low to a high rate, the change in 

activation enthalpy is given by: 
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(24) 

which allowed him to write: 

(25) 

In this equation, the fll'St term on the right side corresponds to the strain rate sensitivity in 

the absence of DSA while the second term is the component due to DSA. It can be seen 

from these equations that any solute mobility makes a negative contribution to the total 

strain rate sensitivity and that this contribution increases with increasing strain. When the 

total strain rate sensitivity becomes negative, plastic flow becomes unstable and serrated 

flow is obserVed. 

Van den Beukel further extends his investigation to show that the temperature 

dependence of the flow stress as well as the work hardening can be expressed by two 

additive terms; one friction term and one forest strength term. The friction term is assumed 

to be independent of strain but is said to be affected by aging while the forest strength term 

is assumed to be independent of solute concentration except through bulk material 

properties such as stacking fault energy [121] (i.e., the friction term is affected by DSA 

while the forest term is not). 

Although this model represents an improvement over the earlier models of Cottrell 

and McCormick, it does have shortcomings: 

1. Quantitative predictions depend upon a detailed knowledge of the variation of 

activation enthalpy with solute concentration near a dislocation. This data is 

generally not available. 

2. The mathematical approach of this model makes visualization of the physics ofDSA 

difficult. 

3. This theory deals only with long range diffusion of solute atoms to dislocations. 
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The Reed-Hill model 

The shortcomings of the Cottrell, McCormick and van den Beukel theories led 

Reed-Hill [1,3] to propose a new theory of DSA. In this model it is assumed that the total 

flow stress O't can be written as follows: 

O't = 0' + <roSA (26) 

where 0' represents the stress in the absence of DSA and O'DSA represents the stress 

associated with DSA. It is further shown that 0' also has two parts, the internal stress, OE, 

and the thermally activated or effective stress, 0'*. Thtis the total stress can be written as: 

(27) 

In BCC interstitial systems, however, it has often been demonstrated that O'DSA may also 

consist of two additive parts due to Snoek and Cottrell aging such that: 

(28) 

where O'sn represents the Snoek component and O'cot represents the Cottrell component. He 

also developed a new method to evaluate the internal stress [115,124] and demonstrated 

that the effective stress can be approximated by a power law of the form: 

( 
. )kT/Ir> * * £ 0' =0'0 -.-

. £0 
(29) 

where O'~ is the effective stress at 0 K, e is the nominal. strain rate, eo and HO are material 

constants with units of energy, and k is Boltzmann's constant 

The component of the flow stress attributed to DSA is given by the equation: 

(30) 

• 

" 

where O'smax and O'cmax are the isothermal maximum obtainable magnitudes of the Snoek .. 

and Cottrell contributions to the flow stress, respectively, and 'ts and 'tc are the relaxation 
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times for Snoek and Cottrell aging, respectively. The decrease in (Js and (Jc due . max max 

to dynamic recovery was achieved by multiplying the DSA component by the value: 

exp(Bx(T-To» (31) 

where To represents a temperature below the DSA regime and B is defined by: 

B =..!.. x In(~) 
Ho • 

£0 
(32) 

It has been shown that this theory can model the temperature dependence of the flow stress 

and, when properly differentiated, the temperature dependence of the strain rate sensitivity 

in a wide variety of alloy systems [1-3,1161. 

Other models 

Other models have been developed by Kocks and co-workers 

[113,114,121,125,126], and by Estrin and co-workers [127-130]. Kocks' model 

suggested that mobile dislocations are temporarily arrested at forest dislocations; solute 

atmospheres form on the forest dislocations and then drain by pipe diffusion from the 

forest dislocations to the mobile dislocations during their waiting times. Since this model 

relies on pipe diffusion rather than bulk diffusion, it allows for rapid atmosphere formation 

without the need for enhancement by vacancies. As a result, solute atmospheres need only 

pin portions of the dislocation line at the forest dislocation junctions rather than entire 

dislocation segments and the obstacle strength increases with waiting time. Like the van 

den Beukel model [112,121] described above, this model also assumes that the flow stress 

is composed of two additive terms but that the forest term rather than the friction term is 

influenced by aging. This assumption implies that the strength of the dislocation

dislocation interactions is altered. The model of Estrin and co-workers [127-130], is a 

further refmement of the Penning model [131] which is based on an N-shaped curve 

representing the strain rate dependence of the flow stress. Although both of these models 

have their merits and have been successfully used to model aspects of DSA 

[29,114,129,132], they will not be addressed here. 
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static and Dynamic Strain AlPn& in Ordered Alloys 

As mentioned above, most metals and alloys are subject to some sort of strain aging 

phenomenon [103]. And although several intermetallics have been shown to exhibit 

manifestations of strain aging (e.g .• FeAl [133,.134], AgMg [33], CuZn [32], Ni3Fe 

[135], NiAI [14,15,22,24-29,136-139], AI3Ti-X [140-143], and TiAI [144,145]), the 

influence of strain aging on the mechanical behavior of intermetallic alloys and the species 

and mechanisms responsible for this behavior (i.e. Snoek effect, Cottrell aging, etc.) have, 

until recently, been essentially ignored. 

A perfect example involves the L12 intermetallic alloys based on Al3Ti. Yield point 

plateaus and serrated flow stress curves have often been reported for these compounds 

[25,140-142]. Lerf and Monis [142], however, initially elected to attribute the occurrence 

of serrations at intermediate temperatures to the repeated dissociation of <110> 

superdislocations into pairs of mobile superpartials with higher mobilities. As Potez et aI. 

[141] pointed out, however, such an explanation would imply strain softening rather than 

strain rate softening via dynamic strain aging and, consequently, is insufficient to explain 

the related strain anomalies observed in these alloys. Potez et aZ. [141] indicated that 

oxygen might be the species responsible for DSA in Al3Ti-Cu based on analysis of two 

A13Ti-Cu alloys with the same bulk compositions but different oxygen concentrations. 

However, it was later shown [146-149] that DSA in these alloys was actually the result of 

the precipitation of complex Al2Ti-based precipitates on dislocations. 

For the other intermetallic alloys mentioned above, the authors have often alluded to 

the occurrence of strain aging and speculated on the nature of the species responsible (e.g., 

Nand 0 in AgMg [33]); however, a detailed study of the species responsible and the 

resulting strain-aging mechanism in ordered alloys is lacking. 
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The CsCl (cP2, B2) crystal structure of NiAl illustrating how this structure 
is composed of interpenetrating simple cubic sublattices of Ni and AI atoms. 
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CHAP1ER3 
THE EFFECI'S OF PURITY ON THE MECHANICAL BEHAVIOR OF SOFI'

ORIENTED NlAl SINGLE CRYSTALS 

Background 

Alloys based on the intennetallic compound NiAI are considered good candidates 

for high temperature structural applications due to their excellent oxidation resistance, low 

density and high thermal conductivity compared to nickel-base superalloys. In spite of 

these advantages, their development into a viable engineering material has been limited by 

low tensile ductility (S2%) at ambient tempera~es. However, recent efforts have resulted 

in room temperature tensile elongations of up to 6% for doped NiAl single crystals 

containing microalloying additions of Fe, Mo or Ga [16,68]. The mechanism behind this 

increased ductility is unknown but may be related to a gettering phenomenon since it is 

realized that some substitutional elements and interstitial impurities can cause significant 

embrittlement in BCC metals [17,114] and B2 ordered compounds such as NiAl 

[7,18,150-152]. Current observations are consistent with this viewpoint. For example, 

room temperature tensile elongations of up to 5% have been observed in low interstitial 

binary NiAl single crystals [19] and the ductility and fracture strength in biaxial bending of 

high purity NiAl was found to be significantly greater than for commercial purity crystals 

[20]. Still, the effects of particular substitutional and interstitial elements on the mechanical 

behavior of NiAl are relatively unknown and the mechanisms by which various elements 

may enhance or hinder tensile ductility still remain a matter of conjecture. Consequently, 

the purpose of this chapter is to provide preliminary details concerning the effects of alloy 

purity on the mechanical properties of NiAl single crystals. To accomplish this goal, two 

stoichiometric NiAI single crystals with differing impurity contents were studied. In 

·41 
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addition, a NiAl alloy intentionally doped with Mo was investigated and a comparison of 

the mechanical properties of all three alloys is discussed in terms of relative compositions. 

Experimental 

Conventional purity (CP-NiAl) and Mo-doped (NiAI-O.2Mo) NiAl single crystal 

slabs, 2S mm x 32 mm x 100 mm, were grown in argon by a modified Bridgman 

procedure. The slabs were then homogenized at 1589 K for 48 h in argon and cooled at 

-0.213 K/s by back filling the furnace chamber with gaseous argon. A high purity NiAl 

(HP-NiAI) single crystal, 25 mm diameter x 120 mm length, was produced by 

containerless float zone refining of a vacuum induction melted polycrystalline starter ingot 
: 

ofNiAl. A description of the equipment and process used to grow the low interstitial NiAl 

ingot has been presented in detail elsewhere [19,153]. 

Chemical analyses were conducted at the NASA-Lewis Research Center by the 

following techniques deemed to be the most accmate for the particular elements: Ni and AI 

were determined using analytical wet chemistry/titration techniques, Si was determined by 

ulttavioletlvisible spectrophotometry, and Mo was determined by flame atomic absorption 

spectrophotometry. Oxygen, nitrogen, carbon and sulfur contents were determined by 

combustion techniques using LECO oxygen/nitrogen and carbon/sulfur determinators. 

The results of these analyses on the alloys studied are summarized in Table 1. 

The crystals were oriented using the back reflection Laue technique and EDM wire 

cut into cylindrical compression specimens parallel to the <123> axis. Specimen 

dimensions were 3.0 mm and 6.4 mm for the diameter and height, respectively. Prior to 

testing, several CP-NiAl and HP-NiAl specimens were wrapped in Ta foil and annealed in 

argon at 1000 K for 2 h followed by either furnace cooling at -0.083 K/s (FC) or water 

quenching (WQ) to room temperature. All compression tests were performed on an Instron 

Model 1125 load frame at a constant crosshead velocity corresponding to an initial strain 

rate of 1.4xl0'" s·l. Tests were run in air between 300 and 1100 K by heating the samples 

:'" 
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in a clamshell type resistance furnace. True stress-strain data were calculated from the 

load-time plots and yield stresses were determined by the 0.2% offset method. 

Table 1. Chemical Compositions of Single Crystals Examined 

at.% Impurities (appm) 

Alloy Nt At Moe Sib OC ~ c! Sd 

CP-NiAl SO.4±O.2 49.S±O.2 --- 0.15 92 <31 169 <7 
HP-NiAl SO.2±O.2 49.8±O.2 ---- 0.06 <27 <31 <36 <13 

NiAl-O.2Mo SO.0±0.2 49.6±O.2 0.20 0.20 105 21 143 <4 
a 

b 

C 

d 

e 

Analysis performed using analytical wet chemistry/titralion techniques, relative accuracy ±1 % 
Analysis performed on an illtraviolet/Visible Spectrophotometer, Shimadzu, Model IN -160, 
relative accwacy ±10% 
Analysis performed on a Simultaneous Nitrogen/Oxygen Determinator, LECO Corp., Model TC-

. 136 or Model TC-436, relative accuracy ±10% 
Analysis performed on a Simultaneous Carbon/Sulfur Determinator, LECO Corp., Model CS-244, 
relative accmacy ±10% 
Analysis performed on a Flame Atomic Absorption/Emission Spectrophotometer, Perkin Elmer 
Model 5000, relative accuracy ±5% 

Samples for transmission electron microscopy (TEM) were cut from the tested 

compression specimens with a low-speed diamond saw and twin jet-electropolished in a 

solution of 70% ethanol, 14% distilled water, 10% butylcellusolve, and 6% perchloric acid 

at 273 K, 2SV, and 0.15 mAo TEM examinations were conducted in lEOL 100c and 

lEOL 200CX microscopes operating at accelerating voltages of 120 kV and 200 kV, 

respectively. 

Results 

Within experimental accuracy, the Ni and the A1+Mo contents of the three alloys are 

not significantly different from each other. The major differences between the materials are 

the oxygen and carbon contents between the HP-NiAl and the other two materials and the 

addition of 0.2 Mo to one of the alloys. The Si contamination in the CP-NiAI and NiAl-

0.2Mo alloys is the result of reaction with the ceramic mold walls during Bridgman growth 
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while the lower Si level in HP-NiAl is residual contamination from the original induction 

melting of the N'tAl feed rod used for directional solidification. 

Pronounced effects of alloy purity and thermal history (i.e., prior heat treatment and 

subsequent cooling rate) on the compressive properties of NiAl were observed and are 

summarized in Table 2. First, the as-grown HP-NiAl samples exhibited yield and flow 

stresses similar to the as-received CP-NiAl samples but both binary NtAl alloys were much 

lower in strength than the as-received NiAl-0.2Mo crystal. Typical room temperature 

stress-strain curves for the three alloys are shown in Figure 13. Following identical 

treatments (i.e., 1000 K(2h)+FC), both HP-NiAl and CP-NiAl experienced large decreases 

in yield strength (i.e., >25%). It is evident from the data in Table 2 that the WHR in as

received HP-NiAl (13.8±O.7 MPa/%ep) and CP-NiAl (24.5±9.6 MPa/%£p) decreased to 

nearly equal values (-10.4 and 10.6 MPa/%£p, respectively) after this particular heat 

treatment. However, the yield stresses of the HP-NiAl specimens were nearly 30% lower 

than those of CP-NiAl. The yield stress and WHR of the Mo-doped NiAl were generally 

higher than those of the other alloys and were relatively insensitive to the thermal treatments 

employed in this study. 

Table 2. Average Room Temperature Compressive Properties for <123> Oriented NiAl 
Single Crystals. 

oy . Ie 
Stress (MPa) 

- I 
. . 

as-received 
HP-NiA1: 12S.9±5.7 S7.2±2.6 11 1O.4±1.1 (4) 

l000K(2h)+FC 
CP-NiA1: 233.1±21.0 10S.9±9.S 5 24.S±9.6 (3) 

as-received 
CP-NiA1: 174.7±8.9 79.4±4.0 8 10.6±3.4 (4) 

l000K(2h)+FC 
NiAl-O.2Mo: 349.2±14.6 IS8.6±6.6 10 20.1±1.2 (4) 
as-received 

NiAl-0.2Mo: 369.2±11.0 167.7±5.0 5 19.12 (2) 
l000K(2h)+FC 

I 
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The temperature dependence of the yield stress for all three alloys in the as-received 

condition and the room temperature yield strengths for the annealed materials are presented 

in Figure 14 along with· the data reported in previous studies of [123] oriented crystals 

[154,155]. As expected, the yield strength decreased gradually with increasing 

temperature. Figure 14 indicates that the yield stresses observed in other studies were 

higher than those observed for annealed HP-NiAl which suggests an influence of both 

purity iUld. prior thermal history. It was shown above that low temperature heat treatments 

prior to mechanical testing at room temperature resulted in large yield strength drops for the 

binary alloys. This observation is conf"lrmed and extended to tests run at elevated 

temperatures by the data of Takasugi et ale [155] who homogenized their single crystals at 

1323 K for two days followed by furnace cooling at 0.368 K/s. The three NiAl alloys in 

this study exhibit slight plateaus in the yield strength vs. temperature data between 500 and 

650 K. Similar behavior is frequently observed in BCC metals [17,114] and has been 

reported by Kim [154] for [123] oriented Ni-48Al and Takasugi et ale [80,155] for [123] 

oriented Ni-50Al single crystals. Considering the dependence of yield stress on 

temperature, it is convenient to represent the data in an Arrhenius form (Figure 15), i.e., 

Oys=AeQIRT, where A is a constant, R is the universal gas constant, Q is the activation 

energy, and T is the absolute temperature. In Figure 15, the changes in slope near 500 K 

for CP-NiAl, HP-NiAl, and NiAl-0.2Mo imply a change in deformation behavior and may 

be associated with the location of the brittle-to-ductile transition temperature (BDTT) [53]. 

Transmission electron microscopy of the dislocation microstructures revealed no 

differences from what has been previously reported. Prior to deformation, the overall 

dislocation density was low, consisting of randomly distributed <001>{ 110} dislocations 

(Figure 16). The NiAl-0.2Mo alloy contained small a-Mo precipitates in the 10 to 30 nm 

size range. Following approximately 1 % deformation at 300 K, the deformation 
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microstructure consisted of elongated dislocation cells and randomly distributed dislocation 

tangles (Figure 17). Once again only {110} <00 1> dislocations were observed. 

Faceted voids were observed in all three alloys annealed at 1000 K(2b)+FC (Figure 

18) but not in the as-received materials. Similar voids have been reported previously in 

rapidly solidified NiAl and in NiAl alloys annealed at lower temperatures after quenching 

from high temperatures [156-158]. These voids are attributed to the coalescence of thermal 

vacancies during heat treatment. All alloys exhibited <001> slip, consequently, alloy 

composition and pmity bad no effect on slip mode. 

Discussion 

Past studies have clearly shown that the yield stress and its temperature dependence 

for BCC metals can be significantly altered by either reducing or increasing the impurity 

contents or by causing a change in the point defect structures via irradiation and/or heat 

treatment [17,114,159,160]. Not surprisingly, this is also the case forNiAl. In agreement 

with prior studies of Bee metals, the yield stress of NiAl tends to increase as a function of 

interstitial AWl substitutional impurity contents [7,18], though great care to accurately 

measure composition is very rarely taken. Typically in Bee metals, interstitial solutes 

form Cottrell and Snoek atmospheres that pin dislocations resulting in increased strengths 

while substitutional additions such as Mo and Si result in solid solution hardening by 

increasing the frictional resistance of the lattice to dislocation motion [17,43,96,114]. 

Microalloying additions of Mo, Ga and Fe have been reported to decrease the 

BDTT of <110> oriented NiAl single crystals [16,68]. In polycrystals however, 

microalloying additions of Ga and Fe have been shown to increase the BDTT by as much 

as 250 K [82,83] while Zr additions have been shown to nearly double the BDTT to > 1050 

K [53,83]. In the case ofZr, the increase in the BDIT has been attributed to the pinning of 

extrinsic grain boundary dislocations due to grain boundary segregation of the 

microalloying addition [53,83]. 
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Based on the Arrhenius plots, the BOTI for HP-NiAl and NiAl-O.2Mo appears to 

be the same as that for CP-NiAl at approximately 500 K which is consistent with a reported 

BDTI of between 473 and 573 K [16,155]. It is important to note that the assessment of 

the BDTI in this study is based solely on compressive data; tensile testing should be 

performed in order to validate this speculation. The mechanism for the BDTI in "soft" 

oriented single crystals is unknown although it has been proposed that the BDTI probably 

arises from the thermally activated climb of [001] dislocations [155], similar to what has 

been previously proposed for polycrystalline NiAI [53]. 

Heat treatment temperature and cooling rate are other important variables effecting 

the mechanical properties of NiAl. Previous studies have shown that high concentrations 

of thermal vacancies can be quenched into NiAI [161] and these vacancies result in 

increased yield stresses by providing resistance to the motion of dislocations 

[7,18,53,54,157]. Low temperature anneals, however, result in decreased yield strengths 

and may be attributed to reduced thermal vacancy content. This hypothesis is supported by 

the presence of faceted voids and significantly reduced yield stresses and WHR's in CP

NiAI and HP-NiAl following low temperature annealing. These voids form when alloys 

are annealed at high temperatures, rapidly cooled to produce a supersaturation of thermal 

vacancies, and' subsequently re-annealed at intermediate temperatures resulting in the 

coalescence of the vacancies into faceted voids [18,156]. Low temperature heat treatments 

designed to produce similar defect contents in CP-NiAl and HP-NiAl result in a decrease in 

yield stress for both alloys and decreases in WHR to nearly equal levels. This suggests 

that WHR is dependent on the presence of thermal defects but independent of impurity 

content for the composition range encompassed in this study. 

The effects of interstitial elements (e.g., B, C, 0, N, S, etc.) cannot be ignored 

when considering the mechanical properties of NiAl. Previously, it was mentioned that the 

CP-NiAl alloy exhibited higher yield stresses than the HP-NiAl alloy. The higher yield 

stresses of the CP-NiAl crystal are believed to be due to a solid solution strengthening 
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effect due to the presence of interstitial C and 0 impurities. The solid solution 

strengthening due to C and 0 in CP-NiAl relative to HP-NiAl is -2500MPa/at % C+O; this 

is in general agreement with the observations of George et al. [151] who reported the solid 

solution strengthening due to C in polycrystalline NiAI to be greater than 1700 MPa/at % 

c. 
As already mentioned, the NiAl-0.2Mo alloy exhibited higher yield stresses and 

WHR's than the binary NiAl alloys and was unaffected by the low temperature anneal. 

The higher yield stresses of the Mo-containing crystals are believed to be due to a solid 

solution strengthening effect as opposed to hardening due to the presence of the a-Mo 

precipitates. Mo was substituted in the place of AI (Table 1) and since all published phase 

diagrams [162] suggest that Mo preferentially substitutes on the AI sublattice, it is 

suspected that the positioning of Mo atoms on these sites leads to lattice strain and overall 

hardening. Furthermore, the formation of a-Mo precipitates may result in a shift in 

stoichiometry. Similar observations were reported recently by Cotton et al. [163] in the 

similar NiAI+Cr system. More convincing evidence in support of a solid solution 

strengthening mechanism is provided by the recent observations of Darolia et al. [16] who 

report the critical resolved shear stress for <110> oriented NiAl doped with 0.1 % Mo to be 

154 MPa which is virtually identical to the value (-159 MPa) reported for the <123> 

oriented NiAl-O.2Mo in this study. Specifically, if precipitation hardening were the cause 

of the increased strengths in Mo-doped NiAI, it would be expected that the alloy doped 

with 0.1 %Mo would exhibit lower critical resolved shear stresses because it lies closer to 

the solubility limit for NtAl. 

The reasons for insensitivity of the Mo-doped alloy to the lower temperature heat 

treatment is cwrently unclear. One possible explanation is that the NiA1/Mo interfaces 

could act as sinks for the thermal vacancies. For example, Locci et al. [156] observed 

crystallographic voids in stoichiometric NiAl melt spun ribbons subjected to intermediate 

temperature anneals. However, no such voids were observed in W -doped NiAl melt spun 
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ribbons subjected to the same heat treatments. The W -doped alloy contained fine W 

precipitates which were presumed to form effective sinks for the thermal vacancies thus 

allowing them to anneal out rapidly at the resulting W INiAl interfaces. Thus, vacancy 

hardening of the as-received materials might be similar to that for the material given the low 

temperature anneal. An alternative explanation for the observed insensitivity to the low 

temperature anneal is the possible formation of Mo-vacancy pairs or clusters. Such 

interactions might preclude the formation of faceted voids as well as the annealing out of 

the thermal vacancies at 1000 K. However, neither mechanism is consistent with the 

observation of faceted voids in the annealed NiAI-O.2Mo alloy in similar densities as 

observed in the binary alloy. 

SUmm8ty and Conclusions 

Reductions in the interstitial and substitutional levels result in reduced yield 

strengths in NiAl. Heat treatment also results in reduced yield and flow stresses in both 

CP-NiAI and HP-NiAI due to a reduction in the concentration of thermal vacancies 

resulting from vacancy coalescence during heat treatment. 

Conventional purity and HP-NiAl exhibit similar work hardening rates after similar 

heat treatments (i.e., 1000 K(2h)+FC) which implies that the WHR might be dependent on 

the concentration of thermal vacancies and independent of purity level over the range 

encompassed by these alloys. 

The yield stress and WHR of NiAI single crystals doped with O.2%Mo exhibited no 

dependence on the pre-test heat treatment studied but displayed higher work hardening rates 

and yield stresses than both CP and HP-NiAl. These increases have been attributed to 

solid solution hardening effects due to the addition of Mo • 
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Figure 13. Typical room-temperature compressive stress-strain response for HP-NiAI, 
CP-NiAI and NiAI-O.2Mo single crystals. 
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CP-NlAl, and NiAl-O.2Mo single crystals and additional data from the literature. 
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Figure 16. Bright Field TEM (BFTEM) micrographs of the dislocation morphology 
observed in NiAl alloys prior to deformation. (a) HP-NiAl, (b) CP-NiAl, and (c) NiAl-
0.2Mo. Note the presence of a non=uniform distribution of 10 to 30 nm a-Mo precipitates 
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Figure 17. BFfEM micrographs showing the dislocation morphology observed in 
NiAl alloys after approximately 1 % plastic strain in compression at 300 K. (a) HP-NiAl, 
(b) CP-NiAl, and (c) NiAI-O.2Mo. Note the reduced tendency for cell formation in 
NiAl-O.2Mo. 
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Figure 18. Faceted voids observed in HP-NiAl. Voids result from point defect 
agglomeration during the 1000 K/2 b/FC anneal. 



CHAPlER4 
1HE EFFECTS OF INTERSTITIAL CONTENT, ANNEALING, AND PRESTRAIN ON 
1HE TENSILE FLOW AND FRACIURE BEHAVIOR OF POLYCRYSTALLINE NiAl 

BackiP"ound 

Body-centered cubic (BCe) metals and alloys exhibit an extreme sensitivity to (1) 

point defects introduced during processing and/or heat treatment, (2) the level and type of 

prestrain in the material, and (3) minute additions of interstitials which can lead to strain 

aging phenomena. Not surprisingly, several aspects of strain aging have been identified as 

playing a role in the deformation of polycrystalline and single crystal NiAl. They are the 

occurrence of yield points and serrated stress-strain curves [15,22,23,26,28,164,165], 

strain rate sensitivity minima [12,166], yield stress plateaus as a function of temperature 

[18] and flow stress transients on changes in strain rate [139,166]. In addition, extensive 

work by Margevicius et al. [23,167-169] has shown that a sharp yield point can be formed 

in binary NiAl following annealing at 1100 K and furnace cooling (FC). This yield point 

can be removed by subsequent prestraining of the material by hydrostatic pressurization 

prior to testing and recovered by aging the prestrained material for 7200 s (i.e., 2 hours) at 

673 K. Similarly, Pascoe and Newey [12] observed the formation of room temperature 

yield points in near stoichiometric NiAl annealed for 3600 s (1 hour) at 350 K following a 

uniaxial prestrain. In addition, preliminary investigations by Weaver et al. [138] have 

shown that these yield points can be removed by water quenching (WQ) from high 

temperature as opposed to FC. Despite these observations, no complete investigation of 

the interrelated effects of interstitial content, annealing and prestrain on mechanical behavior 

has been conducted on NiAl. The purpose of this chapter is to describe the interrelated 

57 
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effects of interstitial content, annealing and prestrain on the tensile flow and fracture 

behavior of polycrystalline NiAl. 

Eyx;rimental Details 

NiAl alloys in the form of: (1) one titanium doped ingot (NiAI-Ti); (2) two 

conventional purity (CPN'lAl-l, CPNiAl-2) ingots; (3) two carbon doped induction melted 

castings with varying carbon and oxygen concentrations (NiAl-l00c and NiAl-300c); (4) 

two low interstitial high-purity zone refined ingots, one of which was subsequently zone 

leveled with carbon (HP-NiAl and HPNiAI-C respectively); and (5) a nitrogen doped 

powder (NiAl-N) were the basic starting materials used in this investigation. All starting 

materials were extruded at 1200 K at either a 12:1 or 16:1 reduction ratio. Descriptions of 

the equipment and processes used to fabricate the high purity, zone leveled and nitrogen 

doped alloys are presented elsewhere [19,92,153]. 

Material Characterization 

Chemical analyses of the eight extrusions were conducted at the NASA-Lewis 

Research Center by the following techniques deemed to be the most accurate for the 

particular elements. Ni and AI were determined using analytical wet chemistry/titration 

techniques and Si was determined by inductively coupled plasma atomic emission 

spectroscopy. Oxygen, nitrogen, carbon and sulfur contents were determined by 

combustion techniques using LECO oxygen/nitrogen and carbon/sulfur determinators. 

Optical, scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) were used to assess the microstructure of the materials. Polished optical 

microscopy specimens were etched by swabbing with a mixture of 0.10 kg Mo03, 50 ml 

HF and 150 ml H20. 

Samples for transmission electron microscopy (TEM) were cut from the gage of 

tested tensile specimens with a low-speed diamond saw and twin jet-electropolished in a 
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solution of 70% ethanol, 14% distilled water, 10% butylcellusolve and 6% perchloric acid 

at 273 K, 20-25 V and 0.15 mAo TEM examinations were conducted in either a mOL 

l00c or a Philips EM420 microscope operating at accelerating voltages of 120 kV. 

Fracture surfaces of selected tensile samples were examined using a Cambridge 200 

scanning electron microscope. Quantitative fractography was performed to determine the 

percentage of inter granular fracture for most alloys. This was accomplished by taking at 

least five random micrographs of appropriate magnification relative to the grain size from 

each test specimen and using a point counting technique. 

Tensile Testin~ 

Round button-head tensile specimens were ground from the extruded rods so that 

the gage lengths of the samples were parallel to the extrusion direction. Sample dimensions 

were 3.1 mm for the tensile gage diameters and 30.0 mm for the tensile gage lengths. Prior 

to testing, all samples were electro polished in a 10% perchloric acid-90% methanol solution 

that was cooled to 208 K. Tensile tests were performed on an Instron Model 1125 load 

frame at a constant crosshead velocity corresponding to an initial strain rate, e, of 

1.4 x 10-4 s-l. All tests were performed in air at 300 K. True stress-strain data were 

calculated from the load-time plots and yield stresses were determined by the 0.2% offset 

method. 

The tensile testing was accomplished in four steps: 

First, baseline mechanical properties were determined for all eight alloys by testing 

them as follows: (1) as-extruded and (2) as-extruded + 1100 Kn200 s/FC. (3) Four 

alloys (CPNiAl-l, HP-NiAl, HPNiAl-C, and NiAl-N), having received treatment (2), were 

prestrained via pressurization to 1.4 GPa. The prestrain pressurization treatment was 

selected based on the observations of Margevicius et al., [23,167-169]. 

Second, the temperature regime resulting in the maximum recovery of the yield 

point was determined for a series of CP-NiAl specimens, having received treatment (3). 
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Specimens were annealed at temperatures ranging from 500 K to 1100 K for times ranging 

between 60 s and 604,800 s (168 h) followed by FC, air cooling (AC) or WQ. 

Furthermore, some specimens were uniaxially prestrained in tension approximately 0.2% 

prior to annealing to determine the influence of heat treatment and type of prestrain on the 

baseline flow and fracture behavior of the eight alloys. 

Third, some specimens were statically strain aged as follows: specimens were 

prestrained approximately 0.2% at room temperature, unloaded, aged in situ on the load 

frame for aging times varying between 50 sand 113,000 s (30 h), and then restrained at 

room temperature approximately 0.2%. Aging temperatures were selected based on the 

results from the test sequences described above. On several occasions, specimens were 

subjected to recovery anneals of 1100 K/1800 s (30 min.)/AC following an aging cycle. 

These procedures were repeated several times until fracture occurred in an effort to 

elucidate the influence of strain aging on flow and fracture behavior of NiAl. The results of 

one such experiment are presented in Figure 19 which shows the stress strain curves for an 

alloy following multiple strain aging cycles. A more detailed accounting of the test method 

used to study strain aging in NiAl is provided in references [137] and [138]. 

Experimental Results 

Composition and Microstructure 

The results of the chemical analyses of the eight alloys used in this study are shown 

in Table 3. Within experimental accuracy (±O.2 at. % for Ni and AI), the Ni and AI 

contents of the eight alloys are not significantly different from each other. The major 

differences between the materials are the residual silicon, carbon, oxygen and nitrogen 

contents and the presence of Ti as an alloying addition to NlAl-Ti. 

The microstructures of all the NiAl alloys were similar as observed by optical and 

transmission electron microscopy, and consisted of fully dense, recrystallized and equiaxed 

t 
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grains as demonstrated in Figure 20. The only differences were the observation of semi

continuous stringers of nanometer-size precipitates in the NiAl-N (see reference [92]) and 

NiAl-Ti alloys (Figure 21). In the case of NiAI-N, previous studies have revealed the 

precipitates to be AlN [92]. Energy dispersive spectroscopic analysis in the TEM indicated 

that the stringers in NiAI-Ti were rich in Ti. The individual particles composing the 

stringers were, in general, too fine for analysis. On occasion, however, larger precipitates 

were observed within individual grains or along grain boundaries. These precipitates were 

typically elongated in shape as indicated in Figure 21. Analysis of microdiffraction patterns 

taken from these particles indicated that they were TiC precipitates which suggests that the 

Ti gettered C from the matrix in the NiAl-Ti alloy. 

Table 3. Compositions and Grain Sizes of Poly crystalline NiAl-Alloys Investigated in This 
Study 

Alloy 
(Heat) Ni 

at. % 

AI Ti 

m 

Si C o N 
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Mecbanica1 PrQperties 

The baseline mechanical properties are summarized in Table 4. Typical room

temperature stress-strain curves for each alloy are shown in Figures 22 through 26. From 

this data it is observed that the yield stress of each alloy generally decreased following the 

11 ()() KI7'1OO s/FC anneal. In addition, a tendency for discontinuous yielding was apparent 

in the CPNiAl-l, CPNiAl-2, HPNlAl-C, NiAl-l00c and NiAl-300c alloys but not in HP

NiAl, NiAI-N or in NiAI-Ti. Further decreases in yield stress and elimination of the 

tendency for discontinuous yielding were achieved in the CPNiAl-l and HPNiAl-C alloys 

if the specimens were subsequently hydrostatically pressurized at 1.4 GPa whereas no 

additional decreases in yield stress or other apparent changes in flow behavior were 

observed in the powder processed NiAl-N alloy or in the HP-NiAl material (Figures 22-

25). Pressurization treatments were not conducted on the remaining alloys. Recovery of 

the discontinuous yield behavior following pressurization could be accomplished by re

annealing pressurized specimens at 1100 K/2 h followed by furnace cooling (Figure 23). 

Interestingly, even though the yield stress could be reduced by annealing and in some cases 

by hydrostatic pressurization, these treatments had no obvious influence on the tensile 

ductility or fracture behavior of the various alloys. Similar observations have been recently 

reported by Margevicius and Lewandowski for single crystal and polycrystalline NiAl 

alloys [170]. Scanning electron micrographs of the fracture surfaces are exhibited in 

Figures 27-34. In all specimens, failure was always by a combination of intergranular 

separation and transgranular cleavage. Surprisingly, the HP-NiAl and NiAl-Ti exhibited a 

greater tendency for intergranular failure and lower tensile ductility than the other alloys. 

Influence of Prestrainin~ and Annealin~ on Baseline Properties 

To determine whether the observed yield points resulted from the hold at 

temperature or during cooling from the annealing temperature, specimens of CPNiAl-l 
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previously prestrained hydrostatically, were reannealed at 1100 K{7200 s followed by AC 

or WQ. The resulting properties are summarized in Figure 35 and in Table 4. Mter WQ, 

only continuous yielding was observed while after AC, there was some evidence of a yield 

plateau which initially suggests that the yield points observed following FC are the result of 

the pinning of dislocations by mobile solute atoms during cooling through lower 

temperatures. As a result, annealing experiments were initiated at lower temperatures to 

determine the critical temperature for the migration of solute atoms to dislocations. The 

results of these experiments are summarized in Figure 36. It is observed that yield plateaus 

formed in CP-NiAl after hydrostatic prestraining followed by annealing treatments of 700 

K{7200 s/FC but not following anneals of 500 K{7200 s/FC. Conversely, if the specimens 

were prestrained uniaxially, notable yield points formed readily after as little as 900 s (15 

min.) at 522 K and in as little as 60 s (1 min.) at 700 K. Additionally, no yield points were 

observed when annealing temperatures exceeded 900 K. 

rEM Observations ofJ)efonne<i Specimens 

Figure 37 shows a series of TEM bright field images of CPNiAl-l that was 

deformed at room-temperature following anneals of 1100 KI2 h/FC. Tensile tests were 

interrupted at plastic strains of 0.05%, 0.31 % and 2.04% corresponding to the yield stress 

peak, the Liiders region and after fracture respectively. At 0.05 and 0.31 % strain (Figures 

37a and b), the dislocation structure consisted of a low density of inhomogeneously 

distributed dislocations arranged into poorly defmed cells and dense tangles. Some 

intercellular/inter-tangle dislocation debris was observed although the cell interiors 

remained largely dislocation free. As the strain was increased to 2.04% (Figure 37c), the 

dislocation density increased and the cells became more well defined. The dislocations 

observed were predominantly <100> dislocations of mixed character. The predominant 

slip plane was (Oll) although some dislocation debris lying on (OOl) slip planes was 

occasionally detected. 
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Table 4. Baseline Tensile Properties of NiAl Alloys 

0.2% Vield Fracture IntergranuJar 
Material Conditioo· Stress Stress Ductility Fracture Observations 

(MPa) (MPa) (%) (%) 4# 

CPNIAl-I as-extruaea 269 379 2.11 -oa- DY,YP 
as-extruded 275 368 1.83 36.0 DY,YP 
annealedlFC 184 301 2.08 36.1 DY,sharpYP 
annealedlFC 197 228 1.04 -na- DY,sharpYP 
annealedlAC 154 309 2.26 -na- DY, plateau 
annealedlWQ 143 228 1.13 46.2 CY 
pressurized 154 288 1.86 -na- CY 
pressurized 159 317 1.81 37.5 CY 
2ressurized 154 322 2.16 37.4 CY 

~NiAl-2 as-extruded 164 241 1.05 30.8 CY 
as-extruded 172 306 1.70 37.9 CY 

annealed 117 257 2.05 35.2 DY,sharpYP 
annealed 116 336 3.34 40.2 DY,S~YP 

HP-NiAl as-extruded 166 214 0.79 57.5 
as-extruded 157 235 1.16 60.4 CY 
annealedlFC 98 174 1.17 63.2 CY 

-2ressurized 118 176 0.92 58.2 CY 
ffPNiAl-c as-extruded 170 201 0.59 43.4 CY 

annealed 113 157 0.68 -na- yp -
Eressurized 96 171 0.98 39.4 CY 

RiAl- as-extruded 155 255 1.35 37.5 DY, plateau 
100C 

as-extruded 151 319 2.25 33.0 DY,plateau 
annealed 113 342 3.29 41.9 DY,sharpYP 
annealed 115 285 2.35 40.1 DY,~YP 

NiAI- as-extruaea 180 322 2.02 32.4 
300C 

as-extruded 162 297 1.84 28.6 DY,plateau 
annealed 109 343 3.29 42.8 DY,plateau 
annealed 108 352 3.38 48.4 DY,&ateau 

NiAl-N as-extrudea 298 409 1.32 -na-
as-extruded 297 476 2.20 34.1 CY 
annealedlFC 265 468 2.45 31.9 CY 
pressurized 266 434 2.16 -na- CY 
2ressurized 274 352 1.03 33.5 CY 

NiAI-Ti as-extruaea 170 235 0.86 57.5 CY 
as-extruded 176 176 0.20 56.2 CY 

annealed 123 256 1.76 64.7 Cf 
annealed 124 265 1.81 64.3 CY 

• annealed/FC or annealed = as-extruded + 1100 K/7200 s/FC 
*annealed/AC = as-extruded + 1100 K/7200 s/AC 
* annealedlWQ = as-extruded + 1100 K/7200 s/WQ 
*pressurized = as-extruded + 1100 K/7200 s/FC + pressurize 1.4 GPa 
#oY = discontinuous yielding, upper yield point, sharp yield drop 
#yP = yield point; #cy = continuous yielding; -na- = oot available 
Intetgranular fracture: accuracy = ±10% 
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Figure 37e shows the dislopation substructure observed in NiAI-N following 

hydrostatic prestraining to 1.4 GPa. In agreement with the reports of Margevicius and co

workers [168,169] for conventional purity cast and extruded NiAI, the dislocation 

substructures consisted of a more uniform distribution of long, straight dislocations 

generated from grain boundaries. Diffraction contrast analysis revealed that all of the 

dislocations were of <001> type. Similar microstructures were observed in CPNiAl-l after 

hydrostatic prestraining. 

Discussion 

In agreement with the many prior studies of extruded near-stoichiometric NiAl in 

bulk form [71,171,172] and during in-situ TEM observations [173], the deformation 

substructure following straining at room-temperature consisted of a network of poorly 

defmed dislocation cells, dense tangles and intercellular debris. Well defined deformation 

bands, were not observed by TEM nor was there evidence of coarse slip bands intersecting 

the specimen surfaces. 

Species Responsible for Strain Af:i,ni in NiAI 

A determination of the species most likely responsible for the strain aging effects in 

NiAl can be made by examination of the aging behavior of all eight alloys. Discontinuous 

yielding, in the form of yield points and yield plateaus, was observed in CPNiAl-l, 

CPNiAl-2, NiAl-lOOC, NiAl-300C and HPNiAI-C, while continuous yielding was 

observed in HP-NiAI, NiAI-Ti or NiAl-N following heat treatments known to produce 

yield points in conventional cast and extruded NiAl [167]. In NiAl-N, the oxygen and 

nitrogen contents were much higher than those observed in CPNiAl-l or CPNiAl-2 while 

the C-content was much lower, which suggests that nitrogen and oxygen are not the 

species responsible for the observed yield points. When the excess interstitials were 

reduced sufficiently, as in the case ofHP-NiAl, no yield points were observed; however, 
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doubling the carbon concentration (HPNiAI-C) resulted in a well-defined yield point. 

These observations are supported by the prior investigations of Noebe and Garg [92] who 

observed sharp yield points in powder processed conventional purity NiAl (C=143 appm, 

0=227 appm, and N=6 appm) but no yield points in powder processed nitrogen-doped 

NiAl (C=57 appm, 0=347 appm, and N=904 appm). Also, in HPNiAl-C, it was observed 

[137,138] that longer aging times are required to achieve the same yield increment as 

observed in CPNiAl-1 and CPNiAl-2. It is believed that this behavior is a result of the 

significant reduction in the concentrations of interstitials, particularly C. Since there is less 

carbon to pin dislocations in NiAl-C, the carbon present must, presumably, diffuse longer 

distances to cause pinning. Finally, in NiAl-Ti, the bulk interstitial levels were equivalent 

to those observed in CPNiAl-2 which exhibited yield point behavior. However, no yield 

points were observed in NlAl-Ti which was shown to contain a TiC stringers; this suggests 

that the lack of a yield point in NiAl-Ti is due to the gettering of sufficient carbon from the 

NiAl matrix and that carbon is the species responsible for the observed yield points. 

Influence of Prestrainin" 

As noted in the Results, the return of a sharp yield point is much more rapid when 

the specimen has been prestrained uniaxially as opposed to hydrostatically. During uniaxial 

deformation of NiAI, dislocations cross-slip easily forming cell structures [53,92] that 

result in high work hardening rates at room temperature. As a result, the dislocations are in 

essence pinned. In contrast, samples pressurized hydrostatically show a more even 

distribution of dislocations which are not bound in cells [169]. In uniaxially prestrained 

samples, since some of the dislocations are already locked up in cell structures, fewer 

mobile dislocations are available. Thus, less solute is required to pin the available mobile 

dislocations. Since more mobile dislocations are available in hydrostatically prestrained 

samples, more carbon is required to cause pinning. As a result, longer aging times are 

required to achieve the same yield point increments observed after uniaxial prestraining. A 
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similar explanation has been applied to strain-aged steels prestrained in directions non

parallel to the original tensile direction [174]. 

The results of this study also revealed a further reduction in the yield ·stress of 

CPNiAl-l, HP-NiAl, and HPNiAI-C following pressurization to 1.4 GPa. However, no 

such effect was observed in NiAI-N. Prior investigations by Margevicius et al. [169] on 

pressurized NiAl alloys have shown that dislocation generation is enhanced by 

compositional differences between neighboring grains. This suggests that higher 

dislocation densities will be enduced in CPNiAl-l, HP-NiAl, and HPNiAl-C over NiAl-N 

due to the larger compositional variations between the neighboring grains. 

Despite it's influence on the tensile flow behavior of NiAl alloys, prestraining, 

whether uniaxial or hydrostatic, had no obselVable influence on the tensile ductility and 

fracture behavior of NiAl. In CP-NiAI, for example, the fracture surfaces were 

approximately 37% intergranular regardless of how the specimens were prestrained or 

strain aged prior to testing. In HP-NiAI, however, there was an apparently higher 

propensity for intergranular fracture over transgranular failure. Interestingly, this alloy, 

although apparently closer to stoichiometry and free from high interstitial levels, exhibited 

lower tensile ductilities than the CP-NiAl and the NiAI-N alloys. This observation 

contradicts the obseIVations in single crystals where soft-oriented specimens having low 

interstitial levels and high purity were shown to exhibit nearly 5% tensile ductility at room 

temperature, regardless of pretest treatments [19]. Although some of these observations 

can be related to the differences in grain size between the alloys, more thorough 

investigations of these issues are required. 

Conclusions 

The yield points obselVed in conventional purity and carbon-doped NiAl are the 

result of strong dislocation pinning by interstitial carbon. Oxygen and nitrogen levels 
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below 0.035 and 0.09 at.%, respectively, do not appear to pin dislocations in NiAl and, 

therefore, do not produce yield point phenomena. 

Hydrostatic prestraining as opposed to uniaxial prestraining delays the kinetics of 

the yield point return by forming random networks of free unpinned dislocations which 

require more diffusion time for strong locking to occur. 

Yield point phenomena can be removed by microalloying with sufficient levels of 

reactive elements such as Ti to getter carbon from the matrix by forming semi-continuous 

precipitates of TiC. 

Despite their influence on the flow behavior of NiAl, prestraining and/or strain 

aging have no observable impact on the room-temperature fracture characteristics of NiAl 

alloys. In fact, fracture always occurs by a mixture of intergranular failure and 

transgranular cleavage. 

.. 
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a 

Figure 20. Transverse sections of extruded material: (a) CPNiAl-l; (b) CPNiAl-2; (c) 
HPNiAl-C; (d) HP-NiAl; (e) NiAl-lOOC; (f) NiAl-300C; and (g) NlAl-N. 
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Figure 20 -- continued 
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Figure 21. Stringers observed in NiAI-Ti: (a) Backscattered scanning electron 
micrograph of TiC stringers in NiAl-Ti; (b) BFTEM micrograph of a large TiC precipitate; 
(c) TEM microdiffraction pattern from the TiC precipitate ([01 I] TiC zone axis); and (d) 
EDS spectra for the particle in (c) indicating the presence of Ti. 
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Figure 22. Room-temperature tensile stress-strain curves for CPNiAl-1 in the as
extruded, annealed, pressurized and pressurized+annealed conditions. 
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Figure 23. Room-temperature tensile stress-strain curves for HPNiAl-C in the as"-
extruded, annealed, and pressurized conditions. 
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extruded, annealed, and pressurized conditions. 
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Figure 25. Room-temperature tensile stress-strain curves for NiAI-N in the as
extruded, annealed, and pressurized conditions 
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Figure 27. Fracture surfaces of CPNiAl-l samples tensile tested at room temperature: 
(a) as-extruded; (b) after annealing at 1100 K for 2 h followed by furnace cooling; (c) after 
annealing followed by subsequent pressurization. 
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Figure 27 -- continued 



82 

Figure 28. Fracture surfaces of HP-NlAl samples tensile tested at room temperature: (a) 
as-extruded; (b) after annealing at 1100 K for 2 h followed by furnace cooling; (c) after 
annealing followed by subsequent pressurization. 
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Figure 29. Fracture surfaces of NiAl-C samples tensile tested at room temperature: (a) 
as-extruded; (b) after annealing at 1100 K for 2 h followed by furnace cooling; (c) after 
annealing followed by subsequent pressurization. 
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Figure 30. Fracture surfaces of NiAl-N samples tensile tested at room temperature: (a) 
as-extruded; (b) after annealing at 1100 K for 2 h followed by furnace cooling; (c) after 
annealing followed by subsequent pressurization. 
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Figure 31. Fracture surfaces of CPNiAl-2 following tensile testing at room
temperature: (a) as-extruded and (b) after annealing at 1100 K for 2 h followed by furnace 
cooling. 
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Figure 32. Fracture surfaces of NiAI-100C following tensile testing at room
temperature: (a) as-extruded and (b) after annealing at 1100 K for 2 h followed by furnace 
cooling. 
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Figure 33. Fracture surfaces of NiAl-300C following tensile testing at room
temperature: (a) as-extruded and (b) after annealing at 1100 K for 2 h followed by furnace 
cooling. 
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Figure 34. Fracture surfaces of NiAI-Ti following tensile testing at room-temperature: 
(a) as-extruded and (b) after annealing at 1100 K for 2 h followed by furnace cooling. 
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Figure 35. Room-temperature stress-strain curves illustrating the influence of cooling 
rate on the tensile flow behavior of CP-NiAl. 
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Figure 36. Room-temperature stress-strain curves illustrating the influence of various 
prestraining and annealing treatments on the tensile flow behavior of CP-NiAl. 
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Figure 37. Transmission electron micrographs of CPNiAl-l and NiAl-N after uniaxial 
and hydrostatic prestraining at 300 K: (a) CPNiAl-l prestrained uniaxially 0.05%; (b) 
CPNiAl-l prestrained uniaxially 0.40%; (c) CPNiAl-l prestrained uniaxially 2.04%; (d) 
schematic stress-strain curve showing stress-strain levels where specimens in (a)-(c) were 
taken from; (e) NiAl-N prestrained hydrostatically to 1.4 GPa. 
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CHAPTER 5 
TIlE KINETICS OF STATIC STRAIN AGING IN POLYCRYSTALLINE NiAl-BASED 

AlLOYS 

Introduction 

It is generally accepted that BCC metals, in the presence of sufficient levels of 

interstitials, are subject to strain aging phenomenon caused by elastic interactions between 

interstitial atoms and dislocations. The specific mechanisms by which this behavior occurs 

may involve Snoek ordering [95,96], Cottrell aging [43], Suzuki locking [175], or 

precipitation on dislocations. In spite of the large number of papers dealing with strain 

aging, few discuss aspects of strain aging in ordered BCC alloys even though several 

manifestations of dynamic and static strain aging have been identified as playing a role in 

the deformation of polycrystalline and single crystal B2 intermetallic compounds. 

In the intermetallic compounds AgMg, FeCo, FeAl, and NiAl, for example, the 

occurrences of sharp yield points and serrated stress-strain curves 

[15,22,23,26,28,29,33,133,134,164,165,167,176,177], strain rate sensitivity minima 

[12,27,178-180], yield stress plateaus as a function of temperature [18] and flow stress 

transients on changes in strain rate [139,166] have been reported. In addition, extensive 

work by Margevicius et al. [23,167-169] on NiAl has shown that a sharp yield point can be 

formed in binary NlAl following annealing at 1100 K and furnace cooling. This yield point 

can be removed by subsequent prestraining of the material by hydrostatic pressurization 

prior to testing and recovered by aging the prestrained material for 7200 s (i.e., 2 h) at 673 

K. Similarly, Pascoe and Newey [12] observed the formation of room temperature yield 

points in near stoichiometric NiAl annealed for 3600 s (1 hour) at 350 K following a 

uniaxial prestrain. Recent investigations of static [137,138] and dynamic [164] strain aging 

97 
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have shown that observations of discontinuous yielding, in the form of yield points, yield 

plateaus and semLted yielding OCCUlTed in alloys containing high interstitial concentrations, 

particularly high carbon concentrations (see Chapter 4). These phenomena were not 

observed in low interstitial high purity, Ti-doped, or in nitrogen doped material (see 

Chapter 4) suggesting that strain aging in NiAl is the result of strong dislocation pinning 

by carbon atoms. 

Despite these observations, no complete investigation of classical strain aging has 

been conducted on ordered BCC intermeta1lic alloys. Consequently, the purpose of this 

chapter is to describe the results of a detailed study of the kinetics of static strain aging in 

polycrysta1line NiAl. Details of the influence of strain aging on the flow and fracture 

behavior of polycrystalline NiAl are provided in the previous chapter. 

Emerimental 

Materials 

The alloys used in this study were prepared by extrusion of (1) a nominally 

stoichiometric conventional purity induction melted ingot (CPNiAl-l) and (2) a carbon 

doped and zone leveled ingot (HPNiAl-C). The processing methods, chemistries and grain 

sizes are described in the previous chapter. The as-extruded microstructures were fully 

dense consisting of recrystallized and equiaxed grains. 

Chemical analyses of the extruded materials were conducted at the NASA-Lewis 

Research Center by the following techniques deemed to be the most accurate for the 

particular elements. Ni and AI were determined using analytical wet chemistry/titration 

techniques and Si was determined by inductively coupled plasma atomic emission 

spectroscopy. Oxygen, nitrogen, carbon and sulfur contents were determined by 

combustion techniques using LECO oxygen/nitrogen and carbon/sulfur determinators. A 

.. 
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table containing the chemical analyses and additional details concerning materials 

processing and the chemical analysis techniques are presented in Chapter 4. 

Round button-head tensile specimens were ground from the extruded rods so that 

the gage lengths of the samples were parallel to the extrusion direction. Sample dimensions 

were 3.1 mm for the tensile gage diameters and 30.0 mm for the tensile gage lengths. Prior 

to testing, all samples were electropolished in a 10% perchloric acid-90% methanol solution 

that was cooled to 208 K. 

Mechanical Testin& 

Tensile tests were performed on an Instron Model 1125 load frame at a constant 

crosshead velocity cOITesponding to an initial strain rate of 1.4 x 10-4 s-l. True stress

strain data were calculated from the load-time plots. All tests were performed in air at 300 

K. 

The kinetics of strain aging were investigated using the classic yield point return 

technique. Testing was conducted in two steps: (1) Initially, tensile specimens in the as

extruded condition were prestrained approximately 0.2%, unloaded to a stress of 

approximately 2 MPa, aged in situ on the load frame for aging times varying between 60 s 

and 113,000 s (30 hours), and then tested in tension at room temperature. This test method 

allows specimen alignment to be maintained and the stress level to be kept effectively 

constant during aging. After aging, the specimens were cooled by removing the furnace 

from the test frame and passing a forced stream of ambient air over the specimen and the 

tensile grips. This method of cooling resulted in average temperature drops of 500 to 1000 

K during the first minute of cooling. The parameters generally used to evaluate the kinetics 

of strain aging are illustrated in Figure 38. These include the upper yield stress increment 

AGu = au - aa' the lower yield stress increment AGL = GL - Ga, and the Liiders strain 

eL , however, in this study the upper yield stress increment was used as the primary 

measurement of strain aging. (2) Single specimens were often aged several times to obtain 
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a AGu -time relationship. A specimen previously tested or prestrained uniaxially was given 

a recovery anneal, typically 1100 K/1800 s (30 min.) lAC, prestrained approximately 

0.2%, aged in situ and re-tested at room temperature. A typical series of stress-strain 

curves illustrating this procedure are shown in Figure 39. When this type of testing is 

adopted, the yield point exhibited during the original deformation of the material can be 

recovered as can the yield point increment observed during the previous test. This means 

that it is possible to recover the dislocation structure and obtain a reproducible AGu 

following the same strain aging (i.e. prestrain + annealing) treatment, justifying the use of 

multiple deformation experiments on single samples. 

Results 

Figure 40 shows the influence of prior strain on the resulting yield stress increment, 

AGu , after aging of the CPNiAI-l at 616 K. Increasing the amount of prior strain in 

samples aged at 616 K for 600 s, for example, leads initially to a rapid increase in AGu 

followed by an apparent plateau at prestrains exceeding 0.5%. Strain dependence of this 

type, which has been classified as type S by Kubin et al. [99], is commonly observed in 

BCC alloys and is often associated with elastic interactions between dislocations and solute 

atoms. 

The time dependence, t, of AGu for the CP material is shown in Figure 41. The 

data is summarized in Table 5. The shapes of the aging CUlVes up to the maximum value of 

AGu are comparable to similar CUlVes reported for BCC metals [94]. Under type S 

conditions [99], AGu will increase proportionally with t2/3 during the early stages of 

aging, assuming AGu is proportional to the amount of solute segregating to dislocations. 

At longer times, the dislocations will become saturated with solute leading to a plateau in 

AGu or even to a decrease in AO'u due to precipitation. The strain aging time exponent, as 

determined by least squares analysis of the data prior to saturation in Figure 41, is in the 

range 0.57 to 0.67, which is close to the theoretical value of 2/3 predicted by Cottrell and 

t 
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Bilby [43]. In confumation of this result, &O'u is plotted versus t2/3 in Figure 42 

demonstrating the satisfactory tit. Although experiments were only performed at 610 K for 

HPNiAl-C, a similar trend of higher &O'u with increasing aging time was observed (Figure 

43 and Table 6). In addition, the time exponent was found to be 0.59 in agreement with 

the observations for CP-NiAl. 

Table 5. The temperature dependence of the yield stress increment for CPNtAI-l. 

Aging Temperature, K 

520 
520 
520 
520 
520 
520 
520 
520 
61t) 
616 
616 
616 
616 
616 
616 
616 
616 
616 
616 
700 
700 
700 
700 
700 
700 
700 
700 
700 
700 

Aging Time, s 

300 
3,600 
7,200 
9,000 
10,800 
19,800 
23,400 
113,400 

3W 
600 
600 
600 

1,020 
1,800 
2,700 
3,600 
7,200 
11,880 
59,820 

60 
180 
300 
300 
300 
480 
600 
600 

7,200 
61,200 

Yield Stress Increment, 
MPa 
2.00 
9.64 
13.84 
12.86 
17.58 
17.48 
17.21 
19.45 
7.7B 
14.04 
14.53 
14.47 
20.42 
21.57 
21.63 
28.09 
22.32 
21.58 
25.33 
8.25 
19.97 
22.99 
25.76 
25.22 
23.06 
26.37 
26.09 
24.35 
22.65 

The &O'u versus log time data for CPNiAl-l and HPNiAl-C that were aged for 

various times at 616 and 610 K, respectively, are plotted together in Figure 43 to illustrate 

the influence of carbon concentration on the yield point return in NiAl. A significant 
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difference in the magnitudes of the dau IS is evident as is an increase in the time required 

for yield points to form in NiAl-C. In addition, the saturation stress increment is lower in 

HPNiAl-C than in CPNiAl-l. This behavior would be expected since HPNiAl-C has only 

about 60% of the C level of CPNiAl-l. 

Table 6. Temperature dependence of yield stress increment for HPNiAl-C. 

Aging Temperature, K 

610 
610 
610 
610 
610 
610 
610 

Aging Time, s 

600 
2000 
3,600 
4,500 
5,760 
9,000 
18,360 

Yield Stress Increment, 
MPa 
4.46 
9.0 
12.2 
11.7 
9.33 
12.9 
11.9 

In an effort to establish a mechanism for static strain aging in NiAl, the activation 

energy for the return. of the lower yield stress was determined by applying and Arrhenius 

equation that was derived from the expression of Cottrell and Bilby [43] for the number of 

atoms per length of dislocation line segregating to the vicinity of a dislocation in time t: 

(
ADt)2/3 

n(t)=aNo kT (33) 

where, a == 3.5, No is the average volumetric concentration of defects in the lattice, D is the 

diffusivity of the defect at the aging temperature, T, k is Boltzmanls constant and A is a 

term corresponding to the binding energy between the defect and a dislocation. If 

prestraining and subsequent reloading are conducted at the same temperatures and if these 

temperatures are sufficiently low that no aging occurs during testing, the number of defects 

required to pin a unit length of a dislocation line, n(t*), will be approximately constant. 

Thus, equation (33) becomes: 
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( 
... )3/2( ) ... n(t ) k t -Q 

C]= - - =-exp(-) 
Non ADo T RT 

(34) 

where Do is the pre-exponential factor for diffusivity of the defect and t* represents the 

aging time for the reappearance of a yield point Equation (34) can then be rewritten as: 

1n(: ) = In(...!..) _!L 
t C] RT 

(35) 

The activation energy for diffusion of the pinning defect, Q, is determined from the slope 

of a plot of !ncr!t*) versus 1/(RT). This method is illustrated in Figure 44. On this basis, 

an activation energy for the return of a lower yield point in CPNiAl-1 was determined to be 

in the range 72 to 76 k1/mole (approximately 0.75 to 0.79 eV!atom), which corresponds to 

the activation energies for the migration of interstitials in many BCC transition metals 

[181]. 

As an alternate approach to the Arrhenius calculation, the activation energy was also 

determined by the method used by Hartley [38] who modified the Cottrell-Bilby 

relationsbip for the yield stress increment as follows: 

L\au = (au - aa) = Kl + K2 ...!.. . ( )2/3 
a a Ta 

(36) 

where, a = ~ (aa + au), K 1 is a constant, K2 is a constant proportional to 02f3, where D 

is the diffusivity, t is the aging time, and Ta is the aging temperature. Recalling that 

D=Doexp( -QlRT), activation energies are calculated by first determining the slope SI of a 

plot of L\aufii versus t213 and then by plotting In(SI'f213) versus 2/(3RT). This method is 

illustrated in Figure 45. Using this approach, an activation energy of 70 kl/mol (0.73 

eV!atom) was detennined which is in good agreement with the values established using the 

Arrhenius method. 

Due to the lack of diffusion data for any type of interstitial solute in NiAl, little can 

be said about the activation energies derived in this investigation except that these values lie 
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below the self diffusion energies for Ni and AI in NiAl and that they lie well below the 

activation energy for the creation and motion of vacancies [18]. However, the activation 

energies derived in this study are within the range for interstitial diffusion in BCC transition 

metals [181]. 

Discussion 

Previously, it was shown that the discontinuous yielding observed in CPNiAl-1 

and HPNiAl-C was the result of strong dislocation pinning by interstitial carbon (Chapter 

4), whereas increased concentrations of oxygen and/or nitrogen had little or no influence on 

the properties of nominally stoichiometric NiAl. Therefore, C has been identified as the 

major solute responsible for strain aging effects in NiAl. In addition, it has been observed 

that longer aging times are required in HPNiAl-C (92 appm C) to achieve the same yield 

stress increment as observed in CPNiAl-1 (147 appm C) and that the yield increment after 

saturation is much greater in CPNiAl-1 than in HPNiAl-C. It is believed that this behavior 

is a result of the significant reduction in the concentration of interstitials, particularly C, in 

the HPNlAl-C alloy. Since there is less carbon to pin dislocations in HPNiAl-C, the 

carbon present must, presumably, diffuse longer distances to cause pinning. 

At least four different mechanisms have been postulated to explain strain-aging in 

metals and alloys. These include (1) the formation of Cottrell atmospheres [43], (2) Snoek 

ordering [95-97], (3) Suzuki locking [175] and (4) the precipitation of solute on 

dislocations [100]. 

Cottrell locking or aging involves the diffusion of interstitial atoms to dislocations 

resulting in the formation of solute atmospheres around the dislocations. The driving force 

for this process is the reduction in total strain energy of the system. The resulting increase 

.. 

in yield stress is due either to an increased stress required to move the locked dislocations ~ 

or an increase in stress necessary to nucleate new dislocations permitting macroscopic 

plastic flow. This often leads to yield point behavior when stresses are suddenly sufficient 
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to unlock the dislocations or nucleate new ones at a temporary rate greater than necessary to 

accommodate the applied strain rate on the material. The initial locking of dislocations 

requires long range diffusion of interstitials to the vicinity of dislocations and, as a result, 

requires many atom jumps. During the early stages of Cottrell locking, the kinetics of yield 

point return nonnally increase with time according to a t213 power law. This relationship 

was originally deduced by Cottrell and Bilby [43] and has been confmned for a number of 

systems involving interstitial atoms in transition metals including Nb-O, Ni-H, Fe-C and 

Fe-N [35,36,42,94,97,98,101]. The observed log t or approximate t213 time dependence 

of l\O'u in NiAl due to carbon is consistent with the Cottrell-Bilby theory and suggests that 

Courelllocking is the primary mechanism responsible for the observed yield points. 

Snoek ordering of impurity atoms within the stress field of a dislocation remains a 

possible mechanism that may occur prior to the formation of a Cottrell atmosphere. This 

mechanism is best explained in terms of the Snoek effect as it occurs in BCC metals 

containing interstitial atoms in solution [95-97]. In the BeC lattice the tetrahedral sites are 

larger than the octahedral sites. However, interstitial atoms typically occupy the smaller 

octahedral sites at the center of cube edges and cube faces because the lattice strain caused 

by octahedral occupancy can be more easily accommodated by the lattice than that caused 

by tetrahedral occupancy. For example, the insertion of an interstitial atom into the 1/2, 

1/2, 0 position in Figure 46 will cause atoms 1 and 2 to be displaced apart in the z direction 

resulting in a tetragonal distortion, whereas the insertion of an interstitial into the 1/2, 0, 0 

position will cause a more uniform distortion of substitutional atoms 1-4. In the absence of 

an applied stress, a statistically equal number of interstitials will occupy octahedral sites 

parallel to each of the x, y and z axes. Thus, the unit cell remains cubic. The application of 

an external stress in the z direction, for example, causes the interstitial sites parallel to the z 

axis to enlarge while the openings perpendicular to the z axis decrease in size making it 

energetically more favorable for atoms at the 1/2, 1/2, 0 position, for example, to jump to 

the 1/2, 0, 1/2 position. This is known as the Snoek effect or Snoek ordering [95,96]. 
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Since no long range diffusion is required, this process occurs very rapidly and is normally 

completed within the time interval of one atomic jump of the species responsible for 

pinning. 

Similar behavior will be observed in B2 alloys. As in the case of BCC metals 

described above, an atom placed in an octahedral site results only in displacement of the 

two nearest atoms, whereas tetrahedral occupancy results in the distortion of the four 

neighboring atoms. Baker [182], however, indicates that in the B2 crystal structure, the 

octahedral sites are not equivalent Assuming that the A metal atoms represent Ni and the B 

metal atoms represent Al (i.e., RB>RA), the octahedral sites defined by Ni atoms will 

always be larger than those defined by Al atoms. In other words, an interstitial will prefer 

to occupy the octahedral position at 1/2,1/2,0 (face) in the B2lattice illustrated in Figure 

46 as opposed to the 1/2, 0, 0 (edge) position because this site is larger than the edge 

position and allows for easier accommodation of an interstitial atom. However, even if the 

interstitials prefer only half of the total octahedral sites, the effect of stress on these 

remaining sites would still be the same as that described in the previous paragraph and 

Snoek ordering should still occur. Nakada and Keh [98] have indicated that the apparent 

intercept of the .6.O'u versus t2/3 curves is positive when Snoek ordering occurs prior to 

Cottrell atmosphere formation. In Figure 42, a positive intercept of the .1O'u versus t2/3 

curves is observed which suggests that some degree of Snoek ordering does occur in NiAl 

prior to the aforementioned Cottrell locking. 

Suzuki locking is inapplicable to the present investigation. This mechanism has its 

origin in a chemical interaction between solute atoms and stacking faults and is· only 

expected to be significant in metals of low stacking fault energy in which the stacking fault 

widths are large. This is not the case in NiAl. 

f 

Precipitation on dislocations as a result of solute segregation is another possible .., 

mechanism for yield point formation, however, precipitates were not observed in thin foils 

made from specimens of CPNiAI-l and HPNiAI-C aged at 1100 Kn200 s/FC or 610 
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K!l200 s/AC. In addition, the shapes of the aging curves for CPNiAl-l and HPNiAI-C for 

aging times up to 61,000 sat 700 K (Figures 41 and 43) do not suggest the fonnation of 

precipitates since a decrease in AO'u that could be attributed to overaging and coarsening of 

any precipitates present was not observed at longer aging times. This does not preclude 

such a mechanism in alloys containing higher levels of substitutional contaminants as well 

as interstitial carbon [90,183,184]. However, precipitation was not observed within the 

time-temperature range examined for alloys with the specific compositions studied in this 

investigation 

Therefore, assuming a Cottrell type pinning mechanism does occur, additional 

kinetic information about C diffusion in NiAl can be obtained from the data generated 

during this study. Using the activation energies calculated above, it becomes possible to 

estimate the amount of enrichment at the dislocation core after strain aging. First, assume 

that the segregation of interstitials to a dislocation core is described by a Maxwellian 

distribution [122]. The solute concentration at the dislocation core. c. is determined 

according to: 

(37) 

where Co represents the bulk solute concentration in the crystal, R is the universal gas 

constant, T is the absolute temperature and Wm is the dislocation-solute binding energy. 

Though W m is currently unknown, a rough estimate can be obtained by substituting into 

equation (37) the temperature above which yield point phenomena are not observed, T max, 

(approximately 900 K for CP-NiAI), and by setting c equal to unity. This results in an 

estimated W m of 51 kJ/mol (0.5 e V latom), which is a reasonable estimate when compared 

to similar numbers generated for BCC metals using the same assumptions [122,181]. 

Using this estimated value for Wm, an expression for the solute enrichment at the 

dislocation core after strain aging for time ta at temperature T can be derived as follows 

[122]: 
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[ ]

D/(D+2) 
_ 1tCQ n(n + 2)DIW mlbDta 

C-Co - 2 
b RT 

(38) 

where b represents the Burgers vector of the dislocations and n is a material parameter used 

to characterize the type of dislocation-solute interaction. For interactions due to size 

effects, as in this case, n= 1. The time required to saturate a dislocation at temperatures 

sufficiently low for stable saturation to occur is given by the condition C=Cl>>Co where Cl 

is the critical solute concentration for saturation and is less than unity. Assuming that the 

carbon atoms (impurities) attract each other then Cl =1/2 and the saturation time, ts, is 

related to the solute diffusivity as follows [122]: 

D+2 

( 
Cl )2 RTb

2 

ts == 1tCo n(n+2)Djwml 
(39) 

Assuming that t8 corresponds to the minimum aging time required to induce yield point 

phenomena (i.e., sharp yield points or pronounced yield plateaus in the stress-strain 

curves), it is possible to calculate an upper bound for the diffusion coefficients for carbon 

in NiAl using equation (39) and the T and ts values detennined during this investigation and 

listed in Table 7. The resulting D values are also listed in Table 7. 

Table 7. Calculated diffusion coefficients for C in NiAl. 

Temperature, K Dcm2 s-1 

522 3,600 2 x 10-16 
616 300 3 x 10-13 
700 60 2 x 10-14 

A linear least squares fit of In D versus 1/(RT) using the values in Table 7 yields: 

(40) 
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where the activation energy, Q, turns out to be 74 kJ/mol (0.77 e V /atom), which is 

equivalent to the values derived from the AGo vs. t data in the Results. Furthermore, in 

the regime where static strain aging has been shown to occur in CP-NiAI, the calculated 

diffusivities of carbon in NiAI, are the right order of magnitude compared to the 

diffusivities of carbon in alpha iron within the strain aging regime (i.e., approximately 

10"17 cm2/s at 298 K to approximately 10"10 cm2/s at 573 K [185]). 

Summaty and Conclusions 

The observed log t or approximate t2/3 time dependence of AOu in NiAl due to 

carbon is consistent with the Cottrell-Bilby theory for solute atmosphere formation around 

dislocations. This suggests that Cottrell locking is the primary mechanism responsible for 

the observed yield points. In addition, positive intercepts on plots of AGu versus t2/3 

suggests that Snoek ordering also occurs prior to Cottrell strain aging. 

Activation energies for yield point return ranging from 70 to 76 kJ/mol (0.73 to 

0.79 eV/atom) have been calculated by two different techniques. These values are in the 

range for the diffusion of interstitials in BCC transition metals. 
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CHAPTER 6 
MANIFESTATIONS OF DYNAMIC STRAIN AGING IN POLYCRYSTALLINE NtAl 

Introduction 

It is commonly accepted that Bce metals, in the presence of sufficient interstitial 

levels, are subject to the phenomenon of strain aging which can manifest itself as: (1) 

sharp yield points, (2) serrated stress-strain curves, (3) strain rate sensitivity minima, (4) 

maxima in plots of work hardening rate as a function of temperature, (5) yield stress ' 

plateaus as a function of temperature and (6) flow stress transients upon changes in strain 

rate (see reference [104]). Not surprisingly, several B2 intennetallic compounds have also 

been shown to exhibit some of the manifestations associated with strain aging. Despite 

these observations, the relative significance of strain aging and its influence on the 

mechanical properties of ordered intennetallic compounds has been largely ignored. The 

purpose of this chapter is to describe the results of a study of dynamic strain aging (DSA) 

in polycrystalline NiAl. To accomplish this goal, stoichiometric NiAl polycrystals with 

differing interstitial contents were studied. In addition, since dilute additions of reactive 

elements have been reported to retard strain aging in BCC alloys, an NiAl alloy 

intentionally doped with Ti was investigated to analyze the role of reactive ternary additions 

on the strain aging behavior of NiAl. 

Materials and Methods 

The five cast and extruded alloys (i.e., CPNiAl-l, CPNiAl-2, NiAl-IOOC, NiAl-

300C and NiAl-Ti) and the extruded nitrogen-doped powder alloy, NiAl-N, used to study 

static strain aging (SSA) in Chapters 4 and 5 were used here. In addition, two more 

carbon-doped alloys were induction melted prepared using the techniques described in 

119 
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Chapter 4. The designations for the new carbon-doped alloys are described below. As 

before, post extrusion chemical analyses of the new ingots were conducted using the 

techniques deemed the most accurate for the particular elements. The results of these 

analyses are listed in Table 8. along with the compositions of the prior alloys for 

comparison. Cylindrical compression specimens and round button-head tensile specimens 

were ground from the extruded rods so that the gage lengths were parallel to the extrusion 

direction. Sample dimensions were 3.1 nun for the tensile gage diameters and 30.0 mm for 

the tensile gage lengths and 3.0 mm for the compression sample diameters and 6.4 mm for 

the lengths. All specimens were electropolished prior to testing in a 10% perchioric acid-

90% methanol solution that was cooled to 208 K. 

Table 8. Chemical Compositions of Extruded Alloys Examined in This Chapter 

at. % ai>PJIl 
AllOY Ni AI Ti Si C 0 N S 

NiAl-lOOCO SO.0±0.2 49.8±O.2 _._. 0.03 420 1283 22 <13 
(L3249) 

NiAl-3OOCO 49.9±0.2 49.8±O.2 -_ .... 0.02 1072 134S 34 <12 
{L3216) 

moosi ons 0 ovs m anters Co f all used· Ch an are ste ow. 4 dS Ii dbel 
CPNiAl-l SO.l±O.2 49.7±O.2 --_. O.IS 147 SSO <9 <7 
CPNiAl-2 SO.I±O.2 49.8±O.2 ---- 0.02 186 94 <9 <7 

NiAl-lOOC 49.9±0.2 SO.0±0.2 ---- 0.02 491 180 <9 <7 
NiAl-300c 49.9±0.2 SO.0±0.2 ---- 0.01 l1S3 131 <9 <7 

NLAl-N SO.I±O.2 49.7±O.2 ---- 0.02 S7 347 904 <7 
NtAl-Ti 49.9±0.2 SO.0±0.2 0.03 0.00 214 113 <9 <7 

Ni & AI Analysis performed using wet chemistry/titration techniqu~ relative accuracy ±l %. 
Ti Analysis performed using Inductively Coupled Plasma Emission Spectroscopy, relative accuracy 

±5% 
C & S Analysis performed on a Simultaneous Carbon/Sulfur Detenninator, LECO Corp., Model CS-

244, relative accuracy ±lO% 
N & 0 Analysis performed on a simultaneous Nitrogen/Oxygen Determinator. LECO Corp .• Model 

TC-I36 (K'Model TC-436. relative accuracy ±lO% 
Si Analysis performed on an Ultraviolet/Visible Spectrophotometer, Shimadzu, Model UV-l60. 

relative accuracy ±10% 

~. 
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All tensile and compression tests were performed using an Instron Model 1125 load 

frame at constant crosshead velocities corresponding to an initial strain rate of 1.4 x 10-4 

S·l. Testing was accomplished in two steps: firSt, the temperature dependence of flow 

stress was determined by testing all as-extruded alloys in air between 300 and 1200 K by 

heating the samples in a clamshell type resistance furnace where temperature gradients were 

controlled to ±2 K. Tests below room temperature were conducted in compression by 

cooling the specimens in liquid baths. During this phase of testing, the strain rate 

sensitivity (SRS) was also determined by increasing the strain rate by a factor of ten from 

the base strain rate at fIXed plastic strain intervals. The quantity extracted from these 

experiments was the SRS, s = AeJ/1lln t. Second, alloys exhibiting room-temperature yield 

discontinuities after annealing were subjected to static strain aging (SSA) tests. A 

description of the SSA test procedure is provided in Chapters 4 and 5 and in reference 

[138] . 

Samples for transmission electron microscopy (TEM) were cut from the tested 

tensile and compression specimens with a low-speed diamond saw and twin jet

electro polished in a solution of 70% ethanol, 14% distilled water, 10% butylcellusolve, and 

6% perchloric acid at 273 K, 25Y, and 0.15 mAo 1EM examinations were conducted in a 

JEOL lOOC microscope operating at an accelerating voltage of 120 kY. 

Results 

Microstructural Characterization 

The post-extrusion microstructure of all alloys consisted of fully equiaxed and 

recrystallized grains with nominal grain sizes of 20 J.1.IIl exceept for the NiAI-N alloy that 

had a grain size of approximately 5 J.1.IIl. The results of chemical analyses of the extruded 

alloys revealed that, within experimental accuracy, the Ni and AI contents of the eight 

nominally stoichiometric alloys are not significantly different from each other. The major 
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differences between the materials are the addition of 0.03 at. % Ti to NiAl-Ti and the 

varying carbon and oxygen interstitial levels. Chemical analysis of the new carbon-doped 

alloys revealed that, in addition to containing the desired levels of carbon, each contained 

five times as much oxygen as the fmt set of ingots. As a result, the new ingots were 

labeled NiAl-l00cO and NiAl-300cO respectively. 

Tensile Properties 

Mechanical tests and strain rate change experiments were conducted in the 

temperature range of 77 to 1200 K. The temperature-dependent properties (i.e., flow 

stress, work hardening rate and SRS) are summarized in Figures 47-49. Figure 47 shows 

the temperature dependence of the flow stress at 0.2% plastic strain. In agreement with 

previous studies [18], the flow stress generally decreased with increasing temperature. In 

all alloys except NiAl-Ti and NiAl-N, however, a definite plateau or slight hump was 

observed in the range 750-900 K. 

The work hardening characteristics over the 0.2-1.8% plastic strain interval have 

been evaluated from the average work hardening rate, a = (AeJ/ A£), and average work 

hardening exponent, n, as defmed by the equation: 

a=K£n (41) 

where K is a strength coefficient [186]. The resulting values for a and n have been 

normalized with respect to the elastic modulus and are summarized in Figure 48. Much like 

the 0.2% yield stress, both alE and n/E decreased steadily with increasing temperature with 

all alloys except NiAI-Ti and NiAI-N exhibiting slightly anomalous work hardening 

behavior in the temperature range 600-700 K. 

The temperature dependence of the strain rate sensitivity s is presented in Figure 49. 

The SRS remained positive for all alloys except CPNiAl-l which exhibited negative s 

values at 600 and 700 K. For all alloys distinct minima were observed in the temperature 
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range 750-850 K with the minima in the carbon-doped alloys occurring at slightly lower 

temperatures than in CPN"lAl-2 and NiAl-Ti. This behavior is analogous to soft-oriented 

single crystals which also exhibit SRS minima in this regime and which often exhibit 

negative strain rate sensitivities and serrated flow indicative of DSA 

[14,15,28,164,179,180]. Serrated flow was only observed in CPNiAl-1 and not in any of 

the other alloys studied here. However, yield stress transients in the form of sharp yield 

points were consistently obsetved in the temperature range of the flow stress plateau in all 

alloys except NiAl-Ti upon increasing the strain rate by a factor of 10. Examples of this 

behavior is illustrated in Figme SO. This is clearly indicative of DSA. 

Limited SSA experiments were conducted on CPNiAl-1 and NiAl-lOOC. These 

experiments were conclusive in that significant yield points could be obtained for both 

alloys after aging. For example, in NiAl-100c significant yield points could be recovered 

after annealing for as little as 2100 s (35 min.) at 622 K, in agreement with the SSA results 

presented in Chapters 4 and 5. 

Post-test reM analysis of the NiAl-100c (Figure 51) alloy after deformation at its 

SRS minimum revealed a deformation structure consisting of randomly-distributed <001> 

dislocations and dislocation debris arranged into coarse tangles and poorly defined cell 

walls. The majority of the cell walls were oriented parallel to the <110> crystallographic 

directions indicating some propensity towards localized slip. Similar obsetvations have 

been made in single crystal NiAl alloys and is discussed in more detail in Chapter 7. 

Conversely, in specimens deformed at room-temperature (see Chapter 4), dislocations were 

arranged into well developed cellular networks indicating the ease of cross-slip at this 

temperature. At elevated temperatures, more uniform dislocation distributions develop due 

to enhanced relaxation and recovery. 
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Discussion 

The curves in Figures 47-49 have several common features. (1) In all alloys but 

NiAI-Ti and NiAI-N, the temperature dependencies of the flow stress, alE, and n/E 

increase anomalously in the temperature range 600 to 850 K. (2) For all of the alloys, the 

SRS's exhibit distinct minima in the temperature range 750-850 K but remain positive 

except for CP-NiAll. These anomalies are generally observed at lower temperatures for 

carbon doped alloys followed by the conventional purity alloys and then by NiAI-Ti. 

Similar flow stress peaks and anomalous work hardening parameters have been observed 

in soft-oriented NiAI single crystals in this same temperature range as have SRS minima, 

negative SRS values, and serrated yielding [14,15,28,1641. These anomalies are attributed 

to the migration of interstitial carbon to dislocations. Confmnation that diffusion of solute 

atoms toward dislocations is occurring is provided by the static strain aging studies 

performed in this chapter and in Chapters 4 and 5. 

In the present set of experiments, the flow stress and work hardening anomalies are 

shifted to higher temperatures compared with the minimum in SRS. This serves as further 

evidence in favor of DSA. Classical theory [111,127] dictates that the microscopic 

mechanism responsible for DSA is the thennally activated motion of dislocations through 

localized forest obstacles. This type of dislocation motion is characterized by a waiting 

time, tw, during which dislocations temporarily aITested at obstacles in the slip path become 

pinned by diffusing solute atoms. As a result, the obstacles to dislocation motion become 

stronger with increasing waiting time (i.e., strength increases with increasing temperature 

and decreasing strain rate in the DSA regime) resulting in an increased resistance to plastic 

deformation. Accordingly, SRS reaches a minimum when the time required to pin a 

dislocation, ta becomes equal to two At a given strain rate (i.e., at a fIXed tw) strengthening 

saturates when the temperature becomes high enough that ta«tw. In other words, 

maximum strengthening will occur at temperatures higher than the SRS minima. 
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Some interesting observations in N'lAl-Ti were: (1) the lack of a flow stress plateau 

or anomalous work hardening region; (2) the presence of a SRS minima; and (3) the lack of 

flow stress transients upon a change in strain rate. Normally, the temperatures at which 

DSA phenomena are observed tend to rise with increasing purity. Thus, the temperatures 

where the flow stress and work hardening anomalies are located should rise with 

decreasing solute content Figures 47-49 show that the stress anomalies and SRS minima 

do indeed occur at lower temperatures for NiAl-l00c compared to conventional purity 

NiAl alloys. NW-Ti, however, contains just as much C as CPNW-2. It is suggested, 

therefore, that the gettering of C by n, as reported in Chapter 4 reduces the DSA effects in 

NiAl-Ti. DSA is not eliminated entirely as evidenced by the SRS minima, either because 

the maximum solubility of C in the Ni-AI-n alloy is still greater than the concentration 

required to cause DSA or because there is not enough Ti present to getter all of the C. 

Interestingly, negative SRS and serrated flow was only observed in CPN'lAl-l even though 

it contained interstitial contents comparable to the other seven alloys used in this chapter. 

As a result, all extruded alloys were analyzed for the presence of Si, a common impurity in 

induction melted castings. The results of these tests are indicated in Table 9 along with the 

carbon contents. In CPNiAl-l, residual Si contents were much higher than those observed 

in any of the other alloys. This could suggest that silicon, rather than carbon, is the cause 

for strain aging in N'tAl. The results from Chapter 4, however, indicated the presence of 

sharp yield points and broad yield plateaus in HPNiAl-C, CP-NW,.2, NiAl-lOOC, and 

NW-300c after annealing (i.e., 1100 K/2 hlFC). Examination of Table 9 reveals that 

these four alloys contain between 0.01 and 0.05 at. % Si. HP-NiAl, NiAI-N, and NiAl-Ti, 

however, exhibit no yield points or plateaus despite the presence of approximately 0.02 

at.% Si in HP-NiAl and NiAl-N. This suggests that it is the lower C levels, as reported in 

Chapter 4, rather than the presence of Si that causes DSA. The results for NiAl-Ti provide 

further support for this hypothesis. NiAI-Ti contains no Sit exhibits no yield points, but 

exhibits a dramatic SRS minimum indicative of some DSA at intermediate temperatures. 
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Prior investigations revealed that in this alloy some of the C is gettered by Ti. This 

indicates that Si alone cannot be the cause of the DSA observed in NiAl but serves to 

indicate that it may play an important role. One possibility is that Si increases the activity of 

C in NiAl resulting in an increased diffusivity of C. This suggestion is only speculative, 

however, and is addressed further in Chapter 7. 

Table 9. Carbon and Silicon Compositions for all of the Polycrystalline Alloys Examined 
in This Dissertation (at.%) 

Alloy C _Si 
HP-NiAl 0.0043 0.0228 

HPNiAl-C 0.0092 0.0489 
CPNiAl-1 0.0147 0.1458 
CPNiAl-2 0.0186 0.0199 

NiAl-lOOC 0.0491 0.0153 
NlAl-100cO 0.0420 0.0261 
NiAl-3OOC 0.1153 0.0137 

NlAl-300cO 0.1073 0.0198 
NlAl-N 0.0057 0.0200 
NlAl-TI 0.0214 0.0000 

Summmy and Conclusions 

The occurrence of serrated yielding in CPNiAl-l, SSA, yield points during room 

temperature testing after annealing, yield stress transients upon changes in strain rate, and 

the occurrence of yield stress and work hardening anomalies confirm that DSA does occur 

in polycrystalline NlAl alloys. Evidence for DSA in the other alloys is more subtle and is 

indicated predominantly by SRS minima and anomalous yield strength-temperature 

behavior. 

Preliminary analysis indicates that residual Si impurities can playa significant role 

in DSA and that the addition of dilute quantities of reactive metals can reduce the effects of 

DSA via a gettering mechanism. 
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Figure 47. Temperature dependence of the 0.2% yield stress for NiAl Alloys: (a) CPNiAl-
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Figure 48. Temperature dependence of the work hardening rate, 9/E=(Aal Ae)/E, and 
work hardening exponent, n/E=(dlna/dlne): (a) CPNiAl-l and CPNiAl-2; (b) NiAl-lOOC 
and NiAl-lOOCO; (c) NiAl-300C and NiAl-300CO; and (d) NiAl-N and NiAl-Ti. 
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Figure 49. Temperature dependence of the SRS, s=A(J/~£: (a) CPNiAl-l and CPNiAl-
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observed in CPNiAl-l, NiAl-lOOC, and NiAl-Ti during testing near the SRS minimum. 
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Figure 51. BFfEM of dislocation structure observed in NiAl-100C after 11.5% 
deformation at 800 K illustrating the transition of a dislocation cell structure to a banded 
structure. 
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CHAPTER 7 
MANIFESTATIONS OF DYNAMIC STRAIN AGING IN SOFT-ORIENTED NiAl 

SINGLE CRYSTALS 

Introduction 

As mentioned in the preceding chapters, the mechanical properties of the 

intermetallic compound NiAl exhibit an extreme sensitivity to (1) point defects introduced 

during processing and/or heat treatment, (2) the level and type of prestrain in the material, 

and (3) minute additions of interstitials that can lead to strain aging phenomena. Several 

manifestations of strain aging have been identified as playing a role in the deformation of 

polycrystalline and single crystal NiAl. They are: (1) the occurrence of yield points 

[23,167-169] ; (2) serrated stress-strain curves [15,22,23,26,28,164,165]; (3) strain rate 

sensitivity minima [12,166]; (4) yield stress plateaus as a function of temperature [18]; (5) 

the occurrence of local maxima or plateaus in plots of work hardening rate (WHR) as a 

function of temperature [12,27]; and (6) flow stress transients on changes in strain rate 

[139,166]. Despite these observations, the significance of strain aging and its influence on 

the mechanical properties ofNiAl has been, until recently, largely ignored. The purpose of 

this chapter is to describe the dynamic strain aging (DSA) behavior observed in NiAl single 

crystals. To accomplish this objective, stoichiometric NiAl single crystals with differing 

interstitial contents were studied. Since dilute additions of reactive elements have been 

reported to retard the strain aging behavior in BCC metals, an alloy intentionally doped 

with Mo was also investigated to analyze the role of a strong gettering agent on the strain 

aging behavior of NiAl single crystals. 
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Experimental 

One Mo-doped (NiAI-Mo), one Si-doped (NiAI-Si) and three nominally 

stoichiometric NiAl (CPNiAl-1, CPNiAl-2 and UP-NiAll) single crystal slabs were grown 

in argon by a modified Bridgman procedure. Slabs CPNiAl-1, CPNiAl-2, and NiAI-Mo 

were produced at General Electric Aircraft Engines and measured 25 mm x 32 mm x 1000 

mm. Slabs UP-NiAll and NiAI-Si were produced at the University of Florida and 

measured 25 mm diameter x 60 mm length. A low interstitial, high purity ingot of 

stoichiometric NiAl (HP-NiAl), 25 mm diameter x 50 mm length, was produced via a 

containerless electromagnetic levitating zone process at the University of Tennessee. All 

slabs were homogenized at 1589 K for at least 1 hour in argon followed by furnace cooling 

to room-temperature prior to machining into test specimens. 

Post-processing chemical analyses were conducted using the techniques deemed the 

most accurate for the particular elements. The results of these analyses are listed in Table 

10. The crystals were oriented using the back reflection Laue technique and either ground 

into round button-head tensile specimens parallel to the <123> axis or EDM wire cut into 

cylindrical compression specimens parallel to the <123> or <110> axis. Specimen 

dimensions were: (1) 3.1 mm and 30.0 mm for the for the tensile gage diameter and gage 

length; and (2) 3.0 mm and 6.4 mm for the compression sample diameter and height, 

respectively. All tensile specimens were electro polished prior to testing in a 10% perchloric 

acid-90% methanol solution that was cooled to 208 K 

All mechanical tests were performed on an Instron Model 1125 load frame at 

constant crosshead velocities corresponding to an initial strain rate of 2.8 x 10's 
S·l. Tests 

were run in air between 300 and 1100 K by heating the samples in a clamshell type 

resistance furnace. Testing below room temperature was accomplished in compression by 

cooling in liquid baths. True stress-strain data were calculated from the load-time plots and 

yield stresses were determined by the 0.2% offset method. During some of these tests, the 
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strain rate sensitivity (SRS) was also determined by increasing the strain rate by a factor of 

ten from the base strain rate at fIXed plastic strain intervals. The quantity extracted from 

these experiments was the SRS, s =.1a/&ne. 

Table 10. Chemical Compositions of Single Crystal Alloys Examined in This Study 

[hkl) N 

[110] S0.4±0.2 49.3±0.2 0.29 220 9S 12 

Analysis performed using wet chemistry/titration techniques, relative accuracy 
±1%. 

Mo Analysis performed on a Flame Atomic Absorption/Emission 
Spectrophotometer, Perkin Elmer Model 5000, relative accuracy ±5%. 

C & S Analysis performed on a Simultaneous Carbon/Sulfur Determinator, LECO 
Corp., Model CS-244, relative accuracy ±10%. Sulfur concentrations were 
always less than 0.001 at.%. 

N & 0 Analysis Performed on a Simultaneous Nitrogen/Oxygen Determinator, LEeO 
Corp., Model TC-136 or Model TC-436, relative accuracy ±10%. 

Si Analysis performed on an UltravioletlYisible Spectrophotometer, Sbimadzu, 
Model UV-l60, relative accuracy ±10%. 

Samples for transmission electron microscopy (TEM) were cut from the tested 

tensile or compression specimens with a low-speed diamond saw and twin jet

electropolished in a solution of 70% ethanol, 14% distilled water, 10% butylcellusolve, and 

6% percbloric acid at 273 K, 25V, and 0.15 mAo TEM examinations were conducted in a 

JEOL l00c microscope operating at an accelerating voltage of 120 kV. 
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Results 

Composition and Microstructure 

The results of the chemical analyses indicated that, within experimental accuracy, 

the Ni and AI contents of the five alloys are not significantly different from each other. The 

major differences between the materials are the residual Si, C, 0 and N contents and the 

addition of 0.1 at. %Mo to NiAl-Mo, which resulted in the formation of coarse precipitates 

(Figure 52). Energy dispersive spetroscopic analysis and TEM microdiffraction indicated 

that these particles were MOle. The presence of sili~on in NiAI-Mo, CPNiAl-l and 

CPNiAl-2 has been attributed to reaction with the ceramic shell mold walls during 

processing. The lack of Si in UF-NiAll has been attributed to the use of arc-melted as 

opposed to vacuum induction melted feed stock and the use of higher purity crucibles 

during directional solidification. 

Mechanical Prgperties 

The temperature dependent properties (i.e., critical resolved shear stress (CRSS), 

work hardening rate, and SRS) are summarized in Figures 53-55. Figure 53 shows the 

temperature dependence of the CRSS at 0.2% plastic strain. In agreement with prior 

studies [18,44], the CRSS decreased gradually with increasing temperature until reaching 

an apparent plateau in the temperature range 650 to 1000 K in CPNiAl-l, CPNiAl-2, UF

NiAll, NiAI-Mo and NiAl-Si. In HP-NiAI, however, no such plateau was observed in 

agreement with the previous observations from Chapter 2 on a similarly processed material • 

The work hardening characteristics between 0.2 and 1.8 % plastic strain have been 

evaluated from·the average work hardening rate (a = t:.a/Il£,) and work hardening exponent 

(n=dina/dlne) normalized with respect to the elastic modulus and are summarized in Figure 

54. Much like the CRSS, both alE and n/E decrease steadily with increasing temperature 



140 

until reaching an anomalous region in the temperature range 600 to 900 K in CPNiAl-l, 

CPNiAl-2, UF-NiAll and NiAl-Mo. No anomalous behavior was observed in HP-NiAl. 

The occurrence of serrated flow has been previously reported in NiAl 

[14,15,28,164]. Since serrated flow can be associated with DSA and the Portevin-Le 

Chatelier (PLC) effect, the SRS, s, has been deduced from strain rate change tests. The 

temperature dependence of the strain rate sensitivity. is presented in Figure 55. For all six 

alloys, s exhibits a distinct minimum in the range 600 to 800 K with s actually becoming 

negative for CPNiAl-l, CPNiAl-2 and NiAI-Si. In addition, the local maximum in the 

flow stress, in the plateau region, occurs at higher temperatures than the SRS minimum. 

Coincident with those temperatures where a negative SRS was observed was the 

occurrence of serrated yielding (Figure 56). Serrated yielding typically OCCUlTed after a 

small critical plastic strain, £C. The T and e dependence of £c for CPNlAl-l, CPNiAl-2 and 

NiAl-Si is shown in Figure 57. Serrations occur in only certain e and T regimes. Within 

these regions, increasing e and decreasing temperature, generally caused a decrease in the 

magnitude of £c to some minimum followed by a further increase. Figure 58 maps the 

regime of serrated flow in CPNiAl-l and NiAI-Si. Using the classification scheme of 

Rodriguez [104], the serrations in the region where a negative temperature dependence of 

the critical strain was observed could be predominantly classified as type C while the lower 

temperature serrations could be classified as type B· (Figure 56). Both types of serrations 

are characteristic of unlocking of pinned dislocations and are associated with discontinuous 

deformation band propagation. 

In this investigation Q for serrated flow was ascertained via three distinct methods. 

In the first method, the critical plastic strain can be related to e and T by the following 

equation: 

e~m+J\) = Ktexp(Q/RT) (42) 

where m and P are exponents related to the variation in vacancy concentration Cy and 

mobile dislocation density pm (i.e., Cy oc em and Pm oc ~), K is a constant, Q is the 
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activation energy and R and T have their usual meanings. The exponent (m+~), as 

determined from the slope of the plot of In t versus In £c at a constant temperature (Figure 

57a), was in the range 0.98 to 1.27 for CPNiAl-1, CPNiAl-2, and NiAl-Si. Typical values 

for the exponent (m+~) are between 2 and 3 for substitutional alloys and between 0.5 and 1 

for interstitial alloys [104] which indicates that an interstitial specie is likely responsible for 

serrated yielding. The activation energy is determined by applying the derived exponent to 

a plot of In £C versus I/RT (Figure 57b) [187,188] which yields Q as its slope x (m+p). 

This method gives activation energies in the range 75 to 90 kJ/mol for the onset of serrated 

flow. 

In the second method, Q can be determined from the slope of an Arrhenius plot of 

t versus I/RT. In this case the onset lines on Figure 58, which shows the regime of 

serrated flow for CPNiAl-l and NiAl-Si, can be used [188]. This method yields an 

activation energies ranging from 66 to 100 kJ/moL 

Finally, the magnitude of the stress drop, Aa, accompanying serrated flow is 

measured at a given strain for a range of e and T and plotted as indicated in Figure 59a; a 

constant value for Aa is selected from which the e corresponding to this Aa is determined 

for each temperature. The resulting t is then plotted as a function of Iff and Q is 

determined from it's slope (i.e., Q =-(lneRT/lne». Detailed descriptions of this method 

are provided in references [188] and [189]. Figures 59a-c show the Aa versus e and t 

versus Iff plots for CPNiAl-l, CPNiAl-2, and NiAl-Si from which activation energies of 

approximately 70 kJ/mot were ascertained for all three alloys. 

Activation energies determined using these methods are summarized in Table 11 

and are in reasonable agreement with the activation energies for SSA in polycrystalline 

NiAl (Chapter 5) and the activation energy for serrated flow in NiAl reported by Brzeski 

and co-workers [29,164]. 
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Table 11. Summary of activation energy values for serrated flow evaluated using different 
methods for conventional purity and Si-doped single crystals. 

Activation enelID', _QJ!c.J/mol) 
Method employed to CPN1AJ.-1 CPNiAl-2 NiAl-Si 
evaluateQ <123> <110> <110> 

1 From log £c vs. 94 82 75 
Iff plots (m+p) = 1.27 (m+p) =0.98 (m+p) =0.98 

2 From log t - Iff onset = 66 onset = 100· onset = 66 
map end = 139 end=-na- end = 138 

3 Using stress drop 72 73 73 
method 

Average Q for the 
onset of serrations 77±14 85±14 71±S 
using methods 1 to 3 . 
• This value obtained from a plot of £ versus Iff for the onset of serrations at two strain 

rates. A complete serration map for CPNiAl-2 was not available. 

IBM observations of deformed samples 

Representative TEM bright-field images of the NiAl alloys deformed at room 

temperature, in the DSA regime, and above the DSA regime are shown in Figures 60 

through 63. Diffraction contrast analysis revealed that deformation occurred by the motion 

of <001> type dislocations at all temperatures. Figure 60a shows the deformation 

microstructures of CPNiAl-2 samples deformed at room temperature. In agreement with 

previous observations in Chapter 3, the microstructure consists of jogged and curved 

dislocation segments and dislocation debris in the form of elongated loops. At high strains 

(Figure 6Ob) the dislocations arrange themselves into cellular networks containing a low 

volume fraction of intercellular dislocations or debris. Such structures are attributed to the 

easy cross· slip of screw dislocations during room-temperature deformation ~. 

[71,154,171,173]. 

Figure 61 shows the deformation microstructure of a CPNiAl-2 sample deformed in 

the DSA regime. The microstructure of CPNiAl-2 consists of poorly-defined cells or the 

beginning of a channel structure with the densest cell walls oriented parallel to the <110> 
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crystallographic direction. Coincident with this deformation structure was a relatively high 

density of dislocations within the cell walls Figure 61a. Similar observations have been 

reported previously for <110> oriented conventional purity single crystals [80,190,191]. 

Cell walls in non-<IIO> directions were particularly poorly defined indicating some sort of 

localized deformation in this temperature regime. This structure is reminiscent of the 

structures developed during low cycle fatigue testing in the DSA regime [192-194]. 

Similar deformation microstructures were observed in NiAl-Si following deformation at its 

SRS minimum with the cell walls oriented parallel to the <100> direction (Figure 61b). 

Figure 62 shows the deformation substructure observed in CPNiAl-2 following 

deformation at 1000 K. This structure was characterized by a lower dislocation density 

than that observed at 300 K or at the SRS minimum and the general lack of a cell structure. 

This is attributed to the greater relaxation and recovery effects which become important at 

this temperature. 

In NiAI-Mo following deformation at the SRS minimum (Figure 63), structures 

consisting of poorly derIDed cells and dislocation tangles were also observed. However, 

the channel structures observed in CPNiAl-2 were not as evident. In addition, a lower 

density of intercellular debris and dislocations was observed even after levels of 

deformation equivalent to those in CPNiAl-2. In HP-NiAl (Figure 64a), cellular structures 

characterized by large loosely packed cell walls with very little intercellular debris were 

observed indicating a much greater ease of cross-slip in this alloy compared to either 

CPNiAl-2 or NiAl-Mo. On occasion, single slip bands were observed propagating across 

the sample (Figure 64b) indicating some localized slip processes but not to the same degree 

as in the other alloys. 

Discussion 

The yield stress and WHR versus temperature curves for each alloy exhibit several 

common features. First, the temperature dependencies of the yield stress and alE generally 
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decrease with increasing temperature. In the case of the CPNiAl-l~ CPNiAl-2~ UF-NiAl1~ 

NiAI-Mo~ and NiAl-Si alloys, however, anomalous regions in the form of local peaks or 

plateaus are observed in the temperature range 650 to 1000 K. No such feature was 

observed for HP-NiAl. Secondly, the temperature dependence of the SRS exhibited 

distinct minima for all six alloys in the temperature range 600 to 800 K with SRS actually 

becoming negative for CPNiAl-1, CPNiAl-2, and NiAl-Si. Coincident with this region of 

negative SRS was the observation of serrated flow during mechanical testing which directly 

supports the premise that DSA does occur in this intermediate temperature range in NiAl. 

In HP-NiAl, NiAl-Mo, and in UP-NiAll, SRS always remained positive and serrated flow 

was not observed. However, flow stress transients on changes in strain rate in the form of 

sharp upper yield points were consistently observed during testing near the SRS minimum 

in UF-NiAll and NiAl-Mo which are indicative of DSA. No flow stress transients were 

observed in HP-NiAl. 

The dislocation substructures formed during deformation at temperatures both 

above and below the regime where serrated flow occurs are characterized by elongated cell 

structures~ dense tangles and debris. The substructure formed in the DSA regime was 

typified by a dislocation vein structure. An important additional feature in samples 

exhibiting serrated flow is that the regions between the dislocation walls often contain a 

rather uniform dislocation distribution. It is proposed that these inter-wall dislocations 

result from solute locking of slow moving dislocations between slip bands. 

Inhomogeneous deformation occurs as a result of differential movement of dislocations 

within and in between the dislocation walls. 

The anomalous mechanical behaviors observed in this study are attributed to DSA 

or the migration of interstitial solutes to mobile dislocations. Confmnation is provided by 

SSA studies performed on polycrystalline NiAl (chapters 4 and 5) and by the observance of 

localized slip in the conventional purity and Si-doped NiAl single crystal alloys. The lack 
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of serrated flow in UF-NiAl1, which has the same general composition as CPNiAl-2, is 

attributed to its lower silicon concentration. 

Once again, the species responsible for DSA can be identified by comparison of the 

deformation behavior for the six single crystal alloys and the results from the previous six 

chapters. Serrated flow was observed in CPNiAl-1, CPNiAl-2, and NiAl-Si, but, not in 

HP-NiAl, UF-NiAll, or NiAI-Mo. In HP-NiAl, the C and Si concentrations were much 

lower than those observed in CPNiAl-1, CPNiAl-2, or NiAl-Si (i.e., 76 appm C versus 

> 150 appm C and 500 appm Si versus> 1500 appm Si) which suggests that the lack of 

serrated flow in HP-NiAl is related to reductions in the C and Si contents. This is 

supported by the results of Chapters 4 and 6 which show that yield point formation is 

enhanced and that serrated flow is observed in conventional purity alloys containing> 1500 

appm Si in addition to normal levels of C (approximately 150 appm). When C is 

maintained at levels comparable to the conventional purity alloys but Si is reduced to less 

than 100 appro, as in the case ofUF-NiAl1, serrated flow is not observed but yield stress 

transients upon an increase in strain rate and a yield stress plateau are observed between 

600 and 900 K, which would indicate that C still causes some strain aging behaviors but 

that Si somehow enhances the effect. Finally, in NiAI-Mo, the bulk Si levels were 

equivalent to those in NiAl-Si (i.e., 0.23 versus 0.25 at. % Si) while the bulk interstitial 

levels were higher than those observed in CPNiAl-1, CPNiAl-2, and NiAI-Si, the three 

alloys that exhibited serrated flow. However, no serrated flow was observed in NiAI-Mo. 

The microstructural analysis presented in this chapter showed that this alloy contains a 

distribution of coarse M02C stringers and no silicide precipitates; this suggests that the lack 

of serrated flow in NiAl-Mo is due to the gettering of C from the NiAl matrix. Once again, 

this suggests that C causes strain aging in NiAl and that the strain aging kinetics can be 

enhanced by the presence of Si in sufficient quantities. Were Si the cause for the serrated 

yielding, instead of C, then it is expected that serrated yielding would also be observed in 

NiAl-Mo since it contains nearly as much Si as NiAI-Si. In addition, if C alone were the 
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cause, then it is expected that serrated yielding would be observed in UF-NiAll which 

contains more C than CPNiAl-2 but only 69 appm Si. These results strongly suggest that 

the serrated yielding in NiAl is a result of interactions between dislocations and solute 

atoms, namely C and Si but that C is the main cause for the manifestations of DSA 

observed in the NiAl investigated in this dissertation. 

The mechanism by which Si and C can cause serrated flow remains unknown, 

however two possibilities come to mind: First, it is possible that Si simply modifies the 

activity coefficient of C in NiAl. It has been observed in austenitic Fe-Mn-C alloys 

[195,196] that the addition of aluminum raised the activation energy for the onset of 

serrated flow by reducing the carbon activity, and thus its diffusivity, in these alloys. The 

opposite effect could occur in the case of NiAl where Si, increases the activity and 

diffusivity of C in NiAl and thus decreases the activation energy for the onset of serrated 

flow. However, the results collected in this study indicate that the activation energies for 

the onset of serrated flow in CPNiAl-l (0.17 at. % Si), CPNiAl-2 (0.15 at. % Si), and in 

NiAl-Si (0.25 at. % Si) are similar whereas no activation energy could be calculated for 

NiAl containing lower Si concentrations. 

Second, DSA could be the result of an interaction solid solution hardening (lSSB) 

effect as described in references [197-2011. This process is attributed to the strengthening 

that arises from the simultaneous presence in solid solution of substitutional and interstitial 

atoms that exhibit an affmity for each other. The exact reasons for ISSH are unknown but 

depend upon whether the interstitial atoms bind more strongly to the substitutional solute 

atoms or to dislocations [199]. For example, if interstitials bind more strongly to 

dislocations then strain aging effects will be extended to higher temperatures due to the 

reduced mobility of the dislocations and dislocation atmospheres. Whereas, if interstitials 

bind more strongly to substitutional solutes, solid solution strengthening due to interstitials 

will be extended to higher temperatures than in more pure metals due to a reduction in the 

mobility of the interstitials due to their association with substitutional solute atoms or due to 

• 
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the formation of clusters of interstitial and substitutional solute atoms. Diffusion couple 

studies between N':tAl, Ni3Al, and SiC [202,203] have suggested that Si may diffuse as fast 

as or faster than C in NiAl and may result in the formation of complex Ni-Al-Si-C phases. 

This suggests that some clustering of C with Si, Ni, and AI does occur resulting in an 

expansion of the DSA regime and stronger pinning. 

In light of the fact that Si is frequently present in conventional purity NiAl single 

crystals grown by the Bridgman method due to interactions with the ceramic mold walls, 

the possible synergistic effect of Si and C on the deformation behavior of NiAl certainly 

deserves more attention. 

Conclusions 

Five of the six alloys examined in the present study exhibit yield stress and work 

hardening plateaus in the temperature range 650 to 1000 K which are indicative of DSA. In 

HP-NiAl and in UF-NiAll, such regions were not as obvious. 

Pronounced regions of negative SRS have been observed in conventional purity 

alloys (CPNiAl-l and CPNiAl-2) in the temperature range 600 to 800 K. Coincident with 

this temperature regime was the occurrence of serrated flow (i.e., the PLC effect). 

In the temperature range where serrated flow occurs, the dislocation distribution 

consists mainly of dislocation walls or the beginning of a vein structure indicating localized 

slip. In HP-N'lAl and NiAl-Mo, the dislocations maintain cellular networks indicating more 

abundant and therefore, easier cross slip. At temperatures above or below the regime of 

serrated flow, well-developed cell structures dominate for all alloys. 

Activation energies for serrated flow have been calculated using three methods: 

84±10 kJ/mol (£c vs. T), 73±1 kJ/mol (stress drop method [188]) and 77±19 kJ/mol 

(Arrhenius method). All values are reasonable order of magnitude estimates which agree 

with the prior observations in this dissertation and with Hack and co-workers 

[14,15,28,29,164]. These results suggest that a combination of interstitial and 
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substitutional solutes, namely C and Si, cause serrated flow in soft oriented NiAl. Small 

additions of Mo to NiAl caused a dramatic increase in yield stress and eliminated serrated 

yielding. This latter effect is attributed to the gettering of C by Mo. 
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Figure 60. Room-temperature deformation structure observed in CPNiAl-2: (a) after 
-0.2% plastic deformation, and (b) after -2% plastic deformation. 
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Figure 61. Deformation structures observed in CPNiAl-2 and NiAI-Si after -17% 
plastic deformation at 700 and 800 K. (a) CPNiAl-2 at 700 K and (b) NiAl-Si at 800 K. 
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Figure 62. Dislocation morphology observed in CPNiAl-l after 11 % deformation at 
1000 K. 
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Figure 63. 
700K. 
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Defonnation structure observed in NiAI-Mo after 9% plastic deformation at 



169 

Figure 64. Deformation structure observed in HP-NiAl after 9% plastic deformation at 
725 K. (a) Cellular morphology observed in most samples and (b) a single deformation 
band observed in one of the foils. 



CHAPTER 8 
MODELLING DSA EFFECfS IN SINGLE AND POLYCRYSTALLINE NiAl 

The results and discussions provided in the previous seven chapters have shown J\ 

that behavior consistent with the occurrence of strain aging is observed in conventional 

purity NiAl alloys and that this phenomenon can be reduced. but not necessarily eliminated, 

by microalloying with reactive ternary additions such as Ti or Mo, or by zone refining to 

decrease impurity levels. All alloys investigated in this study exhibited a dramatic SRS 

minimum near 750 K and a smaller minimum near 400 K. 

These manifestations can be rationalized using the phenomenological model for 

DSA developed by Reed-Hill and co-workers [1-3,115,116]. The basic assumptions of 

this model are: (1) The total flow stress consists of two parts, one that is independent of 

DSA and one that is DSA dependent; (2) the thermal component (i.e., the effective stress) 

of the DSA-independent stress obeys a power law relationship: 

( 

. )RT/HO 
* * E 0" = 0"0 -.-

Eo 
(43) 

where the exponent RT/Ho is the strain rate sensitivity measured under conditions where E 

is directly proportional to the dislocation velocity, v, HO is a material parameter with units 

of energy, 0"* is the effective component of the flow stress, 0": is the effective stress at 0 

K, E is the base strain rate, and Eo is a constant equal to Pmbvo. The universal gas 

constant, R, has been used rather than Boltzmann's constant to yield results with units of 

energy. It is further assumed that: (3) sufficient strain rate sensitivity and flow stress 

versus temperature data must exist at temperatures below the plateau region (i.e., where 

DSA does not occur); (4) the temperature dependence of the elastic modulus must be 

170 
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known; (5) the temperature dependence of the internal stress is related to that of the elastic 

modulus, E, by the equation 

(JE ·E 
O'E = 0 

Eo 
(44) 

where Eo represents the elastic modulus at 0 K and O'E represents the internal stress at 0 
• 

K. Finally, (6) it is assumed that the applied stress is assumed to be the sum of its internal, 

<JE, and effective, 0'*, components. Thus, 

O'=CJE+O'*. (45) 

At temperatures where DSA occurs, a DSA component, CJDSA, which itself consists of two 

components (i.e., CJDSA=O'snoek+O'cottteU) is added to equation (44). In studies of strain 

aging the strain rate sensitivity, which was expressed above as n, may also be expressed as 

s=dO'/dln t. Considering the assumptions listed above, it can be shown that the strain rate 

sensitivity, S, is related to the flow stress and the strain rate by the following equation 

RT *( t )RT IHo 

s=H°O'o ~ 
eo 

(46) 

where 0': is the effective stress at 0 K. Plotting s versus temperature yields a curve 

containing a single maximum as illustrated in Figure 65. At the maximum of this curve it 

can be shown that the following relationships apply: 

Tmax= 
1 (47) 

(48) 

(49) 

(50) 
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(51) 

where e is the base of the natural logarithm, Smax the strain rate sensitivity peak, T max the 

temperature at Smax, Gmax the effective stress at T max, and Go the effective stress at 0 K. 

These relationships can be used in conjunction with equation (44) to derive the following 

expression for the internal stress at 0 K: 

(52) 

where Go and Gmax can be extrapolated from the experimental data. Thus, only data 

concerning the temperature dependence of the elastic modulus is required to determine 

ClEo' 

Examples of the application of this model to the polycrystalline NiAl data of Pascoe 

and Newey [12,166] and to the polycrystalline NiAl-100CO and single crystal CPN"lAl-2 

«110> orientation) data presented in Chapters 6 and 7 are presented in Figures 66-69. 

Pascoe and Newey [12,166] used a base strain rate of 2.2 x 10-4 s-l. For Ni-48.9 

at. %AI, the maximum in the strain rate sensitivity plot was judged to occur at Smax =23.6 

MPa and Tmax=103 K. For Ni-43.0 at.%AI, no defmite maximum was given but it was 

assumed to occur at Smax =32.1 MPa and Tmax=150 K which represents the first data point 

for this alloy. Extrapolating the flow stress data to 0 K we find Go=2000 MPa and 

Gmax=750 MPa at 103 K for Ni-48.9 at.% AI and Clo=3100 MPa and Gmax=1380 MPa at 

150 K for Ni-43.0 at. %AI. 

In this dissertation, base strain rates of 1.4 x 104 and 2.8 x 10-5 s-1 were used for 

the NlAl-100cO and the CPNlAl-2 single crystal respectively. For NiAl-100cO, the actual 

SRS maximum was not determined. It was determined, however, using the method 

outlined by Iswaran et ale [115) to occur at smax=21 MPa at Tmax=114 K. Similarly, for 

CPNiAI-2, the values were determined to be smax=23 MPa and Tmax=l09 K. 
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Extrapolating the flow stress data to 0 K yielded <10=2100 MPa and <1max58OO MPa for 

both alloys. The temperature dependence of the elastic modulus has been found to vary 

significandy with processing technique but not with composition [7,18]. For this analysis 

we have adopted the recent equation of Hellman et al. [204] which was derived for a 

powder-processed alloy of Ni-50.6 at %Al. Assuming that this equation may be applied to 

off-stoichiometry extruded alloys, we describe the modulus as follows: 

E (GPa) = 249.3-0.031T+l x 10-51'2 (53) 

which yields values of &,=249.3 GPa for the Pascoe and Newey alloys and for 

NiAl-lOOCO and Emax=246.2 GPa for Ni-48.9 at.%AI, Emax=244.9 GPa for Ni-43.0 

at.%AI, and Emax=245.9 for NiAl-l00CO. For analysis of CPNiAl-2, which is a <110> 

oriented single crystal, the equation of Wasilewski [57], which describes the principal 

elastic moduli over the temperatme range 123-1073 1(, has been adopted: 

E (GPa) = 184.6-0 - 0.035 x (T-298) (54) 

which yields values of Eo=195 GPa and Emax=191 GPa. Substituting these values into 

equations (43)-(52) it was possible to detennine internal stresses for all four alloys as 

summarized in Table 12. 

A second method for detennining the constants flo and £0 is from a plot of the 

strain-rate sensitivity n versus T. A plot of n versus temperature should be linear where 

DSA is not a factor. Using the n versus temperature data of Pascoe and Newey [32,205], 

we determined Ho to be 58,561 J/mol for Ni-43.0 at. % AI and 23,077 J/mol for Ni-48.9 at 

• % AI which, for Ni-48.9 at %Al, compares favorably with the data presented in Table 12. 

The poor correlation for Ni-43.0 at %Al is attributed to a lack of sufficient low temperature 

data for this alloy. 

In Chapter 2 it was shown that the DSA component of the flow stress is given by 

the equation: 
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aDSA =exp(Bx(T-400»)x 

+_{l-exp[{~)]+a~{l-exp[{tr~) (55) 

Table 12. Calculated values of aE , HO and £0 for the NlAl alloys. 
o 

Alloy aEo (MPa) HOI/mole £0 s·1 

Ni-43.0 at. % AI 389.9 38,442.4 5.4 x 1()9 

Ni-48.9 at.% AI 35.0 26,927.6 9.1 x 1()9 

NIAl-l00cO 44.07 33,985.8 6.1 x 1011 

CPNiAl-2 44.75 30,129.9 7.9 x 1()9 

where asmax and acmax are the isothermal maximum obtainable magnitudes of the Snoek 

and Cottrell contributions to the flow stress, respectively; 'ts and 'tc are the relaxation times 

for Snoek and Cottrell aging, respectively; and B is defined by: 

B = ~ x In(.!.) 
Ho . 

eo 
(56) 

By substituting the activation energies calculated for yield point return and/or the 

onset of serrated yielding, it is possible to estimate the component of the flow stress 

attributed to DSA. Assuming, as described in Chapter 5, that interstitials occupy octahedral 

atom positions in the B2lattice and that diffusion occurs by jumps between the appropriate 

adjacent octahedral positions, then the diffusion coefficient, calculated above, may be 

related to the relaxation time, 'ta, by the equation [206]: 

2 2 
D=~= ao 

24 . 't 36· 'tCJ 
(57) 

where ao is the lattice parameter and 't is the mean time of stay of a solute atom at an '" 

interstitial site. This equation was derived for BCC metals. In B2 alloys, Koiwa [207-

210] has shown that the actual relationship between't and 'ra is more complex because two 
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types of octahedral interstices exist. For the qualitative approximations presented here, the 

use of equation (57) is justified. Substitution of the diffusion equation derived in Chapter 5 

into equation (57) yields the following expression for the relaxation time: 

(58) 

This theoretical relaxation time corresponds to the one that would be observed in a 

torsion pendulum experiment A prior investigation [211] showed that 'ts in BCC metals is 

normally equal to O.25'ta, whereas, 'tc has been found to be approximately 5,000 times 

larger than 'ts [212]. Assuming that a single species is causing strain aging and that the 

activation energies for strain aging correspond to the average of those derived in this study 

and those reported previously by Brzeski and Hack [29,164], only tw, Gsmax and Gcmax 

remain unknown. In this case tw was selected so as to make the start of the analytical plot 

of the DSA stress with the temperature at which the experimental evidence for DSA begins. 

This yielded a waiting time of 1 s. In strain aging under stress experiments performed in 

niobium, Delobelle et al. [212] indicated that the oxygen Cottrell amplitude was 

approximately 4.3 times larger than the oxygen Snoek amplitude. Assuming the same ratio 

holds for the species causing strain aging in NiAl, the curves appearing in Figures 66-69 

were obtained by insertion of the parameters listed in Table 12 and on the respective figures 

into the equations described above. The theoretical curves in Figures 66-69 are based upon 

original estimates of material parameters. No attempts have been made to improve the fit of 

the derived curves by adjustment of the original estimates of Tmax and Smax. Considering 

the limited number of strain rate sensitivity measurements near the strain rate sensitivity 

peak in this study and in the work of Pascoe and Newey [12,166]; the lack of diffusion 

data for interstitial and substitutional solutes in NiAl; the approximated relaxation times; and 

the assumption that NiAl behaves like a BCC metal, there is a reasonable agreement 

between the analytical flow stress curves and the experimental data. However, the fit for 
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the SRS is poor at best. Further refinement of the DSA parameters, in particular the 

relaxation time, will be required to achieve a better tit 

't. 
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deduced from the data of presented in Chapters 4-7. Base strain rate = 2.8 x 10-S s-l . 



CHAPTER 9 
CONCLUSIONS 

The phenomenon of strain aging and its effects on the mechanical properties of 

NiAl-base alloys has been characterized using both single crystals and polycrystalline 

material covering a wide range of compositions and purity levels. The results indicate that: 

Strain aging does occur at intermediate temperature regimes in NiAI, typically 

resulting in increased yield strengths, discontinuous yielding and anomalous work 

hardening. In conventional purity single crystals and in conventional purity polycrystals 

doped with sufficient quantities of silicon, this phenomenon results in negative strain rate 

sensitivities and the Portevin-Le Chatelier effect whereas in higher purity or doped single 

crystals, strain rate sensitivity exhibited a minimum but stayed positive. Coincident with 

this SRS decrease were yield stress transients upon an increase in strain rate in all alloys. 

In the higher purity alloys, however, these flow stress transients quicldy vanished after 

small amounts of strain indicating that a reduction in the concentration of C in the alloy can 

result in a decrease in the propensity for DSA. 

TEM observations of single crystals deformed in the DSA regime revealed evidence 

of localized slip in conventional purity materials in this temperature range but similarly 

tested high purity material exhibited extensive cross slip. Activation energies for SSA in 

polycrystals and DSA in single crystals have been calculated and are within the range for 

the diffusion of interstitial solutes in BCe metals. 

Comparative analysis of alloys with equivalent carbon concentrations but different 

concentrations of other interstitial and/or substitutional dopants indicates that carbon is the 

species responsible for strain aging in NiAl and that the addition of silicon enhances the 

strain aging effect. 
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Based on the experimental observations collected in this study, it is proposed that 

the anomalous temperature dependence of yield stress and work hardening rate, and the 

minima in strain rate sensitivity are associated with Snoek strain aging and the formation of 

Cottrell atmospheres around mobile dislocations. 

The generated data can be modeled reasonable well with the phenomenological DSA 

model developed by Reed-Hill et al. [1-3,115,116] • 
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