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Abstract

The Integrated Status Assessment (ISA) prototype expert system performs system level fault diagnosis
using rules and models created by the user. The ISA evolved from concepts to a stand-alone demonstration
prototype using OPS5 on a LISP Machine. The LISP based prototype was rewritten in C and the C
Language Integrated Production System (CLIPS) to run on a Personal Computer (PC) and a graphics
workstation. The ISA prototype has been used to demonstrate fault diagnosis functions of Space Station
Fmedom's Operation Management System (OMS). This paper describes the development of the ISA
prototype from early concepts to the current PC/workstation version used today and describes future areas
of development for the prototype.

Introduction

The Integrated Status Assessmem CISA) expert system is a fault diagnosis system that has moved from a
concept to the integration phase of development. It started out as a demonstration prototype to help develop
Operations Management Application (OMA) requirements for Space Station Freedom and not as a delivery
product. The ISA has gone beyond its early demonstration prototype to an integrated field prototype to help
answer operations and integration issues. The ISA will continue to evolve as a research prototype and it
will be used to influence the development of a delivery fault diagnosis system for Space Station Freedom.

Concepts

In 1985 the Mission Operations Directorate (MOD) asked the MITRE Corporation to help develop
requirements for system management of Space Station Freedom. The MITRE task addressed Space Station
systems' control and monitoring. It helped develop concepts and requirements for the management of
Freedom's onboard systems. The focus was to define the interfaces among the integrated systems
management functions and the interfaces between integrated systems management and the individual core
systems [1]. This task lead to the development of requirements for the Operations Management System
(OMS) that performs the integrated systems management function for Space Station Freedom.

In developing the System Management concepts, the example of Space Shuttle flight control was used as a
model. The Space Shuttle is managed on the ground by a flight director responsible for the overall mission,
several front room flight controllers each responsible for a different system, and many back room controllers
who each support a front room controller. This approach has been used since the early days of spaceflight
and is manpower intensive.

Prior to 1989, flight controllers spent much of their time watching screens full of changing numbers
representing sensor readings onboard the Space Shuttle (refer to Figure 1 for a typical flight controller
screen). When a fault was detected, the flight controller refers to the malfunction procedures and flight rule
books to guide them through the isolation of the fault and the reconfiguration of the shuttle. Each of these
books were hundreds of pages long and sat in book shelves behind each controller. In addition to the
books on the ground the astronauts carried hundreds of pounds of material in the Right Data File (FDF) on
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eachflight to guide them on the operation of the Shuttle. Failure analysis on the Shuttle was very
manpower intensive and automation could play a major role in supporting the flight controllers. Much has
been learned from the way systems management and failure analysis was done on the Shuttle for the Space

Station Freedom program.
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Figure I. Typical Flight Controller Screen

The concepts developed from studying the Space Shuttle systems management were for more automated
systems management functions. A systems hierarchy similar to the personnel hierarchy used for Space
Shuttle flight control was envisioned for Space Station Freedom. This systems management hierarchy for
Space Station Free,dora would have multiple levels. The top level would be Integrated System Management
(ISM). ISM would perform systems management at the highest level across all systems. This level of
management is similar to the management performed by the astronauts on the Shuttle and controllers in the
Flight Control Room. Each system would have its own System Management Application (SMA). Each
subsystem within a system would have its own System Operations Application (SOA). Management at the
lower two levels is similar to what is performed by the controllers in the Multipurpose Support Rooms and

the other support rooms. It was rr,cognized that systems management relies upon knowledge of the systems
and their operation. Figure 2 shows the system management hierarchy for Shuttle and Space Station
Freedom. As experience with Space Station operations is gained, the applications performing systems

management would be refined to incorporate the new knowledge.
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Space Shuttle Space Station Freedom

Figure 2. System Management Hierarchy

After the initial concepts were developed, the Operations Management System (OMS) working group was
formed to define requirements for the top level of system management (originally called ISM) now called
the OMS. Because of its position in the systems management hierarchy, the OMS would inmgrate
operations across all the Station systems and elements. It would include onboard automation (the
Operations Management Application (OMA)), ground based automation (the Operations Management
Ground Application (OMGA)), onbeard manual operations (the flight crew), and ground based manual
operations (the ground controllers). Figure 3 shows the division of the OMS. The OMS would perform
high level functions including global planning, system/payload testing, command management, inventory
management, maintenance, and training. The intention of the OMS was not to eliminate the work of
humans, but to enhance it.

The OMS has been baselined as pan of the Space Station Freedom program. Requirements of the OMS

incorporated most of the SMA and SOA ideas as tier II and tier Ill system and subsystem managers.

Once the initial concepts and re,quirements were documented, the development of protntypes to further

develop the concepts was started.

Demonstration Prototype

This effort involved the development of several prototypes of the systems management functions. These

prototypes included the Integrated Status Assessment (ISA), Planning Support Environment ('PSE), the
Procedures Interpreter (PI), On-Orbit Maintenance (OOM), and Communications and Tracking System
Management (C&T-SMA). These prototypes were used to demonstrate new concepts, educate the users
aboutemergingexpertsystcrntechnology,and tofurtherdeveloprequirementsfortheOMA through
comments and feedback from the user community. The prototypes were also used to assess proposed

designs for OMS implementation. The ISA and PI prototypes were further developed to test OMA concepts
in a test bed environment while the others were used only for gathering initial requirements. The following

paragraphs describes the development of the ISA.
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Figure 3. Operations Management System Components

The ISA project was a one person task that included attending working group meetings, requirements
development, and briefings and demonstrations as well as prototype development- The main purpose of the
1SA task was to introduce technology and educate the user community, develop requirements and not to do

expert systems research.

The ISA prototype was developed to illustrate several functions. The ISA demonstrated the concept of
gathering data from the various Space Station Freedom systems. It displayed the data in a coherent
integrated manner with a user friendly graphical interface. In failure situations, the ISA showed how expert
systems and advanced user interfaces could be used to determine the cause of the problem with a trace of its
reasoning and possible recommendations [2].

Because the task of assessing the status of space vehicles is a complex job that requires "expert" knowledge
to find heuristic solutions to problems, an expert system approach was chosen to prototype the ISA system.
For the initial demonstration prototype, the ISA system was hosted on a Symbolics TM 3600 series computer
and written in LISP and OPSS.

The knowledge engineering process took several months for the initial domain of the ISA prototype. The
expert spent about a half day per week critiquing and suggesting changes to the system. Mote of the
expert's time would have been useful but this was not possible. After most of the knowledge engineering
process was completed, an elaborate user interface was added to the system. Next many other operations
people were shown the prototype and their ideas and knowledge was later used to further refine the system.
Requirements learned from this process were input to the OMS working group and later turned into Space
Station Freedom requirements.

_SymbolicsisatrademarkofSymbolicsIncorporated
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The initial dornmn for the ISA prototype was the communications and tracking KU band system. This
included the power busses, cooling loops, Tracking Data Relay Satellit_ System (TDRSS), and the interface
to the DMS. This area was chosen because experts were available in Otis area and because it contained the

intersections of several systems; a fault in one system could cause other systems to malfunction.

The ISA prototype is a rule- and model-base, d expert system that demonstrates Space Station Freedom fault
detection and isolation. The ISA consists of a knowledge base, an inference engine, and a user interface.

The knowledge base consists of facts and rules. The facts contain a high level qualitative model of Space
Station Freedom. The rules consist of generic fault isolation knowledge and system spccific knowledge to
determine the source of faults. The inference engine controls how the knowledge base interacts with itself.

The user interface gives the user overall control and allows the developer to examine and easily modify the
knowledge base.The userinterfacegivestheuseroverallcontroland allowsthedevelopertoexamine and

easilymodifytheknowledge base.Figure4 containsadiagramofthesystem.

INTEGRATED STATUS ASSESSMENT EXPERT SYSTEM

Figure 4. ISA Prototype Components

The ISA operatesinan update,run,and reactcycle.New operationaldatafrom a simulationfileisinput
intotheISA and thesevaluesam usedtoupdatethemodel. Ifsome oftheoperationaldataisoffnominal,

them theISA rulesarerunon themode] toisolatethesourceofthefault[3].Once thefaultisisolated,

additionalrulesmay reacttosafeSpaceStationFreedom. Aftertherolesarethroughfiring,thcISA can

acceptnew datafromthesimulationfiletoupdatethemodel again.
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At the end of the first demonstration phase of development, the ISA prototype was built with portions of the
Communications and Tracking System, the Electrical Power System, the Data Management System, and the
Environmental Control and Life Support System modeled. It has been demonstrated to many groups at

NASA including the astronauts, flight controllers, engineers, and many different Space Station contractors.
At each demonstration new ideas to improve the prototype and drive new requirements were solicited.
These ideas and requirements were incorporated into NASA documentation and the OMS definition. The
OMS definition document was incorporated into the Space Station Architecture Control Documents (ACDs).

Transition to a Test Bed Environment

The ISA prototype has been moved onto the Data Management System (DMS) Test Bed Through the OMS

integration effort. The OMS integration effort is bringing many Space Station Freedom prototypes and
simulations together to form a field environment for testing and developing OMS concepts. Moving
applications in the OMS integration effort allows them to be run in as close to a real world environment as is
possible. This is a necessary transition environment to test operations concepts with the applications. For
the ISA prototype, this took place in two main phases: integration of the Symbolics LISP based prototype
and integration of a rewritten C based prototype. Figure 5 shows the evolution path for the ISA prototype.
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Figure 5. Evolution Paths for ISA and PI

OMS Integration

There are many Space Station Freedom systems being modeled and simulated in test beds across the
country. Many of these test beds are tied together by the Data Management System (DMS) Test Bed as pan
of the OMS integration effort. The OMS integration effort provides an environment to test and develop

OMA concepts.

As part of the OMS integration effort, the OMA node is the focal point on the DMS network for
demonstrating integrated operations of Space Station Freedom systems, with system simulations being
represented on various nodes on the Test Bed. Phase One of this integration demonstrated the OMA
(represented by the integrated ISA and PI prototypes) controlling and monitoring the Guidance, Navigation,
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and Control Emulation Laboratory in the execution of a reboost procedure [4]. Phase Two of the OMS

integration effort adds four more simulations to the scenario: the Operations Management Ground
Application; Generic Electric Power Distribution and Control; Communications and Tracking; and Thermal
Control. Future plans include the incorporation of payload and life sciences nodes at the Johnson Space
Center and the Marshall Space Flight Center and a data generating node from the European Space Agcncy.
The DMS Test Bed is evolving to be closer to a real Space Station Fn_xlom environment with real world
scenarios. Figure 6 shows the DMS Test Bed configuration. In the future the DMS Test Bed will change
to real Space Station Freedom like hardware using real DMS communications services.

DATA

MANAGEMENT

SYSTEM

TEST BED

APOLLO
TOKEN RING

NETWORK

Figure 6. DMS Test Bed Configuration

Phase One OMA Integration

The first phaseof the integration effort was to integrate the Symbolics based ISA that performed fault
diagnosis with the Symbolics basedProcedures Interpreter (PI) that executed and monitored procedures.
This proved to be an easy task becauseof the nature of the object oriented Flavors systemon the
Symbolics. Messages were sent from one prototype to the other to pass information. When the PI needed
expert system advice on a problem it would send ISA a "run" message. When the ISA rules fired and
conc]uded that an action was needed by the PI, it would send Pl the appropriate message.

Once these two prototypes were integrated to form the OMA prototype, the next step was to integrate with
the DMS Test Bed and the Guidance Navigation and Control (GN&C) Integration Laboratory. Figure 7
shows the firm] configuration for Phase One of the OMA integration. The DMS Test Bed has three software
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communications services available to users: the Network Operating System (NOS) for low level

communication; the Data Acquisition and Distribution Services (DADS) for requesting point to point cyclical
data sets; and the Ancillary Data Service (ADS) for rr,questing a single predefined data set. The DADS and
ADS are built on the NOS. Because the Symbolics only had the N0S software available to it, special code
had to be written to communicate with the GN&C Laboratory.
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Figure 7. Phase I OMA Integration

The Phase One demonstration showed the execution of a reboost procedure by the PI with faults inserted by

the GN&C system. The ISA responded to the faults by advising that the reboost procedure be aborted
when appropriate. While the phase one demonstration lacked the depth needed to completely test the ISA, it

did integrate it with other systems.

Phase Two OMA Integration

Because the Symbolics hardware did not match well with the proposed Space Station Freedom architecture
and because it did not have full support of all the software communication services on the DMS Test Bed. the

®COMPAQ and DESKPRO are registered trademarksof COMPAQ Computer Corporation
rN68020 is a u-ademarkof Motorola Incorporated
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ISA and PI prototypes were ported to a MicroVAX ® computer. The ISA was ported to C and the C
Language Integrated Production System (CLIPS), an inference engine written in C. The PI was ported to
Ada and the Operations And Science Instrument Support (OASIS) software written by the University of
Colorado. The two prototypes communicate through interprocess communication on the IVlicroVAX.
Because of the portability of C and CLIPS it was possible to first port the ISA on a PC based system. The
only difference between the PC based ISA and the MicroVAX based ISA is the PC version has its own user
interface written in C and the MicroVAX ISA uses OASIS for the user interface. The following sections

describe the porting of the ISA system.

LISP to C

All the LISP code from the demonstration prototype was rewritten in C for Phase Two of OMA integration.

For the procedural code, this was a straight forward process of rewriting LISP functions in C. For the
Object Oriented code this involved creating C data structures and functions to replace the LISP Objects
(Flavors and Methods). For the PC version, Graphic libraries and machine level calls to mouse driver
routines were used to create a friendly user interface similar to the Symbolics version of the prototype. The
models used by ISA am generated using the mouse and pop-up menus and create both graphical schematics
and data structures describing the system. The model data structures are translated into CLIPS facts for the
rules to reason about. The rules are written in CLIPS and can be controlled through the user interface.

Special CLIPS functions were developed to allow the rules to modify the screen as well as the model.

Three difficulties were encountered in rewriting the ISA in C. First, tic software tools for C were not as

good as the LISP tools on the Symbolics. The Symbolics software development environment contained an
integrated editor, debugger, flavor examiner, and compiler. These tools were as a big advantage in writing
the various iterations of the original prototype. Other tools were used for the C version that were less
capable. The impact of this was that a larger percent of time was spent debugging code. This was not a
major problem, however, because most of the software design was completed with the LISP version and
most of the coding in C was translation and not totally new code. Currently there an: many new software
development environments coming on the market for C and other languages and in the future the lack of
tools should no longer be a problem for rebosting code from LISP to C.

The second difficulty in recoding the ISA was in building the new user interface for the stand-aione PC
version. The Symbolics had its own unique object oriented windowing software, but there was no tool
available with the same kind of functionality for the PC. All window functions had to be built from scratch;
that took most of the coding time. The user interface was not an issue for the MicroVAX implementation of
the ISA because it used OASIS for displays. In the future the use of windowing standards such as X.11
and software libraries to support such standards will reduce the difficulty of this problem.

The third difficulty of the rehosting process was substituting VAX Mailbox interprocess communication for
the Flavor Message passing to communicate with the PI prototype. VAX Mailboxes are a system utility
available on the MicroVAX to allow two programs to communicate to each other through a buffer in

memory. VAX Mailboxes are not as easy to implement in C as messages arc in LISP.

OPS5 to CLIPS

All the rules were recoded form OPS5 to use the CLIPS inference engine. CLIPS is a forward chaining

production system similar to OPS5 that is written in C. Because the two rule systems are very similar in
nature the recoding of the rules was an easy process [5]. All the structure of the rules remained the same

®MicroVAX is a registered trade mark of Digital Equipment Corporation
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with only minor syntax changes. The only difficulty was working around the lack of objects in CLIPS.

This problem is currently being addressed by CLIPS developers for furore releases of CLIPS.

Transferring System Models

A large portion of the knowledge in the ISA expert system is contained in the system models. These models
contain all the static object knowledge used by the inference engine and all the graphic display information for
schematics. Because the models are stored as text files, there was no change required to go from the LISP

version of the ISA to the C version of the ISA.

Symbolics Graphics to PC Graphics

The large, high resolution black and white display of the Symbolics proved to be very useful to let the user
view the status of systems. Figure 8 show the original Symholics ISA screen. The PC based ISA has an
Enhanced Graphics Adapter (EGA) which supports less resolution than the original so some detail was lost
on the new display. The PC version also make use of multiple windows, panning, and zooming to show
the user information. Figure 9 shows the ISA with EGA graphics.
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Figure 8. Symbolics ISA Screen
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Figure 9. EGA ISA Screen

Phase Two Testing

Phase Two of the OMS integraton effort adds four more simulations to the scenario: the Operadons
Management Ground Application; Generic Electric Power Distribution and Conm)l; Communications and
Tracking; and Thermal Control. Future plans include the incorporation of payload and life sciences nodes at
file Johnson Space Center and the Marshall Space Hight Cen_r and a data generating node from file
European Space Agency. Phase Two will involve diagnosing failures in the Communications and Tracking
System and in the Thermal Conlrol System simulations.

While these additional simulations will add mbum_s to the OMS integration effort it wiU still lack the

integrated closed loop simul_ion to back them up. What takes place in one simulation is not reflected in file
others. The OMS integration effort is still just many separate simulations tied together on a communications
link. To really test the ISA in its global fault detection capabilities, the simula_ons need to be more
integraw.d. This is somefiling _ the OMS integration effort project needs to have, not only to test global
fault detection capabilities but to test other OMA functions such as global resource management and station

planning.

The Future of the ISA Prototype

The ISA system is still a prototype _ wiU con_ue to evolve and remain a tool to help influence the design
of file real OMA fault diagnosis function. The OMS integration effort has to have an integrated simulaton
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capability. The remainder of the OMA functions need to be prowtyped in an integrated environment.
Deeper reasoning capabilities need to be built into the system. The following sections describe these future

steps.

Better Simulation Capabilities

In order to test expert systems on the DMS Test Bed, there needs to be a Test Bed Simulation Coordination
Node. This node will exist on the DMS Test Bed (probably as an additional process on existing hardware)

and produce DADS data or an ADS data-set to coordinate the integrated demonstrations. Each node will have
access to this data-set to get information about the current simulation being run. These are some of the
features that such a node could provide: identification of the scenario being am; starting and stopping times
of the current demonstration; currant demonstration status; the ability to reflect changes on one node into

another system; better coordination of integrated and multiple failures; and global resource levels. These
features would help present a more coherent integrated simulation and move the Test Bed away from the
awkward canned demonstrations we have today to a true testing environment.

Deeper Reasoning Capabilities

Rule based expert systems can perform good fault diagnosis for systems that fail where they are expected to
fail. Unfortunately, systems don't always fail in a mode that was predicted. In the Apollo 13 mission to
the Moon, two fuel cells were taken out in a mysterious explosion. There were no flight rules to handle
such a failure. Because humans can reason much deeper that their written procedures they were able to

bring the astronauts home safely. Model based expert systems that reason from first principals use the
physical design instead of just rules to perform diagnosis [6]. These systems can diagnosis faults that were
not planned for in a purely rule based expert system. The ISA currently uses high level models in its
reasoning. To perform better fault detection and isolation, deeper models that contain behavior information
will be used in the ISA.

C to Ada

All Space Station Freedom code will have to be written in Ada. Therefore the OMA fault diagnosis functions
will have to be written in Aria. What limitations will this have on the system? Are the current generation of

Ada compilers efficient enough to work within the hardware limitations and software requirements of Space
Station Freedom and support expert systems? These are areas that need to be investigated.

Conclusions

The use of the OMA demonstration prototypes greatly helped illustrate the ideas developed in the concepts

stage. These prototypes communicated these ideas to people much more effectively than the traditional
concept and requirements documents alone did. Many useful comments and suggestions were gathered
during the many demonstrations of the OMA prototypes. These comments and suggestions greatly enhanced
the OMS requirements. The demonstrations also helped us gain many allies to support our ideas for a the

implementation of the real system and also help give support to bring advanced automation and expert
systems into the existing Space Shuttle program.

The rapid prototyping environment of the Symbolics proved to be very efficient for the stand-alone
demonstration prototypes. Changes could be easily integrated into the ISA prototype in just a few minuets.
Similar tools would have been very useful in later implementations of the ISA.
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Theuseof C as )he language for the integrated prototype was good because it aUowed the ISA to be easily
tied into CLIPS. The use of C and CUPS allowed for the ISA to run on a multiple hardware platforms

from a PC to a MicroVAX.

Making the software data driven from u:xt files made the transition from LISP to C much easier and made it
easy to introduce changes in both the knowledge base and the user interface. OPS5 and CLIPS both used
text files for their rules and had a similar syntax. All the structure of the rules remained the same with only

minor editing changes. The only difficulty was working around the lack of objects in CLIPS. A large
pordon of the knowledge in the ISA expert system is contained in the system models. These models contain
all the static object knowledge used by the inference engine and all the graphic display information for
schematics. Because [he models are stored as text files, there was no change required to go from the LISP

version of the ISA to the C version of the ISA.
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