
N96- 12938
S -G /

CLIPS Enhanced with Objects,

Backward Chaining, and

Explanation Facilities.

M. KLDROBI, S. ANASTASIADISI B. KHALIFE, K. KONTOGIANNIS,
R. De MO][_I

McGiU University, School of Computer Science, 3480 University St.

Montreal, Canada, H3A 2A7

demoriQcs.mcgill.ca

Abstract

In this project we extend CLIPS, an existing Expert System shell, by creating

three new options. Specifically, first we create a compatible with CLIPS environment

that allows for defining objects and object hierarchies, second we provide means

to implement backward chaining in a pure forward chaining environment, and

finally we give some simple explanation facilities for the derivations the system has

made. Objects and object hierarchies are extended so that facts can be automatically

inferred, mad placed in the fact base. Backward chaining is implemented by creating
run time data structures which hold the derivation process allowing for a depth first

search. The backward chaining mechanism works not only with ground facts, but

also creates bindings for every query that involves variables, and returns the truth

value of such a query as well as the relevent variable bindings. Finally, the WHY

and HOW explanation facilities allow for a complete examination of the derivation

process, the rules triggered, and the bindings created. The entire system is integrated

with the original CLIPS code, and all of its routines can be invoked as normal CLIPS
comman&.

1. INTRODUCTION.

The C Language Production System (CLIPS) is an expert system tool written in and

fully integrated with the C language. It provides high portability, and easy integration

with external systems, making embedded applications easy. The primary representation

methodology is forward chaining based on the Rete algorithm. A.I. methodologies not

provided in CLIPS are the organization of seperate data into hierarchies which exhibit

inheritance, the backward chaining inference strategy, and facilities to justify the reasoning

process and the conclusions derived.

In [1] object oriented systems are discussed as one of the most promissing paradigms for

the design, construction, and maintenance of large scale systems. This general model for

6Z1

https://ntrs.nasa.gov/search.jsp?R=19960002929 2020-06-16T05:31:09+00:00Z

computing has m_jor applications in A.I. (e.g. [2, 3, 4]). Moreover, in [1] techniques such

as deligation [5, 6], genericity [7, 8], conformance [7], enhancement [7], and inheritance [5,

6, 7, 8] are thought to be the basis of "object-related systems". The object-oriented system

embedded onto CLIPS gives the capability to the user for defining objects using a frame-

like structure, and allows the flow of information between objects by invoking methods.

The above object-configuration was adopted to facilitate encapsulation, inheritance, and

set-based abstraction, which are main characteristics of these systems [1, 9].

Furtheremore, production rules in CLIPS are not trigerred using a backward chaining

inference mechanism. In [10] backward chaining is exhibited as an inference strategy that

verifies or denies one particular conclusion or hypothesis. In [11] this mechanism is initiated

by establishing a goal and then is matched with a conclusion of a production rule. This

subgoal is substituted by a sequence of subgoals which are the premises of the relevent rule.

The entire process terminates when all subgoals are proven to be true. Backward chaining

is used in many applications such as diagnosis, decision making, and trouble shooting, and

simplifies the explanation facilities [12, 13]. In our extension of CLIPS we use forward

chaining to implement bakward chaining by creating data structures and traversing the
structures in order to obtain a simulation of the mechanism.

Finally, the development of a "complete" shell requires to enhance the environment

with informative explanations [14]. These facilities have recently been approached and

many solutions have been proposed. In [15] clarity is the focus for the structure of an

explanation, in [! 6] a proof-tree is created, while in [17] one creates a model suited for

specific users. On the other hand, [18, 19] stress that the content of the explanations is of

more importance than the form in terms of providing recta-rules that descibe the expert

strategic knowledge. But, one of the most ditticult problems in the explanation domain is to

answer negative questions concerning facts that were not inferred by the shell [20, 21]. Our

approach is to create a well-defined semantic structure containing the knowledge derived

and the derivation process followed. This approach guarantees that the same explanation

will be given for the same question [14].

In this paper we present a compatible with CLIPS environment allowing for defining

objects as well as establishing hierarchies between objects, a backward chaining inference

mechanism capable of performing bindings in queries involving variables, and finally two

explanation facilities , WHY and HOW. The paper is organized in six sections. The first

section deals with objects and object hierarchies where we present the object definition,

the hierarchy schema adopted, and how attributes along with their values are inherited. In

the second section the query language used to interrogate the objects is presented. In the

third section we describe the backward chaining mechanism embedded in the expert system

shell, as well as the data structures, and routines that implement it. In the fourth section

the explanation facilities WHY and HOW are presented. Specifically, we investigate the

data structures created during run time, and the mechanism involved for traversing the list

in order to provide answers to the WHY and HOW facilities. In the fifth section we present

a list of the new commands implemented, and what actions are taken accordingly for each

command. Finally, we conclude by reviewing our work, identifying extensions we are work-

in 8 on, and explorin 8 potential ,_pplications in the field of diagnosis, and troubleshooting.

It should be noted that in the first three sections some implementation details concerning

algorithms used on the data structures are mentioned.

2. OBJECTS - OBJECT HIERARCHIES.

In an expert system shell such as CLIPS a necessity arises to construct a well defined

hierarchical network of entities that will support user-system interaction resulting in a

structured KB. These entities are objects that can be inherited via a network to other

objects that reside lower in the hierarchy. Moreover we maintain a common syntax for

facts and we use the hierarchy and the inheritance ifi order to create new facts and update

the knowledge base in an efficient, well structured, and meaningful way.

2.1 OBJECTS.

The implementation represents an object as a record with the following fields :

• object name.

• object parent.

• object children.

• inheritance type[0] ... inheritance type[MaxAttributes].

• object type.

• attribute name[O] ... attribute name[MaxAttributes].

• attribute value[O] ... attribute value[MaxAttributes].

• comment.

The object name defines the name the user gives for the object which is unique in the

entire hierarchy. The object parent is the parent of the object in the hierarchy, the object

children points to a linked list containing all the children of the object, the inheritance

type is either own or member (which will be explained shortly), and the object type is

one of class, subclass, and instance. Finally, one has for each object a list of attribute

name value pairs which identify the chax_cteristics of each object (they axe limited to

May.Attributes), and a simple field for a comment is allocated for any special note about

the object that must be known.

The hierarchical network is a set of objects distributed among three layers according

to the semantic meaning of each object. The first layer contains objects of type class (the

most general type of object), the second layer contains sublayers of objects of type subclass

(the next least genaral type of object), and finally one has a layer of objects of type instance

(the least general among all types of objects). See Fig. 1.

Inheritance is built in the network as a flow of information from objects with abstract

semantic context to objects with specific semantic context. In this hierarchical network

attributes, and their corresponding values are inherited from classes to subclasses, from

subclasses to other subclasses, and from classes and subclasses down to instances. If the

inheritance type is member, the flow of inheritance is not interrupted, while if the inher-

itance type is own, the values are not inherated and overwrite _1 other inherited values.

It should be noted that each attribute name value pair for each object has a different in-

heritance type. The default type is member. In such a way our hierarchical network can

be thought of as a set of oriented trees, where the roots are the corresponding classes.

In this schema the ideal implementation is a forest of trees, where the roots are classes,

internal nodes axe subclasses, and leaf nodes are instances. Also it is possible for nodes

from one tree to have a parent or children in an other tree, interleaving the trees resulting in

a complex forest structure. The data structure used in order to preserve all the properties,

and the inheritance among the objects is to maintain n-axy tree structures for every class

definition created, such that for every class maintain pointers that will allow traversals to

move only down, for each subclass maintain pointers that will allow the traversal of a tree

to move up or down, and for each instance maintain pointers that will allow traversaIs to

move only up.

Inheritance alters the contents of the Knowledge base and the patterns we

use to accomplish such a goal. The major observation here is that CLIPS handles and

manipulates facts as strings and matching is done using string manipulation functions.

With this observation in mind we restricted our facts to have a paxticular pattern for

describing an attribute and its corresponding value as follows :

The [attribute] of [object] is [value].

which can be asserted directly as a CLIPS fact.

Moreover we use another pattern for all children of a class or a subclass. These patterns

axe •

All [subclass] are [class].

All [instance] are [class].

62.4

All [subclass] are [subclass].

All [instance] are [subclass].

All the above patterns create a complete set of facts, since the patterns encapsulate the

information described by the attributes and the connections between the objects.

In such a way traversing a hierarchical network we can create facts that do not originate

from the user, but can be inferred by the hierarchy. This has two advantages.

• First , the user spedfies only the attributes absolutely necessary for an object assum-

ing that all other attributes higher in the hierarchy are available.

• Second , we minimize the information stored in every object without losing any

information.

Hence,the user spedfies the world, and the system creates the relevant facts.

The final use of the pre-determined patterns is that knowing their syntax we can reserve

positions for (single or multiple) bindings in rules or facts in forward or backward chaining.

For example we know that a question :

The ?x of car is red

is a meaningful query and that the query

The color of car ?x red

is not a meaningful one.

It should be mentioned that the inheritance type controls the assertion of facts since,

own attribute values participate in the generation of new facts, and overwrite all other

inherited values for the same attribute. All inserted facts become immediately available to

the rules, and participate equally in the derivation process.

2.2 AN EXAMPLE OF OBJECT HIERARCHIES.

Define the objects to be: Car (class), PrivateCars (subclass), Porsche (instance), BMW

(instance).

Assign inheritance type own to : Porsche, and PrivateCars, for attribute name Color.

Assign inheritance type member to : Car, and BMW, for attribute name Color.
Define the connections to be : Porsche is an instance of PrivateCars, BMW is an

instance of PrivateCars, and PrivateCars is a subclass of class Cars.

Assing the Color Red for Porsche, the Color Blue to PrivateCaxs, and the Color white

to Cars.

The following facts are inserted in the KB of CLIPS :

67.5

s All Porsche are PrivateCars.

• All Porsche are Cars.

• All BMW are PrivateCars.

• All BMW are Cars.

• All PrivateCars are Cars.

• The Color of Porsche is Red.

• The Color of BMW is White.

• The Color of PrivateCars is Blue.

• The Color of Cars is White.

See Fig. 2 for details.

3. QUERY LANGUAGE.

Here we give a description of the query language applicable to the hierarchy network.

This query language provides the means for obtaining information regarding the entries

found in the network. Specifically we have the following possible queries :

a) (Display? [object type])

returns the description of all objects of the specified object-type

b) (IdType? [object type])

returns the object names given the type

c) (GenType_ [object name])

returns the parent of the specified object

d) (SpecType? [object name])

returns all children of a specified object

e) (GetAttribList? [object name])

returns all attributes and their values an object may have.

This query takes care of own values and discrards member values for same attributes.

f) (GetAttribValue? [object name] [attribute name])

626

returns the correspondingvalueelsereturns false.

g) (IsAttribValue? [object name] [attribute name] [attribute value])

returns true or false

h) (austObj? [object name])

returns the comments added for this object

Operations e,f,g,h take into account the inheritance that exists in the network.

The overall network constructed operates under CLIPS control, updating the KB, sup-

plying the user with mechanisms for viewing the status of the system, and hence controlling

the derivations that CLIPS produces as a result of applying ground facts to rules using

forward or backward chaining.

4. BACKWARD CHAINING MECHANISM.

In this section we present a mechanism to implement backward chaining within the

framework of the CLIPS shell. The aim is to provide means for analyzing sn initial goal

(query) into a set of subgoals each of which has to be solved using this method, up to the

time the set of subgoals will contain only ground facts known to be true. The way we treat

the set of subgoals implies that all subgoals in the set must be recursively satisfied in order

for the initial goal to be true. For rules that have premise in disjunctive normal form we

create a "set of subgoals" for each disjunction and every subgoai from each "set" must be

proven true in order to have a successful derivation.

The user supplies a query and the system tries to match this query with an existing

known true fact. If no such fact can be found then the rnle(s) which has as its RHS this

fact is considered and its premises axe recursively considered as the new goals. The whole

derivation process ends when all relevant rules have been examined and tested. Because

we are interested not only in ground queries, but also in queries with variables, we use

CLIPS's binding mechanism so that the appropriate bindings can be made.

In order to simulate the backward chaining mechaafism we create a Backward Chain-

ing Network (BCN) consisting of instantiated conclusions and facts interconnected as

shown in Fig. 3.

This approach involves four major steps.

• In the first step we insert into the BCN all ground facts.

• The second step is to invoke Forward Chaining and add the derivations into the BCN

as we]].

6Z7

, The third step provides a method of traversing this data structure of linked lists

so that it implements the depth first search strategy. The way the linked lists are

structured and traversed simulates the desired backward chaining.

. The fmal step is to create a dynamic data structure so that we can keep the derivation

steps meaningfuly grouped in order to be used for the explanation facilities later on.

4.1 CREATING THE NETWORK (BCN).

The primary method of representing knowledge in CLIPS is rules of the form

IF [PREMISE 1] or

[PREMISE $] or

•o

[PREMISE n]

THEN

[ACTION I] and

[ACTION $] and

• oo.....,

[ACTION m]

where each [PREMISE i] group could be a conjuctive expression combining different

fact patterns, not necessarily ground facts, of the form

[Fact I] and [Fact £] and [Fact k]

and each [ACTION i] be of the form [Asserted Fact ,]

Specifically, when a male is fired we get a set of ground facts related in the following
format :

[Rulenam,] - [Asse_,d Fact ,]- [Fact I] and and [Fact k]

Moreover the logical combinations between entries in LHS of a rule as well as in the
RHS of the rule are treated as follows :

1. If there are more than one OR related [PREMIS_ in the LHS of a rule then we

create a format as indicated above for each [PREMISJ_ expression.

2. If there are more than one AND related [A CTIOI_ in the P,.HS of a rule then we

create a format as indicated above for each [A CTIOI_ expression.

3. For all other losica] combinations involving (1) and (2) we create as many formats

as can be derived when (1) and (2) are simultaneously applied (e.g. one format for each

628

[PREMISE] and [ACTION] combination).

These operations are equivalent to splitting the rules involving complex disjunctions

and conjunctions into an equivalent set of rules of the form :

IF [Fact 1] and [Fact $] and ... [Fact rn] THEN [Asserted Fact]

Backward chaining is implemented using Forward Chaining in two major steps. In the

first step we create a network of data structures in order to capture the relation between

ground facts, premises, and conclusions in the Knowledge base, with the substitutions

computed during Forward Chaining .In the second step we traverse the network so that

we can find all possible derivation paths and bindings for a particular query. The way we

traverse the network simulates a depth first search strategy. During the Forward Chaining

derivation process we are creating our data structures using the following strategy :

For each rule we keep track of the premises and the conclusions that participated in

each derivation step along with the Rule Name as Forward Chaining proceeds. For each

conclusion reached we create a node pointing:

a) to the nezt Conclusion derived from Forward Chaining, and

b) to a list of rules that support this conclusion.

Each such rule node points to:

i) the next rule used and

ii) to a linked list representing the premises in conjunctive form.

In the case of premise groups which are combined disjunctively we maintain a different

rule node pointing to a group of Premises which contains Facts in a conjunctive form.

See Fig. 3 for details.

4.2 TI:LAVEttSINC THE NETWORK (BCN).

After creating the network, the way we traverse it is implemented using a depth first

search strategy with recursion. Specifically, the user specifies a query,which may contain

variables, and the system tries to find legal bindings for the variables in order to prove or

disprove the query. This is a two step process:

a) The first step is to create, if possible, legal bindings scanning all conclusions in the

rule network, and, if found, generate the first goal.

629

b) The second step is to invoke a function in order to implement the desired backtrack-

ing. This is done using the BACKCHAIN(goal) function which is a recursive function.

Specifically, if the goal is immediately derivable as a ground fact the function returns the

bindings and the query has succeeded, otherwise finds the first premise that supports the

current goal, sets the premise as the current goal and is re-invoked recursively. The

result of the recursive execution is the creation of a derivation path which will be later

used by the explanation facilities HOW and WHY. This derivation path forms a branch in

the search tree so it is represented as a linked list of facts. It is possible that more than

one derivation path exists so we keep them in different branches in a data structure as in

Fig. 4. The process ends when there are no more conclusions to be tested in the BCN

for possible legal bindings. The bindings are computed using a word by word compari-

son between two strings representing the ground term and the query. The notation for a

variable is _.variable-name and all words are tested with the words of same position in the

instantiated ground term.

This process will return the correct answer as well as the relevant bindings because

one is working in a subset of the Knowledge base that has been created using Forward

Chaining. This new space is simply integrated, organized, and traversed in a way that

simulates Backward Chaining.

5. JUSTIFICATION AND EXPLANATION.

The ability of expert systems to give explanations of their results and of the reasoning

leading to those results is considered as one of the main advantages of these systems, as

compared to usual programs. In rule based expert systems, explanations are often confined

to the trace of the program execution. A trace is a record of fired rules. It may also

include the data which allows these firings, cast into some readable form, preferably in a

natural language. In some approaches, a distinction is made between WHY and HOW

explanations.

All these types of explanations rely on the notion of trace. It seems that explanations

produced depend heavily on the way the expert knowledge was encoded into rules. Often,

explanations are more reminiscent of the language provided by the expert system shell

rather than of the language employed by the domain expert.

WHY queries provide explanations on a conclusion that has been derived. Specifically,

they allow for a quick reference on both the rule that supports the particular conclusion,

and on the premises in the rule that supports this conclusion.

HOW queries provide explanations for the whole, derivation The difference between

the HOW and WHY facilities is that, WHY lists and gives information on the last rule

triggered and HOW lists all possible derivation paths, rules, and bindings that suport the

630

conclusion.

5.1 WHY QUESTIONS.

WHY questions are implemented using the data structure illustrated in Fig. 3. In

this structure, which is implemented using linked lists we have three node categories :

"CONCLUSION" nodes, "RULE" nodes, and " PREMISE" nodes. A "CONCLUSION"

node contains a particular ground derivation obtained, and points to the rules that support

it. Each "RULE" node contains the rule name and points to a linked list of "PREMISE"

nodes. This structure allows for storing all the groups of premises that triggered the rule.

Note that when two or more groups of premises are combined with OR's it may be the case

that both groups may have contributed in the derivation. In such a case we keep them in

separate lists under different "RULE" nodes having the same rule name.

Consider the following rule (CLIPS syntax) :

(de_ule Rulel (or ((pl) (p2)) ((p3) (p4) (p5)))

((assert(ci))(assert(c2))))

According to thisruleifallthe premises pl,p2,p3,p4,p5 axe satisfiedwe willhave two

"RULE" nodes and five"PREMISE" nodes linked as follows:

One "CONCLUSION" node for cl pointing to "RULE" node (Rulel) and to the next

"CONCLUSION" node c2. Rule1 node points to an identicalnode Rulel since we have

two groups of ORed premises, and to a linked listof premises, consisting of pl,p2. The

other "RULE" node points to nulland to a linked listof premises representing the ORed

second group of premises,p3,p4,_nd p5 (See Fig. 5).

Finally the second conclusion (i.e.c2) points to an identical,as above, structure .

Actually we willhave as many answers to such questions as the number of times the

corresponding ruleswhere fired.Referring to Fig. 3, each ANDed group of premises going

vertically forms one answer and we have as many answers as the number of these vertical

groups going horizontally. These different answers are grouped by an OR in Fig. 3.

The way we implement a WHY [FACT] query for a specific conclusion is as follows.

First we search for a particular "CONCLUSION" node that matches the query, then we

traverse the relevant linked lists for every "RULE" node and every group of premises, and

print in a user friendly format all the premises encountered, as well as all relevant rules

names. (refer to Fig. 3).

631

5.2 HOW QUERIES.

Every time a HOW query is asked we compute all the possible derivation paths

through which this conclusion had been derived. Thus, a derivation path is equivlent to a

branch in the search tree. The computation is carried out in a recursive way using both the

structure which implements the WHY questions and a new data structure, "DERIVATION

PATHS", which is illustrated in Fig. 4. This data structure consists of two node types.

"BRANCH" nodes and "FACT" nodes. We create it every time a HOW question is asked

and destroy it thereafter. The answer to a HOW question is computed as follows :

When a HOW [CONCLUSION] query is asked, our goal becomes the "CONCLU-

SION" we want to satisfy, so we refer to the BCN to find the corresponding conclusion

node. If we could NOT find any, because this "CONCLUSION" is neither derived nor a

ground fact, then we return false. If the corresponding node is found we consider it as the

current goal end we pick up the first premise from the BCN. This premise becomes our new

goal and we repeat the same operation until there are no more premises in every preraise

group considered. We create a data structure of linked lists as in Fig. 4. "FACT" nodes

represent the backward chaining derivation process, and the "BRANCH" nodes represent

derivations performed in different premise groups.

Consider the following example :

(defrule Rule2 (or (d) ((a) (b)))

(,,.,,sen(y)))
where (d),(a),and (b) are assumed to be ground facts for simplicity.

According to this rule end these facts, if we ask the question:

(HOW ?y)

then the possible branches are :

branch 1: (y) (d);

bren h 2: (y) (a) (b);

-.,_d +

6. NEW COMMANDS.

1. (OBJECT) : Creates interactiveJy a new object end places it in the hierarchy

network. Also one has the ability to query the hierarchy.

2. (QUERY) : Starts interactively backward chaining for a user specified query. It

creates bindings end returns the corresponding truth value of the query.

632

3. (HOW) : Returns all possible path derivations for a specific query and explains

how the particular subgoals were established and proved.

4. (WHY) : Returns information on the rule that proves a particular query and

explains the truth values of the corresponding premises.

7. CONCLUSION.

In this paper we presented an extension of the CLIPS Expert System shell. We have

created an enhanced version by allowing Objects and Hierarchies to be defined, adding a

Backward Chaining mechanism for triggering rules, and finally creating two basic explana-

tion facilities WHY and HOW. The whole system is fully integrated in the original CLIPS

environment. The new version is currently running on a SUN 4 machine. Future extensions

will be available in a DOS environment as well, so that maximum flexibility and portability

can be obtained. Special care is taken so that the interface for the new commands is user

friendly and much attention was paid on error checking and reporting.

Currently, we are integrating methods for objects. Methods will be defined as an at-

tribute of an object and will have the same inheritance properties as any other attribute of

the hierarchy. The internal structure of a method will be identical to a normal C function,

and accessing attribute values will be acomplished by implementing two functions available

to all methods that will get an attribute value given an object name and attribute name,

and put an attribute value given an object name and attribute name (see Fig. 6).

Furthermore, we are integrating explanation facilities to answer questions of the form

"WHY a conclusion was not derived ?", and "WHY a rule was not fired ?'. The basis

for answering these questions is to incorporate the closed-world assumption for the current

status of our knowledge base.

Finally, we are implementing a user friendly interface in the form of a natural language

system in order for a user to input definitions of rules, facts, objects, methods, and a menu

driven system in order for the user to access all the commands that the new version of

CLIPS supports.

These extensions are currently tried under a SUN 4 and a NeXT machine environment.

633

References

[1] Blair G., Gallagher J., Malik J., " Genericity vs Inheritance vs Delegation vs Con-

formemce vs .. " Journal of Object Oriented Programming, Sept./Oct. 1989 Vol.2 No.

3.

[21 Stefik M., Brobrow D. G., " Object Oriented Programming : Themes and Variations".

The AI Magazine, 1985, pp.40 - 62.

[3] Goldberg A. and Robson D. " Sinai]talk 80 • The Language and its Implementation",

Addison Wesley, 1983.

[4] Morris J. H., Meyer B. , Nerson J., Matsuo M., " Eiffel : Object Oriented Design

for Software Engineering In, Proceedings of the First European Software Engineering

Conference, Strasbourg, France, Sept. 1987, pp. 120 - 124.

[5] Lieberman H., "Delegation and Inheritance : Two Mechanisms for sharing Knowledge

in Object Oriented Systems". Journees Languages Orientes Objet, 1985, pp. 79 - 89.

[6] Stein L. A., " Delegation is Inheritance _, Special Issue o.fSIGPLAN Notices, Orlando,

FL. Oct. 4 - 8, 1987, 22 (12), pp. 138 - 146.

[7] Horn C. " Conformance, Genericity, Inheritance and Enhancement", In: Proc.

ECOOP, Paris, June 1987.

[8] Meyer B. " Genericity versus Inheritance", In : Proceedings of OOPSLA 1986, Con-

ference, pp. 391 - 405, Portland, OR, Sept. 1986.

[9] Taenzer D., Ganti M., Podex S. " Object Oriented Software Reuse : The Yoyo Prob-

lem", Journal of Object Oriented Programming, Sept./Oct. 1989 Vol.2 No. 3.

[10] Jackson P. "Introduction To Expert Systems", Addison Wesley, 1986.

[11] Winston P. "Artificial Intelligence", Addison Wesley, 1984.

[12] Waterman A. D. " A Guide to Expert Systems", Addison Wesley, 1984.

[13] Buchanan B., Shortliffe E. " Rule Based Expert Systems ", Mc Graw Hill.

[14] Millet C., Gilloux M. " A Study of the Knowledge Required for Explanation in Expert

Systems ". 1989 IEEE Fifth Conference on Artificial Intelligence Applications.

[15] Weiner J., "BLAH, a System which explains its reasoning", Artificial Intelligence 15

(I- 2) pp. 19- 48, 1980.

634

[16] Erickson A. "Neat Explanation of Proof Trees'. Proc. of the 9th IJCAI, Los Angeles,

Ca, 1985.

[17] Forsyth R. "Expert Systems Principles and Case Studies". Chapman and Mall Publ.
Co.

[18]

[19]

[20]

[21]

Hasling D. W. "Abstarct Exlanations of Strategy on a Diagnostic Consultation Sys-

tem". Proc. of the National Conference on Artificial Intelligence , Washington DC,

pp. 157 - 161, 1983.

Clancey W. J., "Transfer of Rule Based Expertise through a tutorial dialog". Stanford

University, Dpt. of Computer Science, 1979.

Krekels X., " Why-not Explanations in Expert Systems and their Use as a Debugging

Tool", Cognitiva 85, 1985.

Sa_ar B., Rousset M - C., "Negative and Positive Explanations in Expert Systems".

Tech. Rep. LRI, Univ. d'Orsay, 1985.

635

[.a

Z

Z

[.a

Z

Z
I--I

Z

U
I-i

I-.i

U
©

..Q
©

I---I

la.,

-_..m

6_

L.)
• °

rJ_

. .

637

/\

0

0

/\

0

0
L)

/ \

/

/\

1

i

I

\
/ IE.

I,-tiII

-- il le_

• Jl I !

o,j _lo!o.,

!

I

I

i

i

I

/

0

z

z

© L)

L) u

o.

eo

L_

L) 0 Z ,--,_ Z rO {-,_ 0 Z

638

Z

Z
<

\

/

\

/

0

• °

639

/\

gmme

l
I
I
I
|

I

"F"
I

/

I
q_

/

i

, f._

Lt_

L_
iml

64O

0

= ;

z

-; o _ =
:E

=_

= E ; " c ® "_o
=- .u m .w ; ,"

= =:_ ®E== _; oS E
r_ _ _ .. _ _ _ "" 0
.. "-" .. "_ .. • ", ,-.. Z

o- •

=-i
= = =._

,= t.. t= j

< < < =

• "" ® _" ¢'- ¢'-

±± - ;
= = =-- _= ,-

m i

< ,(,< _

°.
in

¢n L)
u_

\ ,< --

/ u o

\

/

l.-,

°. _

t,_ _.1

< <
"1 m

@ "" IV I_

222 =_

I,.-oo

Z

u_
!z

Z

<
° •

641

